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DENSITY OF CONVEX INTERSECTIONS AND APPLICATIONS

MICHAEL HINTERMÜLLER, CARLOS N. RAUTENBERG, SIMON RÖSEL

Abstract. In this paper we address density properties of intersections of
convex sets in several function spaces. Using the concept of Γ-convergence, it
is shown in a general framework, how these density issues naturally arise from
the regularization, discretization or dualization of constrained optimization
problems and from perturbed variational inequalities. A variety of density
results (and counterexamples) for pointwise constraints in Sobolev spaces are
presented and the corresponding regularity requirements on the upper bound
are identified. The results are further discussed in the context of finite element
discretizations of sets associated to convex constraints. Finally, two applications
are provided, which include elasto-plasticity and image restoration problems.

1. Introduction

Convex constraint sets K as subsets of an arbitrary Banach space X are common
to many fields in mathematics such as calculus of variations, variational inequalities,
and control theory. Such constraints are induced by physical limitations of control
and/or state variables, but also emerge through Fenchel dualization of convex
problems. In this vein, given a set of functions satisfying an arbitrary constraint,
density properties of more regular functions satisfying the same restriction are of
utmost importance in many instances, e.g., for the study of the limiting behavior
of regularized/discretized problems, the closed form determination of Fenchel dual
problems, the deduction of a vanishing viscosity limit for variational inequalities,
etc. In abstract terms, the density problem under consideration can be stated as
follows: Given some dense subspace Y of X, the central point of interest is whether
the closure property

(1.1) K(Y )
X

= K,

where K(Y ) = {u ∈ Y : u ∈ K} = K ∩ Y , is fulfilled.
The paper is organized as follows: Section 2 serves as a motivational framework for

the density question under consideration. Here we provide two general environments
where the closure property (1.1) emerges as fundamental for their study. In particular,
the first setting in section 2.1 involves constrained optimization and the one in
section 2.2 is associated with variational inequalities. Within these two settings, we
consider regularization, Galerkin approximation, and singular perturbation, and
these approaches are treated by methods of Γ-convergence.
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In section 3 we focus on the special setting where X = X(Ω) is a (Rd-valued)
vector space of functions over a bounded domain Ω of RN and K = K(X) denotes
the subset of elements in X(Ω) bounded pointwise by a prescribed measurable
function α : Ω→ R ∪ {+∞}, i.e.,

K(X(Ω)) = {w ∈ X(Ω) : |w(x)| ≤ α(x) a.e. (almost everywhere) in Ω},

with | . | denoting an Rd-norm. Particularly in this part, X(Ω) refers to a Lebesgue
or Sobolev space and Y = Y (Ω) refers to the space of continuous or infinitely
differentiable functions up to the boundary. We also use the notation

K(X(Ω), | . |) = {w ∈ X(Ω) : |w(x)| ≤ α(x) a.e. in Ω},

whenever it is necessary to explicit the dependence on the specific norm | . |. This
becomes useful as several results in this paper depend on specifically chosen Rd-
norms. We introduce the problem formulation and give some new density results
for continuous obstacles which extends results from [15] relying on the theory of
mollification. In the subsequent section 4, we focus on extensions of the density
results for discontinuous obstacles. It is first shown in section 4.1 that results of the
type (1.1) cannot be expected in general if the obstacle is a just a Sobolev function.
For this purpose we provide a concrete counterexample. The density results are then
extended to discontinuous obstacles which fulfill certain semi-continuity assumptions
in the Lebesgue space-case in section 4.2 and in the Sobolev space-case in section 4.3.
Subsequently, in section 4.4, a different approach is considered for obstacles which
originate from the solution of a PDE (partial differential equation), in which case
smooth approximants are constructed by solving a sequence of singularly perturbed
elliptic PDEs. In Section 5, we make use of the preceding density results to prove the
Mosco convergence of various types of finite element discretizations of K. We finalize
the paper with section 6 by providing two concrete applications from elasto-plasticity
and image restoration.

2. Motivation

2.1. Optimization with convex constraints. In many variational problems one
seeks the solution in a given convex, closed and nonempty subset K of a Banach
space (X, ‖.‖). To illustrate the problem, let us consider the following abstract class
of optimization problems:

(2.1)

{
inf F (u), over u ∈ X,
s.t. u ∈ K.

We assume that F : X → R is continuous, coercive and sequentially weakly lower
semicontinuous but not necessarily convex. Thus, problem (2.1) admits a solution
provided X is reflexive. The problem class (2.1) is ubiquitous, encompassing numer-
ous fields, such as the variational form of partial differential equations, variational
inequality problems of potential type, optimal control of partial differential equations
with constraints on the state and/or control, and many other. The analysis of (2.1)
and the design of suitable solution algorithms often involve the general concepts
of perturbation or dualization methods comprising regularization, penalization or
discretization approaches or possibly a combination of the latter. The stability
properties of (2.1) with regard to a large class of perturbations rely on the closure
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property (1.1), i.e.,
K(Y )

X
= K,

where Y is some dense subspace of X with regard to the norm topology of X and
K(Y ) is given by

K(Y ) = {u ∈ Y : u ∈ K} = K ∩ Y.
To justify this conjecture, we consider the following abstract perturbation class.

2.1.1. A class of quasi-monotone perturbations. To subsume as many of the above
mentioned methods as possible we consider the sequence of perturbed problems

(2.2) inf F (u) +Rn(u), over u ∈ X,
defined by a given sequence of functions

Rn : X → R ∪ {+∞}, n ∈ N,

that are perturbations of the indicator function iK : X → R∪{+∞} in the following
sense: there exist functions Rn : X → R ∪ {+∞} and Rn : X → R ∪ {+∞} such
that

0 ≤ Rn ≤ Rn ≤ Rn ∀n ∈ N,

having the additional properties:

(2.3)

{
Rn ≤ Rn+1 ∀n ∈ N, limn→+∞Rn(u) = iK(u) ∀u ∈ X,
Rn is sequentially weakly lower semicontinuous ∀n ∈ N,

and

(2.4) Rn ≥ Rn+1, ∀n ∈ N, lim
n→+∞

Rn(u) = iK∩Y (u) ∀u ∈ X.

We call mappings (Rn) that share the above features quasi-monotone perturbations
of the indicator function iK with respect to the (dense) subspace Y . Note that no
additional assumptions are made on Rn itself.

At this point we make the conjecture that the stability of (2.1) with respect to
a large class of perturbations hinges on the density condition (1.1). In fact, the
following result, which is based on the theory of Γ-convergence [8], substantiates
this conjecture.

Under mild assumptions on X, the density property (1.1) ensures that F + iK is
the Γ-limit of (F +Rn) in both, the weak and strong topology.

The proof of this result is referred to the appendix (see Proposition A1). Under
the assumptions of Proposition A1, one may infer that, provided each problem (2.2)
admits a minimizer un, each weak cluster point of the sequence of minimizers (un)
is a minimizer of (2.1), cf. [8, Corollary 7.20]. We also remark that in case the
(sequential) weak and strong Γ-limits coincide, one usually uses the notion Mosco
convergence.

In the following, we present a selection of approximation methods that fit into
the general class of perturbations defined by (2.2) and which bear high practical
relevance. In favor of generality, we do not leave the abstract setting.

Example 2.1 (Tikhonov-Regularization). Let (Y, ‖ . ‖Y ) be a Banach space which
is densely and continuously embedded into X. For a sequence of positive non-
decreasing parameters (γn) with γn → +∞ and fixed α > 0, consider in (2.2) the
Tikhonov regularization

(2.5) Rn(u) = iK(u) + 1
2γn
‖u‖αY ,
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where it is understood that Rn(u) = +∞ if u /∈ Y . In fact, set Rn := iK for all
n ∈ N and Rn := Rn. Obviously, (2.3) and (2.4) are satisfied such that (Rn) fits
into the context of quasi-monotone perturbations according to (2.2).

Example 2.2 (Conformal discretization). Let X be a separable Banach space.
Suppose (2.1) is approximated by a Galerkin approach using nested and conformal
finite-dimensional subspaces Xn, i.e., Xn ⊂ X and Xn ⊂ Xn+1 for all n ∈ N, such
that the Galerkin approximation property⋃

n∈N

Xn

X

= X

is fulfilled. The resulting discrete counterpart of problem (2.1) is given by (2.2) with
Rn(u) = iK∩Xn . Setting Rn = iK , (2.3) is clearly fulfilled. Define Y =

⋃
n∈N Xn,

then (2.4) is fulfilled with Rn = Rn.

Example 2.3 (Combined Moreau-Yosida/Tikhonov regularization). Let X be a
Hilbert space and (Y, ‖ . ‖Y ) be a Banach space that is densely and continuously
embedded into X. For two sequences of positive non-decreasing parameters (γn), (γ′n)
with γn, γ′n → +∞ and fixed α > 0, consider the simultaneous Moreau-Yosida and
Tikhonov regularization,

(2.6) Rn(u) = γn
2 inf
v∈K
‖u− v‖2 + 1

2γ′n
‖u‖αY ,

with α > 0 fixed, where it is understood that Rn(u) = +∞ if u /∈ Y . Setting Rn(u) =
γn
2 infv∈K ‖u− v‖2, standard properties of the Moreau-Yosida regularization ensure
that Rn satisfies (2.3); see, e.g., [3, Prop. 17.2.1]. Defining Rn(u) = iK(u)+ 1

2γn
‖u‖αY ,

(2.4) is verified as in the previous example.

Example 2.4 (Conformal discretization and Moreau-Yosida regularization). Let
X be a separable Hilbert space and (γn) a sequence of positive non-decreasing
parameters converging to +∞. The combination of regularization and discretization
leads to the definition

(2.7) Rn(u) = γn
2 inf
v∈K
‖u− v‖2 + iXn ,

where the sequence of spaces (Xn) is defined as in Example 2.2. Setting Rn =
γn
2 infv∈K ‖u−v‖2 and Rn = iK∩Xn , (2.3) and (2.4) are fulfilled with Y =

⋃
n∈N Xn

and the framework of (2.2) applies.

Consequently, each of these perturbations is stable with respect to (2.1) provided
the density result (1.1) is satisfied. It should also be emphasized that these examples
only represent an assorted variety of perturbations which fit into the problem class
(2.2). Moreover, the density property (1.1) is also a necessary condition for the
stability of perturbation schemes in the following sense: First, the Γ-limit of the
approximation schemes defined in Example 2.1 and Example 2.2 can be calculated
using similar arguments as in the proof of Proposition A1. In fact, under the same
conditions on X, one obtains F + iK∩Y as the weak and strong Γ-limit in both
cases. Secondly, in the combined approaches of Example 2.3 and Example 2.4,
Proposition A1 guarantees that F + iK is obtained as the weak-strong Γ-limit for
any coupling of regularization parameter pairs [γn, γ

′
n] and [Xn, γn], respectively.

Let us put this statement into a perspective by means of the combined Galerkin-
Moreau-Yosida approach (Example 2.4): In this case, it is possible to prove the
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existence of a suitable combination of n and γn to recover F + iK in the Γ-limit
without resorting to the density property (1.1), see [21, Prop. 2.4.6]. On the other
hand, the proof is non-constructive and thus not immediately useful for the design
of a stable numerical algorithm. Moreover, if (1.1) is violated, one may construct
for any x ∈ K \K ∩ Y a sequence (γn) such that no recovery sequence exists for
the element x (see Proposition A2). The analogous statement is valid for the case
of combined Moreau-Yosida/Tikhonov regularizations.

