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DUALITY RESULTS AND REGULARIZATION SCHEMES FOR
PRANDTL-REUSS PERFECT PLASTICITY

M. HINTERMÜLLER AND S. RÖSEL

Abstract. We consider the time-discretized problem of the quasi-static evo-
lution problem in perfect plasticity posed in a non-reflexive Banach space and
we derive an equivalent version in a reflexive Banach space. A primal-dual
stabilization scheme is shown to be consistent with the initial problem. As a
consequence, not only stresses, but also displacement and strains are shown
to converge to a solution of the original problem in a suitable topology. This
scheme gives rise to a well-defined Fenchel dual problem which is a modifi-
cation of the usual stress problem in perfect plasticity. The dual problem
has a simpler structure and turns out to be well-suited for numerical pur-
poses. For the corresponding subproblems an efficient algorithmic approach in
the infinite-dimensional setting based on the semismooth Newton method is
proposed.

1. Introduction

The foundation of the mathematical analysis of the time-dependent problem of
quasi-static small strain associative perfect plasticity or Prandtl-Reuss plasticity has
its origin in [18, 34], where the latter reference contains the first existence result
for the time-dependent case, which is extended in [39] to yield criteria varying
in time. The fundamental difference to hardening plasticity lies in the possible
presence of strain localization [36, 42]. On the mathematical level, this physical
phenomenon entails that displacements may display discontinuities along surfaces,
which necessitates a different functional analytic setting; cf. [53]. This framework
essentially corresponds to the static problem usually referred to as Hencky plasticity ;
see [52, 54]. In the static case, existence results for the primal formulation in the
displacement have been obtained on the basis of relaxation principles, which leads
to the nonreflexive Banach space of functions with bounded deformation. Moreover,
Fenchel duality yields the relation to the dual problem in terms of the mechanical
stress [3, 54]. These developments build upon the suitable generalized pairing of
stresses and strains from [35], which is not straightforward since the strain in perfect
plasticity is just a measure.

Surprisingly, it was not until the rather recent work of Dal Maso, DeSimone, and
Mora [15] that the corresponding primal problem of quasi-static perfect plasticity
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has been examined in a satisfying way. In this respect, the proper extension of
the stress-strain duality from Hencky plasticity to the time-dependent case is the
key to a (primal) problem formulation based on the abstract theory of energetic
formulations for a very general class of rate-independent systems; see [37, 40]. In [15],
it is further shown that a quasi-static evolution can be consistently approximated by
a sequence of time-discrete problems. Moreover, the equivalence to the stress-based
weak formulation from [34] is shown. The new formulation of perfect plasticity
from [15] has gained increasing interest during the last decade, giving rise to
several important extensions, for example to pressure-sensitive yield criteria [38],
heterogeneous materials [21, 51], regularity theory [16] or coupled with other physical
effects [7, 46]. Under minimal regularity, a quasi-static evolution in perfect plasticity
can be obtained as an appropriate limit of plasticity problems with vanishing
hardening [8].

On the numerical level, the approach from [8] can be coupled with a fully-discrete
scheme using an implicit Euler time-discretization together with a standard Finite
Element discretization to obtain convergence of displacement, stresses and strains, as
mesh size, time step and hardening parameter go to zero. Regularization techniques
have also been used earlier to obtain a convergence result for the discretized stresses
for a suitable coupling of discretization and regularization parameter; see [45].
Adaptive methods for the static case are discussed, for instance, in [44], [49] and
[12].

As for algorithmic approaches to the time-discrete problems of perfect plasticity,
we mention the standard return mapping algorithm from [50] and the superlinear
convergence of this generalized Newton method can explained by the semismoothness
of the plastic response function [48]. Other approaches comprise SQP [56] and
multigrid techniques [55] and typically depend on the smoothness of the yield
surface. However, there is no convergence result for the discrete solutions under
minimal regularity. Due to the lack of a well-defined infinite-dimensional iteration,
the solvers usually display a high degree of mesh-dependence leading to extensive
computational overhead on fine meshes. We refer to [19] for a survey on the various
complications in both theoretical and computational Prandtl-Reuss plasticity.

For these reason it appears to be worthwhile to develop solvers that have a
well-defined infinite-dimensional counterpart. In this regard, the application of an
infinite-dimensional augmented Lagrangian method in the vein of [33] to perfect
plasticity has been discussed in [47]. However, this method requires the solution
of a sequence of visco-plastic problems and the convergence depends on the higher
regularity of the strain, which is not the case in perfect plasticity.

The outline of the paper is as follows. In section 3, we recall the system of
equations of the Prandtl-Reuss model of perfect plasticity. Thereupon, the properties
of the different weak formulations, their interrelation and the generalized stress-
strain duality are recalled. The time-incremental problem of quasi-static evolution
in perfect plasticity, which involves a convex minimization over the cartesian product
of the space of functions of bounded deformation and the space of Borel measures, is
considered in Section 3. For this problem we derive an equivalent inf-sup formulation
that is posed in a usual separable and reflexive Lebesgue space. The alternative
function space setting of the reduced problem further allows to characterize the
classical incremental stress problem as a Fenchel dual problem, and we obtain
necessary and sufficient optimality conditions for the time-discrete problems. The
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last section is devoted to a primal-dual regularization scheme that combines the visco-
plastic regularization with a penalty type approach with respect to the mechanical
equilibrium condition. We further prove the consistency of this regularization
approach by showing that displacements, stresses and strains converge to a solution
of the initial problem. The Fenchel dual problem of the regularized problem
represents a modification of the usual stress problem in perfect plasticity, which
may be well-suited for numerical purposes. For the corresponding subproblems, we
propose a Tikhonov regularization-based semismooth Newton approach, and we
include a convergence result for the regularized problems. Finally, we discuss some
open questions related to suitable discretized versions of the approach presented in
this paper.

2. Prandtl-Reuss Plasticity and Weak Formulations

In this paper we consider the quasi-static evolution of an elastic-perfectly plastic
body subject to (s.t.) a given external loading procedure in the time interval
[0, T ], T > 0. The elasto-plastic material is represented by a bounded domain
Ω ⊂ RN , N ∈ {2, 3}, and it is assumed to be fixed on a nonempty boundary
portion Γ0 ⊂ ∂Ω. The material behavior is described by the displacement u, the
mechanical stress σ and the strain tensors e and p describing elastic and plastic
strains, respectively.

The time-dependent loading is induced by a volume force f = f(t, x) acting on Ω,
and a surface force g = g(t, x) acting on the complement Γ1 of Γ0 in ∂Ω. We also
adopt the small strain assumption, i.e., the total strain is expected to be reasonably
well approximated by the infinitesimal strain tensor

ε(u) = 1
2 (∇u+∇u>).

Assuming linear elastic behavior, the relation between elastic strain and stress,

e = C−1σ,

is determined by a fourth order elasticity tensor C ∈ R(N×N)2

, which is assumed to
be symmetric,

Cijkl = Cklij = Cjikl

and positive definite,

∃κC > 0 : Cσ : σ ≥ κC|σ|2F , ∀σ ∈ MN×N .

Under a uniform positive definiteness assumption on C, the extension to heteroge-
neous elasticity is immediate. Here, we denote by MN×N the space of symmetric
N ×N -matrices endowed with the Frobenius norm defined by

|σ|F = (

N∑
i,j=1

σ2
ij)

1/2, σ ∈ MN×N .

The subspace of symmetric matrices with vanishing trace is indicated by

MN×N0 := {σ ∈ MN×N : tr(σ) :=

N∑
i=1

σii = 0}.

Together with an initial condition, the quasi-static evolution of an elastic-perfectly
plastic material is described by the following set of conditions.
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2.1. Pressure-insensitive Prandtl-Reuss plasticity. Given f : [0, T ]×Ω→ RN

and g : [0, T ]× Γ1 → RN with f(0, x) = 0 in Ω and g(0, x) = 0 on Γ1, find

[u, p, σ] : [0, T ]× Ω→ RN × MN×N0 × MN×N ,

with

(2.1) [u, p, σ](0, x) = 0 in Ω

such that

u(t, x) = 0 on Γ0,(2.2)
σν(t, x) = g(t, x) on Γ1,(2.3)

−Div σ(t, x) = f(t, x) in Ω,(2.4)

ε(u)(t, x) = C−1σ(t, x) + p(t, x) in Ω,(2.5)
dev σ(t, x) ∈ K0 in Ω(2.6)
i∗K0

(ṗ(t, x)) = p(t, x) : dev σ(t, x) in Ω,(2.7)

for all t ∈ [0, T ].
Here, ν is the unit outer normal to ∂Ω. The set of admissible stresses K0 ⊂ MN×N0

is assumed to be a nonempty, compact and convex neighborhood of the origin in
MN×N0 . Its support support function is defined as the convex conjugate i∗K0

of the
indicator function

iK0 : MN×N0 → R ∪ {+∞},
of K0 ⊂ MN×N0 .

The conditions (2.1)-(2.7) are interpreted as follows. Equation (2.4) represents
the usual mechanical equilibrium condition neglecting inertial effects. The additive
split of the total strain into an elastic part e = C−1σ and an inelastic part p is given
in (2.5). Under the assumption that the yield criterion is pressure-insensitive, the
set of admissible stresses is given by the constraint (2.6) on the deviatoric part of
the stress,

dev σ := σ − tr(σ)
N IN .

The last condition (2.7) is equivalent to the associative flow law

(2.8) ṗ(t, x) ∈ NK0
(dev σ(t, x)),

where NK0(dev σ(t, x)) denotes the normal cone to K0 at dev σ(t, x). At this point
we emphasize that we do not assume the yield surface ∂K0 to be smooth. The
system is supplemented by an initial condition (2.1) and by the mixed boundary
conditions (2.2)-(2.3). We proceed by discussing weak formulations of (2.1)-(2.7).

2.2. Functional analytic setting of weak formulations. On the mathematical
level, a fundamental difference to elasto-plastic problems with hardening [25] is that
optimal displacements a priori cannot be expected to lie in the Sobolev space

V := H1
0,Γ0

(Ω)N := {u ∈ H1(Ω)N : u|Γ0 = 0}.

This is a consequence of the fact that, in the absence of hardening, the material may
form shear bands. From the mathematical point of view, this is reflected by the
observation that displacements may exhibit discontinuities on (N − 1)-dimensional
submanifolds, which rules out the usual Sobolev setting. The appropriate relaxation,
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which goes back to [53], requires that the displacement is sought in the space of
functions with bounded deformation, which is defined as

BD(Ω) = {u ∈ L1(Ω)N : ε(u) ∈M(Ω; MN×N )}.
Here, for any Borel set B ⊂ RN , M(B; Rd) denotes the space of Rd-valued Borel
measures (that is an Rd-valued σ-additive measure). The spaceM(B; Rd) is equipped
with the total variation norm and the Riesz-Alexandrov Theorem provides an
isometric isomorphism between M(B; Rd) and [C0(B; Rd)]∗, the topological dual of
the space of continuous functions vanishing at the boundary of B; see, e.g., [2, Prop.
1.47]. Using this identification, we consider ε(u) for u ∈ BD(Ω) as an MN×N -valued
distribution that is also continuous on C∞c (Ω; MN×N ) equipped with the supremum
norm. As a result, the total variation norm on M(B; MN×N ) is given by

‖µ‖M(B;MN×N ) = sup{〈µ, ϕ〉 : ϕ ∈ C0(B; MN×N ), |ϕ(x)|F ≤ 1 ∀x ∈ B}.

