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An augmented Lagrange method for elliptic state
constrained optimal control problems ∗

Veronika Karl† Daniel Wachsmuth‡

February 16, 2017

Abstract

In the present work we apply an augmented Lagrange method to solve pointwise state
constrained elliptic optimal control problems. We prove strong convergence of the primal
variables as well as weak convergence of the adjoint states and weak-* convergence of the
multipliers associated to the state constraint. In addition, numerical results are presented.

Keywords: optimal control, state constraints, augmented Lagrange method.
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1 Introduction
This paper deals with the solution of a convex optimal control problem with an elliptic state
equation and pointwise control and state constraints. The problem is given by

min J(y, u) :=
1

2
||y − yd||2L2(Ω) +

α

2
||u||2L2(Ω) (P )

subject to

Ay = u in Ω,

∂νAy = 0 on ∂Ω,

y ≤ ψ in Ω,

ua ≤ u ≤ ub in Ω.

Here A denotes an elliptic operator of second-order. The setting of the optimal control problem
will be made precise below in Section 2.1.

Under suitable constraint qualifications, first-order necessary conditions to problem (P ) can
be proven. In general, the Lagrange multiplier associated to the state constraint y ≤ ψ is a
measure in C(Ω̄)∗, see, e.g., [6]. Because of this low regularity of the Lagrange multiplier, the
numerical solution of state constrained optimal control problems is challenging. Thus, in recent
years different approaches were studied to overcome this problem. These approaches have in
common that the state constraint is relaxed in a suitable way. Let us mention Lavrentiev-
regularization [14,24] turning the control problem into problems with mixed control-state con-
straints. Penalization-based approaches were studied in [10, 13, 17], their combination with a
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path-following strategy was investigated in [11, 12]. Both types of methods are obtained as
special cases of the so-called virtual control regularization approach developed in [20,21].

Augmented Lagrange methods are well-known in optimization. However, there is only a
limited number of publications dedicated to the application of such methods to optimal control
problems with state constraints. In [1, 2] the state equation is augmented but the inequality
constraints on the state are still present in the augmented Lagrange sub-problem. In [3,16] the
case of finitely many state constraints of the type Λy ∈ K with Λ having finite-dimensional
range is studied. The goal of the present paper is to analyze the classical augmented Lagrange
method in the general setting of problems with state constraints: state constraints in C(Ω̄) (not
in a – possibly finite-dimensional – Hilbert space) with multipliers in C(Ω̄)∗.

Let us mention the recent contribution [19]. There, a modified augmented Lagrange method
is investigated, which is in the spirit of recent developments for finite-dimensional optimization
problems [5]. The modification allows for a simpler convergence analysis. In contrast to this
work, we study an algorithm with the classical Lagrange multiplier update.

After collecting preliminary results in Section 2, we develop the augmented Lagrange method
in Section 3. In order to guarantee the boundedness of generated multiplier approximations, we
investigate a special multiplier update rule: the classical multiplier update is performed only if
a certain measure of feasibility and violation of complementarity shows sufficient decrease, see
Section 3.3. The convergence of the method is studied in Section 3.5. The main results of this
section are boundedness of iterates (Lemma 3.10) and their convergence (Theorem 3.11) to the
solution of the original problem. We demonstrate the performance of the method for selected
problems in Section 4.

Notation. Throughout the article we will use the following notation. The inner product in
L2(Ω) is denoted by (·, ·). Duality pairings will be denoted by 〈·, ·〉. The dual of C(Ω̄) is denoted
byM(Ω̄), which is the space of regular Borel measures on Ω̄.

2 Preliminary results

2.1 Setting of the control problem
Let Ω ⊂ RN , N = {2, 3} be a bounded domain with C1,1-boundary Γ. Let Y denote the space
Y := H1(Ω) ∩ C(Ω̄), and set U := L2(Ω). We want to solve the following state-constrained
optimal control problem: Minimize

J(y, u) :=
1

2
||y − yd||2L2(Ω) +

α

2
||u||2L2(Ω)

over all (y, u) ∈ Y × U subject to the elliptic equation

(Ay)(x) = u(x) in Ω,

(∂νAy)(x) = 0 on Γ,

and subject to the pointwise state and control constraints

y(x) ≤ ψ(x) in Ω,

ua(x) ≤ u(x) ≤ ub(x) in Ω.

In the sequel, we will work with the following set of standing assumptions.

Assumption 1. 1. The given data satisfy yd ∈ L2(Ω), α > 0, ua, ub ∈ L2(Ω) with ua ≤ ub,
ψ ∈ C(Ω̄).

2. The differential operator A is given by

(Ay)(x) := −
N∑

i,j=1

∂xj (aij(x)∂xiy(x)) + a0(x)y(x)
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with ai,j ∈ C0,1(Ω̄) and a0 ∈ L∞(Ω). The operator A is assumed to be strongly elliptic,
i.e., there is δ > 0 such that

N∑
i,j=1

aij(x)ξiξj ≥ δ|ξ|2 ∀ξ ∈ RN , a.e. on Ω.

Further a0(x) ≥ 0 a.e. in Ω and a0 6≡ 0.

3. The normal derivative ∂νAy is given by

∂νAy =

N∑
i,j=1

aij(x)∂xi
y(x)νj(x),

where ν denotes the outward unit normal vector on Γ.

A function y ∈ H1(Ω) is called a weak solution of the state equation if it holds∫
Ω

−
N∑

i,j=1

aij(x)∂xi
y(x)∂xj

v(x) dx+

∫
Ω

a0(x)y(x)v(x) dx =

∫
Ω

u(x)v(x) dx ∀v ∈ H1(Ω).