2.2. Elliptic variational inequalities. The density of convex intersections of the
type (1.1) is also of fundamental importance for the analysis of perturbations of
variational inequalities. Assuming X to be a Hilbert space and K ⊂ X nonempty,
closed and convex, we consider the general variational inequality problem of the
first kind,

(2.8) find u ∈ X : 〈Au, v − u〉+ iK(v)− iK(u) ≥ 〈l, v − u〉, ∀ v ∈ X.
Here, l ∈ X∗ is a linear, bounded operator and A : X → X∗ denotes a, in general,
nonlinear operator on X. We further assume A to be Lipschitz continuous and
strongly monotone, i.e., there exists κ > 0 with

〈Av −Au, v − u〉 ≥ κ‖v − u‖2 , ∀u, v ∈ X.
In the following, we investigate three main classes of perturbations of (2.8) and
their relation to the density properties of convex intersections.

2.2.1. Quasi-monotone approximation. Consider the perturbed variational inequality
problem,

(2.9) find u ∈ X : 〈Au, v − u〉+Rn(v)−Rn(u) ≥ 〈l, v − u〉, ∀ v ∈ X,
where (Rn) is a quasi-monotone perturbation of iK with respect to a dense subspace
Y of X. The stability of the approximation scheme (2.9) hinges on the density prop-
erty (1.1). In fact, if the latter condition is fulfilled, then, under mild assumptions
on the lower bounds Rn, the sequence (Rn) Mosco converges to iK . In this case one
may invoke the results from [11, 22] to conclude the consistency of the perturbation
scheme with respect to the limit problem (2.8).

2.2.2. Galerkin approximation of variational inequalities. In general, finite-dimensional
approximations of K are neither conformal nor nested as it was the case in Exam-
ple 2.2 and Example 2.4, where K was ’discretized’ by K ∩Xn, which is numerically
realizable only in special cases. Instead, it is often more favorable to consider non-
nested approximations Kn ⊂ Xn that may contain infeasible elements, such that
Kn ⊂ K does not hold true in general. The resulting finite-dimensional variational
inequality problems,

(2.10) find u ∈ X : 〈Au, v − u〉+ iKn(v)− iKn(u) ≥ 〈l, v − u〉, ∀ v ∈ X,
do not fit into the framework of quasi-monotone perturbations from (2.2). The
Mosco convergence of (Kn) to K, or equivalently, the weak and strong sequential Γ-
convergence of (iKn) to iK , suffices to ensure that the approximation (2.10) is stable
with respect to the limit problem (2.8); cf. [11, I, Theorem 6.2]. This property is
maintained in a very general context, that is, appropriate perturbations A and l may
be incorporated, and under weak monotonicity assumptions on A and its possible
perturbations one may even derive strong convergence for the discrete solutions
(un); see [22] for details. However, Mosco convergence requires the existence of a
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recovery sequence for any element u ∈ K. To construct this sequence in the context
of finite element methods, one typically uses an interpolation procedure which is only
defined on the (supposedly) dense subset K ∩ Y of K, where typically Y = C∞(Ω)
or Y = C(Ω), cf. [11] and Section 5. This leads again to problem (1.1).

2.2.3. Singular perturbations. In the context of variational inequalities, the closure
property (1.1) also plays a role in the limiting behavior of singular perturbations.
In fact, let A1 : Y → Y ∗ be a Lipschitz continuous and strongly monotone operator
on a Hilbert space (Y, ‖ . ‖Y ) that embeds densely and continuously into X. For a
sequence of regularization parameters (γn) with γn → +∞ consider the perturbed
problems,

(2.11) find un ∈ K ∩ Y : 〈(A+ 1
γn
A1)un, v − un〉 ≥ 〈l, v − un〉, ∀ v ∈ K ∩ Y.

Observe that problem (2.11) admits a unique solution un ∈ K ∩ Y provided that
K ∩ Y is closed in Y . The appropriate limit problem is then given by,

(2.12) find u ∈ K ∩ Y X : 〈Au, v − u〉 ≥ 〈l, v − u〉, ∀ v ∈ K ∩ Y X .
Note that (2.12) corresponds to the initial variational inequality problem if the
density property (1.1) holds true. In this case, the sequence (un) converges strongly
in X to the solution of (2.8). Here, the assumptions on A1 may be alleviated. This
type of application also plays a role in the analysis and the design of algorithms for
hyperbolic variational inequalities through the vanishing viscosity approach. For
details, [19, Section 4.9] may be consulted.

3. Density results for continuous obstacles

We first fix some notation. In this section, Ω ⊂ RN denotes a bounded Lipschitz
domain. The space of functions that are restrictions to Ω of smooth functions with
compact support on RN is denoted by D(Ω),

D(Ω) = {ϕ|Ω : ϕ ∈ C∞c (RN )}.
The standard Lebesgue and Sobolev spaces over Ω are denoted by Lp(Ω),W 1,p(Ω)

and W 1,p
0 (Ω), and we also employ the spaces

H(div; Ω) = {u ∈ L2(Ω; RN ) : div u ∈ L2(Ω)},
and

H0(div; Ω) = C∞c (Ω; RN )
H(div;Ω)

= {u ∈ H(div; Ω) : u · ν = 0 on ∂Ω}.
In the recent paper [15], it has been shown that for any α ∈ C(Ω) with

(3.1) ess inf
x∈Ω

α(x) > 0,

the following density result for the spaces X(Ω) ∈ {Lp(Ω)d,W 1,p
0 (Ω)d, H0(div; Ω)},

and 1 ≤ p < +∞, holds true:

(3.2) K(C∞c (Ω)d)
X(Ω)

= K(X(Ω)),

where the constraint set K(X(Ω)) with respect to a given subspace

X(Ω) ⊂ L1(Ω)d

is defined by a pointwise constraint on an arbitrary norm | . | on Rd, i.e.,

K(X(Ω)) := {w ∈ X(Ω) : |w(x)| ≤ α(x) a.e. in Ω}.
6



Here, α : Ω→ R ∪ {+∞} is a given nonnegative Lebesgue measurable function. It
is further understood that d = N in (3.2) if X(Ω) = H0(div; Ω).

To analyze the case without homogeneous Dirichlet boundary conditions, a small
modification of the approximating sequence constructed in [15] is sufficient in order
to arrive at the following statement.

Theorem 3.1. Let α ∈ C(Ω) fulfill (3.1) and 1 ≤ p < +∞. Then it holds that

(3.3) K(D(Ω)d)
W 1,p(Ω)d

= K(W 1,p(Ω)d),

i.e., K(D(Ω)d) is dense in K(W 1,p(Ω)d) with respect to the norm topology in
W 1,p(Ω)d.

Proof. Let w ∈ K(W 1,p(Ω)d). Since Ω is a bounded Lipschitz domain we may extend
w to a function in W 1,p(RN )d using for each component the extension-by-reflection
operator. The resulting operator

(3.4) E : W 1,p(Ω)d →W 1,p(RN )d

has the properties Ew|Ω = w for all w ∈W 1,p(Ω)d and E ∈ L(W 1,p(Ω)d,W 1,p(RN )d);
see, for instance, [2]. Since E is obtained by a partition of unity argument using local
reflection with respect to the Lipschitz graphs into which ∂Ω can be decomposed,
the property |w(x)| ≤ α(x) in Ω is preserved by the extension in that

(3.5) |(Ew)(x)| ≤ EC(Ω)α(x), a.e. x ∈ RN ,

where EC(Ω) : C(Ω)→ C(RN ) denotes the application of the extension by reflection
procedure to bounded uniformly continuous functions, i.e., (EC(Ω)α)|Ω = α. Further
inspecting the construction of E, it may also be observed that the support of Ew
is compactly contained in RN . Analogously, we obtain EC(Ω)α ∈ Cc(RN ). For a
sequence (ρn) of smooth mollifiers

(3.6) ρn(x) = nNρ(nx),

where
ρ ∈ D(RN ), ρ ≥ 0, ρ(x) = 0 if |x| ≥ 1,

ˆ
Ω

ρ dx = 1,

we define the approximating sequence Sn(w,Ω) to w by

(3.7) Sn(w,Ω)(x) := (ρn ∗ Ew)(x) =

ˆ
RN

Ew(y) ρn(x− y) dy, x ∈ RN .

It is well known that

(3.8) Sn(w,Ω)|Ω → w in W 1,p(Ω)d as n→∞,

and, since Ew has compact support in RN , it holds that Sn(w,Ω)|Ω ∈ D(Ω)d. In
order to achieve feasibility, we use the scaling sequence

βn :=
(

1 +
supx∈RN |αn(x)−E

C(Ω)
α(x)|

min
x∈Ω

α(x)

)−1

,

where αn(x) := ((EC(Ω)α) ∗ ρn)(x), x ∈ RN . Since EC(Ω)α ∈ Cc(RN ), αn converges
to EC(Ω)α uniformly in RN and thus βn → 1 as n→∞. In addition, (3.5) together
with (3.7) yields |Sn(w,Ω)| ≤ αn(x) for x ∈ RN such that

(3.9) β−1
n α(x) = α(x) +

supx∈RN |αn(x)−E
C(Ω)

α(x)|
min

x∈Ω
α(x) α(x) ≥ αn(x) ≥ |Sn(w,Ω)|,
7



for all x ∈ Ω. As a result, βnSn(w,Ω) ∈ K(D(Ω)d) and, taking account of (3.8),
the proof is accomplished. �

Remark 3.2. In order to incorporate a homogeneous Dirichlet boundary condition
in the context of Theorem 3.1, one may use an additional reparametrization to
construct a suitable approximating sequence; see [15].

4. Density results for discontinuous obstacles

4.1. A counterexample for obstacles in Sobolev spaces. Note that Theo-
rem 3.1 requires continuous obstacles. In some applications, such as in the regular-
ization and discretization of elasto-plastic contact problems or image restoration
problems (see section 6), it may be useful to consider obstacles that are not continu-
ous. Under such circumstances, the following example shows that density properties
of the type (3.2) or (3.3) cannot be expected if the obstacle is just a Sobolev function:
Without loss of generality, assume that 0 ∈ Ω ⊂ RN with N ≥ 2 and denote by

Bε(x) := {y ∈ RN : |x− y|2 ≤ ε},
the open ball with center x ∈ RN and radius ε > 0 with respect to the Euclidean
norm | . |2 in RN . Let {xk : k ∈ N} be a countable dense subset, i.e.,

{xk : k ∈ N} = Ω,

and r > 0 such that Br(0) ⊂ Ω. Consider the function

(4.1) ϕ(x) := ϕ̃(x) · ln(ln(c |x|−1
2 )), c ≥ er fixed,

where ϕ̃ ∈ C∞c (Br(0)) is a smooth cut-off function with ϕ̃(x) ≥ 0 for all x ∈ Br(0)
and ϕ̃ ≡ 1 on Br/2(0). We note that ϕ is nonnegative with a singularity at the
origin, and its zero extension belongs to W 1,N (RN ); cf. [1, Example 4.43]. Further
set

(4.2) g(x) :=

∞∑
k=1

k−2ϕ(x− xk), x ∈ Ω,

and note that g ∈ W 1,N (Ω) with g being unbounded at each xk; see [10, p.247,
Example 4]. Further take a function φ ∈ C1(R) with 0 ≤ φ(t) < 1, φ(t) → 1 for
t→ +∞ and φ′ uniformly bounded in R. By the chain rule for Sobolev functions,
the obstacle

(4.3) α := 2− φ ◦ g
belongs to W 1,N (Ω); see, e.g., [20, Lemma A.3]. Notice also that α is bounded
away from zero and that it is basically equal to 1 on the dense set {xk : k ∈ N}.
Consequently, any continuous function w with w ≤ α a.e. in Ω fulfills w ≤ 1 on Ω:

Assume that the latter implication is false. Then there exist k0 ∈ N as well as
µ > 0, δ > 0 such that

(4.4) w(x) ≥ 1 + µ ∀x ∈ Bδ(xk0
).