The norm on the space M(B; MN×N0 ) is defined analogously. The space BD(Ω) is
equipped with the standard norm

‖u‖BD(Ω) = ‖u‖L1(Ω;RN ) + ‖ε(u)‖M(Ω;MN×N ).

We recall that

(2.9) BD(Ω) ↪→ LN/(N−1)(Ω; RN ),

i.e., BD(Ω) embeds continuously into LN/(N−1)(Ω; RN ). Under the condition that
∂Ω is sufficiently smooth, functions in BD(Ω) admit an integrable trace on the
boundary, i.e., u ∈ L1(∂Ω), and the following Green’s formula for functions u ∈
BD(Ω) and ϕ ∈ C1(Ω) is available;ˆ

Ω

ϕεij(u) = − 1
2

ˆ
Ω

ui∂jϕ+ uj∂iϕ dx+

ˆ
∂Ω

[u� ν]ij ϕ dHN−1).(2.10)

Here, the symmetrized outer product of two vectors a and b of the same length is
denoted by

a� b = 1
2 (ab> + ba>).

Moreover, BD(Ω) can be characterized as the dual space of a separable normed
space. This give rise to a weak*-topology on BD(Ω) for which bounded subsets are
sequentially compact. For a sequence (uk) ⊂ BD(Ω) it is known that (uk) converges
weakly* to u in BD(Ω) if and only if

(2.11) uk → u in L1(Ω), ε(uk)
∗
⇀ ε(u) in M(Ω).

For these results and further details on the space BD(Ω) we refer to [54, 52]. As a
consequence of the low regularity of the displacement, the plastic strains are only
Borel measures. Furthermore, the appropriate relaxation of the Dirichlet boundary
condition (2.2) entails that the plastic strains may also be supported on Γ0; cf.
[54, 15]. Consequently, the proper function space for the plastic strain in the weak
formulation of (2.1)-(2.7) is given by M(Ω ∪ Γ0; MN×N0 ), the space of MN×N0 -valued
Borel measures on Ω ∪ Γ0 , and the set of admissible states Wad is defined as

Wad := {(u, e, p) ∈ BD(Ω)×Q×M(Ω ∪ Γ0; MN×N0 ) :

ε(u) = pbΩ + e, pbΓ0 = −(u� ν)Hn−1},(2.12)

where pbΩ and pbΓ0 designate the restriction of the measure p to Ω and Γ0, respec-
tively.
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In order to describe the set of admissible stresses and to properly define the stress-
strain duality for perfect plasticity, we further define the following stress-related
spaces,

Q := L2(Ω; MN×N ), H(Div; Ω) := {σ ∈ Q : Div σ ∈ L2(Ω; RN )},
Σ(Div; Ω) := {σ ∈ Q : Div σ ∈ LN (Ω; RN )},

together with their standard norms

||q||Q :=

(ˆ
Ω

|q|2F dx
)1/2

, ||σ||H(Div;Ω) := ||σ||Q + ||Div σ||L2(Ω,RN ),

||σ||Σ(Div;Ω) := ||σ||Q + ||Div σ||LN (Ω,RN ).

For the sake of accuracy, we distinguish between the usual (distributional) divergence
operator div and its vector-valued version Div. We also recall that the (normal)
trace of any element σ ∈ H(Div; Ω) on the boundary ∂Ω is defined by the trace
operator

τν : H(Div; Ω)→ H−1/2(∂Ω)N , σ 7→ σν = τν(σ),

with values in H−1/2(∂Ω)N , where H−1/2(∂Ω) is the dual space of the trace space
H1/2(∂Ω). The trace mapping is defined by extension in the usual way. In the same
vein, one may also define a trace on a (sufficiently regular) subset of Γ1 ⊂ ∂Ω; the
appropriate trace operator is given by

τΓ1
ν : H(Div; Ω)→ H

−1/2
00 (Γ1)N , σ 7→ σν|Γ1 = τΓ1

ν (σ).

Here, the image space involves the dual space H−1/2
00 (Γ1) := H

1/2
00 (Γ1)∗ of the trace

space

H
1/2
00 (Γ1) := {v ∈ L2(Γ1) : ∃ ṽ ∈ H1(Ω), ṽ|Γ0 = 0, ṽ|Γ1 = v}.

For details on trace spaces we refer to [6, 43]. Given a fixed subspace X(Ω) ⊂ Q,
the set of admissible stresses in X(Ω) is denoted by

Sad(X(Ω)) := {σ ∈ X(Ω) : dev σ(x) ∈ K0 a.e. in Ω},

and if X(Ω) = Q we write Sad := Sad(Q).

2.3. Johnson’s weak formulation. Following the seminal work of Johnson [34],
a suitable weak formulation of Prandtl-Reuss plasticity is given by the following
time-dependent variational inequality problem in the velocity and the stress.

Problem 2.1 (Johnson’s weak formulation). Let f ∈ C([0, T ];LN (Ω)N ), and
g ∈ C([0, T ];L∞(Γ1)N ) with f(0) = 0, g(0) = 0. Find

[u̇, σ] : [0, T ]→ BD(Ω)×Q with σ(0) = 0

such that σ ∈ Sad(Σ(Div; Ω)) and

(σ, ε(ũ)) = 〈l(t), ũ〉, ∀ ũ ∈ V,(2.13)

〈u̇,Div σ̃ −Div σ〉+ (C−1σ̇, σ̃ − σ) ≥ 0(2.14)
∀ σ̃ ∈ Sad(Σ(Div; Ω)), σ̃ν = g(t) on Γ1,

for a.e. t ∈ (0, T ).
6



Here, the functional l(t) ∈ BD(Ω)∗ is defined by

l(t) :=

ˆ
Ω

f(t)u dx+

ˆ
Γ1

g(t)u dHN−1.

Combining a discretization in time with a regularization of the constraint σ ∈ Sad,
existence of a solution to this problem is shown in [34, 53] under a non-degenerateness
assumption on the loading procedure; cf. Assumption 2.4. It is further obvious that
for any solution [u̇, σ] of Problem 2.1, the optimal stress σ also solves the following
problem.

Problem 2.2 (Johnson’s stress problem). Let f ∈ C([0, T ];LN (Ω)N ), and
g ∈ C([0, T ];L∞(Γ1)N ) with f(0) = 0, g(0) = 0. Find

σ : (0, T )→ Q with σ(0) = 0

such that σ ∈ Sad(Σ(Div; Ω)) and

(σ, ε(ũ)) = 〈l(t), ũ〉 ∀ ũ ∈ V,
(C−1σ̇, σ̃ − σ) ≥ 0 ∀ σ̃ ∈ Sad(Σ(Div; Ω)), σ̃ν = g(t) on Γ1,−Div σ̃ = f(t),

for a.e. t ∈ (0, T ).

In particular, any solution σ : [0, T ]→ Q pertaining to Problem 2.1 is uniquely
determined by the initial condition.

2.4. Quasi-static evolution. The problem of Prandtl-Reuss plasticity may also
be studied within the context of energetic formulations for a general class of rate-
independent systems that are defined by the axioms of energy stability and energy
balance [37]. This ultimately leads to a primal problem in u, p and e, which has been
derived and analyzed in [15]. Following the latter reference, we make the following
assumptions:

Ω is a bounded C2-domain;(2.15)

∂Ω = Γ0 ∪ Γ1; Γ0 6= ∅, Γ0,Γ1 ⊂ ∂Ω open ; ∂Γ0 = ∂Γ1 ∈ C2,(2.16)

i.e., the C2-boundary ∂Ω is split into two disjoint relatively open parts Γ0 and
Γ1, with a joint C2-regular interface ∂Γ0 = ∂Γ1 in the sense of [35, p. 20]. These
classical geometric conditions may be alleviated at the cost of some nontrivial
modifications [21]. We also assume that the elasticity tensor is invariant with respect
to the orthogonal subspaces MN×N0 and {cIN : c ∈ R}. Consequently, there exists a
positive definite tensor Cdev ∈ (MN×N0 )2 and a scalar λ0 > 0 such that

(2.17) Cσ = Cdev dev σ + λ0 trσIN , ∀σ ∈ MN×N .

For p ∈M(Ω ∪ Γ0; MN×N0 ), one may further define the functional

D(p) :=

ˆ
Ω∪Γ0

i∗K0
(p/|p|) d|p| = i∗K0

(p)(Ω ∪ Γ0),

on the basis of the theory of convex functions of measures; see [54, Chapter II(5.)]
for an introduction. In fact, denoting the Radon-Nikodým derivative p with respect
to its variation |p| by p/|p|, we have

p/|p| ∈ L1
|p|(Ω ∪ Γ0; MN×N0 ),

i.e., p/|p| is Lebesgue integrable on Ω∪Γ0 with respect to the measure |p|, such that

D : M(Ω ∪ Γ0; MN×N0 )→ R
7



is well-defined, nonnegative and finite. The generalized total variation with respect
to D,

D(p; 0, t) := sup{
K∑
n=1

D(p(tn)− p(tn−1)) : K ∈ N, 0 = t0 ≤ t1 ≤ . . . ≤ tK = t},

then accounts for the dissipation in the time interval [0, t], t ≤ T . We further denote
the space of absolutely continuous functions on [0, T ] with values in a Banach space
X by AC([0, T ];X). The space BV ([0, T ];X) consists of all X-valued functions on
[0, T ] with bounded variation. We are now ready to state the notion of quasi-static
evolution in perfect plasticity from [15].

Problem 2.3 (Quasi-static evolution). Given

(2.18) f ∈ AC([0, T ];LN (Ω)N ), g ∈ AC([0, T ];L∞(Γ1)N )

with f(0) = 0 and g(0) = 0, find

[u, e, p] : [0, T ]→ BD(Ω)×Q×M(Ω ∪ Γ0; MN×N0 )

with [u, e, p](0) = 0 such that t 7→ [u(t), e(t), p(t)] is a quasi-static evolution, i.e.,
the following conditions are fulfilled.

(i) Stability: For every t ∈ [0, T ], it holds that [u(t), e(t), p(t)] ∈Wad and
1
2 (Ce(t), e(t))− 〈l(t), u(t)〉 ≤ 1

2 (Cẽ, ẽ) +D(p̃− p(t))− 〈l(t), ũ〉
for all [ũ, ẽ, p̃] ∈Wad.

(ii) Energy equality: It holds that p ∈ BV ([0, T ],M(Ω ∪ Γ0; MN×N0 )), and for
every t ∈ [0, T ] the equation

1
2 (Ce(t), e(t))− 〈l(t), u(t)〉+D(p; 0, t) = −

ˆ t

0

〈l̇(s), u(s)〉ds

is valid.

Under the above assumptions, the existence of a quasi-static evolution [u, e, p] ∈
AC([0, T ];BD(Ω) × Q ×M(Ω ∪ Γ0; MN×N0 )) can be shown provided a safe-load
condition holds uniformly in time.