Due to the assumptions above, for every u ∈ L2(Ω) there exists a uniquely determined weak
solution y of the state equation.

Theorem 2.1. Let Ω be a bounded domain in RN , N = 2, 3 with C1,1-boundary. Then, for
every (f, g) ∈ Lr(Ω)× Ls(Γ) with r > N/2, s > N − 1, the elliptic partial differential equation

Ay = f in Ω,

∂νAy = g on Γ
(1)

admits a unique weak solution y ∈ H1(Ω) ∩ C(Ω̄), and it holds

‖y‖H1(Ω) + ‖y‖C(Ω̄) ≤ c
(
‖f‖Lr(Ω) + ‖g‖Ls(Γ)

)
(2)

with c > 0 independent of u.
If in addition (fn, gn) are such that fn ⇀ f in Lr(Ω) and gn → g in Ls(Γ) then the

corresponding solutions (yn) of (1) converge strongly in H1(Ω) and C(Ω̄) to the solution y of
(1) to data (f, g).

Proof. The proof can be found in Casas [7, Theorem 3.1].

This result shows that the control-to-state mapping S : u 7→ y is continuous from L2(Ω)
to H1(Ω) ∩ C(Ω̄). In the following, we will use the feasible sets with respect to the state and
control constraints denoted by

Uad = {u ∈ L2(Ω) | ua(x) ≤ u(x) ≤ ub(x) a.e. in Ω},
Yad = {y ∈ C(Ω̄) | y(x) ≤ ψ(x) ∀x ∈ Ω}.

The feasible set of the optimal control problem is denoted by

Fad = {(y, u) ∈ Y × U | (y, u) ∈ Yad × Uad, y = Su}.

2.2 Existence of solutions
Under the standing assumptions, we can show existence and uniqueness of solutions.

Theorem 2.2. Let Assumption 1 be satisfied. Assume that the feasible set Fad is non-empty.
Then, there exists a uniquely determined solution (ȳ, ū) of (P ).

Proof. This can be proven by standard arguments, see, e.g., [15, Theorem 1.43].
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2.3 Optimality conditions
Existence of Lagrange multipliers to state-constrained optimal control problems is not guaran-
teed without any regularity assumptions. In the sequel, we will work with the following Slater
point condition.

Assumption 2. We assume that there exists û ∈ Uad and σ > 0 such that for ŷ = Sû it holds

ŷ(x) ≤ ψ(x)− σ ∀x ∈ Ω.

Theorem 2.3. Let (ȳ, ū) be a solution of the problem (P ). Furthermore, let Assumption 2
be fulfilled. Then, there exists an adjoint state p̄ ∈ W 1,s(Ω), s < N/(N − 1), and a Lagrange
multiplier µ̄ ∈M(Ω̄) with µ̄ = µ̄|Ω + µ̄|Γ, such that the following optimality system

Aȳ = ū in Ω,

∂νA ȳ = 0 on Γ,
(3a)

A∗p̄ = ȳ − yd + µ̄Ω in Ω,

∂ν∗A p̄ = µ̄Γ on Γ,
(3b)

(p̄+ αū, u− ū) ≥ 0 ∀u ∈ Uad, (3c)

〈µ̄, ȳ − ψ〉M(Ω̄),C(Ω̄) = 0, µ̄ ≥ 0, (3d)

is fulfilled. Here, the inequality µ̄ ≥ 0 means 〈µ̄, ϕ〉M(Ω̄),C(Ω̄) ≥ 0 for all ϕ ∈ C(Ω̄) with ϕ ≥ 0.

Proof. The proof can be found in [6].

Let us state a result about existence and regularity of solutions of the adjoint equation with
measures.

Theorem 2.4. Let µ̄ ∈M(Ω̄) be a regular Borel measure with µ̄ = µ̄|Ω + µ̄|Γ. Then the adjoint
state equation

A∗p̄ = ȳ − yd + µ̄Ω in Ω,

∂νA∗ p̄ = µ̄Γ on Γ

has a unique very weak solution p̄ ∈W 1,s(Ω), s ∈ (1, N/(N − 1)), and it holds

‖p̄‖W 1,s(Ω) ≤ c
(
‖ȳ‖L2(Ω) + ‖yd‖L2(Ω) + ‖µ̄‖M(Ω̄)

)
. (4)

Proof. This result is due to [7, Theorem 4.3].

In general, the adjoint state p̄ and the Lagrange multiplier µ̄ from Theorem 2.3 need not to
be unique.

3 The augmented Lagrange method
Since the Lagrange multiplier corresponding to the pointwise state constraint is only a measure,
its numerical treatment causes difficulties. To overcome these, we replace the inequality con-
straint y ≤ ψ by an augmented penalization term. The precise formulation of this augmentation
will be described in the next section. The complete algorithm will be presented in Section 3.4
below.
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3.1 The augmented Lagrange optimal control problem
Let ρ > 0 be a given penalty parameter, and let µ ∈ L2(Ω) with µ ≥ 0 be a given approximation
of the Lagrange multiplier. In the sequel, we will work with the following augmented Lagrange
functional P depending on these parameters defined by

P (y, ρ, µ) :=
1

2ρ

∫
Ω

(
(µ+ ρ(y − ψ))+

)2 − µ2 dx, (5)

where (z)+ := max(0, z). For given penalty parameter ρ > 0, the mapping (y, µ) → P (y, ρ, µ)
is well-defined from L2(Ω) × L2(Ω) → R. Moreover, it is continuously Frechet-differentiable
from L2(Ω)×L2(Ω)→ R. Clearly, P is not twice Frechet differentiable. In the literature, there
exist twice continuously differentiable penalty functions. We refer to Birgin [4] for a numerical
comparison of various penalty functions for finite-dimensional optimization problems.