Let R > 0 be such that φ(t) ≥ 1− µ
2 for all t ≥ R. By continuity, there also exists

δ′ > 0 such that ϕ(x− xk0
) ≥ Rk2

0 a.e. in Bδ′(xk0
) such that

g(x) ≥ k−2
0 ϕ(x− xk0

) ≥ R, a.e. x ∈ Bδ′(xk0
),

which implies

w(x) ≤ α(x) = 2− φ(g(x)) ≤ 1 + µ
2 , a.e. x ∈ Bδ′(xk0

),
8



contradicting (4.4). Hence, any sequence of continuous functions approximating α
from below is bounded above by 1. However, as α(x) > 1 for a.e. x ∈ Ω by definition,
and convergence in the norm topology of Lp(Ω) implies convergence pointwise a.e.
(along a subsequence), we obtain that

(4.5) α ∈ K(Lp(Ω)) \K(C(Ω) ∩ Lp(Ω))
Lp(Ω)

,

for any 1 ≤ p ≤ +∞, and

(4.6) α ∈ K(W 1,p(Ω)) \K(C(Ω) ∩W 1,p(Ω))
W 1,p(Ω)

,

for all p ≤ N , where α is defined by (4.3).

Remark 4.1 (Complements on the counterexample). An interesting point in the
preceding counterexample is the structure of the set of singularities S where g(x)
is not well-defined as a real number by the infinite sum (4.2) if ϕ from (4.1) is
understood as a function in C(Ω \ {0}). Extending ϕ to Ω by setting ϕ(0) := +∞,
we obtain g(xk) = +∞ for all k ∈ N and, understanding g : Ω→ R ∪ {+∞} as an
extended real-valued function, we arrive at the following definition:

S := {x ∈ Ω : g(x) = +∞ with g(x) defined by (4.2) where ϕ(0) = +∞}.

By definition, the set {xk : k ∈ N} is contained in S. Besides, it is certain that S,
and then the points where the infinite series does not converge, must have measure
zero. On the other hand, S is in a certain sense much “bigger” than {xk : k ∈ N}.
First observe that the set {xk : k ∈ N} is strictly contained in S. Otherwise, the
concrete representative of α from (4.3) given by

α(x) =

{
1, on {xk : k ∈ N}
2− φ(g(x)), on Ω \ {xk : k ∈ N}

would define a real-valued function that is continuous on {xk : k ∈ N}. By the density
property of {xk : k ∈ N} in Ω and the fact that α(x) > 1 for all x /∈ {xk : k ∈ N}, it
is discontinuous on the complement Ω\{xk : k ∈ N}. This represents a contradiction
to the Baire category theorem. In the same way, one can show that the set S is
nonmeager, i.e., it cannot be expressed as the countable union of nowhere dense
subsets of RN . In the literature that relates to the Baire category theorem, a
nonmeager set is often called of second category. To substantiate this claim, we
define the nested sets

Sn :=
⋃
k∈N

B
ce−enk

2 (xk) ∩ Ω,

which consist of the union of open balls with diminishing radius around the points
xk. It can be verified that ⋂

n∈N

Sn ⊂ S.

In fact, let x ∈
⋂
n∈N Sn and n ∈ N arbitrary. By definition, there exists an index

k0 with x ∈ B
ce−e

nk2
0
(xk0) ∩ Ω. Hence,

g(x) =

∞∑
k=1

k−2ϕ(x− xk) ≥ k−2
0 ln ln(c|x− xk0

|−1
2 |) ≥ n.
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Letting n→∞ yields g(x) = +∞ and thus x ∈ S. On the other hand, we observe
that any complement Scn is closed in RN . Moreover, writing Ω as a countable union
of closed sets Gj ⊂ RN , one obtains that(⋂

n∈N

Sn

)c
∩ Ω =

⋃
n∈N

(Scn ∩ Ω) =
⋃
j,n∈N

(Scn ∩Gj).

Since all sets Sn contain the dense set {xk : k ∈ N}, Scn ∩ Gj also has empty
interior. Therefore the complement of

⋂
n∈N Sn in Ω is meager, or, in other words,

of first category. The Baire category theorem implies that
⋂
n∈N Sn, and thus S, is

nonmeager.

We summarize the preceding results on general discontinuous obstacles in the
following theorem.

Theorem 4.2. Let Ω ⊂ RN be a bounded Lipschitz domain. The following density
results hold true:

(i) Let N ≥ 2 and 1 ≤ p ≤ +∞. Then there exists an obstacle α ∈W 1,N (Ω)∩
L∞(Ω) satisfying (3.1) such that

K(C(Ω) ∩ Lp(Ω))
Lp(Ω)

( K(Lp(Ω)),

the inclusion being strict.
(ii) Let N ≥ 2 and 1 ≤ p ≤ N . Then there exists an obstacle α ∈W 1,N (Ω) ∩

L∞(Ω) satisfying (3.1) such that

K(C(Ω) ∩W 1,p(Ω))
W 1,p(Ω)

( K(W 1,p(Ω)),

the inclusion being strict.
(iii) Let N < p < +∞ or p = N = 1. For any measurable obstacle function

α : Ω→ R ∪ {+∞} which satisfies (3.1), it holds that

K(D(Ω)d)
W 1,p(Ω)d

= K(W 1,p(Ω)d).

Proof. We only prove assertion (iii) since (i) and (ii) follow immediately from
(4.5) and (4.6). As a consequence of the Sobolev imbedding theorem, any w ∈
K(W 1,p(Ω)d) is contained in C(Ω)d. Let w ∈ K(W 1,p(Ω)d). Setting

α̂(x) = max(|w(x)|, ess inf
x∈Ω

α(x)),

it follows that |w(x)| ≤ α̂(x) a.e. in Ω. Since α̂ ∈ C(Ω) and (3.1) holds with α̂
instead of α, we may invoke Theorem 3.1 to infer that there exists a sequence (wn)
with wn ∈ D(Ω)d, wn → w in W 1,p(Ω)d and |wn(x)| ≤ α̂(x) ≤ α(x) a.e. in Ω. This
entails that wn ∈ K(D(Ω)d) for all n ∈ N, which accomplishes the proof. �

We immediately infer the corresponding statements for Sobolev spaces incorpo-
rating homogeneous Dirichlet boundary conditions.

Corollary 4.3. Let Ω ⊂ RN be a bounded Lipschitz domain. The following density
results hold true:

(i) Let N ≥ 2 and p ≤ N . Then there exists an obstacle α ∈W 1,N (Ω)∩L∞(Ω)
satisfying (3.1) such that

K(C(Ω) ∩W 1,p
0 (Ω))

W 1,p
0 (Ω)

( K(W 1,p
0 (Ω)),
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the inclusion being strict.
(ii) Let N < p < +∞ or p = N = 1. For any measurable obstacle function

α : Ω→ R ∪ {+∞} which satisfies (3.1) it holds that

K(C∞c (Ω)d)
W 1,p

0 (Ω)d

= K(W 1,p
0 (Ω)d).

Proof. (i) Define the upper bound α by (4.3). Let ϕ̂ ∈ C∞c (Ω) be a smooth cut-
off function with 0 ≤ ϕ̂ ≤ 1 a.e. on Ω and ϕ̂ ≡ 1 except on a sufficiently small
neighborhood of ∂Ω. Then it holds that α · ϕ̂ ∈ K(W 1,p

0 (Ω)) and the assertion now
follows directly from the discussion preceding Remark 4.1.

(ii) Taking account of (3.2), statement (ii) can be proven as Theorem 4.2(iii).
�

4.2. Lower semicontinuous obstacles and Lp-spaces. The preceding coun-
terexample provides a regularity limit in terms of the upper bound α for which the
density property (3.2) in the space X(Ω) = Lp(Ω)d can be expected to hold. In
this regard, however, uniform continuity is far from being a necessary condition. In
order to enlarge the space of obstacles compatible with (3.2), we first consider a
generalized lower semicontinuity condition.

Definition 4.4. The set of functions LC(Ω) comprises all measurable functions
α : Ω→ R ∪ {+∞} for which there exists a sequence of functions αn : Ω→ R with

(4.7)

{
αn ∈ C(Ω), infx∈Ω αn(x) > 0, αn ≤ α, ∀n ∈ N,

limn→∞ αn(x)→ α(x) for a.e. x ∈ Ω.

This property is more general than lower semicontinuity in the following sense:
Consider a lower semicontinuous function α : Ω → R ∪ {+∞} that fulfills (3.1).
Without loss of generality, we may assume that infx∈Ω α(x) > 0. Denote by α̃ the
extension by zero of α, i.e., α̃(x) = α(x), x ∈ Ω, α̃(x) = 0 on RN \ Ω, and note that
α̃ is lower semicontinuous (l.s.c.) on RN . The Lipschitz regularization of ã,

αn(x) = inf
y∈RN

{ã(y) + n‖x− y‖},

yields the desired sequence (αn) that complies with the requirements of Definition 4.4
(see, e.g., [3, Theorem 9.2.1]), such that α ∈ LC(Ω).

Theorem 4.5. Let 1 ≤ p < +∞. If α ∈ LC(Ω), then it holds that

K(C∞c (Ω)d)
Lp(Ω)d

= K(Lp(Ω)d).

Proof. Let w ∈ K(Lp(Ω)d) for α ∈ LC(Ω). For a sequence (αn) given by Defini-
tion 4.4 consider the functions

wn(x) := min{|w(x)|, αn(x)} w(x)
|w(x)| ,

where it is understood that wn(x) := 0 if w(x) = 0. It follows from Lebesgue’s
theorem on dominated convergence that wn → w in Lp(Ω)d. Further observe that
wn ∈ Kn(Lp(Ω)d) where

Kn(X(Ω)) := {w ∈ X(Ω) : |w(x)| ≤ αn(x) a.e. on Ω}.
Let ε > 0. According to (3.2), for each n ∈ N, wn can be approximated by a smooth
function w̃n ∈ Kn(C∞c (Ω)d) ⊂ K(C∞c (Ω)d) such that

‖wn − w̃n‖Lp(Ω)d < ε/2.
11



For sufficiently large n, we conclude that

(4.8) ‖w − w̃n‖Lp(Ω)d ≤ ‖w − wn‖Lp(Ω)d + ‖wn − w̃n‖Lp(Ω)d < ε/2 + ε/2 = ε,

which concludes the proof. �

We proceed by considering the important special case of a piecewise continuous
upper bound; suppose there exists a partition of Ω into open subsets Ωl ⊂ Ω with
Lipschitz boundary such that Ω = ∪Ll=1Ωl, Ωi ∩ Ωj = ∅ for i 6= j and

(4.9) α|Ωl ∈ C(Ωl), inf
x∈Ωl

α|Ωl(x) > 0, l = 1, . . . , L.

Theorem 4.5 ensures that for obstacles of this class the density result in the norm
topology of the Lp−spaces holds true.

4.3. Lower semicontinuous obstacles and Sobolev spaces. Conditions on the
obstacle α so that the density results for Sobolev spaces hold can be relaxed from
assuming that α ∈ C(Ω) to lower regularity requirements with the aid of Mosco
convergence of closed and convex sets. The following definition goes back to [22].

Definition 4.6 (Mosco convergence). Let X be a reflexive Banach space and (Kn)

a sequence of closed convex subsets with Kn ⊂ X for all n ∈ N. Then Kn
M−→ K as

n→ +∞, i.e., Kn is said to Mosco converge to the set K ⊂ X if and only if

K ⊃ {v ∈ X : ( ∃ (vk) ⊂ X : vk ∈ Knk ∀ k ∈ N, vk ⇀ v)},(M1)
K ⊂ {v ∈ X : ( ∃ (vn) ⊂ X, ∃N ∈ N : vn ∈ Kn ∀n ≥ N, vn → v)}.(M2)

Here, (Knk) denotes an arbitrary subsequence of (Kn) and the subset notation
(vk) ⊂ X has to be understood in the sense that {vk} ⊂ X.