Assumption 2.4 (Safe-load condition). There exists σ̂ ∈ AC([0, T ];Q) and ρ > 0
such that

(i) dev σ̂ ∈ AC([0, T ];L∞(Ω; MN×N0 )),
(ii) for every t ∈ [0, T ] it holds that

Div σ̂(t) = −f(t) in Ω, σ̂(t)ν = g(t) on Γ1,

dev σ̂(t) +Bρ(0) ⊂ K0 a.e. in Ω,

where Bρ(0) := {τ ∈ MN×N0 : |τ |F ≤ ρ}.

In this case, solutions of Problem 2.3 can be obtained as appropriate limits
of a sequence of solutions of time-incremental problems defined in section 3; see
[15, Theorem 4.5]. Under mild assumptions on the regularity in time, quasi-
static evolutions correspond to solutions of the classical weak formulation from
Problem 2.1 [15, Theorem 6.1]. In this sense, Problem 2.1 and Problem 2.3 are
essentially equivalent. The equivalence of the two solution notions as well as the
formal equivalence to the system (2.1)-(2.7) relies on a suitable extension of the
meaning of the flow law (2.7) to linearized strains ε(u) that are only Borel measures,
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and which reduces to the conventional meaning if ṗ ∈ Q. For that reason a duality
pairing between admissible stresses and strains is defined in [15], which extends
earlier approaches within the context of Hencky plasticity set forth in [35, 54]. Since
the stress is in general not continuous this is by no means a trivial issue, and the
particular problem structure has to be exploited. In fact, for [u, e, p] ∈ Wad and
σ ∈ Sad(Σ(Div; Ω)) a suitable pairing is given by

(2.19) [dev σ, p] :=

{
[dev σ, dev ε(u)]− dev σ : dev e, in Ω,

−(σν)T · uHN−1, on Γ0,

where [dev σ, dev ε(u)] ∈M(Ω) denotes the measure defined in [35, Theorem 3.2],
and (σν)T := σν − (σν)νν is the tangential component of σν. Accounting for [35,
Lemma 2.4], it holds (σν)T ∈ L∞(∂Ω), such that [dev σ, p] is well-defined. Moreover
it holds [dev σ, p] ∈ M(Ω ∪ Γ0). The following integration by parts formula from
[15] provides a useful characterization of this generalized duality; it holds

(2.20) [dev σ : p](Ω ∪ Γ0) = −(σ, e)− 〈Div σ, u〉+ 〈σν, u〉Γ1 ,

where σ ∈ Sad(Σ(Div; Ω)) with σν ∈ L∞(Γ1; RN ) and (u, e, p) ∈ Wad. Here, the
duality product on the right hand side of (2.20) designates the pairing of L∞(Γ1; RN )

with L1(Γ1; RN ). Note that, a priori, we have σν|Γ1 ∈ H
−1/2
00 (Γ1)N since

σ ∈ Σ(Div; Ω) ⊂ H(Div; Ω).

For quasi-static evolution problems in perfect plasticity, important extensions, for
example to pressure-sensitive yield criteria [38] and heterogeneous plasticity [51, 21],
are available. For an overview of classical approaches via the so-called stress problem
we also refer to [19] and the references therein.

3. The time-incremental problem

In this section we formulate the incremental problem of quasi-static evolution of
perfect plasticity in weak form. For this purpose we adopt the Assumption 2.4 as
well as (2.15), (2.16) and (2.17).

3.1. Problem statement. We assume that the time interval is partitioned into K
subdivisions,

0 = t0 < t1 < . . . < tK = T.

At a fixed time point tn, n = 1, . . . ,K, we are given the state of the system

[un−1, en−1, pn−1] ∈Wad

from the preceding time instance as well as the current applied forces

fn = f(tn) ∈ LN (Ω; RN ), gn = g(tn) ∈ L∞(Γ1; RN ),

which define the total load

ln(u) :=

ˆ
Ω

fn · u dx+

ˆ
Γ1

gn · u dHN−1, u ∈ BD(Ω).

The time-discretized problem of perfect plasticity at a fixed time instance can be
stated as follows [15].
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Problem (P).{
inf J(u, e, p) over [u, e, p] ∈ BD(Ω)×Q×M0(Ω ∪ Γ0; MN×N0 )

s.t. [u, e, p] ∈Wad,

where Wad is given by (2.12) and the objective functional J is defined by

J(u, e, p) := 1
2 (Ce, e) +D(p− pn−1)− 〈ln, u〉.

Under the safe-load condition (Assumption 2.4), an equivalent characterization
of D is given by

(3.1) D(p) = sup{[dev σ : p](Ω ∪ Γ0) : σ ∈ Sad(Σ(Div; Ω)), σν = gn on Γ1},
where the measure [dev σ : p] ∈M(Ω ∪ Γ0) is defined in (2.19); for details see [15,
Prop. 2.4].

Provided the applied forces fulfill Assumption 2.4, it can be shown that problem
(P) has a solution [un, en, pn], which is in general only unique in the elastic strain.
Below we provide an alternative to the existence proof from [15, Theorem 3.3].
Furthermore, one may construct iteratively a piecewise constant time interpolate
from the solutions [un, en, pn] of (P) for n = 1, . . .K. For a sequence of subdivisions
with vanishing time step, the resulting sequence of time interpolates converges to
a quasi-static evolution [15, Theorem 4.5]. Since the time step is kept fixed in the
remainder of this paper, we write [ū, ē, p̄] = [un, en, pn] for a solution to (P).

3.2. Inf-sup problem formulation. From a computational point of view, problem
(P) poses a variety of complexities; the problem is posed in a nonreflexive Banach
space, the objective function is nonsmooth and the constraints are posed in a
measure space.

This section is dedicated to a suitable problem reduction, which yields an uncon-
strained equivalent reformulation posed in a conventional reflexive Lebesgue space.
Based on this reformulation, we establish a Fenchel duality result that relates the
primal formulation (P) to the (classical) incremental version of the stress problem
(Problem 2.2).

Using the constraints in (P), we first eliminate the dependence on p from the
optimization problem defining

(3.2) pbΩ= ε(u)− e, pbΓ0= −u� ν HN−1.

Lemma 3.1. Define Ĵ : BD(Ω)×Q→ R by

(3.3) Ĵ(u, e) := 1
2 (Ce, e)+ sup

σ∈Sad(Σ(Div;Ω))
σν=gn on Γ1

{−〈p̂n−1, σ〉−(σ, e)−〈Div σ, u〉}−〈fn, u〉,

where p̂n−1 is understood as an element of Σ(Div; Ω)∗ defined by

(3.4) 〈p̂n−1, σ〉 := −(σ, en−1)− 〈Div σ, un−1〉, σ ∈ Σ(Div; Ω).

Then (P) is equivalent to the problem

(3.5)


inf Ĵ(u, e) over [u, e] ∈ BD(Ω)×Q,
s.t. div u = tr e in Ω,

u · ν = 0 on Γ0,

in the following sense.
(i) If [ū, ē, p̄] is a solution of (P) then [ū, ē] solves (3.5).
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(ii) For each solution [ū, ē] to (3.5), it holds that [ū, ē, p(ū, ē)] is a solution to
(P), where p(ū, ē) is defined by (3.2).

Proof. Let [u, e, p] ∈Wad. As the safe-load condition is assumed to hold, we have

D(p) = sup{[dev σ, p](Ω ∪ Γ0) : σ ∈ Sad(Σ(Div; Ω)), σν = gn on Γ1},

by (3.1). By (2.20) we further obtain for all σ ∈ Sad(Σ(Div; Ω)) with σν = gn on
Γ1,

[dev σ, p− pn−1](Ω ∪ Γ0) =− (σ, e)− 〈Div σ, u〉+ 〈gn, u〉Γ1

− 〈p̂n−1, σ〉 − 〈gn, un−1〉,

where p̂n−1 is defined in (3.4). Note that 〈gn, un−1〉 is a constant, and, without loss
of generality, we assume 〈gn, un−1〉 = 0. Hence, we may remove the dependence on
p of the objective functional;

(3.6) J(u, e, p) = Ĵ(u, e), ∀ [u, e, p] ∈Wad.

Now let [ū, ē, p̄] ∈Wad be a solution of (P) and [u, e] ∈ W̃ad, where

W̃ad := {[u, e] ∈ BD(Ω)×Q : div u = tr e in L2(Ω), u · ν = 0 a.e. on Γ0}.

By taking the trace in the two conditions (2.12) of the definition of Wad, one may
observe that p = p(u, e), cf. (3.2), defines an element p ∈M(Ω ∪ Γ0; MN×N0 ) such
that [u, e, p] ∈Wad if and only if [u, e] ∈ W̃ad. Using (3.6), one deduces that

Ĵ(ū, ē) = J(ū, ē, p̄) ≤ J(u, e, p(u, e)) = Ĵ(u, e),

for all [u, e] ∈ W̃ad. This proves assertion (i).
Let [ū, ē] ∈ W̃ad be a solution of (3.5). Following the above discussion, we find

that for any [u, e, p] ∈Wad it holds that [u, e] ∈ W̃ad. Hence, (3.6) implies that

J(ū, ē, p(ū, ē)) = Ĵ(ū, ē) ≤ Ĵ(u, e) = J(u, e, p),

for all [u, e, p] ∈Wad, which accomplishes the proof of assertion (ii). �

Since the yield criterion is pressure-insensitive, it can be expected that there is
no need to explicitly take account of the plastic incompressibility constraint tr p = 0.
In fact, the following lemma shows that the constraints in (3.5) are redundant.

Lemma 3.2. Let Ĵ be given by (3.3). The problem

(3.7) inf Ĵ(u, e) over [u, e] ∈ BD(Ω)×Q

is equivalent to (P) in the sense of Lemma 3.1.

Proof. Let [u, e] ∈ BD(Ω)×Q. For arbitrary ϕ ∈ C1(Ω) with ϕ = 0 on Γ1 we define

σϕ := σ̂n + ϕIN ,

for σ̂n := σ̂(tn) where σ̂ is the admissible stress evolution according to (2.4). Thus,
it holds that σϕ ∈ Sad(Σ(Div; Ω)) with σϕν = gn on Γ1 and one may derive the
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following estimate;

sup
σ∈Sad(Σ(Div;Ω)),
σν=gn on Γ1

{−〈p̂n−1, σ〉 − (σ, e)− 〈Div σ, u〉} − 〈fn, u〉

≥ sup
ϕ∈C1(Ω),ϕ=0 on Γ1

{−〈p̂n−1, σϕ〉 − (σϕ, e)− 〈DivϕIN , u〉}

= −〈p̂n−1, σ̂n〉 − (σ̂n, e) + sup
ϕ∈C1(Ω),
ϕ=0 on Γ1

{
−〈p̂n−1, ϕIN 〉 − (ϕ, tr e)− 〈∇ϕ, u〉

}
.

Taking the trace in the Green’s formula (2.10) implies that

(3.8)
ˆ

Ω

u · ∇ϕ dx = −
ˆ

Ω

ϕ d(div u) +

ˆ
∂Ω

uν ϕ dHN−1,

for all ϕ ∈ C1(Ω), such that

(3.9) − 〈p̂n−1, ϕIN 〉 = (ϕ, tr en−1) + 〈∇ϕ, un−1〉 = 0.