Let now ρ > 0 and µ ∈ L2(Ω) be given. Then in each step of the augmented Lagrange
method the following sub-problem has to be solved: Minimize

J(yρ, uρ, µ, ρ) :=
1

2
||yρ − yd||2L2(Ω) +

α

2
||uρ||2L2(Ω) + P (yρ, ρ, µ) (P ρ,µAL )

subject to the state equation and the control constraints

yρ = Suρ, uρ ∈ Uad.

In the following, existence of an optimal control and existence of an corresponding adjoint state
will be proven. We start with a theorem that states existence of an optimal control.

Theorem 3.1 (Existence of solutions of the augmented Lagrange sub-problem). For every
ρ > 0, µ ∈ L2(Ω) with µ ≥ 0 the augmented Lagrange control problem (P ρ,µAL ) admits a unique
solution ūρ ∈ Uad with associated optimal state ȳρ ∈ Y .

Proof. Since Uad is closed, bounded and convex and J is coercive, weakly lower semi-continuous
and strictly convex, problem (P ρ,µAL ) has a unique solution ūρ ∈ Uad. For more details see [26]
and [8].

Since the problem (P ρ,µAL ) has no state constraints, the first-order optimality system is fulfilled
without any further regularity assumptions.

Theorem 3.2 (First-order necessary optimality conditions). Let (ȳρ, ūρ) be the solution of
(P ρ,µAL ). Then, there exists a unique adjoint state p̄ρ ∈ H1(Ω) associated with the optimal
control ūρ, satisfying the following system.

Aȳρ = ūρ in Ω,

∂νA ȳρ = 0 on Γ,
(6a)

A∗p̄ρ = ȳρ − yd + µ̄ρ in Ω,

∂ν∗A p̄ρ = 0 on Γ,
(6b)

(p̄ρ + αūρ, u− ūρ) ≥ 0 ∀u ∈ Uad, (6c)

µ̄ρ := (µ+ ρ(ȳρ − ψ))+ . (6d)

Proof. Can be found in [15, Corollary 1.3, p. 73].

Due to the choice of µ̄ρ in (6d), the optimality system (6) of the augmented problem is very
similar to optimality system (3) of the original problem (P ). In fact, if (ȳρ, ūρ, p̄ρ, µ̄ρ) solves
(6), ȳρ is feasible, and (µ̄ρ, ȳρ−ψ) = 0 holds, then (ȳρ, ūρ, p̄ρ, µ̄ρ) is a KKT-point of the original
problem.

Another observation is that it is enough to control the L1-norm of µ̄ρ in order to derive
bounds on the solution (ȳρ, ūρ, p̄ρ) of (6). Here, we have the following theorem.
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Theorem 3.3. Let ρ > 0 and µ ∈ L2(Ω) be given. Let s ∈ (1, N/(N − 1)). Then there is a
constant c > 0 independent of ρ and µ such that for all solutions (ȳρ, ūρ, p̄ρ, µ̄ρ) of (6) it holds

‖ȳρ‖H1(Ω) + ‖ȳρ‖C(Ω̄) + ‖ūρ‖L2(Ω) + ‖p̄ρ‖W 1,s(Ω) ≤ c(‖µ̄ρ‖L1(Ω) + 1).

Proof. Let us test the state equation (6a) with p̄ρ and the adjoint equation (6b) with ȳρ. This
yields

(p̄ρ, ūρ) = (ȳρ − yd, ȳρ) + (µ̄ρ, ȳρ).

Using the optimal control ū of the original problem as test function in (6c), we obtain

(ȳρ − yd, ȳρ) + (µ̄ρ, ȳρ) ≤ (αūρ, ū− ūρ) + (p̄ρ, ū).

By Young’s inequality, we have

‖ȳρ‖2L2(Ω) + α‖ūρ‖2L2(Ω) ≤ 2‖µ̄ρ‖L1(Ω)‖ȳρ‖C(Ω̄) + α‖ū‖2L2(Ω) + ‖yd‖2L2(Ω) + 2‖p̄ρ‖L2(Ω)‖ū‖L2(Ω).

Let us fix s̄ ∈ (1, N/(N − 1)) such that W 1,s̄(Ω) is continuously embedded in L2(Ω). Then we
obtain from Theorems 2.1 and 2.4 that there exists c > 0, which is independent of ρ and µ,
such that

‖ȳρ‖2L2(Ω) + α‖ūρ‖2L2(Ω) ≤ c
(
‖µ̄ρ‖L1(Ω)‖ūρ‖L2(Ω) + ‖ū‖2L2(Ω) + ‖yd‖2L2(Ω)

)
.

This implies the bound on the L2-norms of ūρ and ȳρ. Using again the regularity results from
Theorems 2.1 and 2.4 the claim is proven.

3.2 The general augmented Lagrange algorithm
In this section we will briefly present a prototypical augmented Lagrange algorithm. In the
following, let (PAL)k denote the augmented Lagrange sub-problem (P ρ,µAL ) for given penalty
parameter ρ := ρk and multiplier µ := µk. We will denote its solution by (ȳk, ūk) with adjoint
state p̄k and updated multiplier µ̄k, which is given by (6d).

Algorithm 1. Let ρ1 > 0 and µ1 ∈ L2(Ω) be given with µ1 ≥ 0. Choose θ > 1.

