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A Generalized Proximal-Point Method for Convex
Optimization Problems in Hilbert Spaces∗

Christian Kanzow† Daniel Steck†

December 8, 2016

Abstract

We deal with a generalization of the proximal-point method and the closely re-
lated Tikhonov regularization method for convex optimization problems. The
prime motivation behind this is the well-known connection between the classical
proximal-point and augmented Lagrangian methods, and the emergence of modified
augmented Lagrangian methods in recent years. Our discussion includes a formal
proof of a corresponding connection between the generalized proximal-point method
and the modified augmented Lagrange approach in infinite dimensions. Several
examples and counterexamples illustrate the convergence properties of the general-
ized proximal-point method and indicate that the corresponding assumptions are
sharp.

1 Introduction

Let X be a Hilbert space and f : X → R a proper, weakly lower semicontinous (lsc.),
convex function. For brevity, we write R = R ∪ {±∞}. Consider the optimization
problem

min
x∈X

f(x). (1)

We denote by S ⊆ X its solution set (possibly empty) and by fmin ∈ R ∪ {−∞} the
infimum of f . Some standard methods for the solution of (1) include the proximal-
point method [4, 11, 19, 20, 23] and the Tikhonov regularization method [10, 24]. It
is particularly the former method which has been found to have a rich theoretical
background, including a connection to the classical augmented Lagrangian method (or
method of multipliers), cf. [5, 13, 22].
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The augmented Lagrangian method is one of the standard techniques for the solution
of constrained optimization methods. It is therefore also the basis of some standard
software packages like LANCELOT [9] and ALGENCAN [7]. The well-known relation
between the augmented Lagrangian method and the proximal-point technique [13, 22]
gives some deeper insight in the convergence properties of augmented Lagrangian methods,
especially with respect to the dual variables.

In recent years, modified versions of the augmented Lagrangian method have surfaced
[1, 6, 7] which seek to alleviate some of the weaknesses of the classical method (and are
the basis of the previously mentioned ALGENCAN software package). Furthermore,
these modified methods have been extended to more general classes of problems such
as variational inequalities [2], quasi-variational inequalities [14, 16], generalized Nash
equilibrium problems [15], and optimization problems in Banach spaces [17]. The
convergence properties of the modified augmented Lagrangian methods seem to be
stronger than those of their classical counterparts, at least with respect to the primal
variables.

Motivated by these developments, we are naturally inclined to consider the relation to
proximal-point-type algorithms for these new methods. It turns out that this connection
is given by a generalized proximal-point method. This generalized proximal-point method
is, of course, also of its own interest, and encompasses both the classical proximal-point
and the Tikhonov regularization method. The convergence results obtained for the
new method cover (directly or indirectly) the convergence properties of the standard
proximal-point method and partially extend the convergence theory of the Tikhonov
regularization technique. Finally, we note that our theoretical framework also includes
modified proximal-point type methods such as the one presented in [12].

This paper is organized as follows. In Section 2, we formally introduce our method
and prove corresponding convergence theorems. Section 3 contains some examples and
counterexamples related to the convergence results which show the sharpness of our
assertions. In Section 4, we give a simple proof of the connection between our method
and the modified augmented Lagrangian method from [7]. This proof generalizes the
corresponding result from [13] by considering Hilbert spaces with conical constraints. We
conclude with some final remarks in Section 5.

Notation: The scalar product in the Hilbert space X is denoted by 〈·, ·〉, the induced
norm is written as ‖ · ‖. For a nonempty, closed, and convex set C ⊂ X and a given
point u ∈ X, the symbol PC(u) denotes the projection of u onto C with respect to the
induced norm. Convex and strongly convex functions are defined in the usual way, see,
for example, [4].

