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ON A LACK OF STABILITY OF PARAMETRIZED BV

SOLUTIONS TO RATE-INDEPENDENT SYSTEMS WITH

NON-CONVEX ENERGIES AND DISCONTINUOUS LOADS

MERLIN ANDREIA AND CHRISTIAN MEYER

Abstract. We consider a rate-independent system with nonconvex energy
under discontinuous external loading. The underlying space is finite dimen-

sional and the loads are functions in BV ([0, T ];Rd). We investigate the stabil-

ity of various solution concepts w.r.t. a sequence of loads converging weakly∗
in BV ([0, T ];Rd) with a particular emphasis on the so-called normalized, p-

parametrized balanced viscosity solutions. By means of two counterexamples,

it is shown that common solution concepts are not stable w.r.t. weak∗ conver-
gence of loads in the sense that a limit of a sequence of solutions associated

with these loads need not be a solution corresponding to the load in the limit.

We moreover introduce a new solution concept, which is stable in this sense,
but our examples show that this concept necessarily allows “solutions” that

are physically meaningless.

1. Introduction

This paper is concerned with a rate-independent system of the form

(1.1) 0 ∈ ∂R(ż(t)) +DzI(t, z(t)) f.a.a. t ∈ (0, T ), z(0) = z0,

where R : Rd → R is convex and positive 1-homogeneous and I denotes an energy
given by

I(t, z) := 1

2
⟨Az, z⟩+ F(z)− ⟨ℓ(t), z⟩.

Herein A ∈ Rd×d is symmetric and positive definite and F : Rd → R is smooth,
but potentially non-convex. Moreover, the external load ℓ : [0, T ] → Rd is a given
function of bounded variation. The precise assumptions on the data are specified
in Section 1.2 below.

It is well known that, even for smooth external loads, one cannot expect the ex-
istence of a weakly differentiable solution such that (1.1) is satisfied for almost all
t ∈ (0, T ). We refer to the counterexample in [19, Section 2.3]. For that reason, sev-
eral alternative solution concepts have been developed, among them local solutions,
global energetic solutions, and (parametrized) balanced viscosity (BV) solutions. For
a comprehensive overview, we refer to [10]. Originally, all these concepts have been
introduced for smooth external loads, but, recently, several authors came up with
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extensions of the classical solution concepts adapted to loads in BV ([0, T ];Rd).
Concerning parametrized BV solutions, we refer to [5]. With regard to other solu-
tions concepts, rate-independent systems with discontinuous data are discussed e.g.
in [6, 15, 16, 17] for the case of strictly convex energies. A comparison of various so-
lutions concepts in case of discontinuous data is presented in [7]. The motivation for
considering loads in BV ([0, T ];Rd) is manifold, reaching from applications, where
loads may be switched on or off, to the viscous approximation of optimal control
problems governed by (1.1). Concerning the latter, the so-called reverse approxi-
mation property plays an essential role and has so far only been verified under very
restrictive assumptions, see [4, Section 6]. If one aims to avoid these assumptions,
the use of loads in BV ([0, T ];Rd) seems to be indispensable, cf. [4, Remark 6.4].

Within this contribution, we investigate the stability of solutions to (1.1) w.r.t.
“natural” notions of convergence of loads in BV ([0, T ];Rd). In generic situations,
one cannot expect a sequence of loads in BV ([0, T ];Rd) to converge strongly in
BV ([0, T ];Rd). For instance, if one discretizes a given load in BV ([0, T ];Rd) by
means of a sequence of piecewise constant functions, then this sequence will in gen-
eral only converge weakly∗ in BV ([0, T ];Rd) as the mesh size tends to zero (unless
the jump set of the load is exactly covered by the mesh). And even, if one considers
the smoothing of a load in BV ([0, T ;Rd) by convolution with the standard mol-
lifier, one will in general only obtain intermediate convergence of the sequence of
mollified loads, when the regularization parameter is driven to zero. Consequently,
“generic” notions of convergence in BV ([0, T ];Rd) are weak∗ convergence or, at
best, intermediate convergence. It is therefore reasonable to investigate if estab-
lished solutions concepts are stable w.r.t. these types of convergence. The crucial
question in this context is the following:
If one considers a sequence of loads converging weakly∗ (or in the intermediate
topology) and a sequence of associated solutions according to one of the established
solution concepts, which converges to a limit function, is this limit still a solution
in the sense of the respective concept?
We will show by means of two examples that the answer to this question is in
general negative. To be more precise, the notion of normalized p-parametrized BV
solutions is even not stable w.r.t. intermediate convergence of the loads, whereas
the notion of local solutions is not stable w.r.t. weak∗ convergence. We therefore
propose a new “relaxed” solution concept that is stable w.r.t. weak∗ convergence
of loads in BV ([0, T ];Rd). However, as especially the second example in Section 4.2
shows, this new solution concept admits functions as solutions, which are entirely
meaningless from a physical point of view. It is therefore doubtful if it makes sense
to allow for discontinuous loads in BV ([0, T ];Rd) in the context of rate-independent
systems of the form (1.1).

The paper is organized as follows: The rest of this introductory section is dedi-
cated to the notation and our standing assumptions on the data in (1.1). We then
recall the concept of normalized p-parametrized BV solutions in case of loads in
BV ([0, T ];Rd) in Section 2. Thereafter, in Section 2.1, a first example is presented,
which shows that this solution concept is not stable w.r.t. intermediate convergence
of the loads. Section 3 is then devoted to our new relaxed solution concept and its
stability w.r.t. weak∗ convergence of the loads. In Section 4 we investigate this new
solution concept in more details, especially its relation to other solution concepts.
We prove that, under natural assumption, every local solution is also a relaxed
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solution, which demonstrates that the new concept is rather weak. This is also un-
derlined by the second example in Section 4.2, which shows that the new solution
concepts provides completely unphysical “solutions”. The paper ends with a short
conclusion and an appendix on auxiliary technical results.

1.1. Notation. Throughout the paper ⟨·, ·⟩ denotes the standard scalar product

in Rd and the induced euclidean norm is given by ∥ · ∥ =
√
⟨·, ·⟩. C is a generic

constant larger zero and for a function f : [a, b] → Rd the total variation is defined
by

Var(f ; [a, b]) = sup
partitions {tk} of [a, b]

∑
k

∥f(tk)− f(tk−1)∥,

where a partition {tk} is a finite subset of [a, b] with a = t0 < t1 < · · · < tn−1 <
tn = b, n ∈ N.

For a left (resp. right) continuous function f : R → Rd we denote the one sided
limits by f(s−) := limσ↗s f(σ) and f(s+) := limσ↘s f(σ), respectively.

For convenience of the reader, let us collect some well known facts on functions
of bounded variation that will be useful throughout the paper. For the proofs, we
refer to [1, 14]. By BV ([0, T ];Rd) we denote the space of functions with bounded
total variation, i.e.,

BV ([0, T ];Rd) := {f : [0, T ] → Rd : Var(f ; [0, T ]) < ∞}.
It is well known that a function in BV ([0, T ];Rd) is measurable and bounded
and admits at most a countable number of discontinuities. Thus, a function in
BV ([0, T ];Rd) is absolutely integrable and we can equip BV ([0, T ];Rd) with the
norm ∥f∥BV ([0,T ];Rd) := ∥f∥L1(0,T ;Rd) + Var(f ; [0, T ]). Moreover, we introduce the
space of (equivalence classes of) functions of bounded variation on (0, T ) as

BV(0, T ;Rd) := {f ∈ L1(0, T ;Rd) : Df ∈ M(0, T ;Rd)},
where Df denotes the distributional derivative and M(0, T ;Rd) is the space of
Rd-valued regular Borel measures on (0, T ). We equip BV(0, T ;Rd) with the norm
∥f∥BV(0,T ;Rd) := ∥f∥L1(0,T ;Rd)+ |Df |(0, T ), where |Df |(0, T ) denotes the total vari-
ation of the measure Df . It is well known that

(1.2) |Df |(0, T ) = inf{Var(v; [0, T ]) : v is a representative of [f ]}.
Furthermore, BV(0, T ;Rd) embeds continuously in L∞(0, T ;Rd) and compactly
in every Lp(0, T ;Rd), p < ∞. Moreover, every function f ∈ BV ([0, T ];Rd) is a
representative of an element in BV(0, T ;Rd) and, in view of (1.2), it holds

(1.3) ∥f∥BV ([0,T ];Rd) ≥ ∥f∥BV(0,T ;Rd).

Here and in the following, with a little abuse of notation, we denote the function
in BV ([0, T ];Rd) and the associated equivalence class in BV(0, T ;Rd) by the same
symbol. Note that (1.3) is only satisfied with equality by particular representatives
of f , e.g., by the left or right continuous representative. As usual, we call a sequence
(fn)n∈N ⊂ BV(0, T ;Rd) weakly∗ converging in BV(0, T ;Rd), iff

fn ⇀∗ f in BV(0, T ;Rd) :⇐⇒

{
fn → f in L1(0, T ;Rd),

Dfn ⇀∗ Df in M(0, T ;Rd).

Every bounded sequence in BV(0, T ;Rd) contains a weakly∗ converging subse-
quence and, by (1.3), the same holds true for a bounded sequence in BV ([0, T ];Rd)
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(and the associated sequence of equivalence classes, respectively). Furthermore,
by Helly’s selection principle, every bounded sequence in BV ([0, T ];Rd) admits a
subsequence that converges pointwise everywhere in [0, T ] and, if the subsequence
converges weakly∗ in BV(0, T ;Rd), too, the pointwise limit is a representative of the
weak∗ limit. It is to be noted however that the pointwise limit need not be the rep-
resentative attaining the infimum in (1.2), even if this is true along the converging
subsequence. Finally, we say that a sequence (fn)n∈N converges w.r.t. intermediate
convergence in BV(0, T ;Rd) and BV ([0, T ];Rd), respectively, if it converges weakly∗
and, in addition, |Dfn|(0, T ) → |Df |(0, T ) as n → ∞.