The latter term vanishes since [un−1, en−1, pn−1] ∈Wad implies that

div un−1 = tr en−1, un−1 · ν = 0 a.e. on Γ0.

By (3.9) and (3.8), one obtains

sup
σ∈Sad(Σ(Div;Ω)),
σν=gn on Γ1

{−〈p̂n−1, σ〉 − (σ, e)− 〈Div σ, u〉} − 〈fn, u〉

≥ −〈p̂n−1, σ̂n〉 − (σ̂n, e)(3.10)

+ sup
ϕ∈C1(Ω),
ϕ=0 on Γ1

{ˆ
Ω

ϕ (d(div u)− tr e dx)−
ˆ

Γ0

u · ν ϕ dHN−1

}
,

which implies that Ĵ(u, e) = +∞ unless

(3.11) div u− tr e = 0 in Ω.

The redundancy of the boundary condition can be derived as follows. It can be
verified that the density property

(3.12) {ϕ
∣∣
Γ0

: ϕ ∈ C1(Ω), ϕ = 0 on Γ1}
C0(Γ0)

= C0(Γ0)

is fulfilled; in fact, let w ∈ Cc(Γ0) and choose an extension w̃ ∈ Cc(ω) of w to a
nonempty open set ω ⊂ RN with

ω ∩ Γ1 = ∅, suppw ⊂ ω, w̃|ω∩Γ0 = w.

Let (wn) be a standard sequence of mollifications of w̃ induced by a smooth kernel
θ ∈ Cc(RN ) with

θ ≥ 0, θ|B1(0)c = 0,

ˆ
RN

θ dx = 1,

i.e.,

wn(x) := (θn ∗ w̃)(x) =

ˆ
RN

w̃(y)θn(x− y) dy, θn(x) := nNθ(nx), ∀x ∈ RN .
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As w̃ ∈ Cc(ω), standard properties of mollifications yield that (wn) converges
uniformly to w̃ in ω; cf. [1]. For sufficiently large n, it further holds that suppwn ⊂ ω,
and in particular,

(wn|Γ0
) ⊂ {ϕ

∣∣
Γ0

: ϕ ∈ C1(Ω), ϕ = 0 on Γ1}.

Taking account of the fact that (wn|Γ0) converges uniformly to w on Γ0, the density
property (3.12) is verified.

Exploiting the density property (3.12), one may infer that it holds thatˆ
Γ0

u · ν ϕ dHN−1 = 0, ∀ϕ ∈ C1(Ω), ϕ|Γ1
= 0,

if and only if

(3.13) ‖u · νHN−1‖M(Γ0) = ‖u · ν‖L1(Γ0) = 0.

Finally, (3.10) together with (3.11) and (3.13) imply that Ĵ(u, e) < +∞ requires
that u · ν vanishes on Γ0. As a conclusion, the constraints in problem (3.5) are
redundant and the assertion follows from Lemma 3.1. �

In comparison to the original problem formulation (P), the elimination of the
plastic incompressibility constraints comes at the loss of the finiteness of the objective
function. We now prove the coercivity of the objective function pertaining to the
equivalent problem (3.5) on BD(Ω)×Q.

Lemma 3.3. The reduced objective function

Ĵ : BD(Ω)×Q→ R ∪ {+∞}

from (3.3) is coercive. More precisely, there exist constants c0 ∈ R, c1 > 0, such that

sup
σ∈Sad(Σ(Div;Ω))
σν=gn on Γ1

{−〈p̂n−1, σ〉 − (σ, e)− 〈Div σ, u〉} − 〈fn, u〉

≥ c0 − c1‖e‖Q(3.14)

+ ρmax(‖ε(u)‖M(Ω;MN×N ),−‖ε(u)‖M(Ω;MN×N ) + 1√
2
‖u‖L1(Γ0;RN )),

for all [u, e] ∈ BD(Ω)×Q, where ρ > 0 is the constant from Assumption 2.4.

Proof. First, we state the elementary result

(3.15) |dev τ |F ≤ |τ |F for all τ ∈ MN×N .

Making use of Assumption 2.4 and (3.15), it holds that

sup
σ∈Sad(Σ(Div;Ω)),
σν=gn on Γ1

{−〈p̂n−1, σ〉 − (σ, e)− 〈Div σ, u〉} − 〈fn, u〉

≥ sup
τ∈C1(Ω,MN×N ),τ=0 on Γ1,

‖τ‖
C(Ω;MN×N )

≤ρ

{−〈p̂n−1, σ̂n + τ〉 − (σ̂n + τ, e)− 〈Div τ, u〉}

≥ c+ sup
τ∈C1(Ω;MN×N ),τ=0 on Γ1,

‖τ‖
C(Ω;MN×N )

≤ρ

{−〈p̂n−1, τ〉 − (σ̂n + τ, e)− 〈Div τ, u〉},
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for all e ∈ Q and u ∈ BD(Ω), where c ∈ R denotes a constant which may take
different values on different occasions. Using Green’s formula for BD(Ω)-functions
(2.10), one obtains

−〈p̂n−1, τ〉 = (en−1, τ) + 〈un−1,Div τ〉

≥ −c‖en−1‖Q −
ˆ

Ω

τ : ε(un−1) +

ˆ
Γ0

(un−1 � ν) : τ dHN−1

≥ −c‖en−1‖Q − ρ
(
|ε(un−1)|F (Ω) + ‖un−1 � ν‖L1(Γ0;MN×N )

)
and

−(σ̂n + τ, e) ≥ −(‖σ̂n‖Q + ρ|Ω|1/2)‖e‖Q
for all τ ∈ C1(Ω,MN×N ) with ‖τ‖C(Ω,MN×N ) ≤ ρ and τ |Γ1

= 0. This implies that

sup
σ∈Sad(Σ(Div;Ω)),
σν=gn on Γ1

{−〈p̂n−1, σ〉 − (σ, e)− 〈Div σ, u〉} − 〈fn, u〉

≥ c0 − c1‖e‖Q + sup
τ∈C1(Ω;MN×N ),τ=0 on Γ1,

‖τ‖
C(Ω;MN×N )

≤ρ

{−〈Div τ, u〉},(3.16)

where

sup
τ∈C1(Ω,MN×N ),τ=0 on Γ1,

‖τ‖
C(Ω;MN×N )

≤ρ

{−〈Div τ, u〉} ≥ sup
τ∈C1

0 (Ω;MN×N ),
‖τ‖C0(Ω;MN×N )≤ρ

{−〈Div τ, u〉}

= ρ‖ε(u)‖M(Ω;MN×N ).(3.17)

Furthermore, it is well known that for ∂Ω ∈ C2 each τ ∈ C1(∂Ω) may be extended
to a function Tτ ∈ C1(Ω) given by

Tτ (x) := ϕ(r dist(x, ∂Ω))τ(π(x));

see [22, Lemma 6.38]. Here, π denotes the locally uniquely determined projection
of x onto the boundary ∂Ω, r ∈ R is sufficiently large, and ϕ ∈ C∞(R) denotes a
smooth function with

ϕ(t) ∈ [0, 1] ∀ t ∈ R, ϕ(t) = 0 for t ≥ 2, ϕ(t) = 1 for t ≤ 1.

Again using (2.10), one obtains

sup
τ∈C1(Ω;MN×N ),τ=0 on Γ1,

‖τ‖
C(Ω;MN×N )

≤ρ

{−〈Div τ, u〉}

≥ sup
τ∈C1

0 (Γ0;MN×N ),τ=0 on Γ1

‖τ‖C0(Γ0;MN×N )≤ρ

{−〈Div Tτ , u〉}

= sup
τ∈C1

0 (Γ0;MN×N ),
‖τ‖C0(Γ0;MN×N )≤ρ

(ˆ
Ω

Tτ : ε(u)−
ˆ

Γ0

(u� ν) : τ dHN−1

)

≥ ρ
(
−‖ε(u)‖M(Ω;MN×N ) + ‖u� ν‖L1(Γ0;MN×N )

)
≥ ρ

(
−‖ε(u)‖M(Ω;MN×N ) + 1√

2
‖u‖L1(Γ0;RN )

)
.

In the latter estimate we use the elementary property

|a� b|F ≥ 1√
2
|a|2|b|2,
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and together with (3.16), (3.17), the proof of (3.14) is accomplished. The coercivity
of the objective function Ĵ in BD(Ω)×Q now follows from (3.14), the ellipticity
property

(Ce, e)Q ≥ κC‖e‖2Q,
and the fact that

u 7→ ‖u‖L1(Γ0;RN ) + ‖u‖M(Ω;MN×N )

defines an equivalent norm on BD(Ω); see [54]. �

The significance of the preceding lemma is twofold. To begin with, the ob-
jective function Ĵ is also well-defined as an extended real-valued function on
LN/(N−1)(Ω)N ×Q; cf. (3.3). The estimates (3.16) and (3.17) further imply that
the implication

(3.18) u ∈ LN/(N−1)(Ω)N \BD(Ω) =⇒ Ĵ(u, e) = +∞,
is valid for all e ∈ Q, i.e., the regularity constraint ε(u) ∈M(Ω) is implicitly fulfilled
as a result of the minimization of the objective function. Consequently, we obtain
an equivalent Lebesgue space setting for problem (P).

Problem (Pred).

inf Ĵ(u, e) over [u, e] ∈ LN/(N−1)(Ω)N ×Q,

where Ĵ : LN/(N−1)(Ω)N ×Q→ R ∪ {+∞} is given by (3.3).

For the implicit regularity constraint we also refer to a similar situation from image
restoration problems, where a suitable Fenchel (pre-)dualization of the problem
of total bounded variation regularization relies on a similar argument [27]. In
the context of perfect plasticity however, the argument additionally hinges on the
validity of the safe-load condition.

A second immediate consequence of Lemma 3.3 is that, under the standing
assumptions, the existence of solutions to (P) or, equivalently (Pred), follows from
standard arguments. The results of this section, including the alternative existence
proof for (P) to [15, Thereom 3.3], are summarized in the following theorem.

Theorem 3.4. The incremental problem (P) of quasi-static evolution in perfect
plasticity is equivalent to problem (Pred) in the sense of Lemma 3.1, and (P) has a
solution [ū, ē, p̄], which is unique in ē.