The following class of obstacles encompasses functions W 1,q(Ω) that fulfill a
generalized lower semicontinuity condition, which is slightly stronger than Defini-
tion 4.4.

Definition 4.7. We denote by Wq(Ω) for q ≥ 1 the set of functions α ∈ W 1,q(Ω)
for which there exists a sequence of functions (αn) with αn satisfying (3.1), αn ≤
α a.e. in Ω and αn ∈ C(Ω) ∩W 1,q(Ω) for all n ∈ N such that αn ⇀ α in W 1,q(Ω).

Note that the class Wq(Ω) is strictly contained in W 1,q(Ω). Additionally, if the
sequence (αn) is non-decreasing, then the obstacle α is lower semicontinuous for
being the pointwise limit of a non-decreasing sequence of continuous functions:
note that W 1,q(Ω) embeds compactly in L1(Ω) and hence there exists a pointwise
converging subsequence αnj (x) → α(x) for j → ∞, where we consider α as an
extended-real valued function. However, the functions in Wq are not necessarily
continuous: it suffices to consider the example from (4.1) for Ω = Br(0), N > 1 and

(4.10) α(x) = ln(ln(c|x|−1)), c ≥ er fixed.

It follows that α ∈W 1,q(Ω) for all q ≤ N (see [1, 4.43]), α /∈ C(Ω), and the sequence
(αn) defined as αn(x) = min(α(x), n) for n ∈ N satisfies the requirements of the
definition of Wq(Ω).

We now can establish the density result involving the class Wq(Ω) for q ≥ 1 with
the aid of the results of Boccardo and Murat [5, 6].
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Theorem 4.8. Let 1 < p < ∞ and suppose that α ∈ Wq(Ω) with p < q < +∞.
Then, the following density result holds true

K(D(Ω)d; | . |∞)
W 1,p

0 (Ω)d

= K(W 1,p
0 (Ω)d; | . |∞),(4.11)

where K(X(Ω); | . |∞) = {w ∈ X(Ω) : |w(x)|∞ ≤ α(x) a.e. x ∈ Ω}.

Proof. Without loss of generality, consider the one-dimensional case d = 1.
Let w ∈ K(W 1,p

0 (Ω); | . |∞). Since αn ⇀ α in W 1,q(Ω) with q > p > 1, one obtains
the Mosco convergence result

K±n (W 1,p
0 (Ω))

M−→ K±(W 1,p
0 (Ω))

for the unilateral constraint sets

K−n (X(Ω)) := {w ∈ X(Ω) : w(x) ≥ −αn a.e. in Ω},
K+
n (X(Ω)) := {w ∈ X(Ω) : w(x) ≤ αn a.e. in Ω},

K−(X(Ω)) := {w ∈ X(Ω) : w(x) ≥ −α a.e. in Ω},
K+(X(Ω)) := {w ∈ X(Ω) : w(x) ≤ α a.e. in Ω},

from [5, p.87]. Consequently, there exist two recovery sequences,

(4.12) w±n ∈ K±n (W 1,p
0 (Ω)),

with w±n → w in W 1,p
0 (Ω). Using the continuity of

max( . , 0),min( . , 0) : W 1,p
0 (Ω)→W 1,p

0 (Ω),

it follows that the sequence

wn = max(w+
n , 0) + min(w−n , 0),

converges to w in W 1,p
0 (Ω). Moreover, it holds that |wn| ≤ αn for all n ∈ N. For

each n ∈ N, the assumptions on αn allow to use (3.2) to infer the existence of a
smooth function w̃n ∈ C∞c (Ω) with |w̃n| ≤ αn ≤ α a.e. in Ω that approximates
wn arbitrarily well. Using wn → w in W 1,p

0 (Ω)d, the assertion follows by an
ε/2-argument analogously to (4.8). �

For piecewise continuous obstacles α : Ω → R according to (4.9) only the
singularities on the interfaces play a role. We define for η > 0 the enlarged interior
boundaries of I = ∪Mk=1∂Ωk \ ∂Ω as

Iη := {x ∈ Ω : dist(x, I) ≤ η},

and we consider the space of functions C(I; Ω) which are uniformly continuous
across I,

C(I; Ω) := {f : Ω→ R : f |Iη ∈ C(Iη) for some η > 0}.
The corresponding approximation result reads as follows.

Theorem 4.9. Let 1 ≤ p <∞. Let α be piecewise continuous in the sense of (4.9)
and assume that (3.1) is fulfilled. Then the following density result holds true:

K(D(Ω)d)
W 1,p(Ω)d

= K(W 1,p(Ω)d ∩ C(I; Ω)d)
W 1,p(Ω)d

.
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Proof. Let w ∈ K(W 1,p(Ω)d) so that |w| ≤ α a.e. on Ω and assume that w is
uniformly continuous on Iη for some fixed η > 0. Consider Ew ∈W 1,p(RN )d, the
extension of w to the entire RN via the extension-by-reflection operator E defined
previously in (3.4). Let Eα : RN → R be the analogous extension of α. As shown in
the proof of Theorem 3.1, this extension is bound preserving:

|Ew| ≤ Eα a.e. in RN .

Denote by Sn(w,Ω) := ρn ∗ Ew and αn = ρn ∗ Eα the mollifications of Ew and
Eα from (3.7), respectively. Since α is continuous on Eη where Eη := (Iη)c ∩ Ω, it
follows that αn → α uniformly on Eη. Further define

βn :=

(
1 +

supx∈Eη |α(x)− αn(x)|
ess infx∈Ω α(x)

)−1

,

where we use that ess infx∈Ω α(x) > 0. It follows that βn ↑ 1 as n → ∞ and
βnαn(x) ≤ α(x) for all x ∈ Eη. Since |Ew(x)| ≤ Eα(x) a.e. on RN , one obtains
|Sn(w,Ω)(x)| ≤ αn(x), which implies

(4.13) βn|Sn(w,Ω)(x)| ≤ α(x), ∀x ∈ Eη.
To enforce the feasibility on the enlarged interface set Iη, we decompose Iη

as Iη = A+ ∪ A− where A+ := {x ∈ Iη : |w(x)| ≥ s} for fixed s > 0 with
s < ess infx∈Ω α(x), and A− := Iη \A+. Define

γn :=

(
1 +

supx∈A+ |w(x)− Sn(w,Ω)(x)|
s

)−1

.

Since Sn(w,Ω)→ w uniformly on Iη, one obtains that γn ↑ 1 as n→∞. We further
have that

(4.14) γn|Sn(w,Ω)(x)| ≤ |w(x)| ≤ α(x), ∀x ∈ A+.

By definition, |w(x)| < s < ess infx∈Ω α(x) for all x ∈ A−. Using once again the
uniform convergence of Sn(w,Ω) to w on Iη, one observes that, for sufficiently large
n,

(4.15) |Sn(w,Ω)| ≤ ess inf
x∈Ω

α(x), ∀x ∈ A−.

Finally, the sequence

wn(x) := γnβnSn(w,Ω)(x)

satisfies wn ∈ D(Ω) for all n ∈ N and

wn → w in W 1,p(Ω)d, |wn(x)| ≤ α(x), a.e. in Ω,

for sufficiently large n; where we have used (4.13), (4.14) and (4.15). This completes
the proof. �

4.4. Supersolutions of elliptic PDEs. By now, density properties for pointwise
constraints in Sobolev spaces of the type

K(C∞c (Ω)d)
W 1,p

0 (Ω)d

= K(W 1,p
0 (Ω)d), or K(D(Ω)d)

W 1,p(Ω)d

= K(W 1,p(Ω)d),

have been obtained on the basis of mollification and a subsequent procedure to
enforce feasibility. An alternative approach is the approximation of a function via
the solution of an appropriate sequence of elliptic PDEs. Using standard regularity
theory, one may prove higher regularity of the approximating sequence and one is
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left to prove feasibility. In this section we focus on obstacles which are solutions of
an elliptic PDE. Therefore consider a general second order differential operator A
in divergence form;

(4.16) A =

N∑
i,j=1

− ∂

∂xi
aij(x)

∂

∂xj
+

n∑
i=1

bi(x)
∂

∂xi
+ c(x)

where aij , bi, c ∈ L∞(Ω) for 1 ≤ i, j ≤ N . Here, the matrix [aij(x)] is symmetric a.e.
and uniformly elliptic, i.e., there exists a κa > 0 such that

N∑
i,j=1

aij(x)ξiξj ≥ κa|ξ|2, ∀ ξ ∈ RN ,

for a.e. x ∈ Ω. It is further assumed that aij , bi, c are such that A : H1
0 (Ω)→ H−1(Ω)

is strongly monotone, i.e., there exists κ > 0 such that

〈Au, u〉 ≥ κ‖u‖2H1
0 (Ω), ∀u ∈ H1

0 (Ω),

where 〈 . , . 〉 denotes the duality pairing in H−1(Ω). For example, this is the case
if bi ≡ 0 for 1 ≤ i ≤ N and c(x) ≥ 0 a.e. in Ω. We call a function α ∈ H1(Ω) weak
supersolution with respect to the elliptic operator A, if Aα ≥ 0 in the H−1(Ω)-sense,
that is,

(4.17) 〈Aα, v〉 ≥ 0, ∀ v ∈ H1
0 (Ω), v ≥ 0 a.e. in Ω.

The subsequent theorem covers density properties for obstacles that are weak
supersolutions of an elliptic PDE of type (4.16).

Theorem 4.10. Let Ω be a bounded domain. Suppose that α ∈ H1(Ω) is a weak
supersolution for some A as in (4.16) in the sense of (4.17) with α ≥ 0 on ∂Ω. For
X(Ω) ∈ {L2(Ω)d, H1

0 (Ω)d} it holds that

K(Y (Ω), | . |∞)
X(Ω)

= K(X(Ω), | . |∞),

in the following cases.

(i) aij ∈ C0,1(Ω) or aij ∈ C1(Ω): Y (Ω) = (H2
loc(Ω) ∩H1

0 (Ω))d,
(ii) ∂Ω ∈ C1,1 or Ω convex, aij ∈ C0,1(Ω): Y (Ω) = (H2(Ω) ∩H1

0 (Ω))d,
(iii) aij , bi, c ∈ Cm+1(Ω), m ∈ N0: Y (Ω) = (Hm+2

loc (Ω) ∩H1
0 (Ω))d,

(iv) ∂Ω ∈ Cm+2, aij , bi, c ∈ Cm+1(Ω), m ∈ N0: Y (Ω) = (Hm+2(Ω) ∩H1
0 (Ω))d.

Proof. Without loss of generality, assume d = 1. First observe that the maximum
principle implies α(x) ≥ 0 a.e. in Ω. Let w ∈ K(X(Ω)) be arbitrary. Consider the
sequence (wn), where wn is defined as the unique solution to the problem,

(4.18) find y ∈ H1
0 (Ω) :

1

n
Ay + y = w in H−1(Ω).