1.2. Standing Assumptions.

Energy. Throughout the paper, A ∈ Rd×d is symmetric and positively definite.
Furthermore, F : Rd → R satisfies

F ∈ C2(Rd;R), F ≥ 0(1.4)

∥D2F(z)v∥ ≤ C(1 + ∥z∥q)∥v∥ ∀v, z ∈ Rd(1.5)

for some q ≥ 1. For a given external load ℓ ∈ BV ([0, T ];Rd), the energy functional
I : [0, T ]× Rd → R reads

I(t, z) := 1

2
⟨Az, z⟩+ F(z)− ⟨ℓ(t), z⟩.

By denoting the time independent part as

(1.6) E(z) := 1

2
⟨Az, z⟩+ F(z),

the energy can be written as I(t, z) = E(z)−⟨ℓ(t), z⟩. Below we will deal with other

loads, denoted by ℓ̂, ℓ̂n ∈ BV ([0, S];Rd), too, and so, for convenience, we define

Î(s, z) = E(z)− ⟨ℓ̂(s), z⟩,(1.7)

În(s, z) = E(z)− ⟨ℓ̂n(s), z⟩.(1.8)

Dissipation. For the dissipation R : Rd → [0,∞), we assume

R is proper, convex, and lower semicontinuous,(1.9)

R is positive 1-homogeneous, i.e., R(λz) = λR(z) ∀ z ∈ Rd, λ > 0,(1.10)

∃ c, C > 0, such that c ∥z∥ ≤ R(z) ≤ C ∥z∥ ∀ z ∈ Rd.(1.11)

Initial data. There exists ℓ0 ∈ Rd such that −DzE(z0) + ℓ0 ∈ ∂R(0).

2. A solution concept for discontinuous loads in BV

There exists a variety of solution concepts for (1.1). Here we only present a brief
overview with a special emphasis on parametrized balanced viscosity solutions and
refer to [10] and the references therein for more details. The most natural notion
of solutions is the differential solution, where one searches for a weakly differen-
tiable function z ∈ W 1,1(0, T ;Rd), which satisfies (1.1) almost everywhere. The
disadvantage of this concept is that one cannot guarantee the existence of such a
solution in case of a non-convex energy as the example in [19, Section 2.3] shows.
For that reason, several alternative solutions concepts have been developed. The
most prominent one is probably the concept of global energetic solutions, where
the subdifferential inclusion in (1.1) is replaced by a global stability condition and
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an energy balance, which benefits in solvability under milder assumptions, see e.g.
[11, 13, 12]. One of the weakest solution concepts providing only a minimum of
information is the so called local solution concept, where a solution z only satisfies
a local stability condition together with an energy inequality. We will come back
to this concept in Definition 4.1 below. Another approach providing more infor-
mation especially about the discontinuities of a solution is given by the concept
of parametrized balanced viscosity (BV) solutions, where a solution consists of the
tuple (z, t), representing the state and the physical time, respectively, as functions
of a curve parameter s. To the best of our knowledge, it was first introduced in [3],
but has by now been analyzed by various authors in multiple aspects, we only refer
to [9] and the reference therein.

Initially, all these concepts have been developed for smooth external loads, but
recently some of them have been transferred to the case of discontinuous loads in
BV ([0, T ]). Concerning global energetic solutions, we exemplarily refer to [6]. In
[5] the concept of parametrized BV solutions concept has been transferred to loads
in BV ([0, T ]). In our setting, where the underlying space is finite dimensional, it
reads as follows:

Definition 2.1. Let ℓ ∈ BV ([0, T ];Rd) be given. A triple (S, t̂, ẑ, ℓ̂) ∈ (0,∞) ×
W 1,∞(0, S)×W 1,∞(0, S;Rd)×BV ([0, S];Rd) is called normalized, p-parametrized
balanced viscosity (BV) solution of the rate-independent system (1.1) associated
with ℓ, if

• the initial and end time condition hold

(2.1) t̂(0) = 0, t̂(S) = T, ẑ(0) = z0,

• the complementarity relations and normalization condition are fulfilled for
almost all s ∈ (0, S)

t̂′(s) ≥ 0, t̂′(s) dist(−DzÎ(s, ẑ(s)), ∂R(0)) = 0,(2.2)

t̂′(s) +R(ẑ′(s)) + ∥ẑ′(s)∥ dist(−DzÎ(s, ẑ(s)), ∂R(0)) = 1,(2.3)

• the energy identity is valid for all s1, s2 ∈ [0, S]

(2.4)
E(ẑ(s2)) +

∫ s2

s1

R(ẑ′(r)) + ∥ẑ′(r)∥dist(−DzÎ(r, ẑ(r)), ∂R(0))dr

= E(ẑ(s1)) +
∫ s2

s1

⟨ℓ̂(r), ẑ′(r)⟩dr,

• the parametrized load ℓ̂ is compatible with ℓ in the following sense: for
every t∗ ∈ [0, T ], there exists s∗ ∈ t̂−1(t∗) such that for all s ∈ t̂−1(t∗)

(2.5) ℓ̂(s) =

{
ℓ(t∗−), s < s∗,

ℓ(t∗+), s > s∗,
and ℓ̂(s∗) ∈ {ℓ(t∗), ℓ(t∗−), ℓ(t∗+)}.

Here and in the following, we set 0− := 0 and T+ := T .

Remark 2.2. The above definition differs from the “classical” notion of normalized,
p-parametrized BV solutions for smooth external loads according to, e.g., [9] only in
the additional compatibility condition in (2.5). This condition basically says that,
if ℓ is discontinuous in a viscous jump, then it only attains its left and right limits

during the viscous jump. Note that, if ℓ is continuous in t∗, then ℓ̂(s) = ℓ(t̂(s)) for
all s ∈ t̂−1(t∗).
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A proof concerning the existence of such solutions can be found in [5, Prop. 4.2].
The authors used a vanishing viscosity approach and showed that a parametrized
version of the solutions solving the regularized problems, which are

0 ∈ ∂R(żϵ(t)) + ϵżϵ(t) +DzI(t, zϵ(t)), z(0) = z0, ϵ > 0,

convergence to a p-parametrized BV solution for passing the viscosity parameter
ϵ → 0. This parametrization is done by means of the vanishing viscosity contact
potential

p : Rd × Rd → R, p(v, w) = R(v) + ∥v∥ dist(w, ∂R(0)),

which also motivates the name of the solution concept. To be more precise, the
parametrization is given by

sϵ(t) = t+

∫ t

0

p(żϵ(r),−DzI(r, żϵ(r))dr, ẑϵ = zϵ(t̂ϵ(s)), ℓ̂ϵ(s) = ℓ(t̂ϵ(s)),

where t̂ϵ : [0, Sϵ] → [0, T ] with Sϵ = sϵ(T ) is the inverse function of sϵ, so that p

appears in the normalization condition (2.3), i.e. t̂(s) + p(ẑ′(s),−DzÎ(s, ẑ(s))) = 1
for almost all s ∈ (0, S).

2.1. A first counterexample. In this section we discuss an example, which demon-
strates that the solution concept from Definition 2.1 is not stable w.r.t. intermediate
convergence of a sequence of loads (ℓn)n∈N in BV ([0, T ]) in the following sense: we

construct a sequence of solutions (Sn, t̂n, ẑn, ℓ̂n)n∈N associated with ℓn in the sense
of Definition 2.1, which converges (weakly) to a limit, but this limit is no solution
associated with the limit of (ℓn)n∈N w.r.t. intermediate convergence. Our example
is one-dimensional and we consider the following dissipation and energy:

R(z) = |z|, E(z) = 1

2
z2 − z, I(t, z) = E(z)− ℓ(t)z,(2.6)

where ℓ ∈ BV ([0, 2]). The initial value and end time are set to z0 = 0 and T = 2.
The sequence of external loads given by

ℓn(t) =


0, t ∈ [0, 1]
n
2 t−

n
2 , t ∈ (1, 1 + 1

n )
1
2 , t ∈ [1 + 1

n , 2].

Then ℓn converges to

ℓ =

{
0, t ∈ [0, 1]
1
2 , t ∈ (1, 2]

(2.7)

w.r.t. intermediate convergence in BV ([0, T ]). By direct calculations one verifies
that a normalized, p-parameterized BV solution associated with ℓn is given by

(2.8) ẑn(s) =


0, s ∈ [0, 1],

n
2

1+n
2
s−

n
2

1+n
2
, s ∈ (1, 3

2 + 1
n ),

1
2 , s ∈ [ 32 + 1

n ,
5
2 ],

(2.9) t̂n(s) =


s, s ∈ [0, 1],

1
1+n

2
s+

n
2

1+n
2
, s ∈ (1, 3

2 + 1
n ),

s− 1
2 , s ∈ [ 32 + 1

n ,
5
2 ],
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along with Sn = 5
2 and

(2.10) ℓ̂n(s) = ℓn(t̂n(s)) =


0, s ∈ [0, 1],

n
2

1+n
2
s−

n
2

1+n
2
, s ∈ (1, 3

2 + 1
n ),

1
2 , s ∈ [ 32 + 1

n ,
5
2 ].