2 The Generalized Proximal-Point Method

Recall that we are dealing with the optimization problem (1). For a given γ > 0, we
consider the proximal point mapping

proxγf (u) = argmin
x∈X

{
f(x) +

1

2γ
‖x− u‖2

}
. (2)
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Note that the right-hand side is always strongly convex, which implies the well-definedness
of the prox-operator. The classical proximal-point method [4], which we simply refer to
as PPM, is defined by means of the recurrence

xk+1 = proxγkf (x
k), (3)

where γk > 0 is some parameter. A similar method is the Tikhonov regularization
method, which is given by

xk+1 = argmin
x∈X

{
f(x) +

1

2γk
‖x− u‖2

}
= proxγkf (u) (4)

for some fixed u ∈ X (the classical Tikhonov method corresponds to u = 0). The method
we consider is a generalization of both these methods which is obtained by replacing u in
(4) with an arbitrary (bounded) sequence (uk) ⊆ X. Note that, from a theoretical point
of view, this encompasses (3) because the sequence (xk) generated by the proximal-point
method is known to be weakly convergent (and, hence, bounded) if the solution set is
nonempty [11]. Note that [12] also considers an iterative scheme where the fixed u in
(4) is replaced by a suitable sequence (uk), but the sequence there is constructed by the
algorithm with the motivation to improve the rate of convergence, whereas here the
(bounded) sequence (uk) is provided by the user with the idea to get suitable convergence
results related to a class of modified augmented Lagrangian methods.

We formally state our generalized proximal-point method in the following algorithm.

Algorithm 2.1. (Generalized Proximal-Point Method)

(S.0) Let x1 ∈ X, B ⊆ X a bounded set, and set k := 1.

(S.1) If xk is a solution of the optimization problem (1): STOP.

(S.2) Choose uk ∈ B, γk > 0, and let xk+1 := proxγkf (u
k), i.e. xk+1 solves

min
x∈X

f(x) +
1

2γk
‖x− uk‖2. (5)

(S.3) Set k ← k + 1, and go to (S.1).

Note that the choice of uk in (S.2) may not depend on the current iterate xk, in which
case we view Algorithm 2.1 as a generalization of the Tikhonov regularization approach.
On the other hand, a (possibly more natural) choice of uk depending on xk brings
Algorithm 2.1 closer to the classical proximal-point method. The convergence properties
of Algorithm 2.1 obviously depend on the particular choice of the sequence (uk).

Since the objective function in (5) is strongly convex, this implies the well-definedness
of the sequence (xk) and, hence, of the overall algorithm. Note that, formally speaking,
Algorithm 2.1 is not really an iterative method, since the definition of xk+1 does not
necessarily depend on xk (unless uk depends on xk; furthermore, in practice, one might
use xk as an initial approximation for the solution of (5)). Nevertheless, the formulation
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as an iterative procedure simplifies our formal treatment of the method. The subsequent
convergence analysis assumes implicitly that our generalized proximal-point method
generates an infinite sequence.

We now turn to a detailed convergence analysis for Algorithm 2.1. To this end, we
begin with a technical lemma that will be one of our main tools.

Lemma 2.2. Let (xk) be generated by Algorithm 2.1, and x ∈ X. Then

f(xk+1)− f(x) ≤ ‖x− uk‖2 − ‖xk+1 − uk‖2

2γk
(6)

≤ ‖x− uk‖2

2γk
(7)

for every k ≥ 1. Furthermore, if S is nonempty, then (xk) is bounded.

Proof. The second inequality is obvious. To verify the first inequality, note that the
definition of xk+1 implies that

f(xk+1) +
1

2γk
‖xk+1 − uk‖2 ≤ f(x) +

1

2γk
‖x− uk‖2

for all k ≥ 1. Reordering gives the desired statement.
If S is nonempty, then (6) holds for x = x∗ ∈ S. Since f(x∗) ≤ f(xk+1), it follows that

the left-hand side of (6) is nonnegative. We therefore obtain ‖xk+1 − uk‖ ≤ ‖x∗ − uk‖
for all k ≥ 1. Using the boundedness of (uk), we conclude that (xk) is also bounded.

As the proof shows, the assertion of Lemma 2.2 is essentially a trivial reformulation of
the definition of xk+1. Recall that xk+1 does not really depend on xk; hence, roughly
speaking, we cannot expect xk+1 to satisfy more than the inequality (6). This point will
be emphasized in Section 3, where we give some examples which show that our upcoming
convergence theorems can, in general, not be strengthened.

Theorem 2.3. Let (xk) be generated by Algorithm 2.1, and let γk →∞. Then f(xk)→
fmin and every weak limit point of (xk) is a solution of the optimization problem (1).
Furthermore, if S is nonempty and x∗ ∈ S, then

f(xk+1)− fmin = O
(
‖xk+1 − x∗‖

γk

)
= O

(
1

γk

)
.