We denote by Tn the solution mapping to (4.18), i.e., wn = Tn(w).
Step 1: Tn-invariance of K(H1

0 (Ω)): We now prove that for any n ∈ N, we have
that −α ≤ wn ≤ α a.e., i.e.,

(4.19) Tn : K(L2(Ω))→ K(H1
0 (Ω)),
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given that Aα ≥ 0 in the H−1(Ω). Proceeding as in [27], we consider (wn − α)+ as
a test function on (4.18) and add to both sides −〈 1

nAα+ α, (wn − α)+〉. Then,
κ

n
‖(wn − α)+‖2H1

0 (Ω) + ‖(wn − α)+‖2L2(Ω) ≤ 〈(
1

n
A+ I)(wn − α), (wn − α)+〉

≤ 〈w − α− 1

n
Aα, (wn − α)+〉

≤ − 1

n
〈Aα, (wn − α)+〉 ≤ 0,

where we have used that w − α ≤ 0 a.e. in Ω. Therefore, wn ≤ α a.e. in Ω.
Analogously, we obtain that wn ≥ −α a.e., by considering (−α − wn)+ as a test
function and by adding to both sides −〈 1

nAα+ α, (−α−wn)+〉. This proves (4.19),
i.e., wn ∈ K(H1

0 (Ω)).
Step 2: Some convergence results for singular perturbations.
The desired convergence modes of the approximating sequences rely on standard

arguments for singular perturbations, cf. [19, Theorem 9.1, Theorem 9.4] for the
case of singularly perturbed variational inequalities. First, for y ∈ L2(Ω) it holds

(4.20) lim
n→∞

yn = y in L2(Ω) =⇒ ŷn := Tn(yn)→ y in L2(Ω).

Secondly, for y ∈ H1
0 (Ω), we prove that

(4.21) lim
n→∞

yn = y in H1
0 (Ω) =⇒ lim

n→∞
ŷn = y in H1

0 (Ω).

In fact, since yn ∈ H1
0 (Ω) and A is strongly monotone, we observe that

κ

n
‖ŷn − yn‖2H1

0 (Ω) + ‖ŷn − yn‖2L2(Ω) ≤ 〈
(

1

n
A+ I

)
(ŷn − yn), ŷn − yn〉

=
1

n
〈Ayn, yn − ŷn〉

≤ 1

n
‖Ayn‖H−1(Ω)‖yn − ŷn‖H1

0 (Ω),

where we have used that ŷn solves (4.18) with yn as right hand side. Hence (ŷn)
is bounded in H1

0 (Ω). Employing (4.20) one obtains that ŷn ⇀ y in H1
0 (Ω) along

a subsequence, and by uniqueness, it holds ŷn ⇀ y for the entire sequence (ŷn).
Finally, from the inequalities above, we have

κ lim sup
n→∞

|ŷn − yn|2H1
0 (Ω) ≤ lim sup

n→∞
〈Ayn, yn − ŷn〉 = 0,

so that ŷn = Tn(yn)→ y in H1
0 (Ω) and thus (4.21) is proven.

Thirdly, in addition to wn = Tn(w), we define wqn = T qn(w) where T qn(w) :=
Tn(T q−1

n (w)) for q ∈ N, q ≥ 2, T 1
n(w) := Tn(w) = wn and w0

n := w. It can be
deduced from (4.20) and (4.21) by induction that

(4.22) lim
n→∞

wqn = w in L2(Ω), ∀ q ∈ N ∪ {0},

for w ∈ L2(Ω), and

(4.23) lim
n→∞

wqn = w in H1
0 (Ω), ∀ q ∈ N ∪ {0},

for w ∈ H1
0 (Ω), respectively.

Step 3: Regularity and convergence of the approximating sequences
The extra regularity of the H1

0 (Ω)-solution Tn(w) to (4.18) is different with
respect to the statement cases: If aij ∈ C0,1(Ω) or aij ∈ C1(Ω) for 1 ≤ i, j ≤ N , the
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solution Tn(w) belongs to H1
0 (Ω)∩H2

loc(Ω) (see [23] for the first case and [10] for the
second one). The solution Tn(w) belongs to H1

0 (Ω) ∩H2(Ω) if ∂Ω is C1,1-smooth
[23] or when Ω is convex [12].

In case w ∈ K(L2(Ω)), (4.20) with yn ≡ w ensures that wn → w in L2(Ω). In
conjuction with the regularity and the feasibility of wn = Tn(w) described above,
we have then established (i) and (ii) for X(Ω) = L2(Ω). Secondly, note that if
w ∈ K(H1

0 (Ω)) then wn → w in H1
0 (Ω) by (4.21) with yn ≡ w, and as seen above,

wn ∈ K(H1
0 (Ω)). This, together with the regularity of wn = Tn(w) established

above, proves in turn (i) and (ii) for X(Ω) = H1
0 (Ω).

It is left to argue for (iii) and (iv) as follows. If aij , bi, c ∈ Cm+1(Ω) for 1 ≤ i, j ≤
N , then for each n ∈ N, the operator Tn has the following increasing regularity
properties (see [10]),

w ∈ Hk(Ω) =⇒ Tn(w) ∈ Hk+2
loc (Ω) ∩H1

0 (Ω), 0 ≤ k ≤ m;

and if aij , bi, c ∈ Cm+1(Ω) for 1 ≤ i, j ≤ N and ∂Ω is of class Cm+2, for each n ∈ N,

w ∈ Hk(Ω) =⇒ Tn(w) ∈ Hk+2(Ω) ∩H1
0 (Ω), 0 ≤ k ≤ m.

Finally, this proves (iii) given that wqn ∈ Hm+2
loc (Ω) ∩ H1

0 (Ω) for 2q ≥ m + 2,
wqn ∈ K(H1

0 (Ω)), and wqn → w as n → ∞ in L2(Ω) or H1
0 (Ω) depending on the

regularity of w, cf. (4.22) and (4.23). The analogous reasoning applies to (iv).
�

Let us briefly comment on the relation to the density results from Theorem 4.5
and Theorem 4.8. First, note that we do not require the obstacle to be bounded
away from zero as we did in the preceding paragraphs. On the other hand, the
maximal regularity of the feasible approximation hinges on the coefficients of the
elliptic operator associated to the obstacle and the smoothness of the boundary.

Concerning the semicontinuity requirements of the upper bound, a classical result
from Trudinger [28, Cor. 5.3] for the case without lower order terms (bi ≡ 0, c ≡ 0)
states that any weak supersolution in the sense of (4.17) is upper semicontinuous.
Therefore, the class of obstacles considered in Theorem 4.10 differs from the one
of Theorem 4.8. By contrast, the consideration of upper bounds that are weak
subsolutions of an elliptic PDE is not useful as these functions may easily fail to
be nonnegative on Ω. For example, this is the case if a weak subsolution satisfies a
Dirichlet boundary condition.

5. Application to Finite Elements

In this section we want to show how the density results (3.2) and (3.3) can be
used to derive the Mosco convergence of certain discretized versions Kh of K(X(Ω))
associated with standard finite element spaces suitable for an approximation of X(Ω).
The very general concept of Mosco-convergence is typically useful for investigating the
stability of variational inequality problems which involve convex constraint sets, e.g,
those of the type K(X(Ω)), with regard to a suitable class of perturbations. In this
context, the discretization of K(X(Ω)) can be seen as a special type of perturbation.
Applications are manifold and comprise, for instance, the discretization of variational
problems in mechanics, such as in elasto-plasticity with hardening [17], or in image
restoration, with regard to the predual problem of TV-regularization [14].
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5.1. Mosco convergence of sets and approximation of variational inequal-
ities. For the sake of convenience, we repeat at this point the definition of Mosco
convergence from Section 4.

Definition 5.1 (Mosco convergence). Let X be a reflexive Banach space and (Kn)
a sequence of closed convex subsets with Kn ⊂ X. Then Kn is said to Mosco
converge to the set K ⊂ X if and only if

K ⊃ {v ∈ X : ( ∃ (vk) ⊂ X : vk ∈ Knk ∀ k ∈ N, vk ⇀ v)},(M1)
K ⊂ {v ∈ X : ( ∃ (vn) ⊂ X, ∃N ∈ N : vn ∈ Kn ∀n ≥ N, vn → v)}(M2)

Note that if (Kn) converges to K in the sense of Mosco, then K is necessarily
closed and convex, too.

Remark 5.2. In some textbooks on finite-dimensional approximations of variational
inequalities, cf., e.g., [11, 13], condition (M2) is replaced by the following criterion:

There exists a dense subset K̃ ⊂ K and an operator rn : K̃ → X(M2’)
such that for all v ∈ K̃ it holds rnv → v in X and there exists n0 ∈ N
such that rnv ∈ Kn for all n ≥ n0.

It is easy to show that (M2’) implies (M2). In fact, let v ∈ K and denote by πKnv
its (not necessarily uniquely determined) projection onto Kn. By density, for ε > 0,
there exists vε ∈ K̃ such that ||vε − v|| ≤ ε. Thus it holds

||v − πKnv|| = inf
vn∈Kn

||v − vn|| ≤ ||v − rnvε|| ≤ ε+ ||vε − rnvε||

for sufficiently large n such that limn→∞ ||v − πKnv|| ≤ ε, where ε was arbitrary.

The condition (M2’) turns out to be convenient especially in the context of finite-
dimensional approximations, where rn is given by suitable interpolation operators
which typically are only well-defined on a dense subset Y (Ω) of X(Ω) giving rise to
sets K̃ of the type K(Y (Ω)). In this respect, this is precisely the point where the
density results of section 3 are needed. In view of practical relevance, we pick up
on the issue of perturbations of variational inequality problems. To motivate the
notion of Mosco convergence, we mention the following well known result from [19,
p.99], which is a special case of the general results in [22].

Theorem 5.3. Let X be a real Hilbert space. For each n ∈ N, let Kn ⊂ X be
a nonempty, closed and convex subset. Assume An : Kn → X∗ to be uniformly
Lipschitz and strongly monotone operators that fulfill

lim
n→∞

Anvn = Av in V ∗,

for all (vn) ⊂ X with vn → v as n → ∞, and vn ∈ Kn for all n ∈ N. Further let
(ln) ⊂ X∗ with ln → l in X∗, and assume that (Kn) converges to K in X in the
sense of Mosco, cf. (M1),(M2). Then the sequence of unique solutions un of the
problems,

find un ∈ Kn : 〈Anun, v − un〉 ≥ 〈ln, vn − un〉, ∀ vn ∈ Kn

converges strongly to the solution u of the limit problem

(5.1) find u ∈ K : 〈Au, v − u〉 ≥ 〈l, v − u〉, ∀ v ∈ K.
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In the following, the perturbation is assumed to be originating from a finite-
dimensional approximation Kn = Khn of the set K(X(Ω)) in the framework of
classical finite element methods such that the parameter n is associated with a
sequence of mesh sizes (hn) tending to zero. In this case, Mosco convergence
requires that any element of the set K(X(Ω)) can be approximated by discrete
feasible elements. Under this condition, Theorem 5.3 ensures that the solutions of
the discrete problems converge to the solution of the original infinite-dimensional
problem irrespective of the regularity of the data or the obstacle defining K(X(Ω)).

In this sense, Mosco-convergence is a powerful tool whenever the discrete spaces
are fixed a priori, i.e., regardless of the data of the specific problem. The resulting
sequence of finite-dimensional problems can be understood as an approximation of
any problem in a given problem class. This applies, for example, to classical finite
element methods.

In contrast, adaptive finite element methods intend to design the sets Khn in
order to approximate the solution of a specific problem. In fact, the sets Khn are
successively determined during the course of the adaptive algorithm building upon
information on the preceding solution un−1 and the specific data. With the help of
suitable a posteriori error estimators, which consecutively exploit information from
discrete solutions, adaptive methods aim at a reduction of the discretization error
whilst enlarging the dimension of the discrete space as economically as possible.
However, rigorous convergence proofs with regard to adaptive discretizations of
variational inequalities are restricted to special cases and usually rely on rather strong
assumptions. For instance, in the case of the obstacle problem with a piecewise
affine obstacle, we mention the article [26]. Moreover, density results may still be
useful in the convergence analysis of adaptive schemes which require interpolation
operators, cf. [25].