The pointwise-a.e. limits of these sequences for n → ∞ read

(2.11) ẑ(s) =


0, s ∈ [0, 1],

s− 1, s ∈ (1, 3
2 ),

1
2 , s ∈ [ 32 ,

5
2 ],

t̂(s) =


s, s ∈ [0, 1],

1, s ∈ (1, 3
2 ),

s− 1
2 , s ∈ [ 32 ,

5
2 ],

(2.12) ℓ̂(s) =


0, s ∈ [0, 1],

s− 1, s ∈ (1, 3
2 ),

1
2 , s ∈ [ 32 ,

5
2 ].

Note that ẑ and t̂ are not only the pointwise limits of ẑn and t̂n, but also the

strong limits in H1(0, S) and weak* limits in W 1,∞(0, S). Moreover, ℓ̂ is the limit

of ℓ̂n w.r.t. intermediate convergence in BV ([0, S]). However, (S, t̂, ẑ, ℓ̂) is no nor-
malized, p-parametrized BV solution associated to the limit ℓ from (2.7) accord-
ing to Definition 2.1, since condition (2.5) is violated in the viscous jump (1, 3

2 ).

Here ℓ̂ cannot be expressed by the left or right hand side limit of ℓ, i.e., ℓ̂(s) /∈
{ℓ(t̂(s)−), ℓ(t̂(s)), ℓ(t̂(s)+)} for all s ∈ (1, 3

2 ).

3. A relaxed solution concept

The example in the previous section shows that the limit of the composition
ℓn ◦ t̂n does in general not coincide with the composition of the separate limits
ℓ ◦ t̂ in jumps. Hence, if we aim for a solution concept which is stable w.r.t. weak*

convergence of the external loads ℓn, we have to weaken the requirements on ℓ̂. To
be more precise, the above example shows that one can hardly impose any condition

on ℓ̂ in jumps. For this reason, we drop the compatibility condition in (2.5) and
replace it by a less restrictive condition that does not provide any information on

ℓ̂ in jumps.

Definition 3.1 (Relaxed solution concept). Let ℓ ∈ BV ([0, T ];Rd) be given. We

call triple (S, t̂, ẑ, ℓ̂) ∈ (0,∞)×W 1,∞(0, S)×W 1,∞(0, S;Rd)×BV ([0, S];Rd) is called
relaxed, normalized, p-parametrized BV solution (or short simply relaxed solution)
of the rate-independent system (1.1) associated with ℓ, if it satisfies (2.1)–(2.4) and,
instead of the compatibility condition in (2.5), we just require

(3.1) ℓ̂(s) = ℓ(t̂(s)) for almost all s ∈ M,

where M is the set, where t̂ is increasing, i.e.,

(3.2) M = {s ∈ (0, S) : t̂(s1) < t̂(s2) for all s1, s2 ∈ [0, S] with s1 < s < s2}.

Herein, we choose the continuous representative of t̂ denoted by the same symbol
for simplicity.

The above definition indeed represents a generalization of the original solution
concept in Definition 2.1 as the next result shows.
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Lemma 3.2. Let ℓ ∈ BV ([0, T ];Rd) be given and suppose that (S, t̂, ẑ, ℓ̂) ∈ (0,∞)×
W 1,∞(0, S)×W 1,∞(0, S;Rd)×BV ([0, S];Rd) is a normalized, p-parametrized BV
solution in the sense of Definition 2.1. Then it is also a relaxed solution in the
sense of Defintion 3.1.

Proof. We only have to verify the condition in (3.1). For this purpose, let s∗ ∈ M be
arbitrary and set t∗ := t̂(s∗). By definition of M , t̂−1(t∗) is a singleton and therefore

(2.5) implies ℓ̂(s∗) ∈ {ℓ(t∗), ℓ(t∗−), ℓ(t∗+)}. Since ℓ is of bounded variation, it only
has countably many jumps collected in the set J(ℓ) ⊂ [0, T ] and is continuous
elsewhere. Since J(ℓ) is countable and t̂ is one-to-one on M , t̂−1(J(ℓ)) ∩ M has
zero measure and thus ℓ(t̂(s)) = ℓ(t̂(s)−) = ℓ(t̂(s)+) f.a.a. s ∈ M , which implies
(3.1). □

Thanks to Lemma 3.2, the existence result from [5, Prop. 4.2] ensuring the exis-
tence of a normalized, p-parametrized BV solution immediately yields the existence
of a relaxed solution.

Corollary 3.3. Let ℓ ∈ BV ([0, T ];Rd) be arbitrary. Then there exists at least one
relaxed solution of (1.1) in the sense of Definition 3.1.

3.1. Stability of the relaxed solution concept. With our relaxed solution con-
cept at hand we are able to prove the following stability result.

Theorem 3.4. Let (ℓn)n∈N be a bounded sequence in BV ([0, T ];Rd) and consider

a sequence (Sn, t̂n, ẑn, ℓ̂n) of relaxed solutions associated with ℓn. Assume moreover

that the sequence (∥ℓ̂n∥BV ([0,Sn];Rd))n∈N is bounded. Then there exists a subsequence
(also denoted with the index n) such that

(3.3) Sn → S, ẑn ⇀∗ ẑ in W 1,∞(0, S;Rd), t̂n ⇀∗ t̂ in W 1,∞(0, S)

and

ℓ̂n ⇀∗ ℓ̂ in BV(0, S;Rd), ℓn ⇀∗ ℓ in BV(0, T ;Rd),(3.4)

ℓ̂n(s) → ℓ̂(s) for all s ∈ [0, S], ℓn(t) → ℓ(t) for all t ∈ [0, T ].(3.5)

Herein the functions are constantly extended if Sn < S. Furthermore, the limit

(S, t̂, ẑ, ℓ̂) is a relaxed solution associated with ℓ.

Proof. 1. Convergence of a subsequence
We start with the boundedness of the sequence of relaxed solutions. First of all,
(2.3) gives ∥ẑ′∥L∞(0,Sn;Rd) ≤ 1

c with c > 0 from (1.11). Next we prove that the

artificial end time is uniformly bounded. Thanks to the boundedness of ẑ′n and ℓ̂n
(by assumption), the energy identity (2.4) yields

E(ẑn(Sn)) +

∫ Sn

0

R(ẑ′n(r)) + ∥ẑ′n(r)∥ dist(−DzÎn(r, ẑn(r)), ∂R(0)) dr

= E(z0) +
∫ Sn

0

⟨ℓ̂n(r), ẑ′n(r)⟩ dr ≤ E(z0) + ∥ẑ′n∥L∞(0,Sn;Rd)∥ℓ̂n∥L1(0,Sn;Rd) ≤ C.

In combination with (2.3), this implies

Sn =

∫ Sn

0

t̂′n(r) +R(ẑ′n(r)) + ∥ẑ′n(r)∥ dist(−DzÎn(r, ẑn(r)), ∂R(0)) dr
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= T +

∫ Sn

0

R(ẑ′n(r)) + ∥ẑ′n(r)∥ dist(−DzÎn(r, ẑn(r)), ∂R(0)) dr ≤ C,

where we made use of the non-negativity of E(ẑn(Sn)) by assumption (1.4). There-
fore, there is a subsequence (denoted by the same index) such that Sn → S. As in

the statement of the theorem, we extend t̂n, ẑn, and ℓ̂n by constant continuation,
if necessary, i.e., if Sn < S. Due to ∥ẑ′n∥L∞(0,S;Rd) ≤ 1/c and ẑn(0) = z0 for all
n ∈ N, we have ∥ẑn∥W 1,∞(0,S;Rd) ≤ C. Furthermore, due to (2.1)-(2.3) we conclude

∥t̂n∥W 1,∞(0,S) ≤ C. Thus, there exists a further subsequence (again denoted by the
same symbol) such that (3.3) holds. The weak∗ and the pointwise convergence of
the sequences of loads along a further subsequence is an immediate consequence of
the boundedness of the respective sequences by assumption.

2. Correlation between ℓ̂ and ℓ
Next we show that (3.1) holds true. We argue by contradiction and assume that
the set

(3.6) G := {s ∈ M : ℓ̂(s) ̸= ℓ(t̂(s))} ⊂ M

has positive measure. This yields the existence of a ρ > 0 such that

M̃ρ = M ∩ {s ∈ (0, S) : ∥ℓ̂(s)− ℓ(t̂(s))∥ ≥ ρ}

has positive measure, too, since if not, then the sets {s ∈ M : ∥ℓ̂(s)− ℓ(t̂(s))∥ ≥ 1
n}

have measure zero for all n ∈ N and thus G =
⋃

n∈N{s ∈ M : ∥ℓ̂(s)− ℓ(t̂(s))∥ ≥ 1
n}

as a countable union of null sets, too, which contradicts the assumption. Since

t̂n, ℓ̂n are part of the relaxed solution associated with ℓn, we have ℓ̂n(s) = ℓn(t̂n(s))
a.e. in Mn := {s ∈ (0, S) : t̂n(s1) < t̂n(s2) for all s1 < s < s2}. We denote the
corresponding null sets, where this is not satisfied, by Nn. Then

Mρ := M̃ρ \
⋃
n∈N

Nn

still has positive measure.
Now let k ∈ N, k > 1, be arbitrary. Since Mρ has positive measure, there exists

points s̃1 < s̃2 < . . . < s̃2k ∈ Mρ and, by construction of M , there holds

t̂(s̃2i) < t̂(s̃2(i+1)) ∀ i = 1, ..., k − 1.