1. Solve (PAL)k, and obtain (ȳk, ūk, p̄k, µ̄k).

2. If the step is successful set µk+1 := µ̄k, ρk+1 := ρk.

3. Otherwise set µk+1 := µk, increase penalty parameter ρk+1 := θρk.

4. If the stopping criterion is not satisfied set k := k + 1 and go to step 1.

We will describe the decision about successful steps in the next section. The stopping
criterion will be based on the same quantities. It ensures that the approximations are close
to solutions of the original problem. For convenience, let us restate the system (PAL)k that is
solved by (ȳk, ūk, p̄k, µ̄k):

Aȳk = ūk in Ω,

∂νA ȳk = 0 on Γ,
(7a)

A∗p̄k = ȳk − yd + µ̄k in Ω,

∂ν∗A p̄k = 0 on Γ,
(7b)

ūk ∈ Uad, (p̄k + αūk, u− ūk) ≥ 0 ∀u ∈ Uad, (7c)

µ̄k := (µk + ρk(ȳk − ψ))+ . (7d)
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3.3 The multiplier update rule
Let us start this section with a basic estimate, which will be useful in the sequel.

Lemma 3.4. Let (ȳ, ū, p̄, µ̄) be a solution of (3), and let (ȳk, ūk, p̄k, µ̄k) solve (7). Then it
holds

‖ȳ − ȳk‖2L2(Ω) + α ‖ū− ūk‖2L2(Ω) ≤ (µ̄k, ψ − ȳk) + 〈µ̄, ȳk − ψ〉. (8)

Proof. Using (3b) and (7b), we obtain

‖ȳ − ȳk‖2L2(Ω) = (A∗(p̄− p̄k), ȳ − ȳk)− (µ̄− µ̄k, ȳ − ȳk)

= ((p̄− p̄k), ū− ūk)− (µ̄− µ̄k, ȳ − ȳk)

≤ −α ‖ū− ūk‖2L2(Ω) − (µ̄− µ̄k, ȳ − ȳk),

which implies

‖ȳ − ȳk‖2L2(Ω) + α ‖ū− ūk‖2L2(Ω) ≤ (µ̄k − µ̄, ȳ − ȳk). (9)

The term on the right-hand side of equation (9) can be split into two parts:

(µ̄k, ȳ − ȳk) = (µ̄k, ȳ − ψ) + (µ̄k, ψ − ȳk) ≤ (µ̄k, ψ − ȳk) (10)

and

−〈µ̄, ȳ − ȳk〉 = −〈µ̄, ȳ − ψ〉 − 〈µ̄, ψ − ȳk〉 = 〈µ̄, ȳk − ψ〉. (11)

Here, we used the complementarity relation (3d) as well as ȳ ≤ ψ and µ̄k ≥ 0. Putting the
inequalities (9), (10), and (11) together, we get

‖ȳ − ȳk‖2L2(Ω) + α ‖ū− ūk‖2L2(Ω) ≤ (µ̄k, ψ − ȳk) + 〈µ̄, ȳk − ψ〉.

which is the claim.

Our multiplier update decision is motivated by the following result, which estimates the
difference of solutions of the augmented Lagrange sub-problem to the solution of the original
problem. The upper bound of the error contains the violation of the state constraint and the
mismatch in the complementarity condition.

Lemma 3.5. Let (ȳ, ū, p̄, µ̄) and (ȳk, ūk, p̄k, µ̄k) be given as in Lemma 3.4. Then it holds

‖ȳ − ȳk‖2L2(Ω) + α ‖ū− ūk‖2L2(Ω) ≤ ‖µ̄‖M(Ω) ‖(ȳk − ψ)+‖C(Ω̄) + (µ̄k, ψ − ȳk). (12)

Proof. The claim follows directly from Lemma 3.4 using the estimate

〈µ̄, ȳk − ψ〉 ≤ ‖µ̄‖M(Ω) ‖(ȳk − ψ)+‖C(Ω̄) .

This result shows that the iterates (ȳk, ūk) will converge to the solution of the original
problem if the quantity

‖(ȳk − ψ)+‖C(Ω̄) + |(µ̄k, ψ − ȳk)|

tends to zero for k → ∞. We will say that a step of Algorithm 1 is successful if this quantity
decreases sufficiently fast. In fact, we will say that step k was successful if the condition

‖(ȳk − ψ)+‖C(Ω̄) + |(µ̄k, ψ − ȳk)| ≤ τ
(
‖(ȳn − ψ)+‖C(Ω̄) + |(µ̄n, ψ − ȳn)|

)
is satisfied with τ ∈ (0, 1). Here, we denoted by step n, n < k, the previous successful step.
Moreover, the quantity above can be used as termination criterion, where the iteration is stopped
if this quantity is small enough.
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3.4 The augmented Lagrange algorithm in detail
Let us now state the concrete algorithm based on the general algorithm above with the update
rule as described in the previous section.

Algorithm 2. Let ρ1 > 0 and µ1 ∈ L2(Ω) be given with µ1 ≥ 0. Choose θ > 1, τ ∈ (0, 1),
ε ≥ 0, R+

0 >> 1. Set k = 1 and n = 1.

1. Solve (PAL)k, and obtain (ȳk, ūk, p̄k, µ̄k).

2. Compute Rk := ‖(ȳk − ψ)+‖C(Ω̄) + |(µ̄k, ψ − ȳk)|.

3. If Rk ≤ τR+
n−1 then the step k is successful, set µk+1 := µ̄k, ρk+1 := ρk and define

(y+
n , u

+
n , p

+
n ) := (ȳk, ūk, p̄k), as well as µ+

n := µk+1 and R+
n := Rk. Set n := n+ 1.

4. Otherwise the step k is not successful, set µk+1 := µk, increase penalty parameter ρk+1 :=
θρk.

5. If R+
n ≤ ε then stop, otherwise set k := k + 1 and go to step 1.

The algorithm is well-defined. Still it needs to be proven that infinitely many steps are suc-
cessful. Otherwise the algorithm would produce a sequence of iterates which becomes constant
after finitely many steps.