5.2. Finite element discretized convex sets. In this section we assume that
Ω ⊂ RN is polyhedral. Together with Ω, a sequence of geometrically conformal
affine simplicial meshes (Th)h>0 of Ω with mesh size

h := max
T∈Th

diamT

is assumed to be given. For details, we refer to [9]. In analogy to the case N = 2,
we refer to each Th as a triangulation. The (N -dimensional) Lebesgue measure of
an element T ∈ Th is denoted by λ(T ). We also admit the standard assumption
that the sequence (Th) is shape-regular, i.e.,

(5.2) ∃ c > 0 : diam(T )
ρT

≤ c ∀h ∀T ∈ Th,

where diam(T ) = maxx,y∈T |x − y| denotes the diameter of T and ρT designates
the diameter of the largest ball that is contained in T . We further write xT for
the (barycentric) midpoint of an element T , andMh = {xT : T ∈ Th}, Nh and Eh
for the set of element midpoints, triangulation nodes and edges with respect to Th,
respectively. By abuse of notation, we write |Mh| and |Nh| for the cardinality of
the respective set. Let χT : Ω→ R designate the characteristic function of T with
respect to Ω, that is,

χT (x) = 0, ∀x /∈ T, χT (x) = 1, ∀x ∈ T.
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We further make use of the standardH1(Ω)-conformal finite element space of globally
continuous, piecewise affine functions denoted by

P1,h(Ω) := {u ∈ C(Ω) : u|T ∈ P1 ∀T ∈ Th}.

Here, P1 denotes the space of polynomials of degree less than or equal to one.
Together with the finite-dimensional subspace P1,h(Ω) and its standard nodal basis
{ϕx : x ∈ Nh} we consider the global interpolation operator

(5.3) Ih : C(Ω)→ P1,h(Ω), Ihu :=
∑
x∈Nh

u(x)ϕx.

Note that Ih is only defined on a dense subspace of H1(Ω). For the discretization of
variational problems in H(div; Ω), it is customary to use the conforming space of
Raviart-Thomas finite elements of lowest order,

(5.4) RTh(Ω) := {w ∈ L2(Ω)N : w|T ∈ RT ∀T ∈ Th, [w · ν]|E∩Ω = 0 ∀E ∈ Eh},

where RT := {w ∈ Pd1 : ∃ a ∈ Rd, b ∈ R : w(x) = a + bx} and ν denotes the unit
outer normal to T . To incorporate homogeneous Neumann boundary conditions,
one uses the H0(div; Ω)-conforming subspace

RT0,h(Ω) := RTh(Ω) ∩H0(div; Ω).

The construction of suitable edge-based basis functions {ϕE : E ∈ Eh} can be found
in the literature, cf., for instance, [4], such that the boundary condition in the
definition of RT0,h(Ω) can be easily accounted for. The global Raviart-Thomas
interpolation operator is given by

(5.5) IRTh : W 1,1(Ω)N → RTh(Ω), IRTh w :=
∑
E∈Eh

(ˆ
E

w · ν dHN−1

)
ϕE .

We emphasize that the subsequent results may be extended to finite elements of
higher order, which are typically useful when the solution to the variational problem
(5.1) displays a higher regularity. In this regard, higher regularity assumptions on
the data and the obstacle are required and the concept of Mosco convergence is
not binding to prove the convergence of the finite element method, and a priori
error estimates with a rate can be derived, cf., e.g., [7]. However, we do not want to
deviate from minimal regularity assumptions on the data. Further, even for simple
variational problems such as the classical elasto-plastic torsion problem, there is a
regularity limitation for the solution regardless of the smoothness of the data, cf.
[11].

Note also that the subsequently covered problems comprise situations where the
discrete feasible sets Kh are not necessarily nested and non-conforming in the sense
that they are in general not contained in the feasible set K(X). In the following, c
denotes a positive constant, which may take different values on different occasions.

Lemma 5.4 (Mosco convergence, first condition). Let Ω ⊂ RN be a polyhedral
domain and α ∈ C(Ω) with α(x) ≥ 0 in Ω. Further let (wh) be a sequence that
fulfills for all h, wh ∈ P1,h(Ω)d and |wh(xT )| ≤ α(xT ) for all T ∈ Th. If wh ⇀ w
for h→ 0 in L2(Ω)d then it holds that |w| ≤ α a.e. in Ω.

Proof. It suffices to show that iK(w) = 0, where

K := {w ∈ L2(Ω)d : |w| ≤ α a.e.}.
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Moreover, it holds that iK = j∗, where j∗ denotes the Fenchel conjugate

j∗(v∗) := sup
v∈L2(Ω)d

{(v∗, v)− j(v)}

of the mapping j : L2(Ω)d → R, j(v) :=
´

Ω
α|v|∗ dx. Here,

|v∗|∗ = sup
v∈Rd\{0}

v∗ · v/|v|

denotes the dual norm of | . |. From the definition of j∗, we obtain that iK(w) = 0
is equivalent to

(5.6) (w, v) ≤
ˆ

Ω

α|v|∗ ∀ v ∈ L2(Ω)d.

By a density argument, it suffices to prove this result for all v ∈ Cc(Ω)d. Denote by

(5.7) αh :=
∑
T∈Th

α(xT )χT , vh :=
∑
T∈Th

v(xT )χT

the piecewise constant interpolants of α and v, respectively. The uniform continuity
of α and v implies αh → α and vh → v in L∞(Ω). By the weak convergence of (wh),
the strong convergence of (αh) and (vh) as well as the midpoint quadrature rule, we
obtain ˆ

Ω

w · v dx←
ˆ

Ω

wh · vh dx =
∑
T∈Th

ˆ
T

wh · vh dx

=
∑
T∈Th

λ(T )wh(xT ) · vh|T dx(5.8)

≤
∑
T∈Th

λ(T ) α(xT ) |vh|T |∗ dx

=

ˆ
Ω

αh|vh|∗ dx→
ˆ

Ω

α|v|∗ dx,

which proves (5.6). �

Lemma 5.5. Let Ω ⊂ RN be a polyhedral domain and α ∈ C(Ω) with α(x) ≥ 0 in
Ω. Let (wh) be a sequence that fulfills for all h, wh ∈ P1,h(Ω)d and |wh(x)| ≤ α(x)
for all x ∈ Nh. If wh ⇀ w for h→ 0 in L2(Ω)d then it holds that |w| ≤ α a.e. in Ω.

Proof. The assertion follows by a slight modification of the proof of Lemma 5.4.
Instead of the piecewise constant interpolant we define αh as the piecewise affine
interpolant of α, i.e., αh = Ihα, which fulfills α(x) = (Ihα)(x) for all x ∈ Nh and
αh → α strongly in L∞(Ω)d. By (5.8) we obtainˆ

Ω

w · v dx←
ˆ

Ω

wh · vh dx =
∑
T∈Th

λ(T )
N+1

∑
x∈Nh∩T

wh(x) · vh|T dx

≤
∑
T∈Th

λ(T )
N+1

∑
x∈Nh∩T

|wh(x)| |vh|T |∗

≤
∑
T∈Th

λ(T )
N+1

∑
x∈Nh∩T

α(x) |vh|T |∗

=

ˆ
Ω

αh|vh|∗ dx→
ˆ

Ω

α|v|∗ dx.

�
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Theorem 5.6. Let Ω ⊂ RN be a polyhedral domain and α ∈ C(Ω) such that (3.1)
holds true. Then the sets

(5.9) Kh = {w ∈ P1,h(Ω)d : |w(xT )| ≤ α(xT ) for all T ∈ Th}

Mosco-converge for h→ 0 to the set K(H1(Ω)d) in H1(Ω)d.

Proof. Since weak convergence in H1(Ω) implies weak convergence in L2(Ω), the
preceding Lemma 5.4 shows that (M1) is fulfilled. We now show (M2’). To prove
the assertion, we may use a strategy that is similar to the one in [11, Chapter II]
and requires (3.3). Note that Theorem 3.1 implies that the set

(5.10) K̃ := {ϕ ∈ C∞(Ω)d : |ϕ(x)| < α(x) for all x ∈ Ω}

is also dense in K(H1(Ω)d) with respect to the H1(Ω)d-norm. For the global
interpolation operator Ih defined in (5.3) we have the classical estimate,

(5.11) ||u− Ihu||L∞(Ω) ≤ ch2||u||W 2,∞(Ω) ∀u ∈W 2,∞(Ω).

Here, c denotes a constant independent of h on account of the shape-regularity of
the triangulation (5.2); cf. [9, p.61]. We further define rh : K̃ → P1,h(Ω)d by

rhw := [Ihw1, . . . , Ihwd],

and it follows that rhw → w as h → 0 in H1(Ω)d for all w ∈ K̃; see [9, Corollary
1.109]. Applying estimate (5.11) to the components of w ∈ K̃ and using the
equivalence of norms on Rd, one obtains that

(5.12) || |w − rhw| ||L∞(Ω) ≤ ch2||w||W 2,∞(Ω)d ,

for a suitable modification of c. This implies

(5.13) |rhw(x)| ≤ |w(x)|+ ch2||w||W 2,∞(Ω)d ∀x ∈ Ω.

Since any w ∈ K̃ is uniformly bounded away from α, there exists h0 = h0(w) such
that rhw ∈ Kh ∀h ≤ h0, which implies (M2’). �

Corollary 5.7. Under the conditions of Theorem 5.6, the sequence (Kh) defined
in (5.9) Mosco-converges for h→ 0 to the set K(L2(Ω)d) in L2(Ω)d.

Proof. Again, Lemma 5.4 implies that (M1) with X = L2(Ω)d holds true. For K̃
defined in (5.10) it holds that K̃ is also dense in K(L2(Ω)d) with respect to the
L2(Ω)d-norm, cf. (3.2). Thus, (M2’) follows analogously to the proof of Theorem 5.6.

�

Corollary 5.8. Under the conditions of Theorem 5.6 the node-based discrete sets

(5.14) Kh := {w ∈ P1,h(Ω)d : |w(x)| ≤ α(x) ∀x ∈ Nh},

Mosco converge for h→ 0 to K(H1(Ω)d) in H1(Ω)d.

Proof. The proof is analogous to the proof of Theorem 5.6, noting that (5.13)
also implies rhw ∈ Kh ∀h ≤ h0 with Kh according to the node-based definition
(5.14). �

Remark 5.9. With the help of the density property (3.3) for uniformly continuous
upper bounds, the above results on the Mosco convergence of discretized convex
sets carry over to spaces involving homogeneous Dirichlet boundary conditions. In
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this context, the set P1,h(Ω) in the definitions of the discretized sets Kh in (5.9)
and (5.14) has to be replaced by the space

P ∂Ω
1,h := {u ∈ C(Ω) : u|T ∈ P1 ∀T ∈ Th, u(x) = 0 ∀x ∈ Nh ∩ ∂Ω}.

The resulting discrete sets Kh incorporate the zero boundary condition and
the corresponding results on Mosco convergence for h→ 0 remain valid replacing
H1(Ω)d by H1

0 (Ω)d.

With the help of the density result (3.2), one obtains the following result for the
discrete approximation of pointwise constraint sets in H(div; Ω) by the Raviart-
Thomas finite element space RTh(Ω); cf. (5.4).

Theorem 5.10. Let Ω ⊂ RN be a polyhedral domain. Let α ∈ C(Ω) such that (3.1)
is satisfied. Then the sets

Kh := {w ∈ RT0,h(Ω) : |w(xT )| ≤ α(xT ) ∀T ∈ Th}

Mosco-converge to K(H0(div; Ω)) in H(div; Ω) and to K(L2(Ω)N ) in L2(Ω)N .