Proof. The boundedness of (uk), the assumption γk →∞, and the inequality (7) together
yield

lim sup
k→∞

f(xk+1) ≤ f(x)

for every x ∈ X. This implies f(xk+1) → fmin. The second assertion follows from the
weak lower semicontinuity of f , and the third assertion follows by applying (6) with
x = x∗ ∈ S and using the triangle inequality. The final equation is a consequence of the
boundedness of (xk), cf. Lemma 2.2.
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The above is our main convergence theorem and includes a host of assertions on the
sequence (xk) and the corresponding sequence of function values (f(xk)). Note that, if
S is a singleton (i.e. the original problem has a unique solution x∗), then xk ⇀ x∗ as a
consequence of Lemma 2.2 and Theorem 2.3. These results also imply that the sequence
(xk) is unbounded if the solution set S is empty, since its boundedness would imply the
existence of a weakly convergent subsequence whose limit point would then be a solution
of (1). We further note that Theorem 2.3 talks about weak limit points; in fact, without
any further assumptions, the sequence (xk) cannot be expected to have a strong limit
point. This follows (indirectly) from the observation that Algorithm 2.1 includes the
classical proximal-point algorithm for which strong convergence cannot be expected, cf.
[11]. In addition, we also provide an explicit counterexample in Section 3.

Furthermore, we note that Theorem 2.3 requires that γk →∞ (it is fairly trivial to
construct examples which show that this is necessary). Some further examples illustrating
the sharpness of the theorem will be given in Section 3.

We now turn to the case where f is strongly convex. This allows us to prove strong
convergence of the iterates xk and an improved rate of convergence.

Theorem 2.4. Let f be strongly convex, and let γk →∞. Then (xk) converges (strongly)
to the unique element x∗ ∈ S. Moreover, we have

‖xk+1 − x∗‖ = O
(

1

γk

)
and f(xk+1)− f(x∗) = O

(
1

γ2k

)
.

Proof. The strong convexity implies that there is a constant c1 > 0 such that

c1‖xk − x∗‖2 ≤
f(xk) + f(x∗)

2
− f

(
xk + x∗

2

)
≤ f(xk) + f(x∗)

2
− f(x∗)

=
f(xk)− f(x∗)

2
.

Hence, by Theorem 2.3, we obtain xk → x∗. Moreover, by Theorem 2.3,

f(xk+1)− f(x∗) = O
(
‖xk+1 − x∗‖

γk

)
.

Hence, there is a constant c2 > 0 such that

c1‖xk+1 − x∗‖2 ≤ 1

2

(
f(xk+1)− f(x∗)

)
≤ c2
‖xk+1 − x∗‖

γk
.

This immediately gives the desired convergence rate estimates.

This concludes our general convergence analysis of Algorithm 2.1. We now give one final
result, mainly for the sake of completeness, which emphasizes the connection between
our method and the Tikhonov regularization method. Recall that S is the solution set of
(1) and, hence, closed and convex.
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Theorem 2.5. Let (xk) be generated by Algorithm 2.1, let γk →∞, and let uk → u∗ for
some u∗ ∈ X. If S is nonempty, then xk → PS(u∗).

Proof. First note that f(x∗) ≤ f(xk+1) holds for an arbitrary solution x∗ ∈ S. Hence,
from (6), we obtain ‖xk+1 − uk‖ ≤ ‖x∗ − uk‖ for all x∗ ∈ S and all k ≥ 1. The assumed
convergence of uk then implies

lim sup
k→∞

‖xk+1 − u∗‖ ≤ lim sup
k→∞

(
‖xk+1 − uk‖+ ‖uk − u∗‖

)
= lim sup

k→∞
‖xk+1 − uk‖

≤ lim sup
k→∞

‖x∗ − uk‖

= ‖x∗ − u∗‖.

By Lemma 2.2 and Theorem 2.3, there is a subset K ⊆ N such that xk+1 ⇀K x for some
x ∈ S. For the particular solution x∗ := PS(u∗), it then follows that

‖x− u∗‖ ≤ lim sup
k∈K

‖xk+1 − u∗‖ ≤ ‖x∗ − u∗‖,

where the first inequality exploits the weak lower semicontinuity of the norm. Hence,
x = x∗ and, therefore, ‖xk+1 − u∗‖ →K ‖x− u∗‖, which implies xk+1 →K x = x∗. Since
this holds for every weakly convergent subsequence of (xk), we conclude that xk → x∗.