Proof. The equivalence of the problems (P) and (Pred) is a result of Lemma 3.1,
Lemma 3.2 and (3.18). For the existence proof, we use the problem formulation
(3.7). As a pointwise limit of affine continuous functions, the mapping

(3.19) [u, e] 7→ sup
σ∈Sad(Σ(Div;Ω)),
σν=gn on Γ1

{−〈p̂n−1, σ〉 − (σ, e)− 〈Div σ, u〉} − 〈fn, u〉

is sequentially l.s.c. (lower semicontinuous) in LN/(N−1)(Ω)N ×Q equipped with
the weak×weak topology. If uk

∗
⇀ u in BD(Ω) then (uk) is bounded in BD(Ω) and

fulfills uk → u ∈ L1(Ω)N . By the continuous embedding (2.9), each subsequence of
(uk) has a subsequence converging weakly in LN/(N−1)(Ω)N to u. Hence, the entire
sequence (uk) weakly converges to u in LN/(N−1)(Ω)N . Consequently, the mapping
from (3.19) is also sequentially l.s.c. in BD(Ω)×Q endowed with the weak∗×weak
topology. Together with the coercivity property in BD(Ω)×Q given by Lemma 3.3,
the direct method can be applied to prove the existence of a solution [ū, ē] to (3.7).
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The existence of a solution to (P) follows by Lemma 3.2, and the uniqueness of ē
is an immediate consequence of the convexity of Ĵ and the strict convexity of the
mapping e 7→ (Ce, e)Q. �

4. The incremental stress problem as a Fenchel dual problem

In contrast to the original problem, (Pred) defines an unconstrained convex
minimization problem in a reflexive Banach space. Therefore, this alternative
formulation seems more attractive from a computational point of view. As a
nonsmooth convex minimization problem, it is natural to analyze (P) via (Pred)
within Fenchel duality theory, for which we refer to [5, 20]. In fact, for the simpler
Hencky plasticity model, (Lagrangian) duality results linking the stress problem
to the strain problem and its relaxation are known; cf. [54, p.251 ff.]. The goal of
this paragraph is to demonstrate that the classical incremental stress problem of
perfect plasticity, i.e., the time-incremental variant of (2.1), can be derived from
the (incremental) primal problem (P) of quasi-static evolution within the theory of
Fenchel duality. The result is based on the alternative functional analytic setting
provided by the reduced problem formulation (Pred).

4.1. Fenchel duality set-up. For further reference, we introduce the set of admis-
sible stresses with a given normal component g̃ on Γ1;

(4.1) Sad(g̃) := {σ ∈ Sad(Σ(Div; Ω)) : σν = g̃ in [H
−1/2
00 (Γ1)]N},

where g̃ ∈ [H
−1/2
00 (Γ1)]N is fixed. Note that the regularity of the normal component

is ensured by the property Sad(g̃) ⊂ H(div; Ω).
Under Assumption 2.4, Sad(gn) is nonempty, such that the indicator function

iSad(gn) : Σ(Div; Ω)→ R ∪ {+∞},
iSad(gn)(σ) = 0, if σ ∈ Sad(gn), iSad(gn)(σ) = +∞, if σ /∈ Sad(gn),

is proper. We also define the bounded linear operator

(4.2) Λ ∈ L(LN/(N−1)(Ω)N ×Q,Σ(Div; Ω)∗), Λ(u, e) := −Div∗ u− e,

and we set

(4.3) F (u, e) := −〈fn, u〉+ 1
2 (Ce, e), G(σ∗) := sup

σ∈Sad(gn)

〈σ∗, σ〉,

for [u, e] ∈ LN/(N−1)(Ω)N ×Q and σ∗ ∈ Σ(Div; Ω)∗. With these definitions, (Pred)
takes the equivalent compact form

(4.4)

{
min F (u, e) +G(Λ[u, e]− 〈p̂n−1, . 〉)
over [u, e] ∈ LN/(N−1)(Ω)N ×Q.

Following [5, Chapter 4], the Fenchel dual problem of (4.4) is given by

(4.5) − inf F ∗(−Λ∗σ) +G∗(σ) + 〈p̂n−1, σ〉 over σ ∈ Σ(Div; Ω),

where F ∗ and G∗ are the Fenchel conjugates pertaining to F and G, respectively.
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4.2. Computation of the Fenchel conjugates. The Fenchel or convex conjugate
j∗ : X∗ → R ∪ {+∞} of a convex function j : X → R ∪ {+∞} on a Banach space
X is defined as the functional

j∗(w∗) := sup
w∈X
{〈w∗, w〉 − j(w)}.

Observe that G = i∗Sad(gn), and a straightforward computation leads to

F ∗(u∗, e∗) = i{−fn}(u
∗) + 1

2 (C−1e∗, e∗), G∗(σ) = i∗∗Sad(gn)(σ),

for [u∗, e∗] ∈ [LN (Ω)]N ×Q and σ ∈ Σ(Div; Ω). The adjoint of Λ is given by

(4.6) Λ∗σ = [−Div σ,−σ] ∈ [LN (Ω)]N ×Q.

Since Sad(gn) ⊂ Σ(Div; Ω) is nonempty, convex and closed, it holds that

G∗ = i∗∗Sad(gn) = iSad(gn),

such that (4.5) amounts to the following problem.

Problem (D). 
inf 1

2 (C−1σ, σ) + 〈p̂n−1, σ〉
s.t. −Div σ = fn, σν = gn on Γ1, σ ∈ Sad

over σ ∈ Σ(Div; Ω).

The definition (3.4) of p̂n−1 allows to reformulate (D) as a problem in the larger
Hilbert space Q with the help of the adjoint operator to ε ∈ L(V,Q).

(4.7)


inf 1

2 (C−1σ, σ)− (C−1σn−1, σ)

s.t. ε∗σ = ln in V ∗, σ ∈ Sad,

over σ ∈ Q

We note that problem (D), or (4.7), is exactly the stress problem (Problem 2.2)
of perfect plasticity in incremental form resulting from an implicit Euler time
discretization;

σ̇(tn) ≈ σ(tn)−σ(tn−1)
tn−tn−1

.

We summarize the result in the following theorem.

Theorem 4.1. Let the applied forces f and g fulfill Assumption 2.4. A Fenchel dual
problem of the time-incremental problem of quasi-static evolution in perfect plasticity
in reduced form (problem (Pred)) is given by (D), which is the stress problem in
incremental form. There is no duality gap between primal and dual problem, i.e., it
holds that

(4.8) inf (Pred) = − inf (D).

Proof. In order to prove (4.8), it suffices that the following constraint qualification
is fulfilled;

(4.9) − p̂n−1 ∈ int(domG− Λ domF );

cf. [5, Theorem 1, p.221]. The validity of (4.9) can be seen as follows: From
the definition of the adjoint (4.6), it follows directly that Λ∗ is injective, such
that the range of Λ is dense in Σ(Div; Ω)∗. Since the range of Λ∗ is closed, the
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surjectivity of Λ follows from the closed range theorem. Together with domG 6= ∅,
domF = LN/(N−1)(Ω)N ×Q and the surjectivity of Λ, one obtains

domG− Λ domF = Σ(Div; Ω)∗,

such that the constraint qualification (4.9) is satisfied. �

We stress that the proof of Theorem 4.1 requires the correct choice of the
topologies for the domain and image space of the operator Λ. In fact, using
the reduced formulation (Pred) in the Lebesgue space setting we avoid explicit
incorporation of the space BD(Ω) for the displacement.

4.3. Primal-dual optimality conditions. Under Assumption 2.4, the admissible
set of (D) is nonempty and it follows from standard arguments that (D) has a unique
solution σ̄ ∈ Σ(Div; Ω). By virtue of (4.8), saddle points [ū, ē; σ̄], where [ū, ē] solves
(Pred), are characterized by the following primal-dual optimality conditions (see [20,
III, Remark 4.2], for instance);

σ̄ ∈ Sad(gn), Div σ̄ = −fn, Cē = σ̄,(4.10)

−p̂n−1 −Div∗ ū− ē ∈ NSad(gn)(σ̄).(4.11)

Here, NSad(gn)(σ̄) denotes the normal cone to the set Sad(gn) ⊂ Σ(Div; Ω) at σ̄.
Note that (4.11) is equivalent to

(4.12) 〈ū− un−1,Div σ̃ −Div σ̄〉+ (ē− en−1, σ̃ − σ̄) ≥ 0, ∀ σ̃ ∈ Sad(gn);

that is, the optimality system (4.10)-(4.11) represents precisely the time-discretized
version of the stress problem (Problem 2.1). Whereas [15, Theorem 3.6(c)] only
derives (4.10) as a necessary optimality condition for a solution [ū,C−1σ̄, p̄] to the
primal problem (P), our result shows that by additionally incorporating the normal
cone condition (4.12), one obtains necessary and sufficient optimality conditions for
the time-discretized primal problem in quasi-static perfect plasticity. A rigorous
Fenchel duality result for the time-discrete primal problem of perfect plasticity and
the dual stress problem has thus been established.

5. A new algorithmic scheme

5.1. A modified visco-plastic regularization. In the remainder of this paper
we intend to design an infinite-dimensional algorithm to solve the time-incremental
problem of perfect plasticity based on a new regularization scheme. A classical
approach to the problem of perfect plasticity is the visco-plastic regularization,
which is essentially a Moreau-Yosida regularization iµK0

of the indicator function
iK0

associated with the constraint dev σ(x) ∈ K0, such that the inclusion in (2.8) is
replaced by the smooth equation

ṗ = iµK0

′
(σ), with iµK0

(σ) := µ
2 inf
σ̃∈MN×N :
dev σ̃∈K0

{
|σ̃ − σ|2F

}
.

The basis for the existence proofs in [34, 53] is that perfect plasticity can be
characterized as the limit of visco-plasticity as µ→ +∞. On the level of the weak
formulation in terms of the stress (4.7), this approach essentially corresponds to
a Moreau-Yosida regularization of the constraint σ ∈ Sad in the space Q. In [47,
Lemma 3.8], it is shown that the visco-plastic regularization is equivalent to a problem
of plasticity with kinematic hardening, where the hardening modulus depends on the
regularization parameter γ. As discussed in [30], the problem of hardening plasticity

18



requires further regularization techniques in order to allow for an efficient infinite-
dimensional solver that converges mesh-independently upon discretization. For
these reasons, it appears to be worthwhile to consider an alternative regularization
scheme that differs from a vanishing hardening approach.

In this section we propose a primal modification that combines the usual visco-
plastic regularization of the flow law with a Tikhonov regularization of the objective
functional in (Pred) that maintains the original function space setting. As it turns
out, this approach allows to recover a one-to-one relation between the approximations
of the primal variable pair [u, p] and the solution of a suitably modified version of
the incremental stress problem (D) in the original infinite-dimensional setting. In
particular, the approximations of u are not assumed to be elements of the Sobolev
space V .

On the level of the primal problem, consider the following family of regularized
problems induced by a sequence of positive parameters µ > 0.

Problem (Pµ). {
inf Ĵµ(u, e)

over [u, e] ∈ LN ′(Ω)N ×Q,

where

Ĵµ(u, e) := 1
µN ′ ‖u‖

N ′

LN′ (Ω)N
− 〈fn, u〉+ 1

2 (Ce, e)

+ sup
σ∈Σ(Div;Ω),
σν=gn on Γ1

{−〈p̂n−1, σ〉 − (σ, e)− 〈Div σ, u〉 − iµSad
(σ)}.

Here, iµSad
is defined as the Moreau-Yosida regularization of iSad as a mapping

defined on Q;
iµSad

(σ) := µ
2 inf
σ̃∈Sad

‖σ − σ̃‖2Q.

Note that, according to (2.9), it holds BD(Ω) ↪→ LN
′
(Ω)N , where N ′ := N/(N − 1).

Existence and uniqueness of a solution to Problem (Pµ) then follows by standard
arguments from convex analysis as summarized in the following proposition.

Proposition 5.1. Let the safe-load condition (Assumption 2.4) be fulfilled. Then
Problem (Pµ) admits a unique solution [uµ, eµ], which satisfies uµ ∈ BD(Ω), uµν = 0
on Γ0 and div uµ = tr eµ in Ω.