Therefore, if we define si := s̃2i, i = 1, ..., k, then s1 < s2 < . . . < sk ∈ Mρ holds

true as well as t̂(s1) < t̂(s2) < . . . < t̂(sk). Thus we obtain

(3.7) δk := min
i=1,...,k−1

t̂(si+1)− t̂(si)

4
> 0 and µk := min

i=1,...,k−1

si+1 − si
4

> 0.

Next we verify that for all i = 1, ..., k

(3.8) ∀ ϵ > 0 ∃ n̄i(ϵ) ∈ N ∀n ≥ n̄i(ϵ) : λ(Mn ∩Bϵ(si)) > 0,

which allows us to choose sni ∈ Bϵ(si) with ℓ̂n(s
n
i ) = ℓn(t̂n(s

n
i )). Assuming that

(3.8) is not valid implies the existence of an ϵ > 0 and a subsequence (nj)j∈N
such that λ(Mnj

∩ Bϵ(si)) = 0 for all j ∈ N. Then, by the definition of Mnj
, we

obtain for all s ∈ Bϵ(si) \ Mnj an interval Is ∋ s with t̂nj = const. on Is. As
λ(Mnj

∩ Bϵ(si)) = 0, such an interval exists for almost all s ∈ Bϵ(si) and thus,
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as t̂nj
is absolutely continuous, t̂nj

is constant on Bϵ(si). Along with the uniform

convergence t̂nj → t̂, this implies

t̂
(
si −

ϵ

2

)
= lim

j→∞
t̂nj

(
si −

ϵ

2

)
= lim

j→∞
t̂nj

(
si +

ϵ

2

)
= t̂

(
si +

ϵ

2

)
,

which contradicts si ∈ Mρ ⊂ M so that (3.8) is indeed true.
Therefore, if we now choose ϵ = ϵk := min{δk, µk} in (3.8), we obtain for all

n ≥ n̄k = max{n̄i(ϵk) : i = 1, . . . , k}, with n̄i(ϵk) from (3.8), and all i = 1, . . . , k a
point sni ∈ (Bϵk(si) ∩Mn) \Nn, which implies

(3.9) ℓ̂n(s
n
i ) = ℓn(t̂n(s

n
i )) ∀n ≥ n̄k

by the definition of Mn and Nn. Note that Nn has measure zero. Together with
(3.9), the triangle inequality gives

(3.10)
k∑

i=1

∥ℓ̂n(si)−ℓn(t̂(si))∥ ≤
k∑

i=1

∥ℓn(t̂n(sni ))−ℓn(t̂(si))∥+
k∑

i=1

∥ℓ̂n(sni )− ℓ̂n(si)∥

for all n ≥ n̄k.
Let us estimate the expressions on the right hand side of (3.10). We already know

that the limit t̂ satisfies t̂ ∈ W 1,∞(0, S) and hence it is Lipschitz continuous with
constant L > 0 on [0, S]. Below we will see that t̂ and ẑ satisfy the normalization
condition in (2.3) and thus, the Lipschitz constant of t̂ is less or equal one. Moreover,
due to the compact embedding W 1,∞(0, S) ↪→ C([0, S]), t̂n converges uniformly to t̂
in [0, S] and hence there exists an index ñk ∈ N such that sups∈[0,S] |t̂n(s)−t̂(s)| < δk
for all n ≥ ñk. Together with the Lipschitz continuity of t̂ with constant one and
sni ∈ Bϵk(si) ⊂ Bδk(si) for n ≥ n̄k, this results in

(3.11) |t̂n(sni )− t̂(si)| ≤ |t̂n(sni )− t̂(sni )|+ |t̂(sni )− t̂(si)| < 2δk.

for all n ≥ nk := max{n̄k, ñk}. In view of the definition of δk in (3.7), this estimate
implies that the intervals [min{t̂n(sni ), t̂(si)},max{t̂n(sni ), t̂(si)}], i = 1, . . . , k, do
not overlap and consequently

(3.12)

k∑
i=1

∥ℓn(t̂n(sni ))− ℓn(t̂(si))∥ ≤ Var(ℓn; [0, T ]) ∀n ≥ nk.

Similarly, because of sni ∈ Bϵk(si) ⊂ Bµk
(si) and the definition of µk in (3.7), the

intervals [min{sni , si},max{sni , si}], i = 1, ..., k, do not overlap and therefore

(3.13)

k∑
i=1

∥ℓ̂n(sni )− ℓ̂n(si)∥ ≤ Var(ℓ̂n; [0, S]) ∀n ≥ nk.

In view of the boundedness of (Var(ℓn; [0, T ]))n and (Var(ℓ̂n; [0, S]))n by assump-
tion, inserting (3.12) and (3.13) in (3.10) yields

k∑
i=1

∥ℓ̂n(si)− ℓn(t̂(si))∥ ≤ Var(ℓn; [0, T ]) + Var(ℓ̂n; [0, S]) ≤ C ∀n ≥ nk.

with C > 0 independent of n and k. Now using the pointwise convergences of ℓ̂n, ℓn
by (3.5) and passing to the limit n → ∞ results in

k∑
i=1

∥ℓ̂(si)− ℓ(t̂(si))∥ ≤ C.
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On account of si ∈ Mρ, however, the left hand side is larger than k ρ and, as k
was arbitrary, passing to the limit k → ∞ finally leads to the desired contradiction.
Hence, G as defined in (3.6) has indeed measure zero and consequently (3.1) is
valid.

Proving the remaining conditions (2.1)–(2.4) for the limit (S, t̂, ẑ, ℓ̂) is along the
lines of the proof of stability for normalized, p-parametrized BV solutions for prob-
lems with smooth external loads, see e.g. [9, Sec. 5]. However, for convenience of
the reader, we present the arguments in detail.

3. Initial and end time condtion, monotony of t̂
Since the set {f ∈ L∞(0, S) : f(s) ≥ 0 f.a.a. s ∈ (0, S)} is weakly* closed, the limit
fulfills t̂′(s) ≥ 0 a.e. in (0, S). Moreover, as already used before, W 1,∞(0, S;Rd)
embeds compactly into C(0, S;Rd) and therefore, (t̂n)n∈N and (ẑn)n∈N converge
uniformly. Therefor, t̂(0) = 0 as well as t̂(S) = limn→∞ t̂n(Sn) = T and ẑ(0) =
limn∈N ẑn(0) = z0 hold true so that (2.1) is fulfilled.

4. Energy equality
Let s1, s2 ∈ [0, S] be given. Due to the pointwise convergence of ẑn → ẑ and the
continuity of E , we have E(ẑn(si)) → E(ẑ(si)), i = 1, 2. Along with the the lower
semi-continuity of p(·, ·) according to [8, Lemma 3.1], it follows that

(3.14)

E(ẑ(s2)) +
∫ s2

s1

R(ẑ′(r)) + ∥ẑ′(s)∥ dist(−DzÎ(r, ẑ(r)), ∂R(0)) dr

= E(ẑ(s2)) +
∫ s2

s1

p(ẑ′(r),−DzÎ(r, ẑ(r))) dr

≤ lim inf
n→∞

(
E(ẑn(s2)) +

∫ s2

s1

p(ẑ′n(r),−DzÎn(r, ẑn(r))) dr
)

≤ lim sup
n→∞

(
E(ẑn(s2)) +

∫ s2

s1

p(ẑ′n(r),−DzÎn(r, ẑn(r))) dr
)

≤ lim sup
n→∞

(
E(ẑn(s1)) +

∫ s2

s1

⟨ℓ̂n(r), ẑ′n(r)⟩ dr
)

= E(ẑ(s1)) +
∫ s2

s1

⟨ℓ̂(r), ẑ′(r)⟩ dr,

where we exploited the strong convergence ℓ̂n → ℓ in L2(0, S;Rd) by the com-
pactness of BV(0, S;Rd) ↪→ L2(0, S;Rd) and the weak* convergence ẑ′n ⇀∗ ẑ′ in
L∞(0, S;Rd) in the last step. Because the opposite inequality is always fulfilled by
Lemma B.1, we end up with equality and since s1, s2 ∈ [0, S] were arbitrary, (2.4)
is shown.

5. Complementary condition

The convergences ℓ̂n → ℓ̂ in L2(0, S;Rd) and ẑn ⇀∗ ẑ in W 1,∞(0, S;Rd) lead to

DzÎn(·, ẑn(·)) → DzÎ(·, ẑ(·)) in L2(0, S;Rd) and, by Lipschitz-continuity of the
distance, we obtain

dist
(
−DzÎn(·, ẑn(·)), ∂R(0)

)
→ dist

(
−DzÎ(·, ẑ(·)), ∂R(0)

)
in L2(0, S).
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Together with the weak* convergence t̂′n ⇀∗ t̂′ in L∞(0, S), this results in∫ S

0

t̂′(r) dist(−DzÎ(r, ẑ(r)), ∂R(0))dr

= lim
n→∞

∫ S

0

t̂′n(r) dist(−DzÎn(r, ẑn(r)), ∂R(0))dr = 0

such that t̂′(s) dist(−DzÎ(s, ẑ(s)), ∂R(0)) = 0 for almost all s ∈ (0, S) due to the
non-negativity of the integrand.

6. Normalization
The pointwise convergence E(ẑn(·)) → E(ẑ(·)) in combination with the fact that all
inequalities in (3.14) hold true with equality yields for all s1, s2 ∈ [0, S] that

s2 − s1 =

∫ s2

s1

t̂′n(r) + p(ẑ′n(r),−DzÎn(r, ẑn(r))) dr

→
∫ s2

s1

t̂′(r) + p(ẑ′(r),−DzÎ(r, ẑ(r))) dr as n → ∞.