Note that Theorem 2.5 recovers the well-known result that the iterates generated by
the classical Tikhonov regularization method (where uk = 0 for all k ≥ 1) converges
to the minimum-norm solution of (1) if the solution set S is nonempty. We also stress
a difference between the (generalized) proximal-point method and the (generalized)
Tikhonov regularization technique in the infinite-dimensional Hilbert setting: The former
generates a sequence with, usually, weak convergence properties, whereas the latter
computes a strongly convergent sequence (under the assumptions of Theorem 2.5).

Finally, we note that the assertions made by Theorem 2.5 are strongly dependent on
the assumption that the algorithm generates an infinite sequence. For instance, if we
consider an optimization problem where S is not a singleton (e.g. Example 3.1 in the
upcoming section), then (xk) may converge to the projection of u∗ onto S, but this does
not exclude the possibility that some of the iterates xk themselves already lie in S. In
this case, depending on the stopping criterion, Algorithm 2.1 might terminate with a
point that is a solution, but is not equal to PS(u∗).

3 Examples and Counterexamples

We now give some examples which illustrate the convergence assertions of the theorems
from Section 2. In particular, we wish to show that the convergence results can, in
general, not be strengthened.

Recall that Theorem 2.3 asserts the convergence f(xk)→ fmin and a convergence rate
if f attains its minimum. Hence, it is natural to ask whether (xk) converges (possibly

6



weakly) to an element x∗ ∈ S. As we remarked in Section 2, the weak convergence follows
trivially if S is a singleton. However, if S has at least two elements x∗ and y∗, it is easy
to see that (xk) may not be convergent. The following is a concrete counterexample.

Example 3.1. Consider the convex function f : R→ R defined by f(x) := max{0, x2−1}.
The solution set of the corresponding optimization problem (1) is given by S = [−1, 1].
Now, consider Algorithm 2.1 with γk := k and the alternating sequence u2k := 1,
u2k+1 := −1 for all k. Then x2k+1 is the unique solution of

min
x

max{0, x2 − 1}+
1

4k
(x− 1)2,

which is given by x2k+1 = 1 since this number minimizes both terms separately, whereas
x2k is the solution of

min
x

max{0, x2 − 1}+
1

2(2k − 1)
(x+ 1)2

and is therefore given by x2k = −1 for similar reasons. Hence, we eventually get the
alternating sequence (−1, 1,−1, 1, . . .). ♦

In practice, Algorithm 2.1 applied to Example 3.1 would have stopped after the first
iteration since x1 is already a solution of the underlying minimization problem. However,
to illustrate certain convergence properties, it is useful to consider what happens if the
method generates an infinite sequence. In fact, one could easily modify the example to
obtain a sequence (xk) ⊆ R \ [−1, 1] with the same accumulation points 1 and −1.

The following example shows that the convergence rate asserted by Theorem 2.3
holds only if S is nonempty.

Example 3.2. Let f : R→ R be the convex function given by

f(x) =

{
x−α if x > 0

∞ otherwise

for some constant α > 0. Hence fmin = 0, but the minimum is not attained. If uk = 0 for
all k, then xk+1 is the global minimum of x−α + x2/(2γk) on (0,∞). A straightforward

calculation shows that xk+1 = (αγk)
1

α+2 and, hence,

f(xk+1) = O
(

1

γdk

)
with d =

α

α + 2
.

In particular, we see that d becomes arbitrarily small if α ↓ 0. This shows that the
convergence rate from Theorem 2.3 only holds if f attains its minimum. (Note that the
constant hidden in O depends on α, but is independent of k for any fixed α.) ♦

We now turn to the discussion of weak convergence vs. strong convergence (again in the
context of Theorem 2.3). Clearly, we need an example which is infinite-dimensional and,
in view of Theorem 2.4, not strongly convex.
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Example 3.3. Let f : `2 → R be given by

f(x) =
∞∑
i=1

1

2i
x2i ,

and let uk = ek be the sequence of unity vectors. Note that f is well-defined and convex
(not strongly convex). The minimization problem (5) can be solved analytically. The
solution is given by

xk+1 =
k

k + γk
ek.