Proof. Let wh ∈ Kh for all h. First observe that if (wh) weakly converges to w in
H(div; Ω), then it also weakly converges to w in L2(Ω)N . Analogously to the proof
of Lemma 5.4 one concludes that |w| ≤ α a.e. in Ω. The continuity of the normal
trace mapping

H(div; Ω) 3 w 7→ 〈wν, v〉H−1/2(∂Ω),H1/2(∂Ω) ∈ R

for fixed v ∈ H1(Ω) implies wν = 0 in H−1/2(∂Ω). We conclude that w ∈
K(H0(div; Ω)) whence it follows that (M1) is satisfied. Secondly, note that

K(C∞c (Ω)N )
H(div;Ω)

= K(H0(div; Ω));

cf. (3.2). For the global Raviart-Thomas interpolation operator defined in (5.5), the
following interpolation error estimate holds true [9, Corollary 1.115]:

(5.15) ‖u− IRTh u‖L∞(Ω)N + ‖ div u− div IRTh u‖L∞(Ω) ≤ ch‖u‖W 1,∞(Ω)N

for all u ∈W 2,∞(Ω)N . Setting rhw := IRTh w for any w ∈ K̃, where

K̃ := {w ∈ C∞c (Ω)N : |w(x)| < α(x), ∀x ∈ Ω},

and taking account of the fact that IRTh w → w in H(div) for all w ∈ K̃, we may
proceed analogously to the proof of Theorem 5.6 to verify (M2’). �

The previous approach can also be applied to derive approximation results for
constraint sets involving pointwise bounds on partial derivatives. To begin with, we
consider the gradient-constraint sets

K∇(X(Ω)) = {w ∈ X(Ω) : |∇w| ≤ α a.e. in Ω},

for X(Ω) ⊂ H1(Ω)d and an arbitrary norm | . | on RN×d.

Theorem 5.11. Let Ω ⊂ RN be a polyhedral domain. Let α ∈ C(Ω) such that (3.1)
is satisfied. Define

(5.16) Kh := {w ∈ P ∂Ω
1,h (Ω)d : |∇w|T | ≤ α(xT ) ∀T ∈ Th}.

Then the sets Kh Mosco-converge to K∇(H1
0 (Ω)d) in H1

0 (Ω)d.
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Proof. To prove (M1) it suffices to notice that if wh ⇀ w inH1(Ω)d then∇wh ⇀ ∇w
in L2(Ω)N×d. Similar to the proof of Lemma 5.4, one obtains for v ∈ Cc(Ω)N×d

thatˆ
Ω

∇w : v dx←
ˆ

Ω

∇wh : v dx ≤
ˆ

Ω

|∇wh||v|∗ dx ≤
ˆ

Ω

αh|v|∗ dx→
ˆ

Ω

α|v|∗ dx,

using αh from (5.7). Therefore, (5.6) holds with ∇w in place of w, and (M1) is
verified.

To prove (M2’), we consider again the global interpolation operator Ih from (5.3).
The standard estimate

||∇u−∇Ihu||L∞(Ω)N ≤ ch||u||W 2,∞(Ω), ∀u ∈W 2,∞(Ω),

holds true, see e.g. [9]. Note also that K∇(C∞c (Ω)d) is dense in K∇(H1
0 (Ω)d) for

the H1(Ω)d-norm [15, Theorem 4]. Thus, the set

K̃ := {w ∈ C∞c (Ω)d : |∇w(x)| < α(x) ∀x ∈ Ω}
is also dense inK∇(H1(Ω)d). Therefore one may argue as in the proof of Theorem 5.6
to deduce (M2’). �

Next we consider pointwise constraints on the divergence. For X(Ω) ⊂ H(div; Ω)
let

(5.17) Kdiv(X(Ω)) := {w ∈ X(Ω) : |divw| ≤ α a.e. in Ω}.
Using Raviart-Thomas finite elements, a discrete realization of the inequality con-
straint in (5.17) can be achieved by imposing the inequality on the midpoints of the
triangulation. The following statement ensures that the resulting approach is stable
as the mesh width goes to zero.

Theorem 5.12. Let Ω ⊂ RN be a polyhedral domain. Let α ∈ C(Ω) fulfill (3.1).
Then the sets

Kh := {w ∈ RT0,h(Ω) : |divw|T | ≤ α(xT ), ∀T ∈ Th}
Mosco-converge in H(div; Ω) to the set Kdiv(H0(div; Ω)) as defined in (5.17).

Proof. Taking account of the fact that wh ⇀ w in H(div; Ω), wh ∈ Kh, implies
divwh ⇀ divw in L2(Ω), (M1) follows analogously to the corresponding part of
the proof of Theorem 5.11. Since Kdiv(C∞c (Ω)N ) is dense in Kdiv(H0(div; Ω)) [15,
Theorem 4], the set

K̃ := {w ∈ C∞c (Ω)d : |divw(x)| < α(x), ∀x ∈ Ω}
is also dense in Kdiv(H0(div; Ω)). Setting rh = IRTh , the estimate (5.15) implies
rhw → w in H(div; Ω) and

‖ divw − div rhw‖L∞(Ω) ≤ ch||w||W 2,∞(Ω)N ,

for all w in K̃. In particular, one may argue as in the proof of Theorem 5.6 to verify
(M2’). �

For a general Lp-function as upper bound, a point-based discretization is obviously
not possible. As a remedy, the construction of the discrete sets Kh typically involves
some kind of averaging process. For this purpose, we define the integral mean 

T

α dx :=

ˆ
T

α dx/λ(T )
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over some given subset T ⊂ Ω (with positive measure).
Now we have to take into account that the density results of the type (3.2) and

(3.3), which represent the main ingredient to prove the consistency of the finite
element approximation, may fail to hold true (see, e.g., Theorem 4.2). On the
other hand, the results from Section 4 indicate that the density property is still
guaranteed for a large class of discontinuous obstacles. To maintain the greatest level
of generality, we assume that the nonnegative measurable function α : Ω→ R∪{+∞}
allows for the density property

(5.18) K(C(Ω))
L2(Ω)d

= K(L2(Ω)d).

Here, we concentrate on the consistency in the L2-topology but an extension to the
other cases is possible by appropriately modifying assumption (5.18). We stress the
fact that assumption (5.18) is fulfilled in relevant situations; cf., e.g., Theorem 4.5.

Lemma 5.13. Let Ω ⊂ RN be a polyhedral domain and α ∈ L2(Ω) with α(x) ≥
0 a.e. in Ω. Let (wh) be a sequence that fulfills for all h, wh ∈ P1,h(Ω)d and
|wh(xT )| ≤

ffl
T
α dx for all T ∈ Th. If wh ⇀ w for h → 0 in L2(Ω)d then it holds

that |w| ≤ α a.e. in Ω.

Proof. The assertion follows analogously to the proof of Lemma 5.4 by a slight
modification of the definition of αh. Instead of the piecewise constant interpolant
we consider the piecewise constant quasi-interpolant αh :=

∑
T∈Th χT

ffl
T
α dx.

Observe that αh converges strongly to α in L2(Ω)d, which is sufficient for the above
argument. �

Theorem 5.14. Let Ω ⊂ RN be a polyhedral domain. Let α ∈ L2(Ω) with (3.1)
such that (5.18) holds true. Then the sets

Kh := {w ∈ P1,h(Ω)d : |w(xT )| ≤
 
T

α dx, ∀T ∈ Th}

Mosco-converge for h→ 0 to the set K(L2(Ω)d) in L2(Ω)d.

Proof. We only need to prove (M2’) since Lemma 5.13 implies (M1). First note
that (3.1) and (5.18) imply that the set

K̃ := {w ∈ C∞c (Ω)d : ∃ δ = δ(w) > 0 such that |w(x)| ≤ α(x)− δ a.e. in Ω},
is also dense in K(L2(Ω)d). Furthermore, we set

rhw := [Ihw1, . . . , Ihwd],

for w ∈ K̃ and Ih as in (5.3). Integrating estimate (5.13) yields

|
 
T

rhw dx| ≤
 
T

|w| dx+ ch2‖w‖W 2,∞(Ω)d , ∀T ∈ Th.

Let w ∈ K̃ be fixed. Since rhw is affine on each T ∈ Th, an application of the
midpoint rule shows

|rhw(xT )| ≤
 
T

|w| dx+ ch2‖w‖W 2,∞(Ω)d , ∀T ∈ Th,

which implies

(5.19) |rhw(xT )| ≤
 
T

α dx− δ(w) + ch2‖w‖W 2,∞(Ω)d , ∀T ∈ Th.
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This implies rhw ∈ Kh for all w ∈ K̃ and h ≤ h0(w). By (5.11) it holds that
rhw → w in L2(Ω)d for h→ 0, which proves (M2’). �

6. Further Applications

6.1. Regularization of elasto-plastic contact problems. In the context of the
one time-step problem of quasi-static elasto-plasticity with an associative flow law,
the deformation of a material represented by a bounded Lipschitz domain Ω subject
to given applied forces is modeled by the evolution of the displacement, the material
stress and strain as well as certain internal variables, cf. [13]. An elasto-plastic
contact problem arises if the movement of the material is additionally restricted by
the presence of a rigid obstacle. From a mathematical point of view, the problem
can be equivalently reformulated in terms of the normal stress z∗ at the (sufficiently
smooth) contact boundary Γc and a variable q that is related to the deviatoric part
of the material stress; for details we refer to [17, p.154]:

(6.1)


min G([z∗, q])− 〈z∗, ψ〉 over [z∗, q] ∈ H1/2(Γc)

∗ × L2(Ω)d

s.t. z∗ ∈ H1/2
+ (Γc)

∗,

|q|2 ≤ β a.e. in Ω.

Here, d := N(N+1)
2 − 1 and G is a strongly convex Fréchet differentiable functional

that models the elasto-plastic material behavior subject to given external loads.
Furthermore, a contact constraint on the normal component of the displacement is
imposed by a function ψ, which lies in the trace space H1/2(Γc). The upper bound
β ∈ L2(Ω) is determined by the hardening law, and it is bounded away from zero
by the positive yield stress σy, i.e., β(x) ≥ σy a.e. in Ω. The normal stress z∗ is
constrained to lie in the polar cone

H
1/2
+ (Γc)

∗ = {z∗ ∈ H1/2(Γc)
∗ : 〈z∗, z〉 ≤ 0 ∀ z ∈ H1/2

+ (Γc)},
to the cone of nonnegative functions

H
1/2
+ (Γc) = {z ∈ H1/2(Γc) : z ≥ 0 a.e. on Γc},

where H1/2(Γc)
∗ designates the topological dual space of H1/2(Γc). From an

algorithmic point of view, it is favorable to replace (6.1) by a combined Moreau-
Yosida/Tikhonov regularization given by

(6.1γ)


min G([z, q])− (z, ψ)L2(Γc) + γn

2 ‖z
+‖2L2(Γc)

+γn
2 ‖[(|q|2 − β)]+‖2L2(Ω) + 1

2γ′n
‖[z, q]‖2H1(Γc)×H1(Ω)d ,

over [z, q] ∈ H1(Γc)×H1(Ω)d,

where (γn) and (γ′n) are sequences with γn, γ
′
n → +∞ as n → +∞. In contrast

to (6.1), (6.1γ) can be solved efficiently by the semismooth Newton method in the
infinite-dimensional setting. As a consequence, the Newton iterates are superlinearly
convergent, and the convergence rate is mesh-independent upon discretization. For
details, see [17, Section 5]. In order to prove the stability of (6.1γ) with regard to
the limit problem (6.1) in the sense of Proposition A1, we show that the problems
(6.1γ) define a quasi-monotone perturbation of iK with respect to the dense subspace
H1(Γc) ×H1(Ω)d ⊂ H1/2(Γc)

∗ × L2(Ω)d; cf. the definition below (2.2). Here, we
write for X ⊂ H1/2(Γc)

∗ × L2(Ω)d,

K(X ) := {[z∗, q] ∈ X : z∗ ∈ H1/2
+ (Γc)

∗, |q|2 ≤ β a.e. in Ω},
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and K := K(H1/2(Γc)
∗ × L2(Ω)d). In fact, setting

Rn([z, q]) := γn
2 ‖z

+‖2L2(Γc)
+ γn

2 ‖[(|q|2 − β)]+‖2L2(Ω) + 1
2γ′n
‖[z, q]‖2H1(Γc)×H1(Ω)d ,

where it is understood that Rn([z∗, q]) = +∞, unless [z∗, q] ∈ H1(Γc)×H1(Ω)d, it
is easily seen that

Rn([z, q]) := iK([z, q]) + 1
2γ′n
‖[z, q]‖2H1(Γc)×H1(Ω)d ,

fulfills (2.4). Moreover, we set

Rn([z∗, q]) := γn
2 r(z

∗) + γn
2 ‖[(|q|2 − β)]+‖2L2(Ω),

where
r(z∗) := (max{ sup

z∈H1/2
+

(Γc),

‖z‖
H1/2(Γc)

=1

〈z∗, z〉, 0})2.