Thus, assuming the existence of a Lebesgue measurable set E ⊂ (0, S) with t̂′(s) +

p(ẑ′(s),−DzÎ(s, ẑ(s))) > 1 for almost all s ∈ E and λ(E) > 0 gives for every finite
union U ⊂ [0, S] of pairwise disjoint intervals with E ⊂ U

λ(U) =

∫
U

t̂′(r) + p(ẑ′(r),−DzÎ(r, ẑ(r))) dr ≥
∫
E

t̂′(r) + p(ẑ′(r),−DzÎ(r, ẑ(r))) dr

≥ λ(E) + ε

for an ε > 0, only depending on E and not on U , which contradicts the regularity
of the Lebesgue measure. Similarly t̂′(s) + p(ẑ′(s),−DzÎ(s, ẑ(s))) < 1 for almost
all s ∈ E with λ(E) > 0 would imply

S =

∫ S

0

t̂′(r) + p(ẑ′(r),−DzÎ(r, ẑ(r))) dr

=

∫
E

t̂′(r) + p(ẑ′(r),−DzÎ(r, ẑ(r))) dr +
∫
(0,S)\E

t̂′(r) + p(ẑ′(r),−DzÎ(r, ẑ(r))) dr

< λ(E) + λ((0, S) \ E) = S.

Hence, we have t̂′(·) + p(ẑ′(·),−DzÎ(·, ẑ(·))) = 1 a.e. (0, S), which is (2.3). □

A stability result of the form of Theorem 3.4 is of course useful in many regards.
As a potential application, we consider the following optimal control problem

(3.15)

{
min J(S, ẑ, ℓ) := j(ẑ(S)) + β ∥ℓ∥BV ([0,T ];Rd)

s.t. ℓ ∈ BV ([0, T ];Rd), (S, t̂, ẑ, ℓ̂) ∈ L(ℓ), ∥ℓ̂∥BV ([0,S];Rd) ≤ K,

where

L(ℓ) :=
{
(S, t̂, ẑ, ℓ̂) ∈ [T,∞)×W 1,∞(0, S)×W 1,∞(0, S;Rd)×BV ([0, S];Rd) :

(S, t̂, ẑ, ℓ̂) is a relaxed solution associated with ℓ
}
.

Furthermore, β > 0 and K > T∥ℓ0∥ a given constants. The function j : Rd → R in
the objective is supposed to be continuous and bounded from below. By means of
Theorem 3.4 we can now prove the following result.
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Corollary 3.5. There exists at least one globally optimal solution

(S∗, t̂∗, ẑ∗, ℓ̂∗, ℓ∗)

∈ [T,∞)×W 1,∞(0, S∗)×W 1,∞(0, S∗;Rd)×BV ([0, S∗];Rd)×BV ([0, T ];Rd)

of (3.15).

Proof. Based on Theorem 3.4, the proof follows standard arguments. Due to the

assumption −Az0 − F(z0) + ℓ0 ∈ ∂R(0), the constant functions ẑ ≡ z0 and ℓ̂ ≡ ℓ0
together with t̂ = id and S = T generate a normalized, p-parametrized BV solution
associated with ℓ ≡ ℓ0 in the sense of Definition 2.1. Thus it is also a relaxed solution
associated with ℓ ≡ ℓ0. Moreover, ℓ̂ trivially satisfies the boundedness condition in
the constraints. Therefore, the feasible set of (3.15) is non-empty and we obtain an

infimal sequence (Sn, t̂n, ẑn, ℓ̂n, ℓn) such that J(Sn, ẑn, ℓn) → J∗, where

J∗ := inf
{
J(S, ẑ, ℓ) : ℓ ∈ BV ([0, T ];Rd), (S, t̂, ẑ, ℓ̂) ∈ L(ℓ), ∥ℓ̂∥BV ([0,S];Rd) ≤ K

}
.

Since j is bounded from below, the sequence (ℓn)n is bounded in BV ([0, T ];Rd).

Moreover, according the constraints, the sequence (∥ℓ̂n∥BV ([0,Sn];Rd))n is also bounded.
Therefore Theorem 3.4 gives the existence of a subsequence converging to a limit

(S∗, t̂∗, ẑ∗, ℓ̂∗, ℓ∗) such that (S∗, t̂∗, ẑ∗, ℓ̂∗) ∈ L(ℓ∗) in the sense of (3.3)–(3.5). Now,
given an arbitrary partition {tk} of [0, T ], the pointwise convergence of ℓn from
(3.5) implies∑

k

∥ℓ(tk)− ℓ(tk−1)∥ = lim
n→∞

∑
k

∥ℓn(tk)− ℓn(tk−1)∥ ≤ lim inf
n→∞

Var(ℓn; [0, T ]).

Since {tk} was arbitrary, the total variation is thus lower semicontinuous w.r.t.
pointwise convergence and so is the norm in BV ([0, T ];Rd) and BV ([0, S];Rd),
respectively. Thus the bound on the BV ([0, S];Rd)-norm readily carries over to

the limit ℓ̂∗ giving its feasibility. Finally, the compact embedding W 1,∞(0, S∗) ↪→
C([0, S∗]) yields ẑn → ẑ∗ uniformly so that exploiting the continuity of j and
the lower semi-continuity of the BV ([0, T ];Rd)-norm results in J(S∗, ẑ∗, ℓ∗) ≤
lim infn→∞ J(Sn, ẑn, ℓn) = J∗, which means (S∗, t̂∗, ẑ∗, ℓ̂∗, ℓ∗) is an optimal solution
of (3.15). □

4. Physical plausibility of the relaxed solution concept

4.1. Relation to local solutions. In order to classify our relaxed solution con-
cept, we compare it with the concept of a local solution, which is one of the weakest
solution concepts imposing less conditions on a solution compared to the other
concepts. In our finite dimensional setting with loads in BV , this solution concept
reads as follows:

Definition 4.1. Let ℓ ∈ BV ([0, T ];Rd) be given. We call z ∈ BV ([0, T ];Rd) a local
solution of (1.1) associated with ℓ, if

0 ∈ ∂R(0) +DzI(t, z(t)) f.a.a. t ∈ [0, T ](4.1)

I(t2, z(t2)) + DissR(z; [t1, t2])

≤ I(t1, z(t1))−
∫ t2

t1

z(r) dℓ(r) ∀ 0 ≤ t1 ≤ t2 ≤ T,

(4.2)
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where

(4.3)

DissR(z; [t1, t2]) :=

sup
{ k∑

i=1

R(z(ξi)− z(ξi−1))
∣∣ t1 = ξ0 < ξ1 < · · · < ξn = t2, n ∈ N

}
and the integral on the left hand side is to be understood as a Kurzweil integral.

Remark 4.2. For external loads ℓ ∈ H1(0, T ;Rd), the Kurzweil integral in (4.2)

can be converted into the Lebesgue integral
∫ t2
t1
⟨z(r), ℓ′(r)⟩dr, cf. [6, Prop. 1.10], so

that the above definition coincides with [10, Def. 3.3.2].

We underline that the subadditivity of R implies that

(4.4) DissR(z; [t1, t2]) = DissR(z; [0, t2])−DissR(z; [0, t1]),

for all 0 ≤ t1 ≤ t2 ≤ T provided that z is continuous in t1. In order to compare our
solution concept with the concept of local solutions, we have to translate a relaxed
solution into physical time. For this purpose, assume that we are given a relaxed

solution (S, t̂, ẑ, ℓ̂). Then we define the set of projections of (t̂, ẑ) as

(4.5)
P(t̂, ẑ) :=

{z : [0, T ] → Rd : ∀ t ∈ [0, T ] ∃ s ∈ [0, S] with (t, z(t)) = (t̂(s), ẑ(s))}.

Note that P consists of all functions z : [0, T ] → Rd, whose graph is subset of the
solution trajectory [0, S] ∋ s 7→ (t̂(s), ẑ(s)). The following theorem correlates local
with relaxed solutions.

Theorem 4.3. Let ℓ ∈ BV ([0, T ];Rd) and local solution z ∈ BV ([0, T ];Rd) be
given. Furthermore, we assume that R is symmetric, i.e.,

(4.6) R(z1) = R(z2) ⇐⇒ ∥z1∥ = ∥z2∥ ∀ z1, z2 ∈ Rd,

and z (and its representative fulfilling (4.1)–(4.2), respectively) only admits a finite

number of jumps. Then there exists a parametrization and ℓ̂ ∈ BV ([0, S];Rd) such

that (S, t̂, ẑ, ℓ̂) is a relaxed solution and z ∈ P(t̂, ẑ).