Now, let γk = k for all k. Then xk+1 = 1
2
ek and f(xk+1) = 1

8k
. This shows that (xk)

converges only weakly to x∗ = 0. Furthermore, the convergence rate from Theorem 2.3
can, in general, not be strengthened. ♦

This concludes our set of examples for Theorem 2.3. Hence, we now turn to Theorem 2.4,
which deals with the strongly convex case. The following (fairly trivial) example shows
that the convergence rates stated in the theorem can, in general, not be strengthened.

Example 3.4. Let f : R → R, f(x) = x2. An easy calculation shows that, for any
uk ∈ R and γk > 0, the solution of the subproblem (5) is given by

xk+1 =
uk

2γk + 1
.

If (uk) is bounded, it follows that

‖xk+1 − x∗‖ = O
(

1

γk

)
and f(xk+1)− f(x∗) = O

(
1

γ2k

)
,

as asserted by Theorem 2.4. ♦

4 The Augmented Lagrangian Method

We now turn to a discussion of augmented Lagrangian-type methods and their relationship
with the (generalized) proximal-point method. To this end, we consider an optimization
problem of the form

min F (x) s.t. g(x) ∈ K, x ∈ C, (8)

where

• F : X → R is proper and convex,

• X is a Banach space and C ⊆ X a nonempty, closed, convex set,

• Y is a Hilbert space and K ⊆ Y a nonempty, closed, convex cone,

• g : X → Y is C1 and concave with respect to the order induced by K.
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We denote by K+ and K◦ the dual and polar cones of K, respectively.
The function g occurring in (8) is occasionally called a concave operator. For some

results and further reading about this generalized form of concavity (and convexity),
we refer the reader to [8, 18]. Here, we only mention that many well-known results for
real-valued convex functions remain true for their operator counterparts. For instance,
the composition of an increasing convex operator and a convex operator is always convex
(this implies the convexity of the Lagrangian and augmented Lagrangian, see below).
On the other hand, differentiability and subdifferentiability are, in general, much more
peculiar to analyse. For instance, the composition

λ ◦ h, where λ ∈ K+, h : X → Y convex,

is convex, but generally does not admit a chain rule involving the subdifferential of h.
Additional assumptions such as regular subdifferentiability [3, 25] are needed for this.
To circumvent such issues and prevent our analysis from becoming overly technical, we
decided to simply assume that our constraint function g is of class C1.

We now turn to a description of the augmented Lagrangian (or multiplier-penalty)
method. The augmented Lagrangian of the problem (8) is given by

Lγ(x, u) = F (x) +
γ

2

∥∥∥∥PK◦

(
g(x) +

u

γ

)∥∥∥∥2 ,
where P is the projection operator; note that this is only a partial augmented Lagrangian
since the potentially easy constraints x ∈ C are not included in our definition of Lγ . The
modified augmented Lagrangian method (cf. [7] for a finite-dimensional version) consists
of the iterative procedure

xk+1 ∈ argmin
x∈C

Lγk(x, u
k) and λk+1 = PK◦

(
uk + γkg(xk+1)

)
, (9)

where (uk) ⊆ Y is a bounded sequence and (γk) is a sequence of real numbers, typically
converging to +∞. The standard augmented Lagrangian method with the Hestenes-Stiefel-
Rockafellar update of the multiplier λk+1 corresponds to the special case uk := λk, cf.
[5, 21]. In this standard method, however, the sequence (uk) is not necessarily bounded.

To establish the connection of the iterative scheme (9) with our generalized proximal-
point method, we denote by q : Y → R the (Lagrange-) dual function of the problem,
i.e.

q(λ) = inf
x∈C

L(x, λ),

where L(x, λ) := F (x) + 〈λ, g(x)〉 is the usual Lagrange function. Then the dual problem
is given by

max q(λ) s.t. λ ∈ K◦,
which can be written as a minimization problem

min q̃(λ) s.t. λ ∈ K◦, (10)

by defining q̃ := −q. Recall that q̃ is a convex function and that, in this section, the
minimization problem (10) plays the role of the optimization problem (1).
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Theorem 4.1. Let u ∈ Y and γ > 0. Furthermore, let x̄ be a minimum of Lγ( · , u),
λ̄ = PK◦(u+γg(x̄)), and µ̄ = proxγq̃(u). Then µ̄ = λ̄, and x̄ is a point where the infimum
q(λ̄) is attained.