In order to do so, we will investigate the solutions of the augmented Lagrange KKT system
(6) with fixed multiplier approximation µ and penalization parameter ρ tending to infinity. In
this situation, the method reduces to a penalty method with additional shift parameter µ. Such
a scheme was already investigated in [11]. However, there a much stronger regularity condition
was imposed, which forces to consider the state constraints in H2(Ω).

Lemma 3.6. Let (ρk) be a sequence of positive numbers with ρk → ∞. Let µ ∈ L2(Ω) with
µ ≥ 0 be given. Let (ȳk, ūk, p̄k) be solutions of

Aȳk = ūk in Ω,

∂νA ȳk = 0 on Γ,
(13a)

A∗p̄k = ȳk − yd + µ̄k in Ω,

∂ν∗A p̄k = 0 on Γ,
(13b)

ūk ∈ Uad, (p̄k + αūk, u− ūk) ≥ 0 ∀u ∈ Uad, (13c)

µ̄k := (µ+ ρk(ȳk − ψ))+ . (13d)

Then it holds (ȳk, ūk)→ (ȳ, ū) in (H1(Ω) ∩ C(Ω̄))× L2(Ω) for k →∞.

Proof. The general idea of the proof follows [11]. Using an observation from the proof of [18,
Theorem 3.1], we find

(µ̄k, ȳ − ȳk) = (µ̄k,−
µ

ρk
− ȳk + ψ − ψ + ȳ +

µ

ρk
)

= − 1

ρk
‖µ̄k‖2L2(Ω) +

1

ρk
(µ̄k, µ) + (µ̄k, ȳ − ψ)

≤ − 1

ρk
‖µ̄k‖2L2(Ω) +

1

2ρk

(
‖µ̄k‖2L2(Ω) + ‖µ‖2L2(Ω)

)
= − 1

2ρk
‖µ̄k‖2L2(Ω) +

1

2ρk
‖µ‖2L2(Ω) .

(14)

From inequality (9) in the proof of Lemma 3.4, we get

‖ȳ − ȳk‖2L2(Ω) + α ‖ū− ūk‖2L2(Ω) ≤ (µ̄k, ȳ − ȳk)− 〈µ̄, ȳ − ȳk〉

≤ (µ̄k, ȳ − ȳk) + c ‖µ̄‖M(Ω̄) ‖ȳ − ȳk‖C(Ω̄)

≤ (µ̄k, ȳ − ȳk) +
α

2
‖ū− ūk‖2L2(Ω) +

c2

2α
‖µ̄‖2M(Ω̄) ,
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where we used Young’s inequality and the regularity result from Theorem 2.1. With inequality
(14) this leads to

‖ȳ − ȳk‖2L2(Ω) +
α

2
‖ū− ūk‖2L2(Ω) +

1

2ρk
‖µ̄k‖2L2(Ω) ≤

1

2ρk
‖µ‖2L2(Ω) +

c2

2α
‖µ̄‖2M(Ω̄) . (15)

Hence, the sequence (ūk) is bounded in L2(Ω), implying the boundedness of (ȳk) in H1(Ω) ∩
C(Ω̄). This allows to extract weakly converging subsequences ūk′ ⇀ u∗ in L2(Ω) and ȳk′ ⇀ y∗

in H1(Ω). Since the embedding H1(Ω)∩C(Ω̄) ↪→ L2(Ω) is compact, the sequence (ȳk) converges
strongly in L2(Ω). By Theorem 2.1, the convergence ȳk′ to y∗ is strong in C(Ω̄). In order to
prove y∗ ≤ ψ, we use the identity

1

ρk
‖µ̄k‖2L2(Ω) = ρk

∥∥∥∥max

(
0,
µ

ρk
+ ȳk − ψ

)∥∥∥∥2

L2(Ω)

, (16)

which is bounded because of (15). As max
(

0, µ
ρk′

+ ȳk′ − ψ
)
converges to max(0, y∗ − ψ) in

L2(Ω) for k′ → ∞, we obtain y∗ ≤ ψ by passing to the limit in (16). This shows that y∗ is
feasible. To argue that y∗ = ȳ and u∗ = ū, we use again inequality (9) to conclude

‖ȳ − ȳk‖2L2(Ω) + α ‖ū− ūk‖2L2(Ω) = (µ̄k, ȳ − ȳk)− 〈µ̄, ȳ − ψ〉+ 〈µ̄, ȳk − ψ〉

≤ 1

2ρk
‖µ‖2L2(Ω) + 〈µ̄, ȳk − ψ〉. (17)

Passing to the limit k′ →∞ yields

0 ≤ lim
k′→∞

‖ȳ − ȳk′‖2L2(Ω) + α ‖ū− ūk′‖2L2(Ω) ≤ 〈µ̄, y
∗ − ψ〉 ≤ 0,

and consequently ūk′ → ū in L2(Ω). Because of Theorem 2.1 we immediately get the strong
convergence ȳk′ → ȳ in H1(Ω) ∩ C(Ω̄). As the limit is independent of the taken subsequence,
we obtain convergence of the whole sequences (uk) and (yk) to ū and ȳ, respectively.

Lemma 3.7. Under the same assumptions as in Lemma 3.6, it holds

lim
k→∞

(µ̄k, ψ − ȳk) = 0.

