Projects in the research area: Incorporation of parameter dependencies and robustness

  • Stress-Based Methods for Variational Inequalities in Solid Mechanics: Finite Element Discretization and Solution by Hierarchical Optimization
    G. Starke, R. Krause

Communicating Research Areas

  • Modeling, problem analysis, algorithm design and convergence analysis

    The focus of this area is on the development and analysis of genuinely non-smooth models in the sciences in order to properly capture real-world effects and to avoid comprising smoothing approaches. In simulation and optimization this requires to advance set-valued analysis and the design of robust algorithms for non-smooth problems.

  • Realization of algorithms, adaptive discretization and model reduction

    As the target applications of this SPP involve non-smooth structures and partial differential operators, the discretization of the associated problems and robust error estimation are important issues to be address, and proper model-reduction techniques need to be developed.

  • Incorporation of parameter dependencies and robustness

    In many applications the robustness of solutions with respect to a given parameter range (uncertainty set) is highly relevant. Correspondingly, in this research area of the SPP, bi- or multilevel optimization approaches will be studied in order to robustify problem solutions against uncertain parameters.