Proof. We first claim that (x̄, λ̄) is a saddle point of the convex-concave function

h : X ×K◦ → R, h(x, λ) = L(x, λ)− 1

2γ
‖λ− u‖2.

To verify this saddle-point property, note that the definition of x̄ implies that

0 ∈ ∂xLγ(x̄, u) = ∂F (x̄) + g′(x̄)∗λ̄ = ∂xh(x̄, λ̄),

where we used [4, Prop. 12.31] to differentiate the projection operator. Hence, x̄ is a
minimizer of the convex function h( · , λ̄). On the other hand, h(x̄, · ) is a quadratic
function of the form

h(x̄, λ) = 〈λ, g(x̄)〉 − 1

2γ
‖λ− u‖2 + c,

where c is a constant independent of λ. Since

〈λ, g(x̄)〉 − 1

2γ
‖λ− u‖2 = − 1

2γ
‖λ− u− γg(x̄)‖2 + c̃,

where c̃ is again independent of λ, we see that the (unique) maximizer of h(x̄, · ) on K◦

is λ̄ = PK◦(u+ γg(x̄)). This proves the saddle-point property of (x̄, λ̄).
A standard saddle point theorem, see, e.g., [3, Prop. 2.105], implies that (x̄, λ̄) satisfies

h(x̄, λ̄) = max
λ∈K◦

h(x̄, λ) = max
λ∈K◦

min
x∈X

h(x, λ). (11)

On the other hand, µ̄ is characterized by

µ̄ = proxγq̃(u)

= argmin
λ∈K◦

{
q̃(λ) +

1

2γ
‖λ− u‖2

}
= argmax

λ∈K◦

{
q(λ)− 1

2γ
‖λ− u‖2

}
= argmax

λ∈K◦

{
inf
x∈X

L(x, λ)− 1

2γ
‖λ− u‖2

}
= argmax

λ∈K◦

{
inf
x∈X

h(x, λ)
}
,

so that µ̄ is also the solution of

max
λ∈K◦

min
x∈X

h(x, λ).

Using (11), the uniqueness of µ̄ implies µ̄ = λ̄, and the statement follows.

10



Using an induction argument, Theorem 4.1 implies the following: if we initialize the
standard augmented Lagrangian method (where uk = λk for all k ≥ 1) with the same
λ1 as the classical proximal-point method applied to the corresponding dual problem,
then both methods generate the same sequence (λk). This is the known relation between
these two methods. In addition, Theorem 4.1 also shows that the same connection
holds between the modified augmented Lagrangian method (with an arbitrary, bounded
sequence (uk)) and the generalized proximal-point method from Algorithm 2.1. Hence,
all convergence results from the previous section hold for the generalized proximal-point
method applied to the dual problem and, therefore, also yield convergence and rate-
of-convergence results for the corresponding modified augmented Lagrangian method
applied to the underlying primal problem.

5 Final Remarks

We have considered a generalization of the well-known proximal-point and Tikhonov
regularization methods for convex optimization problems. Among other results, we
have proved that the new method is essentially equivalent to the modified augmented
Lagrangian algorithm from [7] (or, more precisely, a generalization of that method to
infinite dimensions).
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de la SMC. Springer, New York, 2011.

[5] D. P. Bertsekas. Constrained Optimization and Lagrange Multiplier Methods. Aca-
demic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1982.

[6] E. G. Birgin, C. A. Floudas, and J. M. Mart́ınez. Global minimization using an
augmented Lagrangian method with variable lower-level constraints. Math. Program.,
125(1, Ser. A):139–162, 2010.

11



[7] E. G. Birgin and J. M. Mart́ınez. Practical Augmented Lagrangian Methods for
Constrained Optimization. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 2014.

[8] J. M. Borwein. Continuity and differentiability properties of convex operators. Proc.
London Math. Soc. (3), 44(3):420–444, 1982.

[9] A. R. Conn, N. I. M. Gould, and P. L. Toint. LANCELOT. Springer-Verlag, Berlin,
1992. A Fortran package for large-scale nonlinear optimization (release A).

[10] H. W. Engl, M. Hanke, and A. Neubauer. Regularization of Inverse Problems.
Kluwer Academic Publishers Group, Dordrecht, 1996.
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