Proof. First we estimate

(µ̄k, ψ − ȳk) =
1

ρk
(µ̄k,−µ+ ρk(ψ − ȳk) + µ) = − 1

ρk
‖µ̄k‖2L2(Ω) +

1

ρk
(µ̄k, µ)

≤ − 1

ρk
‖µ̄k‖2L2(Ω) +

1

2ρk
‖µ̄k‖2L2(Ω) +

1

2ρk
‖µ‖2L2(Ω)

≤ 1

2ρk
‖µ‖2L2(Ω) ,

which proves

lim sup
k→∞

(µ̄k, ψ − ȳk) ≤ 0. (18)

From Lemma 3.4 we get

(µ̄k, ψ − ȳk) ≥ ‖ȳ − ȳk‖2L2(Ω) + α ‖ū− ūk‖2L2(Ω) + 〈µ̄, ψ − ȳk〉,

which leads with Lemma 3.6 to

lim inf
k→∞

(µ̄k, ψ − ȳk) ≥ 0. (19)

The inequalities (18) and (19) yield the claim.
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Using these two results, we can show that an infinite number of successful steps are done.

Lemma 3.8. The augmented Lagrange algorithm makes infinitely many successful steps.

Proof. We assume the algorithm to do a finite number of successful steps only. Then there is
an index m such that all steps k with k > m are not successful. According to Algorithm 2 it
holds µk = µm for all k > m , Rk > τRm and ρk → ∞. However by Lemma 3.6 and Lemma
3.7 we get

lim
k→∞

Rk = lim
k→∞

‖(ȳk − ψ)+‖C(Ω̄) + |(µ̄k, ψ − ȳk)| = 0,

yielding a contradiction.

3.5 Convergence of the algorithm
Let us recall that the sequence (y+

n , u
+
n , p

+
n ) denotes the solution of the n-th successful iteration

of Algorithm 2 with µ+
n being the corresponding approximation of the Lagrange multiplier.

Here, we want to show convergence of the algorithm. The most important part is proving
L1-boundedness of the Lagrange multipliers µ+

n , which is accomplished in Lemma 3.10 below.

Lemma 3.9. Let y+
n , µ

+
n be given as defined in Algorithm 2. Then it holds

|(µ+
n , ψ − y+

n )| ≤ τn−1
(∥∥(y+

1 − ψ)+

∥∥
C(Ω̄)

+
∥∥µ+

1

∥∥
L2(Ω)

∥∥(ψ − y+
1 )+

∥∥
L2(Ω)

)
. (20)

Proof. By definition of a successful step in Algorithm 2, we get the result directly by induction
and the Cauchy-Schwarz inequality.

Let us now show the L1-boundedness of the Lagrange multipliers (µ+
n ).

Lemma 3.10 (Boundedness of the Lagrange multiplier). Let Assumption 2 be fulfilled.
Then Algorithm 2 generates an infinite sequence of bounded iterates, i.e., there is a constant
C > 0 such that for all n it holds∥∥y+

n

∥∥
H1(Ω)

+
∥∥y+
n

∥∥
C(Ω̄)

+
∥∥u+

n

∥∥
L2(Ω)

+
∥∥p+

n

∥∥
W 1,s(Ω)

+
∥∥µ+

n

∥∥
L1(Ω)

≤ C.

Proof. Let (ŷ, û) be the Slater point given by Assumption 2, i.e., there exists σ > 0, such that
ŷ + σ ≤ ψ. Then we can estimate

σ||µ+
n ||L1(Ω) =

∫
Ω

σµ+
n dx ≤

∫
Ω

µ+
n (ψ − ŷ) dx =

∫
Ω

µ+
n (ψ − y+

n + y+
n − ŷ) dx

=

∫
Ω

µ+
n (ψ − y+

n )︸ ︷︷ ︸
(I)

dx+

∫
Ω

µ+
n (y+

n − ŷ) dx︸ ︷︷ ︸
(II)

.

The first part (I) can be estimated with Lemma 3.9 yielding

(I) ≤ |(µ+
n , ψ − y+

n )| ≤ τn−1
(∥∥(y+

1 − ψ)+

∥∥
C(Ω̄)

+
∥∥µ+

1

∥∥
L2(Ω)

∥∥(ψ − y+
1 )+

∥∥
L2(Ω)

)
=: τn−1C.

(21)

The second part (II) can be estimated using Young’s Inequality as follows∫
Ω

µ+
n (y+

n − ŷ) dx = 〈A∗p+
n − (y+

n − yd), y+
n − ŷ〉

= 〈p+
n , A(y+

n − ŷ)〉 − (y+
n − yd, y+

n − ŷ) = (p+
n , u

+
n − û)− (y+

n − yd, y+
n − ŷ)

≤ −(αu+
n , u

+
n − û)− (y+

n − yd, y+
n − ŷ) = (αu+

n , û− u+
n ) + (y+

n − yd, ŷ − y+
n )

= α(u+
n − û, û− u+

n ) + α(û, û− u+
n ) + (y+

n − ŷ, ŷ − y+
n ) + (ŷ − yd, ŷ − y+

n )

≤ −α
2

∥∥û− u+
n

∥∥2

L2(Ω)
− 1

2

∥∥ŷ − y+
n

∥∥2

L2(Ω)
+
α

2
‖û‖2L2(Ω) +

1

2
‖ŷ − yd‖2L2(Ω) .

(22)
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Putting (21) and (22) together yields∥∥µ+
n

∥∥
L1(Ω)

+
α

2

∥∥û− u+
n

∥∥2

L2(Ω)
+

1

2

∥∥ŷ − y+
n

∥∥2

L2(Ω)
≤ τn−1

σ
C +

α

2
‖û‖2L2(Ω) +

1

2
‖ŷ − yd‖2L2(Ω) .