Proof. The function

[u, e] 7→ sup
σ∈Σ(Div;Ω),
σν=gn on Γ1

{−〈p̂n−1, σ〉 − (σ, e)− 〈Div σ, u〉 − iµSad
(σ)}

represents the pointwise supremum of a sequence of affine functions on LN
′
(Ω)N ×Q

and as such, it is convex and weakly l.s.c. in LN
′
(Ω)N ×Q. Under Assumption 2.4

it is also proper. The additional strictly convex term

(5.1) 1
N ′µ‖u‖

N ′

LN′ (Ω)N

yields the coercivity of Ĵµ on LN
′
(Ω)N ×Q. Existence and uniqueness of a solution

now follows from the direct method. The regularity statement ε(u) ∈M(Ω; MN×N )
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follows under Assumption 2.4 by

sup
σ∈Σ(Div;Ω),
σν=gn on Γ1

{−〈p̂n−1, σ〉 − (σ, e)− 〈Div σ, u〉 − iµSad
(σ)} − 〈fn, u〉

≥ sup
σ∈Sad(Σ(Div;Ω)),
σν=gn on Γ1

{−〈p̂n−1, σ〉 − (σ, e)− 〈Div σ, u〉} − 〈fn, u〉,(5.2)

together with the estimate (3.14). Since uµ ∈ BD(Ω), the validity of the plastic
incompressibility conditions uµ · ν = 0 on Γ0 and div uµ = tr eµ can be deduced
from (5.2) as in the proof of Lemma 3.2. �

Unlike the case of the visco-plastic regularization, we do neither dispose of an
explicit problem formulation of (Pµ) in terms of u nor is it possible to prove that
the optimal displacement uµ is an element of the Sobolev space V . Instead, (Pµ)
does not impose a higher strain regularity than the initial problem (P) and therefore
it does not fall into the realm of hardening plasticity.

It can also be expected that (Pµ) yields a close approximation of (Pred), at least
for large µ. Before discussing this issue, we proceed by computing an associated
Fenchel dual problem that turns out to be a penalized version of the incremental
stress problem.

Problem (Dµ). 
inf J∗µ(σ)

s.t. σν = gn on Γ1

over σ ∈ Σ(Div; Ω).

with

J∗µ(σ) := 1
2 (C−1σ, σ) + 〈p̂n−1, σ〉+ µN−1

N ‖Div σ + fn‖NLN (Ω)N + iµSad
(σ).

Proposition 5.2. Let the safe-load condition (Assumption 2.4) be fulfilled. Then a
Fenchel dual problem to (Pµ) is given by the modified stress problem (Dµ). Moreover,
(Dµ) has a unique solution σµ and there is no duality gap, i.e.,

(5.3) min (Pµ) = −min (Dµ).

Proof. Since
σ 7→ 1

2 (C−1σ, σ) + µN−1

N ‖Div σ + fn‖NLN (Ω)N

defines a strictly convex and coercive functional on Σ(Div; Ω), existence and unique-
ness of a solution σµ to (Dµ) follows from standard arguments.

Using the linear operator Λ from (4.2) we rewrite (Pµ) in compact form as

(5.4) min Fµ(u, e) +Gµ(Λ[u, e]− p̂n−1) over [u, e] ∈ LN
′
(Ω)N ×Q,

with

Fµ : LN
′
(Ω)N ×Q→ R ∪ {∞}, Fµ(u, e) := 1

µN ′ ‖u‖
N ′

LN′ (Ω)N
− 〈fn, u〉+ 1

2 (Ce, e),

Gµ : Σ(Div; Ω)∗ → R ∪ {∞}, Gµ(σ∗) := sup
σ∈Σ(Div;Ω),
σν=gn on Γ1

{〈σ∗, σ〉 − iµSad
(σ)}.

An application of [20, I, Remark 4.1] leads to

F ∗µ(u∗, e∗) = µN−1

N ‖u∗ + fn‖NLN (Ω)N + 1
2 (C−1e∗, e∗),
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for all [u∗, e∗] ∈ LN (Ω)N ×Q. Moreover, it holds that Gµ(σ∗) = G̃∗µ(σ∗) for

G̃µ(σ) := iΣgn (Div;Ω)(σ) + iµSad
(σ), σ ∈ Σ(Div; Ω),

where

Σg̃(Div; Ω) := {σ ∈ Σ(Div; Ω) : σν = g̃ on Γ1}, g̃ ∈ H−1/2
00 (Γ1).

Since G̃µ is convex, l.s.c. and proper, one obtains

G∗µ = G̃µ = iΣgn (Div;Ω) + iµSad
.

The Fenchel dual problem of (Pµ) corresponding to this setting is given by

(5.5) − inf F ∗µ(−Λ∗σ) +G∗µ(σ) + 〈p̂n−1, σ〉,

which is exactly problem (Dµ). Under the safe-load condition, the validity of (4.9)
can be verified as in Theorem 4.1, such that (5.3) holds. �

Hence, adding the strictly convex term (5.1) to the objective function Ĵ in (Pred)
results in a penalty approach to the mechanical equilibrium constraint −Div σ = fn

in the space LN (Ω)N . Standard properties of the Moreau-Yosida regularization
further ensure that the objective function J∗µ is convex and continuously Fréchet
differentiable as a functional on Σ(Div; Ω). Since both problems are uniquely solvable,
we retrieve a one-to-one relation between regularized stresses and strains via the
primal-dual optimality conditions for the saddle point [uµ, eµ;σµ] ∈ BD(Ω)×Q×
Σ(Div; Ω); see [20, III, Remark 4.2]. In fact, [uµ, eµ;σµ] can be characterized by the
existence of λµ ∈ Σ(Div; Ω)∗ such that

Ceµ = σµ in Q, σµν = gn on Γ1(5.6)

|uµ|1/(N−1) ? sign(uµ) = µ(fn + Div σµ) in Ω(5.7)

−p̂n−1 −Div∗ uµ − (C−1 + µ id)σµ + µπSad(σµ)− λµ = 0,(5.8)
λµ ∈ NΣgn (Div;Ω)(σµ),(5.9)

where πSad denotes the projection on Sad in the space Q, and NΣgn (Div;Ω)(σµ) is
the normal cone at σµ to Σgn(Div; Ω) ⊂ Σ(Div; Ω). Here, (5.7) and the application
of ’sign’ have to be understood componentwise, where

|a|p := [|a1|p, . . . , |ad|p], a ? b := [a1b1, . . . , adbd]

denote Hadamard products for vectors a, b ∈ Rd in (5.7).
This shows that the displacement uµ can be easily computed from the solution σµ

of (Dµ) using (5.7). In contrast to the primal problem (Pµ), which is only given in
inf-sup-form, the dual problem is again given explicitly. This facilitates the analysis
of the consistency of the regularization with regard to the limit problems (P) and
(D).

Theorem 5.3 (Consistency). Let the safe-load condition (Assumption 2.4) be
satisfied. Then the following assertions hold true.

(i) The sequence of approximate elastic strains (eµ) fulfills

eµ → ē in Q, for µ→∞.
The sequence of approximate displacements (uµ) is bounded in BD(Ω)
and for any limit ū ∈ BD(Ω) of a weakly∗-convergent subsequence of
(uµ) ⊂ BD(Ω), it holds that [ū, ē] is a solution of (Pred).
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(ii) The sequence of approximate stresses (σµ) fulfills

σµ → σ̄ in Σ(Div; Ω), for µ→∞.

Proof. Step 1 (dual problem).
First observe that the sequence of minimizers (σµ), whose existence is guaranteed

by Proposition 5.2, is bounded in Σ(Div; Ω). Indeed, we have

J∗µ(σµ) ≥ 1
2 (C−1σµ, σµ) + 〈p̂n−1, σµ〉+ µN−1

N ‖Div σµ + fn‖NLN (Ω)N

(5.10)

≥ κC−1

2 ‖σµ‖
2
Q − c‖σµ‖Q − c‖Div σµ‖LN (Ω)N + µN−1

N ‖Div σµ + fn‖NLN (Ω)N

≥ κC−1

2 ‖σµ‖
2
Q − c‖σµ‖Q − c‖Div σµ + fn‖LN (Ω)N − c‖fn‖LN (Ω)N

+ µN−1

N ‖Div σµ + fn‖NLN (Ω)N ,

where c := ‖pn−1‖Σ(Div;Ω)∗ and κC−1 > 0 is a constant that fulfills

(5.11) (C−1σ, σ) ≥ κC−1‖σ‖2Q, ∀σ ∈ Q.
On the other hand, it holds that

(5.12) J∗µ(σµ) ≤ J∗µ(σ̄) = 1
2 (C−1σ̄, σ̄) + 〈p̂n−1, σ̄〉, ∀µ > 0.

Together with (5.10), this implies that (σµ) ⊂ Σ(Div; Ω) is bounded.
Under the safe-load condition (Assumption 2.4), the objective function J∗µ of the

dual problem (Dµ) is proper, weakly l.s.c. and pointwise monotonically increasing
for all µ > 0. The pointwise limit is given by

(5.13) lim
µ→∞

(
J∗µ(σ) + iΣgn (Div;Ω)(σ)

)
= 1

2 (C−1σ, σ) + 〈p̂n−1, σ〉,

in the case where σ ∈ Sad(gn),−Div σ = fn, and

(5.14) lim
µ→∞

(
J∗µ(σ) + iΣgn (Div;Ω)(σ)

)
= +∞,

else. An application of [14, Prop. 5.4] yields that (5.13) and (5.14) also hold as
Γ-limits in the space Σ(Div; Ω) endowed with the weak topology. It follows that each
weak limit point of (σµ) in Σ(Div; Ω) is the solution σ̄ of (D); see [14, Corollary 7.20].
By uniqueness, this also holds for the entire sequence, i.e., σµ ⇀ σ̄ in Σ(Div; Ω).
The strong convergence of (σµ) can be deduced as follows.

0 ≤ lim inf
µ→∞

(µ
N−1

N ‖Div σµ + fn‖NLN (Ω)N + iµSad
(σµ))

≤ lim sup
µ→∞

(µ
N−1

N ‖Div σµ + fn‖NLN (Ω)N + iµSad
(σµ))

≤ lim sup
µ→∞

(
κC−1

2 ‖σµ − σ̄‖
2
Q + µN−1

N ‖Div σµ + fn‖NLN (Ω)N + iµSad
(σµ))

≤ lim sup
µ→∞

(J∗µ(σµ)− 〈p̂n−1, σµ〉+ 1
2 (C−1σ̄, σ̄)− (C−1σµ, σ̄))

≤ lim sup
µ→∞

((C−1σ̄, σ̄) + 〈p̂n−1, σ̄ − σµ〉 − (C−1σµ, σ̄)) = 0,

where we use (5.11),(5.12) and σµ ⇀ σ̄ in Σ(Div; Ω). This entails that (σµ) converges
strongly to σ̄ in Σ(Div; Ω) and that

(5.15) J∗µ(σµ)→ 1
2 (C−1σ̄, σ̄) + 〈p̂n−1, σ̄〉.