Proof. 1. Construction and regularity of t̂ and ẑ
Throughout the proof, we always consider the representative of z satisfying (4.1)–
(4.2) and denote it by the same symbol for convenience. We first need to construct
a suitable parametrization s 7→ (t̂(s), ẑ(s)) of the solution trajectory as a candidate
for a relaxed solution. In the literature on p-parametrized BV solutions, given a
solution in physical time, the parametrized solution ẑ is frequently designed in
jumps in such a way that the dissipative distance is minimized. More precisely, if
t ∈ [0, T ] is a jump point between the values z1 and z2, then ẑ is constructed by
means of the minimizer of

(4.7)

 min

∫ 1

0

p(v′(r),−DzI(t, v(r)))dr

s.t. v ∈ W 1,1(0, 1;Rd), v(0) = z1, v(1) = z2,

cf. [10, Sec. 3.8.2]. Here, we pursue a different strategy. Since, in the relaxed solu-

tion concept, ℓ̂ is an additional variable in jumps, we have certain freedom in the
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choice of ẑ. This allows us to use a simpler construction of ẑ and the associated
parametrization. For this purpose, let us define the following modified dissipation

(4.8) Diss0(z; [0, t]) := R(z(0+)− z0) + DissR(z; [0+, t])

taking into account potential jumps at the initial time. Note that the local solution
need not satisfy the initial condition. Given Diss0, we set

(4.9) s : [0, T ] → [0, S], s(t) :=

{
0, t = 0,

t+Diss0(z; [0, t]), t ∈ (0, T ],

where S := s(T ). Note that, by (1.11),

DissR(z; [0, T ]) ≤ C Var(z; [0, T ]) < ∞,

so that S is finite. Let us investigate the regularity of s. We denote the jump points of
z that are greater zero by 0 < t1 < t2 < . . . < tN ≤ T and set J(z) := {t1, . . . , tN}.
According to its definition, DissR(z; [0+, · ]) is continuous in intervals of continuity
of z, i.e., (tn, tn+1) with tn, tn+1 ∈ J(z), n = 1, . . . , N , as it inherits its continuity
from z there. Thus, by construction, the jump points of s are J(s) := {0, t1, . . . , tN},
if z(0+) ̸= z0, and J(s) = J(z) otherwise. In the remaining intervals however, i.e.,
in (0, t1), (t1, t2), ..., (tN−1, tN ), (tN , T ), the function s is continuous. Moreover,
the non-negativity of R implies that s is strictly increasing and hence invertible.
We denote its inverse function as

t̂ : [0, S] \
N⋃

n=0

In → [0, T ] \ J(s)

with

(4.10) I0 := [0,R(z(0+)− z0)] and In := [s(tn−), s(tn+)].

Then t̂ is monotonously increasing as an inverse function of an increasing function.
Furthermore, t̂ is Lipschitz-continuous with Lipschitz constant L ≤ 1 on all intervals

of [0, S] \
⋃N

n=0 In, since (4.9) and (4.4) give for s1 < s2 from such an interval that

(4.11)
0 ≤ t̂(s2)− t̂(s1) = s2 − s1 −

(
Diss0(z; [0, t̂(s2)])−Diss0(z; [0, t̂(s1)])

)
= s2 − s1 −DissR(z; [t̂(s1), t̂(s2)]) ≤ s2 − s1.

Therefore, after constant continuation on all In, n = 0, ..., N , i.e.,

t̂(s) = 0 ∀ s ∈ I0, t̂(s) = tn ∀ s ∈ In, n = 1, . . . , N,

the function t̂ is Lipschitz-continuous with Lipschitz constant L ≤ 1. So there
holds t̂ ∈ W 1,∞(0, S), i.e., the required regularity of t̂, and t̂′(s) ≥ 0 for almost all
s ∈ (0, S), i.e., the sign condition in (2.2). Moreover, by construction of t̂, we obtain
that M , the set where t̂ is strictly increasing, see (3.2), is given by

(4.12) M = (0, S) \
N⋃

n=0

In =:

M⋃
m=1

Gm,

where Gm ⊂ (0, S) are open intervals.
Given t̂, we define ẑ as composition of z and t̂ in the parts, where z is continuous

and in jumps we choose ẑ as the linear function that connects the left-hand and
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right-hand limits of z such that ẑ reads

(4.13) ẑ(s) :=



z(t̂(s)), s ∈ (0, S] \
⋃N

n=0 In,

z(tn−) + z(tn)−z(tn−)
s(tn)−s(tn−) (s− s(tn−)), s ∈ I−n ,

z(tn) +
z(tn+)−z(tn)
s(tn+)−s(tn)

(s− s(tn)), s ∈ I+n ,

z0 +
z(0+)−z0

R(z(0+)−z0)
s, s ∈ I0,

where I−n := [s(tn−), s(tn)], I
+
n := [s(tn), s(tn+)], and I0 as defined in (4.10). Note

that, by construction, ẑ(0) = z0, i.e., ẑ satisfies the initial condition in (2.1). Next
we show that ẑ constructed in this way is Lipschitz continuous, too. Let us first
consider an arbitrary interval Gm and let s1, s2 ∈ Gm with s1 < s2 be arbitrary.
Then, by definition of Gm, z is continuous on [t̂(s1), t̂(s2)] and thus, similarly to
(4.11), the construction of s in (4.9) yields

s(t̂(s2))− t̂(s2)− s(t̂(s1)) + t̂(s1) = DissR(z; [t̂(s1), t̂(s2)]).(4.14)

With this at hand, assumption (1.11) and the construction of ẑ in (4.13) yield

(4.15)

c ∥ẑ(s2)− ẑ(s1)∥ ≤ R(ẑ(s2)− ẑ(s1))

≤ DissR(ẑ; [s1, s2])

= DissR(z; [t̂(s1), t̂(s2)])

= s2 − t̂(s2)− s1 + t̂(s1) ≤ s2 − s1,

where we exploited the monotonicity of t̂ in the last estimate. Next let us consider
an arbitrary interval I−n and arbitrary points s1, s2 ∈ I−n . Using the definition of s
in (4.9) and Diss0 in (4.8) and again (4.4), one obtains

(4.16)
s(tn)− s(tn−) = DissR(z; [0, tn])−DissR(z; [0, tn−])

= R(z(tn)− z(tn−)).

Together with the construction of ẑ in jumps according to (4.13), this gives

(4.17)

∥ẑ(s2)− ẑ(s1)∥ =
∥z(tn)− z(tn−)∥
s(tn)− s(tn−)

|s2 − s1|

≤ ∥z(tn)− z(tn−)∥
R(z(tn)− z(tn−))

|s2 − s1| ≤
1

c
|s2 − s1|,

where we again used (1.11) for the last estimate. Completely analogously, one de-
rives the same estimate for arbitrary s1, s2 ∈ I+n . In I0, we similarly obtain

∥ẑ(s2)− ẑ(s1)∥ =
∥z(0+)− z0∥
R(z(0+)− z0)

|s2 − s1| ≤
1

c
|s2 − s1| ∀ s1, s2 ∈ I0.

Since ẑ is additionally continuous by construction, see (4.13), this estimate to-
gether with (4.15) and (4.17) implies that ẑ is Lipschitz-continuous on [0, S] with
Lipschitz constant 1/c. Consequently, we obtain the desired regularity of a relaxed
solution, i.e., ẑ ∈ W 1,∞(0, S;Rd). Furthermore, t̂, ẑ are constructed in such a way
that z ∈ P(t̂, ẑ).

2. Complementary, normalization, and energy identity outside of jumps

Now that we have defined t̂ and ẑ, we still need to define ℓ̂ outside the set M so

that (2.2)–(2.4) are fulfilled. On M, however, ℓ̂ is fixed by (3.1) and set to ℓ̂ = ℓ ◦ t̂.
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To show (2.2), let us assume by contrary that there exists a set E ⊂ M of positive
measure such that

(4.18) dist(−DzÎ(s, ẑ(s)), ∂R(0)) > 0 a.e. in E.

For the image of E under t̂, we obtain |t̂(E)| =
∫
E
|t̂′(s)| ds > 0, since t̂ is Lipschitz

continuous and monotonically increasing onM . Then, in view of ẑ = z◦t̂ and ℓ̂ = ℓ◦t̂
and the definition of Î in (1.7), (4.18) implies dist(−DzI(t, z(s)), ∂R(0)) > 0 a.e.
in t̂(E), which contradicts (4.1). Thus we obtain

(4.19) dist(−DzÎ(s, ẑ(s)), ∂R(0)) = 0 f.a.a. s ∈ M

Moreover, due to constant continuation outside of M , there holds t̂′(s) = 0 for

almost all s ∈ (0, S) \M and hence, (2.2) is valid independent of the choice of ℓ̂ on
(0, S) \M .

Next we show that (2.3) is satisfied almost everywhere on M . By exploiting
(4.19), this is

t̂′(s) +R(ẑ′(s)) = 1 f.a.a. s ∈ M.(4.20)

Because M is a finite union of intervals, see (4.12), this is in turn equivalent to∫ s2

s1

t̂′(r) +R(ẑ′(r))dr = s2 − s1 ∀ s1, s2 ∈ Gm, m = 1, . . . ,M.(4.21)

Using (4.14) and Lemma A.1 yield for arbitrary s1, s2 ∈ Gm∫ s2

s1

t̂′(r) +R(ẑ′(r))dr = t̂(s2)− t̂(s1) + DissR(ẑ; [s1, s2])

= t̂(s2)− t̂(s1) + DissR(z; [t̂(s1), t̂(s2)])

= s(t̂(s2))− s(t̂(s1))

= s2 − s1,

which is (4.21) such that (2.3) indeed holds a.e. in M .
Concerning the energy identity in (2.4), take an arbitrary interval Gm and let

s1, s2 ∈ Gm, s1 < s2, be arbitrary, too. By definition of ẑ in (4.13), there holds
ẑ = z ◦ t̂ in Gm and therefore, the energy inequality (4.2) with t1 = t̂(s1) and
t2 = t̂(s2) yields

(4.22)

I(t̂(s2), ẑ(s2)) + DissR(ẑ; [s1, s2])− I(t̂(s1), ẑ(s1))
= I(t̂(s1), z(t̂(s2))) + DissR(z; [t̂(s1), t̂(s2)])− I(t̂(s1), z(t̂(s1)))

≤ −
∫ t̂(s2)

t̂(s1)

z(t) dℓ(t)

= −
∫ s2

s1

(z ◦ t̂)(r) d(ℓ ◦ t̂)(r) = −
∫ s2

s1

ẑ(r) dℓ̂(r),

where we used the change of variables formula for Kurzweil integrals from [2, Thm.