Since τ ∈ (0, 1) by assumption, the right-hand side is bounded. Consequently we get bounded-
ness of (u+

n ) in L2(Ω) and boundedness of (µ+
n ) in L1(Ω) By the regularity result Theorem 2.1,

the sequence (y+
n ) is uniformly bounded in H1(Ω)∩C(Ω̄). Boundedness of (p+

n ) follows directly
from Theorem 3.3.

Remark 1. Let us note that the proof of the previous Lemma 3.10 yields boundedness of (u+
n )

without using boundedness of the admissible set Uad.

Theorem 3.11 (Convergence of solutions of the augmented Lagrange algorithm). As
n→∞ we have for the sequence (y+

n , u
+
n ) generated by Algorithm 2

(y+
n , u

+
n )→ (ȳ, ū), in (H1(Ω) ∩ C(Ω̄))× L2(Ω).

Proof. Since the algorithm yields an infinite number of successful steps (Lemma 3.8) we get

lim
n→∞

R+
n = lim

n→∞

∥∥(y+
n − ψ)+

∥∥
C(Ω̄)

+ |(µ+
n , ψ − y+

n )| = 0. (23)

From Lemma 3.4 we get the following inequality∥∥ȳ − y+
n

∥∥2

L2(Ω)
+ α

∥∥ū− u+
n

∥∥2

L2(Ω)
≤ 〈µ̄, y+

n − ψ〉+ |(µ+
n , ψ − y+

n )|

≤ ‖µ̄‖M(Ω̄)

∥∥(y+
n − ψ)+

∥∥
C(Ω̄)

+ |(µ+
n , ψ − y+

n )|.

With (23) from above, we conclude

0 ≤ lim
n→∞

∥∥ȳ − y+
n

∥∥2

L2(Ω)
+ α

∥∥ū− u+
n

∥∥2

L2(Ω)
≤ 0.

yielding y+
n → ȳ in L2(Ω) and u+

n → ū in L2(Ω). In addition, we get strong convergence of
y+
n → ȳ in H1(Ω) ∩ C(Ω̄) by Theorem 2.1.

The next step in the convergence analysis is to show the convergence of the dual quantities
(µ+
n ) and (p+

n ) to multipliers and adjoint states of the original problem (P ). Since these se-
quences are bounded in L1(Ω) andW 1,s(Ω), s ∈ (1, N

N−1 ), we can extract weak-star and weakly
converging subsequences. These weak subsequential limits are indeed Lagrange multipliers for
the original problem.

Theorem 3.12 (Subsequential convergence of dual quantities). Let subsequences (p+
nj
, µ+
nj

)

of (p+
n , µ

+
n ) be given such that µ+

nj
⇀ µ̄ inM(Ω̄) and p+

nj
⇀ p̄ in W 1,s(Ω), s ∈ (1, N

N−1 ).
Then (ȳ, ū, p̄, µ̄) satisfies the optimality system (3) of the original problem (P ).

Proof. The proof that the limits satisfy the adjoint equation (3b) can be found in [14, Lemma
2.6]. It remains to prove that the weak-* limit of µ+

nj
is indeed a Lagrange multiplier. First,

we prove the positivity property 〈µ̄, ϕ〉 ≥ 0, ∀ϕ ∈ C(Ω̄) with ϕ ≥ 0. By construction of the
update of the Lagrange multiplier we get µ+

n ≥ 0 implying∫
Ω

µ+
nϕdx ≥ 0, ∀ϕ ∈ C(Ω̄) with ϕ ≥ 0,

which in turn yields

0 ≤
∫

Ω

µ+
nj
ϕdx→ 〈µ̄, ϕ〉, ∀ϕ ∈ C(Ω̄) with ϕ ≥ 0.

Next, we show that the complementary slackness condition 〈µ̄, ȳ − ψ〉 = 0 is fulfilled. From
Theorem 3.11 we get ynj

→ ȳ in C(Ω̄). With Lemma 3.9, we get

0 = lim
j→∞

|(µ+
nj
, ψ − y+

nj
)| = |(µ̄, ψ − ȳ)|,

and hence the validity of the complementary condition. The inequality (p̄ + αū, u − ū) ≥ 0
for u ∈ Uad follows with u+

nj
→ ū in L2(Ω) and p+

nj
⇀ p̄ in L2(Ω) from (7c). This shows that

(ȳ, ū, p̄, µ̄) satisfies (3).
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Since Lagrange multipliers are not uniquely determined in general, we cannot expect weak
convergence of the whole sequences (µ+

n ) and (p+
n ). If we assume uniqueness of multipliers then

this is possible indeed.

Corollary 3.12.1. Let (ȳ, ū, p̄, µ̄) satisfy (3). Let us assume that (p̄, µ̄) are uniquely determined
Lagrange multipliers. Then it holds

p+
n ⇀ p̄ in L2(Ω),

µ+
n ⇀

∗ µ̄ inM(Ω̄).

A sufficient condition for uniqueness of the adjoint state p̄ and the Lagrange multiplier µ̄ is
a certain separation condition on the active sets corresponding, see [21, Lemma 1]. There the
following result was proven:

Lemma 3.13. Let ū be an optimal control of (P ) and let Assumption 2 be fulfilled. Moreover,
there exits δ > 0 such that it holds for the active sets

Ay = {x ∈ Ω̄ | ȳ(x) = ψ(x)}
Au = {x ∈ Ω̄ | ū(x) = ua(x) ∨ ū(x) = ub(x)}

dist(Āy, Āu) ≥ δ, i.e., the active sets are well separated. Then, the corresponding adjoint state
p̄ and the Lagrange multiplier µ̄ are uniquely determined.