We immediately infer that eµ = C−1σµ → C−1σ̄ = ē in Q.
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Step 2 (primal problem). Owing to the upper bound

c ≥ Ĵµ(un−1, en−1) ≥ Ĵµ(uµ, eµ) ≥ Ĵ(uµ, eµ)

≥ c0 − c1‖eµ‖+ κC‖eµ‖2

+ ρmax(‖ε(uµ)‖M(Ω),−‖ε(uµ)‖M(Ω) + 1√
2
‖uµ‖L1(Γ0;RN )),

where the lower estimate follows from Lemma 3.3, one obtains the uniform bounded-
ness of (eµ) ⊂ Q and (uµ) ⊂ BD(Ω). Consequently, one may extract a subsequence
also denoted by ([uµ, eµ]), such that

uµ
∗
⇀ ũ in BD(Ω), eµ ⇀ ẽ in Q.

Using the sequential weak∗×weak lower semicontinuity of Ĵ , (cf. the proof of
Theorem 3.4) and (5.3), one obtains

Ĵ(ũ, ẽ) ≤ lim inf
µ→∞

Ĵ(uµ, eµ) ≤ lim inf
µ→∞

Ĵµ(uµ, eµ)(5.16)

= lim inf
µ→∞

min (Pµ) = − lim sup
µ→∞

min (Dµ),

Using (5.15), one obtains

lim sup
µ→∞

min (Dµ) = lim
µ→∞

min (Dµ) = min(D),

With the help of (4.8), the estimate (5.16) implies that

Ĵ(ũ, ẽ) ≤ −min (D) = min (Pred),

i.e., [ũ, ẽ] solves (Pred). �

5.2. An infinite-dimensional semismooth Newton method. This section
aims to provide a theoretical framework for an efficient infinite-dimensional al-
gorithmic scheme to solve the regularized problems (Dµ) for a fixed parameter
µ� 0 based on the semismooth Newton method [13, 32]. Owing to Theorem 5.3 it
is justified to make the assumption that (Dµ) represents a good approximation of
(P). Using the primal-dual optimality condition (5.7), it is further possible to retrieve
[uµ, eµ] by solving (Dµ). In this section, we make the restrictive assumption that
N = 2, which implies that the incremental stress problem as well as its regularization
is posed in the Hilbert space H(Div; Ω).

For simplicity, we henceforth also assume that gn = 0. From a theoretical
viewpoint this does not impose a restriction since Korn’s inequality ensures that
there exists an element ξ = ε(û) ∈ H(Div; Ω), û ∈ V , that fulfills

(5.17) −Div ξ = fn, ξν = gn on Γ1.

In the usual way, one may then use ξ to transform (Dµ) into an equivalent problem
with a homogeneous normal trace condition. For gn = 0, problem (Dµ) reads

(D̃µ)


inf 1

2 (C−1σ, σ) + 〈p̂n−1, σ〉+ µ
2 ‖Div σ + fn‖2L2(Ω)2 + iµSad

(σ)

s.t. σν = 0 on Γ1,

over σ ∈ H(Div; Ω).
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5.2.1. The semismooth Newton method. The semismooth Newton method relies on
the notion of Newton differentiability, which can be found in [13, 32].

Definition 5.4 (Newton differentiability). Let X,Y be Banach spaces and U ⊂ X
be an open set. A mapping F : U → Y is called Newton differentiable in U if there
exists a family of mappings GF : U → L(X,Y ) which satisfy

‖F (x+ h)− F (x)−GF (x+ h)h‖Y = o(‖h‖X), ‖h‖X → 0,

for all x ∈ U .

Provided GF (x) is invertible for all x ∈ U , the corresponding generalized Newton
method to solve F (x) = 0 for Newton differentiable F is defined iteratively by

(5.18) x(j+1) = x(j) −GF (x(j))−1F (x(j)), x(0) ∈ U.

Following [32, Theorem 1.1], the sequence (x(j)) converges locally at a superlinear
rate if {GF (x(j))−1 : k ∈ N} is uniformly bounded. Moreover, the convergence
rates are mesh independent upon discretization, which means that the convergence
quotients remain stable for sufficiently small mesh width. In practice, the mesh
independence of an algorithm ensures that the iteration numbers stay bounded as
the mesh width gets finer. We refer to [26, 31] for detailed mesh independence
results for the semismooth Newton method.

At this point, it should be emphasized that mesh-independent convergence
requires the Newton differentiability of the operator F with respect to the original
(infinite-dimensional) setting, which in turn necessitates a norm gap with respect to
domain and image space of F ; cf., for instance, Lemma 5.8 below. In the context of
(Dµ) however, the problem lacks the necessary norm gap since H(Div; Ω) does not
embed into Lp-spaces for p > 2. Therefore, a direct application of the semismooth
Newton method to the optimality conditions associated with the discrete formulation
of (Dµ) results in a mesh-dependent solver.

5.2.2. Tikhonov regularization. In order to overcome this drawback, we suggest to
replace problem (Dµ) by a Tikhonov-regularized problem induced by a continuous
and elliptic symmetric bilinear form

b( . , . ) : H1(Ω; M2×2)×H1(Ω; M2×2)→ R

on the dense Hilbert subspace

H1(Ω; M2×2) ↪→ H(Div; Ω)

of M2×2-valued functions on Ω with distributional partial derivatives in Q, and we
denote by

B ∈ L(H1(Ω; M2×2), H1(Ω; M2×2)∗)

the bounded linear operator associated with the bilinear form b. Note that the
symmetry condition in the definition of the space H1(Ω; M2×2) can be easily imposed
using a simple parametrization. We now contemplate the following approximation
of the regularized incremental stress problem (D̃µ), which is induced by a sequence
of positive parameters (γ).

(Dµ,γ)


inf J∗µ,γ(σ)

s.t. σν = 0 on Γ1,

over σ ∈ H1(Ω,M2×2),
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where

J∗µ,γ(σ) := 1
2 (C−1σ, σ) + 〈p̂n−1, σ〉+ µ

2 ‖Div σ + fn‖2L2(Ω)2 + iµSad
(σ) + 1

2γ b(σ, σ).

The assumptions on b ensure that each problem (Dµ,γ) has a unique solution,
which is henceforth denoted by σµ,γ . The problem (Dµ,γ) further promises a good
approximation of (Dµ) at least for large γ. In fact, in order to relate the problems
(Dµ,γ) to (Dµ) it is necessary to extend the density property

(5.19) C∞c (Ω; MN×N )
H(Div;Ω)

= H0(Div; Ω),

from [23, I, Theorem 2.6], to problems with mixed boundary conditions. For this
purpose we define the appropriate subspace

H0,Γ1(Div; Ω) := {σ ∈ H(Div; Ω) : σν = 0 on Γ1}

of H(Div; Ω)-functions whose normal component vanishes on Γ1 in the sense of
the space H−1/2

00 (Γ1). We further make the following technical assumption on the
boundary portion Γ0.

Assumption 5.5. The splitting of ∂Ω = Γ0 ∪ Γ1 ∪ ∂Γ0 is regular enough to ensure
that the density result

(5.20) C∞0,Γ1
(Ω)

H1(Ω)
= H1

0,Γ1
(Ω)

for H1
0,Γ1

(Ω) = {u ∈ H1(Ω) : u = 0 on Γ1} and

(5.21) C∞0,Γ1
(Ω) := {ϕ ∈ C∞(Ω), ϕ = 0 on Γ1}

holds true.

According to [17, 9], condition (5.20) may only be violated by some degenerate
Γ0, such that, from a practical point of view, Assumption 5.5 does not represent a
restriction.

Lemma 5.6. Let N ∈ N and suppose Assumption 5.5 holds true. Then the density
property

C∞0,Γ1
(Ω; MN×N )

H(Div;Ω)
= H0,Γ1

(Div; Ω)

is satisfied, where

C∞0,Γ1
(Ω; MN×N ) := {ϕ ∈ C∞(Ω; MN×N ) : ϕ|Γ1

= 0},

Proof. The continuity of the normal trace operator restricted to Γ1 [6],

τΓ1
ν : H(Div; Ω)→ [H

−1/2
00 (Γ1)]N , τΓ1

ν (σ) := τν(σ)
∣∣
Γ1
,

ensures that H0,Γ1
(Div; Ω) = ker τΓ1

ν is a closed subspace of H(Div; Ω) and conse-
quently, the inclusion

C∞0,Γ1
(Ω; MN×N )

H(Div;Ω)
⊂ ker τΓ1

ν

is valid. Following the strategy of the proof of [23, I, Theorem 2.6] we show that
any linear form on (ker τΓ1

ν )∗ that vanishes on C∞0,Γ1
(Ω; MN×N ) is identical to zero.

In fact, let σ∗ ∈ (ker τΓ1
ν )∗ with

(5.22) 〈σ∗, σ〉 = 0, ∀σ ∈ C∞0,Γ1
(Ω; MN×N ).
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By the Riesz Representation Theorem, there exists σ0 ∈ ker τΓ1
ν such that

(5.23) 〈σ∗, σ〉 = (σ0, σ)Q + (q0,Div σ)L2(Ω)N , ∀σ ∈ ker τΓ1
ν ,

where q0 := Div σ0. Testing (5.23) with functions σ ∈ C∞c (Ω; MN×N ), one deduces
that ε(q0) = σ0. Thus, it holds that

(5.24) q0 ∈ H1(Ω)N .

We further prove that q0 = 0 on Γ0. Using (5.22), Green’s formula implies that

〈σ∗, σ〉 = (ε(q0), σ)Q + (q0,Div σ)L2(Ω)N

= 〈σν, q0〉(H−1/2(∂Ω)N ,H1/2(∂Ω)N )

=

ˆ
Γ0

(σν)q0 dHN−1 = 0,(5.25)

for all σ ∈ C∞0,Γ1
(Ω; MN×N ). By the density property (5.20) and the fact that

τΓ0
ν : H1

0,Γ1
(Ω,MN×N )→ [H

1/2
00 (Γ0)]N , τΓ0

ν (σ) := τν(σ)|Γ0
,

defines a surjective and continuous linear operator (cf. [43, Chapter 5]), (5.25)
implies that ˆ

Γ0

z · q0 dHN−1 = 0 ∀ z ∈ H1/2
00 (Γ0)N .

By the density of H1/2
00 (Γ0) in L2(Γ0), we have that q0 = 0 on Γ0. It follows

from (5.24) that q0 ∈ H1
0,Γ0

(Ω)N and, by definition, also q0

∣∣
Γ1
∈ H1/2

00 (Γ1)N . Let
σ ∈ ker τΓ1

ν . Using q0 ∈ H1
0,Γ0

(Ω)N , we infer that

〈σ∗, σ〉 = (ε(q0), σ) + (q0,Div σ)L2(Ω)N = 〈σν, q0〉(H−1/2
00 (Γ1)N ,H

1/2
00 (Γ1)N )

= 0,

which shows that σ∗ is the zero functional on ker τΓ1
ν . �

With the help of the density property provided by Lemma 5.6, the main consis-
tency result for γ →∞ can be derived.