The validity of (2.3) is an immediate consequence of the following lemma.

Lemma 6.1. The functional r : H1/2(Γc)
∗ → R is weakly l.s.c. and it fulfills

(i) r(z∗) = 0 for all z∗ ∈ H1/2
+ (Γc)

∗,
(ii) r(z∗) > 0 for all z∗ ∈ H1/2(Γc)

∗ \H1/2
+ (Γc)

∗,
(iii) r(z) ≤ ||z+||2L2(Γc)

for all z ∈ L2(Γc).

Proof. As a composition of a convex, continuous and monotone function with
a supremum of l.s.c. and convex functions, r : H1/2(Γc)

∗ → R is weakly l.s.c.
Assertions (i) and (ii) are direct consequences of the definition of H1/2

+ (Γc)
∗. For

z ∈ L2
−(Γc) = {z ∈ L2(Γc) : z ≤ 0 a.e. in Ω}, it holds r(z) = 0 and (iii) is always

satisfied. Now let z ∈ L2(Γc) \ L2
−(Γc). By the density of H1/2

+ (Γc) in L2
+(Γc) it

holds that
r(z)1/2 = sup

z∈H1/2
+

(Γc)

‖z‖
H1/2(Γc)

=1

〈z∗, z〉 > 0.

Moreover, one obtains

||z+||L2(Γc) = sup
z̃∈L2(Γc)

z̃ 6=0

1
‖z̃‖L2(Γc)

(z+, z̃)

≥ sup
z̃∈L2(Γc)

z̃ 6=0,z̃≥0 a.e.

1
‖z̃‖L2(Γc)

(z, z̃) ≥ sup
z̃∈H1/2

+
(Γc)

z̃ 6=0

1
‖z̃‖

H1/2(Γc)

(z, z̃) = r(z)1/2,

which implies (iii). �

From the discussion in the introduction and Proposition A1, it is known that the
consistency of the regularization scheme (6.1γ) with respect to (6.1) hinges on the
density of K(H1(Ω)d) in K(L2(Ω)d), where

K(X(Ω)) := {q ∈ X(Ω) : |q|2 ≤ β a.e. in Ω},
in accordance with the notation from the preceding sections. Owing to the results
of sections 3 and 4, this is always fulfilled for kinematic hardening, as β is a
positive constant in this case. In the same way, it is also fulfilled for large classes
of discontinuous obstacles β in the case of combined isotropic-kinematic hardening.
Once the density property is ensured, one may use monotonicity properties of G to
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derive strong convergence properties of regularized (normal) stresses, strains and
displacement; cf. [17] for details.

6.2. Fenchel duality in image restoration. Optimization problems with total
variation regularization have been successfully considered in the image restoration
context. In the denoising setting, an original image utrue that belongs to the space
of functions of bounded variation BV (Ω), Ω ⊂ R2, is sought to be recovered from a
noise perturbed measurement f = utrue +η with η ∈ L2(Ω),

´
η = 0 and

´
|η|2 = σ2.

This motivates the optimization problem

min
1

2

ˆ
Ω

|u− f |2dx+ α

ˆ
Ω

|Du|1 over u ∈ BV (Ω),

for α ∈ R in the seminal work [24] by Rudin, Osher and Fatemi. Here, Du, the
distributional gradient of u ∈ BV (Ω), is a Borel measure and |Du|1 is its total
variation measure with total mass

´
Ω
|Du|1, which is characterized via duality asˆ

Ω

|Du|1 = sup

{ˆ
Ω

u div v dx : v ∈ C1
c (Ω; R2), |v(x)|∞ ≤ 1, ∀x ∈ Ω

}
.

The drawback of the above reconstruction scheme is that the choice of the
regularization parameter α is global: A good reconstruction locally requires high
values of α in some regions of Ω (e.g., flat regions of utrue) and low values in other
regions (e.g., locations of details of utrue). A recent approach in [16, 18] proposes the
following alternative: For a function α : Ω→ R such that (3.1) holds true, consider
the optimization problem

min
1

2

ˆ
Ω

|u− f |2dx+

ˆ
Ω

α(x)|Du|1 over u ∈ BV (Ω),(6.2)

where
´

Ω
α(x)|Du|1 stands for the integral of α on Ω with respect to the measure

|Du|1. Hence, α needs to be a |Du|1-integrable function in order for
´

Ω
α|Du|1 to

be correctly defined. A sufficient condition for this is given by α ∈ C(Ω), the space
of continuous functions on Ω.

As usual in convex optimization, it is convenient to consider the problem in (6.2)
from the point of view of Fenchel duality. In fact, (6.2) can be characterized as the
Fenchel dual problem of the following constrained optimization problem

(6.3)

{
min 1

2‖ div p+ f‖2L2(Ω) over p ∈ H0(div; Ω)

s.t. p ∈ K(H0(div; Ω), | . |∞),

if the following density result holds true:

K(C1
c (Ω)2), | . |∞)

H0(div;Ω)
= K(H0(div; Ω), | . |∞),

where, according to the above notational convention,

K(H0(div; Ω), | . |∞) = {q ∈ H0(div; Ω) : |q(x)|∞ ≤ α(x) a.e. in Ω}.

Appendix: Properties of quasi-monotone perturbations

Proposition A1. Let the Banach space X be reflexive or assume that the dual
space X∗ is separable. For a closed, convex and nonempty set K ⊂ X, let (Rn) be a
sequence of quasi-monotone perturbations of iK with respect to the dense subspace
Y according to (2.2). If the density property (1.1) holds true, then F + iK is the
Γ-limit of (F +Rn) in both, the weak and strong topology.
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Proof. Denote by

Γ- lim sup
n→+∞

Gn(u) := sup
U∈N (u)

lim sup
n→+∞

inf
u∈U

Gn(u)

the Γ-upper limit at u of a sequence of functions Gn : X → R ∪ {+∞} in the norm
topology. Here, N (u) denotes the set of all open neighborhoods of u in the norm of
X. By analogy, define Γw- lim supn→+∞Gn, the Γ-upper limit of Gn in the weak
topology of X, as well as the lower limit counterpart Γw- lim infn→+∞Gn. We write

Γw- lim
n→+∞

Gn = Γw- lim sup
n→+∞

Gn = Γw- lim inf
n→+∞

Gn

for the weak Γ-limit of (Gn) provided the latter equality is satisfied. For the
corresponding definitions we refer to the monograph [8]. Further denote by sc-G
the lower semicontinuous envelope of G : X → R ∪ {+∞}. Exploiting the relations
between Γ- and pointwise convergence [8, Chapter 5], one obtains with (2.4) and
the continuity of F ,

Γw- lim sup
n→+∞

(F +Rn) ≤ Γ- lim sup
n→+∞

(F +Rn)

≤ Γ- lim sup
n→+∞

(F +Rn) = sc-(F + iK∩Y ) = F + iK∩Y ,

where we use [8, Prop. 6.3, Prop. 6.7, Prop. 5.7, Prop. 3.7]. Similarly, (2.3) together
with [8, Prop. 6.7, Prop. 5.4] implies

(6.4) Γw- lim inf
n→+∞

(F +Rn) ≥ Γw- lim inf
n→+∞

(F +Rn) = lim
n→+∞

sc-
w(F +Rn)

where sc-
w(F + Rn) denotes the lower semicontinuous envelope of F + Rn in the

weak topology of X. Further note that the coercivity and the sequential weak lower
semicontinuity of F + Rn imply that the level sets {u ∈ X : F (u) + Rn(u) ≤ t},
t ∈ R, are bounded and sequentially weakly closed. If X is reflexive or if the dual
space X∗ is separable, then the sequential weak closure of bounded subsets of X
coincides with the weak closure, see [8, Prop. 8.7, Prop. 8.14], such that F +Rn is
weakly lower semicontinuous, which entails

Γw- lim inf
n→+∞

(F +Rn) ≥ lim
n→+∞

(F +Rn) = F + iK ,

by (6.4). Eventually, it holds that

F + iK ≤ Γw- lim inf
n→+∞

(F +Rn)

≤ Γw- lim sup
n→+∞

(F +Rn) ≤ Γ- lim sup
n→+∞

(F +Rn) ≤ F + iK∩Y ,

such that Γ- limn→+∞(F +Rn) = Γw- limn→+∞(F +Rnu) = F + iK , if (1.1) holds
true. �

Proposition A2. Let the assumptions of Example 2.4 be satisfied. Further suppose
that K ∩ Y ( K. Then for all x ∈ K \ K ∩ Y there exists a strictly increasing
sequence (γn) with γn →∞ such that there exists no strong recovery sequence at x,
i.e.,

F (yn) +Rn(yn) 9 F (x)

for all (yn) ⊂ X with yn → x, where (Rn) is given by (2.7).
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Proof. Let x ∈ K \K ∩ Y and ρ > 0 such that Bρ(x)∩K ∩ Y = ∅, where Bρ(x) :=
{y ∈ X : ‖x− y‖ < ρ}.

(a) We first prove the following result:

(6.5) ∀n ∈ N ∃ γn > 0 :
[
y ∈ X ∧ dist(y,K ∩Bρ(x))2 < 1

γn
=⇒ y /∈ Xn

]
.

Assume that the opposite holds, i.e.,

∃n0 ∈ N :
[
∀n ∈ N ∃xn ∈ Xn0 , vn ∈ K ∩Bρ(x) : ‖xn − vn‖2 ≤ 1

n

]
.

Since vn ∈ Bρ(x)∩K for all n ∈ N andBρ(x)∩K is convex, bounded and closed, there
exists a subsequence (vnk) of (vn) with vnk ⇀ v and v ∈ Bρ(x)∩K. As xn−vn → 0,
one also obtains xnk ⇀ v and thus v ∈ Xn0

. Hence, v ∈ Xn0
∩ K ∩ Bρ(x) = ∅,

which is a contradiction.
(b) Non-existence of a strong recovery sequence:
Choose (γn) according to (6.5) and assume that there exists a recovery sequence

(yn) to x, which means that yn → x and F (yn) + γn
2 dist(yn,K)2 + iXn(yn) →

F (x). The continuity of F implies that yn ∈ Xn for sufficiently large n and that
γn
2 dist(yn,K)2 → 0. Consequently, using yn → x and x ∈ K, there exists n1 ∈ N
such that

dist(yn,K)2 = dist(yn,K ∩Bρ(x))2 ≤ 1
γn

for all n ≥ n1. With the help of part (a), we conclude that yn /∈ Xn for all n ≥ n1,
which is a contradiction.

�
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