4 Numerical tests
In this section we report on numerical results for the solution of an elliptic pointwise state
constrained optimal control problem in two dimensions. All optimal control problems have been
solved using the above stated augmented Lagrange algorithm implemented with FEniCS [22]
using the DOLFIN [23] Python interface. In the following, (yh, uh, ph, µh) denote the calculated
solutions after the stopping criterion is reached.

Example 1
We consider an optimal control problem given by

min J(y, u) : =
1

2
||y − yd||2L2(Ω) +

α

2
||u||2L2(Ω)

s.t.


−∆y = u in Ω,

y = 0 on Γ,

y(x) ≤ ψ(x) in Ω,

with Ω = [0, 1]×[0, 1]. It is well known, that the state equation admits for every u ∈ Lp(Ω), p >
N/2 a unique weak solution y ∈ H1

0 (Ω)∩C(Ω̄), see [9]. Hence, all results can be transferred to
this type of state equation. For our example we choose the data as in [11], which is given by
yd = 10(sin(2πx1) + x2), ψ = 0.01 and α = 0.1.

We choose the parameter in the decision concerning successful steps to be τ = 0.8. If a
step has not been successful, the penalization parameter is increased by the factor θ = 10. The
algorithm was stopped as soon as

R+
n :=

∥∥(y+
n − ψ)+

∥∥
C(Ω̄)

+ |(µ+
n , ψ − y+

n )| ≤ 2 · 10−10

was satisfied.
The Figures 1 and 2 show the numerical solution of Example 1. All figures depict results

gained for a triangular mesh with 104 degrees of freedom (dofs).
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Figure 1: (Example 1) Computed discrete optimal state yh (left) and optimal control uh (right)

Figure 2: (Example 1) Computed discrete multiplier µh (left) and desired state yd (right)

Figure 3 illustrates the L1(Ω)-Norm of the approximated Lagrange multiplier µk during
the iterations. Clearly, this sequence is bounded in L1(Ω). In addition, the values of the
penalization parameters ρk are depicted in logarithmic scale. As can be seen, this sequence
is not bounded. If it would have been bounded, then the sequence (µk) would be bounded in
L2(Ω) due to inequality (15).

0 5 10 15 20 25 30 35 40 45 50 55 60

0

1

2

3

‖µk‖L1(Ω)

0.25 · log10 ρk

Figure 3: (Example 1) L1(Ω)-norm of discrete multipliers µk, penalty parameters ρk vs. iteration
number
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Example 2
As a second example we choose from [25]. This example is given by

min J(y, u) : =
1

2
||y − yd||2L2(Ω) +

α

2
||u||2L2(Ω)

s.t.


−∆y = u+ f in Ω,

y = 0 on Γ,

y(x) ≤ ψ(x) in Ω,

with Ω = (−1, 2)2. Setting r =
√
x2

1 + x2
2 and

yd(r) = ȳ(r)− 1

2π
χr≤1(4− 9r), ψ(r) = − 1

2πα

(
1

4
− r

2

)
, f(r) =

1

8
χr≤1(4− 9r + 4r2 − 4r3).

The exact solution of the optimal control problem is given by

ȳ(r) = − 1

2πα
χr≤1

(
r2

4
(log r − 2) +

r3

4
+

1

4

)
, ū(r) =

1

2πα
χr≤1(log r + r2 − r3),

p̄(r) = αū(r), µ̄(r) = δ0(r).

Figure 4 shows the desired state yd and the state constraint ψ.

Figure 4: Desired state yd (left) and state constraint ψ (right)

The Figures 5 and 6 show our numerical results for Example 2 using the same parameters as
in Example 1. This solution was computed on a triangular mesh with 104 degrees of freedom.
The computed Lagrange multiplier behaves like expected, approximating δ0(r).

Figure 5: (Example 2) Computed discrete optimal state yh (left) and optimal control uh (right)

Since the exact solution of the problem is known, the errors ‖uh − ū‖L2(Ω) and ‖yh − ȳ‖L2(Ω)

can be evaluated. Figure 7 depicts the errors depending on the numbers of degrees of freedom,
showing once again convergence of our algorithm.
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Figure 6: (Example 2) Computed discrete multiplier µh

100 101 102 103 104 105 106 107
10−3

10−2

10−1

‖yh − ȳ‖L2(Ω)

‖uh − ū‖L2(Ω)

Figure 7: (Example 2) Errors
‖uh − ū‖L2(Ω) and ‖yh − ȳ‖L2(Ω) vs.
degrees of freedom.

0 5 10 15 20 25 30

0

0.5

1

‖µk‖L1(Ω)

0.1 · log10 ρk

Figure 8: (Example 2) L1(Ω)-norm of dis-
crete multipliers µk, penalty parameters ρk
vs. iteration number

In Figure 8 the computed L1-norm and the behaviour of the penalization parameter ρ are
shown for a mesh with 105 degrees of freedom.

Iteration numbers and penalization parameter
Finally, let us report about the number of iterations and the final penalization parameter for
different refinements of the mesh in both examples. Table 1 shows the number of iterations
until the stopping criterion is reached for our two examined examples. It also represents the pe-
nalization parameter ρmax of the final iteration and the L1-norm of the approximated Lagrange
multiplier.
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Degrees of freedom 102 103 104 105

Example 1 it 33 41 46 53

ρmax 5 · 104 5 · 106 5 · 108 5 · 1010

‖µh‖L1(Ω) 3.284 3.284 3.282 3.282

Example 2 it 33 21 22 27

ρmax 5 · 103 5 · 104 5 · 105 5 · 108

‖µh‖L1(Ω) 0.911 1.018 1.059 1.069

Table 1: Iteration history for both examples and different discretizations
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