Theorem 5.7. Let µ > 0 be fixed and let Assumption 5.5 be fulfilled. For a sequence
of positive parameters (γ) ⊂ R+ with γ →∞, the solutions σµ,γ ∈ H1(Ω; M2×2) to
(Dµ,γ) fulfill

σµ,γ → σµ in H(Div; Ω), as γ →∞,
where σµ is the solution of (D̃µ).

Proof. By convexity, the solution σµ of problem (D̃µ) is characterized by the
variational inequality

aµ(σµ, σ̃ − σµ) + jµ(σ̃)− jµ(σµ) ≥ 〈lµ, σ − σ̃〉, ∀ σ̃ ∈ H(Div; Ω),

where

aµ(σ, σ̃) := (C−1σ, σ̃) + µ(Div σ,Div σ̃)L2(Ω)2 ,

jµ(σ̃) := iµSad
(σ̃) + iH0,Γ1

(Div;Ω)(σ̃),

lµ(σ) := −〈p̂n−1, σ〉 − µ(Div σµ, f
n).

On the other hand, the solution σµ,γ of (Dµ,γ) is characterized by the variational
inequality

aµ(σµ,γ , σ̃ − σµ,γ) + jµ,γ(σ̃)− jµ,γ(σµ,γ) ≥ 〈lµ, σ̃ − σγ,µ〉, ∀ σ̃ ∈ H(Div; Ω),
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where
jµ,γ(σ̃) := iµSad

(σ̃) + iH0,Γ1
(Div;Ω)(σ̃) + 1

γ ‖σ̃‖H1(Ω;M2×2).

Here, it is understood that jµ,γ(σ̃) = +∞ for σ̃ /∈ H1(Ω; M2×2). Using [14, Proposi-
tion 5.7], it is easy to see that (jµ,γ) Mosco-converges in H(Div; Ω) to

iµSad
+ i

H0,Γ1 (Div;Ω)∩H1(Ω;M2×2)
H(Div;Ω) ,

as γ →∞; see [41, Definition 1.1]. From Lemma 5.6, it follows that

H0,Γ1
(Div; Ω) ∩H1(Ω; M2×2)

H(Div;Ω)
= H0,Γ1

(Div; Ω),

which entails that (jµ,γ) Mosco-converges to jµ in H(Div; Ω) for γ →∞. Together
with the ellipticity of a on H(Div; Ω), standard arguments from the perturbation
of variational inequalities (see, for instance, [24, I, Theorem 6.2]) prove that (σµ,γ)
converges strongly to σµ in H(Div; Ω), which concludes the proof. �

5.2.3. The von Mises yield criterion. In this section we onsider the special case,
where the set of admissible stresses is determined by the von Mises yield criterion,
i.e.,

K0 := {q ∈ M2×2
0 : |q|F ≤ σy}, σy > 0 fixed,

which is one of the most frequently used yield criteria in practice. In this case, the
projection onto the feasible set Sad = {σ ∈ Q : dev σ ∈ K0 a.e. in Ω} in the space
Q can be computed pointwise. In fact, one obtains

(5.26) πSad(σ) = σ − [|dev σ|F − σy]+ dev σ
| dev σ|F .

Under these premises, the problem (Dµ,γ) takes the form

(5.27)


inf 1

2 (C−1σ, σ) + 〈p̂n−1, σ〉+ µ
2 ‖Div σ + fn‖2L2(Ω)2

+µ
2 ‖[|dev(σ)|F − σy]+‖2L2(Ω) + 1

2γ b(σ, σ).

over σ ∈ H1
0,ν(Ω; M2×2),

where
H1

0,ν(Ω; M2×2) := {σ ∈ H(Ω; M2×2) : σν = 0 on Γ1}.
It turns out that the optimality conditions associated with (5.27) takes the form of
a Newton differentiable operator equation. In fact, since J∗µ,γ is convex and Fréchet
differentiable, the necessary and sufficient optimality condition for the solution σµ,γ
to (5.27), is characterized by the nonsmooth operator equation

(5.28) Ψµ,γ(σµ,γ) = 0,

where Ψµ,γ : H1
0,ν(Ω; M2×2)→ H1

0,ν(Ω; M2×2)∗ is defined by

(5.29) Ψµ,γ(σ) := C−1σ + lµ + µDiv∗Div σ + µdev∗m(dev σ) + 1
γBσ.

Here,

m(σ) := [(|σ|F − σy)]+q(σ),where q(σ) =

{
σ/|σ|F , if σ 6= 0,

0, else;
denotes the nonlinear operator associated with the Fréchet derivative of the Moreau-
Yosida regularization. We proceed by showing that this equation can be solved
efficiently by a generalized Newton scheme, which requires the operator Ψµ,γ to be
Newton differentiable in the sense of Definition 5.4. In this regard, the only issue is
the generalized differentiability of the function m, as all other terms in (5.29) are
Fréchet differentiable. The following result is available; cf. [29].
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Lemma 5.8. Let β ∈ L∞(Ω) with β(x) ≥ c > 0 a.e. in Ω. Then the mapping

m : u 7→ [|u|2 − β]+q(u)

is Newton differentiable as a mapping from Lp(Ω)d → Ls(Ω)d for 3 ≤ 3s ≤ p < +∞
and

Gm(u) := iA(u) ·M(u)

defines a Newton derivative of m, where

ρ(u) := [|u|2 − β]+ 1
|u|2 ,

M(u)( . ) := ρ(u)( . ) + (1− ρ(u))uu
>( . )
|u|22

,

A(u) := {x ∈ Ω : |u|2(x) > β(x)}.

Corollary 5.9. A Newton derivative

GΨµ,γ (σ) ∈ L(H1
0,ν(Ω; M2×2), H1

0,ν(Ω; M2×2)∗)

of Ψµ,γ at σ is given by

〈GΨµ,γ (σ)σ̃, . 〉 := (C−1σ̃, . ) + µDiv∗Div σ̃ + µdev∗Gm(dev σ)[dev σ̃] + 1
γBσ̃,

for all σ̃ ∈ H1
0,ν(Ω; M2×2). Here, Gm denotes the Newton derivative of m according

to Lemma 5.8. Moreover GΨµ,γ (σ) is uniformly invertible, i.e., independent of σ.

Proof. According to Lemma 5.8 and the Sobolev embedding theorem, the mapping

σ → m(dev σ)

is Newton differentiable as a mapping from H1
0,ν(Ω; M2×2) to Q0 := {q ∈ Q :

tr(q) = 0 a.e. in Ω}. It follows immediately that the mapping Ψµ,γ is Newton
differentiable with Newton derivative GΨµ,γ . It is further straightforward (see, for
instance, [30, Lemma 5.5]) to show that GΨµ,γ (σ) is uniformly elliptic, i.e., there
exists c = c(µ, γ) > 0 (independent of σ) such that

〈GΨµ,γ (σ)σ̃, σ̃〉 ≥ c‖σ̃‖2H1
0,ν(Ω;M2×2),

which entails that ‖G−1
Ψµ,γ

(σ)‖ is uniformly bounded. �

Remark 5.10. If the safe-load condition (Assumption 2.4) holds, one can choose
ξ = σ̂n as the shift element in (5.17). Then, according to Lemma 5.8, the Newton
differentiability of Ψµ,γ is still valid since dev σ̂n ∈ L∞(Ω; MN×N0 ).

As a result of [32, Theorem 1.1], it can be inferred that the corresponding Newton
iteration (5.18) (with F = Ψµ,γ) is well-defined provided the starting point σ(0)

is sufficiently close to σµ,γ . Moreover, the iterates (σ(j)) converge locally at a
superlinear rate, which is mesh-independent upon discretization. To enforce global
convergence, one may equip the search directions

δ(j) := −GΨµ,γ (σ(j))Ψµ,γ(σ(j))

with a step size determined by the Armijo line search procedure. The resulting
method is summarized in Algorithm (SSN(µ, γ)).

With the help of the gradient-relatedness of the search direction and the strong
convexity of the objective function J∗µ,γ , it is standard to infer that the sequence (σ(j))
generated by SSN(µ, γ) equipped with an Armijo line search is globally convergent
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Algorithm SSN(µ, γ): Globalized SSN algorithm

input : σ(0) ∈ H1
0,ν(Ω; M2×2)

1 set j := 0;
2 while some stopping rule is not satisfied do
3 compute the solution δ(j) ∈ of GΨµ,γ (σ(j))δ(j) = −Ψµ,γ(σ(j));
4 determine α(j) > 0 by an Armijo line search based on α 7→ J∗µ,γ(σ(j) + αδ(j));
5 set σ(j+1) := σ(j) + α(j)δ(j) and j := j + 1 ;

in the sense that (σ(j)) converges strongly to the solution of (5.27) in the norm of
H1

0,ν(Ω; M2×2);

σ(j) → σµ,γ in H1(Ω; M2×2).

We refer, e.g., to [10] for details.

5.3. Outlook. In order to approximate the solution σ of (D) one needs to pass to the
limit in (Dµ,γ) with µ, γ → +∞. This can be achieved by a path-following strategy
in the spirit of [30, 28]. While the semismooth reformulation of problem (Dµ) based
on a Tikhonov regularization resembles the approach for hardening plasticity from
[30], the construction of a consistent regularization in perfect plasticity, which does
not rely on a vanishing hardening (or visco-plastic) approach, necessitates a more
involved inspection. In fact, for the study of the limiting case as µ, γ → +∞, one
may resign to the stability analysis from [30]. However, this approach is complicated
by the presence of the additional equality constraints

(5.30) −Div σ = fn, σν = gn on Γ1,

defining the feasible set of the limit problem (D), since the extension of the required
density property (cf. [30, Assumption 4.1]) to incorporate the equality constraints
(5.30) is not possible. As a consequence, a special coupling of the penalization-
regularization parameters µ and γ is necessary to be consistent with the limit
problem (D). For this issue, we refer, e.g., to [40, Proposition 2.4.6.]. Moreover, the
effect on the primal problem (Pµ) of the Tikhonov regularization of (Dµ) remains
to be investigated.

Another aspect concerns the convergence of finite element discretizations for
(Dµ,γ) based on a sequence of meshes with decreasing mesh width h. The stability
of the corresponding discretized-regularized scheme requires a convergence result
as h→ 0 and µ, γ →∞, which necessitates a suitable coupling between the three
parameters. Even if the convergence of the discretized-regularized stresses can be
shown, it is still necessary to pass to the limit (as the mesh width tends to 0) in the
resulting discretized version of the primal-dual optimality conditions (5.6)-(5.9) (or
their regularized version) in order to study the convergence of the approximative
displacements and plastic strains.

In the case of elasticity, which formally corresponds to problem (D) with K0 =

MN×N0 , the convergence of the discrete stress-displacement pair in mixed finite
element methods hinges on the validity of the LBB condition for saddle point
problems [11]. Moreover, a conformal discretization of the stresses requires the
incorporation of the symmetry and divergence constraints from the definition of
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the space H(Div; Ω). As a result, rather sophisticated finite elements, for example
those of Arnold and Winther [4] are proposed in the literature. The resulting
finite-dimensional approximation usually involves a very large number of (local)
degrees of freedom. It is expected that these aspects also need to be taken into
account in order to construct a stable discrete primal-dual path-following strategy
in order to solve the plasticity problem (P) via (Dµ) or (Dµ,γ).
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