6.1], which is applicable due to the continuity of t̂. Note that we again used ℓ̂ = ℓ◦ t̂
in Gm ⊂ M . For the dissipation, Lemma A.1 along with (4.19) yields

(4.23) DissR(ẑ; [s1, s2]) =

∫ s2

s1

R(ẑ′(r)) + ∥ẑ′(r)∥ dist(−DzÎ(r, ẑ(r)), ∂R(0)) dr.
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Since ẑ ∈ W 1,∞(0, S;Rd), we are allowed to apply the formula of integration by
parts according to [6, Prop. 1.12] to the Kurzweil integral on the right hand side of
(4.22), which results in

−
∫ s2

s1

ẑ(r) dℓ̂(r) =

∫ s2

s1

⟨ℓ̂(r), ẑ′(r)⟩ dr + ⟨ℓ̂(s2), ẑ(s2)⟩ − ⟨ℓ̂(s1), ẑ(s1)⟩,

where we have already rewritten the Kurzweil integral on the right hand side as a
Lebesgue integral according to [6, Prop. 1.10] and the regularity of ẑ. Inserting this
together with (4.23) in (4.22) implies in view of the definition of E in (1.6) that

(4.24)
E(ẑ(s2)) +

∫ s2

s1

R(ẑ′(r)) + ∥ẑ′(r)∥ dist(−DzÎ(r, ẑ(r)), ∂R(0)) dr

≤ E(ẑ(s1)) +
∫ s2

s1

⟨ℓ̂(r), ẑ′(r)⟩ dr,

Lemma B.1 yields that (4.24) is even satisfied with equality and thus, we obtain
the desired energy identity for arbitrary s1, s2 ∈ Gm.

3. Construction of ℓ̂ in jumps

To motivate our definition of ℓ̂ in jumps, let us take a closer look at the connection of
the normalization condition (2.3) and the energy identity in jumps. As t̂ is constant
there, (2.3) reads

(4.25) R(ẑ′(s)) + ∥ẑ′(s)∥dist(−DzÎ(s, ẑ(s)), ∂R(0)) = 1 f.a.a. s ∈
N⋃

n=0

In.

The term on the left hand side is exactly the expression that also arises in the energy
identity. So, if we consider an arbitrary jump interval In and arbitrary s1, s2 ∈ In
and if we suppose that ℓ̂ is chosen in In such that (4.25) holds, then the energy
identity in (2.4) becomes

s2 − s1 =

∫ s2

s1

R(ẑ′(r)) + ∥ẑ′(r)∥ dist(−DzÎ(r, ẑ(r)), ∂R(0)) dr

= E(ẑ(s1))− E(ẑ(s2)) +
∫ s2

s1

⟨ℓ̂(r), ẑ′(r)⟩ dr (by (2.4))

= −
∫ s2

s1

⟨DzE(ẑ(t)), ẑ′(t)⟩ dt+
∫ s2

s1

⟨ℓ̂(r), ẑ′(r)⟩ dr

= −
∫ s2

s1

⟨DzÎ(r, ẑ(r)), ẑ′(r)⟩ dr,

where we used the definition of Î in (1.7). Since this equality must hold for every

s1, s2 ∈ In, provided that ℓ̂ is such that the energy identity holds, we see that ℓ̂
satisfying the normalization condition (4.25) fulfills the energy identity, if and only
if

(4.26) ⟨DzÎ(s, ẑ(s)), ẑ′(s)⟩+ 1 = 0 f.a.a. s ∈
N⋃

n=0

In.

To summarize, in order to ensure (2.3) and (2.4) to hold in jumps, we must construct

ℓ̂ such that (4.25) and (4.26) are fulfilled. In view of Î(z) = 1
2 ⟨Az, z⟩+F(z)−⟨ℓ̂, z⟩,
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(4.26) leads to the natural choice

(4.27) ℓ̂(s) := Aẑ(s) +DzF(ẑ(s)) +
ẑ′(s)

∥ẑ′(s)∥2
∀ s ∈

N⋃
n=0

I̊n ,

as (4.26) and thus the energy identity are trivially fulfilled then. Note that ẑ′(s) is

constant and different from zero in
⋃N

n=0 I̊n such that ℓ̂(s) is well defined and due to
the regularity of ẑ an element of W 1,∞(In;Rd) for all n = 0, ..., N . Note moreover

that I̊n = ∅, if ẑ′ vanishes there. It remains to prove (4.25) for (t̂, ẑ) together with ℓ̂
as defined in (4.27). For that purpose, let us investigate the dissipation functional
in the jumps. As seen in (4.16), in a jump point tn, there holds R(z(tn)−z(tn−)) =
s(tn)−s(tn−) and completely analogously, one shows R(z(tn+)−z(tn)) = s(tn+)−
s(tn). Using the monotonicity of s along with the positive 1-homogeneity of R and
the structure of ẑ in the jump parts I−n , I+n , see (4.13), this implies

(4.28) R(ẑ′(s)) = R
(
z(tn)− z(tn−)

s(tn)− s(tn−)

)
= 1 ∀ s ∈ I−n

as well as

(4.29) R(ẑ′(s)) = R
(
z(tn+)− z(tn)

s(tn+)− s(tn)

)
= 1 ∀ s ∈ I+n ,

while, on I0, we have by construction of ẑ in (4.13) that R(ẑ′(s)) = 1 for all s ∈ I0.

Now let s ∈
⋃N

n=0 I̊n be arbitrary. Inserting (1.7) in the left hand side in (4.25) and
employing Lemma B.2 yield

R(ẑ′(s)) + ∥ẑ′(s)∥dist(−DzÎ(s, ẑ(s)), ∂R(0))

= R(ẑ′(s)) + ∥ẑ′(s)∥dist
(

ẑ′(s)

∥ẑ′(s)∥2
, ∂R(0)

)
= R(ẑ′(s)) + sup

v∈Rd,∥v∥≤∥ẑ′(s)∥

(〈 ẑ′(s)

∥ẑ′(s)∥2
, v
〉
−R(v)

)
= R(ẑ′(s)) + sup

0<α<1
α sup

v∈Rd,∥v∥=∥ẑ′(s)∥

(〈 ẑ′(s)

∥ẑ′(s)∥2
, v
〉
−R(v)

)
= R(ẑ′(s)) + sup

0<α<1
α sup

v∈Rd,∥v∥=∥ẑ′(s)∥

(〈 ẑ′(s)

∥ẑ′(s)∥2
, v
〉
−R(ẑ′(s))

)
=

〈 ẑ′(s)

∥ẑ′(s)∥2
, ẑ′(s)

〉
= 1,

where we exploited the symmetry of R by assumption, the 1-homogeneity of R, and
(4.28) and (4.29). Thus we have verified (4.25), which, together with (4.26), which

holds by construction of ℓ̂ according to (4.27), implies (2.2) and (2.4) in the jumps,
as explained above. Therefore, the energy identity (2.4) holds for all s1, s2 ∈ In,
n = 0, . . . , N , and all s1, s2 ∈ Gm, m = 1, . . . ,M , and consequently, the continuity
of ẑ implies that it holds for all s1, s2 ∈ [0, S].

4. Regularity of ℓ̂

To summarize, we have seen that with ℓ̂ defined by

(4.30) ℓ̂(s) =

{
ℓ(t̂(s)), s ∈ [0, S] \

⋃N
n=0 In,

Aẑ(s) +DzF(ẑ(s)) + ẑ′(s)
∥ẑ′(s)∥2 ,

⋃N
n=0 I̊n,

,
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all conditions of a relaxed solution from Definition 3.1 are fulfilled. It remains to
verify the required smoothness of ℓ̂. Due to ℓ ∈ BV ([0, T ];Rd) and the monotonicity
of t̂, the composition ℓ ◦ t̂ is a function in BV ([0, S];Rd). Moreover, since ẑ′ is

constant and non-zero in I̊n, Aẑ(s) + DzF(ẑ(s)) + ẑ′(s)
∥ẑ′(s)∥2 inherits the regularity

of ẑ and is therefore continuous. Thus, as a piecewise composition of finitely many

functions of bounded variation, ℓ̂ is a function of bounded variation, too, i.e., ℓ̂ ∈
BV ([0, S];Rd) as required. □

Remark 4.4. The symmetry ofR is necessary to fulfill the normalization condition

(2.3) with ℓ̂ as chosen in (4.27). This can be seen as follows. Let R : R2 → R be
defined by R(z) = 1

2 |z1| + |z2| and suppose that there is a jump interval I with

constant ẑ′ given by ẑ′(s) = (1, 1
2 )

⊤ for all s ∈ I. Then we have R(ẑ′(s)) = 1 and
ẑ′(s)

∥ẑ′(s)∥2 = ( 45 ,
2
5 )

⊤ for all s ∈ I. For the distance to ∂R(0), we thus obtain in light

of (4.27) that

dist(−DzÎ(s, ẑ(s)), ∂R(0)) = dist
( ẑ(s)

∥ẑ′(s)∥2
, [− 1

2 ,
1
2 ]× [−1, 1]

)
=

3

10
∀ s ∈ I.

Due to t̂′(s) = 0 for all s ∈ I, we end up with

t̂′(s) +R(ẑ′(s)) + ∥ẑ′(s)∥ dist(−DzÎ(s, ẑ(s)), ∂R(0)) = 1 +

√
5

4

3

10
> 1 ∀ s ∈ I

such that (2.3) is indeed violated.

Remark 4.5. The symmetry of R together with (1.9) and (1.10) automatically
implies that R is a scaled version of the norm, i.e., there exists an α ≥ 0 such
that R(·) = α∥ · ∥. This can be seen as follows. Let e ∈ Rd be a unit vector
and define α := R(e). Then, for y ̸= 0, the symmetry condition in (4.6) implies
R
(

y
∥y∥

)
= R(e) = α such that R(y) = α∥y∥ for all y ∈ Rd due to the positive

homogeneity of R.

Remark 4.6. The reason why we assume in Theorem 4.3 that z has only finitely

many jumps is to guarantee the required regularity of ℓ̂, i.e., ℓ̂ ∈ BV ([0, S];Rd).

Note that, according to (4.30), ℓ̂ is continuous except for the points in the set⋃N
n=0{s(tn−), s(tn), s(tn+)} and thus, if there are countably many of those points,

the total variation of ℓ̂ may become infinite. At least in one dimension, i.e., if

d = 1, there is however no alternative to the choice of ℓ̂ in (4.30), as it is easily seen

that this construction of ℓ̂ in the jumps is the only way to guarantee (4.26) and

equivalently the energy identity, while ℓ̂ is determined by ℓ ◦ t̂ outside the jumps.
Therefore, in order to allow for countable many jumps of z without destroying the

regularity of ℓ̂, we need to modify the construction of ẑ in the jumps. Let us again

consider the one dimensional case. If one aims to avoid a jump of ℓ̂ at s = s(tn−),
one has to choose ẑ in the jump from s(tn−) to s(tn) such that ℓ(t̂(s)) = Aẑ(s+)+

DzF(ẑ(s+)) + ẑ′(s+)
|ẑ′(s+)|2 . Thanks to the continuity of ẑ, this can be reformulated as

DzI(t̂(s), ẑ(s)) + ẑ′(s+)
|ẑ′(s+)|2 = 0, which results in the following condition for ẑ at the

beginning of the jump

(4.31) ẑ′(s+) =
−DzI(t̂(s), ẑ(s))
|DzI(t̂(s), ẑ(s))|2

,
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provided that DzI(t̂(s), ẑ(s)) ̸= 0. The condition in (4.31) will in general not be
fulfilled by the linear interpolant from (4.13), but, of course, one can find other
Lipschitz continuous functions satisfying (4.31) as well as ẑ(s(tn−)) = z(tn−)
and ẑ(s(tn)) = z(tn). However, in view of (4.27) and the required boundedness

of ℓ̂ as a function of bounded variation, ẑ′ must be bounded away from zero in
(s(tn−), s(tn)). This is however not possible, if ẑ′ is smooth and −DzI(t̂(s), ẑ(s))
and z(t̂(s))− z(t̂(s)−) have a different sign. If ẑ′ is not smooth, an additional dis-

continuity in ℓ̂ arises, cf. (4.27), contradicting again the required regularity of ℓ̂, if
this happens more than finitely many times with a jump height that does not tend

to zero sufficiently fast. All in all, we see that the construction of ℓ̂ in the presence
of countably many jumps of z is very involved and seems hardly to be possible in
general.

4.2. A second counterexample. In order to further investigate the relation be-
tween the relaxed solution concept and the notion of local solutions, let us return
to the counterexample from Section 2.1 and slightly modify it. While energy and
dissipation are left unchanged, see (2.6), we now consider

ℓn(t) =


0, t ∈ [0, 1],
n
2 t−

n
2 , t ∈ (1, 1 + 1

n ),

0, t ∈ [1 + 1
n , 2]

(4.32)

as the sequence of loads. This sequence converges pointwise everywhere to ℓ ≡ 0.
Moreover, it converges weakly∗ in BV(0, T ) to zero, too, but of course not in the
intermediate sense, since |Dℓn|(0, 2) = 1 ̸= 0 = |Dℓ|(0, 2) for all n ∈ N. The initial
state is again set to z0 = 0. By direct calculations one verifies that a relaxed solution
associated with ℓn is again given by (2.8) and (2.9) along with Sn = 5/2 and

(4.33) ℓ̂n(s) = ℓn(t̂n(s)) =


0, s ∈ [0, 1],

n
2

1+n
2
s−

n
2

1+n
2
, s ∈ (1, 3

2 + 1
n ),

0, s ∈ [ 32 + 1
n ,

5
2 ]

instead of (2.10). Note that this is not only a relaxed solution, but also a normalized
p-parametrized BV solution, as no jump occurs, i.e., t̂(s) > 0 everywhere, and both
concepts coincide in this case.

Again the limits of ẑ and t̂ (w.r.t. pointwise convergence as well as weak∗ con-

vergence in W 1,∞(0, S)) are given by the functions in (2.11), but ℓ̂n now converges
to

(4.34) ℓ̂(s) =


0, s ∈ [0, 1],

s− 1, s ∈ (1, 3
2 ),

0, s ∈ [ 32 ,
5
2 ].

We observe that ℓ̂ is the pointwise limit and the limit w.r.t. intermediate conver-
gence. Again, the limit is no normalized, p-parametrized BV solution associated

with ℓ, since ℓ̂ from (4.34) is not compatible with ℓ ≡ 0 in the viscous jump (1, 3
2 )

according to the condition in (2.5). However, as all other requirements in Defini-

tion 2.1 are satisfied, i.e., (2.1)–(2.4), and, since ℓ̂ = ℓ ◦ t̂ in M = (0, 5
2 ) \ (1,

3
2 ), the

limit is indeed a relaxed solution in accordance with our findings in Theorem 3.4.

Note in this context that ℓ̂ and ẑ satisfy (4.27) in the viscous jump (1, 3
2 ).
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Let us now consider the example in physical time. Here we observe that zn ∈
W 1,∞(0, 2), defined by

zn(t) =


0, t ∈ [0, 1],
n
2 t−

n
2 , t ∈ (1, 1 + 1

n ),
1
2 , t ∈ [1 + 1

n , 2],

,(4.35)

satisfies (1.1) a.e. in (0, 2), where energy and dissipation are given by (2.6) and ℓn
is as defined in (4.32). Thus, zn is even a differentiable solution and consequently
a local solution, too. Due to the uniform convexity of the energy in (2.6), the
differential solution is unique (if it exists). Therefore, the only differential solution
associated with the limit ℓ ≡ 0 is z ≡ 0. As the initial state z0 = 0 is locally stable,
this is the only physically meaningful solution in the absence of external loading.
But the sequence in (4.35) converges pointwise to

(4.36) z̃(t) =

{
0, t ∈ [0, 1]
1
2 t ∈ (1, 2].

This function however is not even a local solution, since the energy inequality (4.2)
is not fulfilled. To see this, observe that, for every t2 > 1, we obtain

(4.37)
1

8
= I(t2, z̃(t2)) + DissR(z̃; [0, t2]) > I(0, z̃(0))−

∫ t2

0

z̃(r) dℓ(r) = 0.

A graphic interpretation of this observation is as follows: Due to the external force
ℓn, the state zn is raised to a higher energy level. As n is increased, this shifting
is accelerated such that, in the limit, the state remains on the higher energy level
although the load vanishes. As a consequence, this increase of energy is not com-
pensated by ℓ and the energy inequality is violated. This example shows that not
only the notion of normalized p-parametrized BV solutions, but even the concept
of local solutions is not stable w.r.t. a sequence of loads converging weakly∗ in
BV(0, T ).

Moreover, it can be shown that the differential solution from (4.35) is also a
global energetic solution. For the precise definition of this solution concept see [10,
Definition 2.1.2]. Since every global energetic solution is automatically a local so-
lution, the above passage to the limit shows that the concept of global energetic
solutions is not stable w.r.t. weak∗ convergence of the loads, too. In summary, we
see that the relaxed solution concept is the only one which is stable w.r.t. weak∗
convergence of loads.

Let us finally investigate if there is another local solution that coincides with the
limit (ẑ, t̂) in the sense that z̄ ∈ P(t̂, ẑ), cf. (4.5). For this purpose, we transform
the limit ẑ back into physical time, which yields

z̄(t) ∈ ẑ(t̂−1(t)) =


0, t ∈ [0, 1),

[0, 1
2 ], t = 1,

1
2 , t ∈ (1, 2],

where t̂−1 is the set-valued inverse of t̂. Thus, for every z̄ ∈ P(t̂, ẑ), the inequality
in (4.37) holds true, which shows that no element of P(t̂, ẑ) is a local solution. Even

if we consider a modified load corresponding to the transformation of ℓ̂ from (4.34)
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into physical time, i.e.,

ℓ̄(t) ∈ ℓ̂(t̂−1(t)) =

{
0, t ̸= 1.

[0, 1
2 ], t = 1,

the inequality in (4.37) will still be valid, since the Kurzweil integral on the right
side of (4.37) is always zero, no matter how one chooses ℓ̄ in t = 1, see [20, Corollary

2.14]. This shows that, in general, one cannot interpret a relaxed solution (S, t̂, ẑ, ℓ̂)
as a local solution.

The above example illustrates the following: the price one has to pay for a solu-
tion concept that is stable w.r.t. weak∗ convergence of the loads is that “solutions”
are allowed that are not meaningful from a physical perspective. As already men-
tioned, the only reasonable solution of (1.1) without external loads (i.e., ℓ ≡ 0) and
with a uniformly convex energy and a locally stable initial state z0 is z ≡ z0. The
relaxed solution however jumps at t = 1 from z0 = 0 to 1/2 without any impact of
an external load, which makes of course no sense at all.

5. Conclusion

The two examples from Sections 2.1 and 4.2 illustrate that established solution
concepts are not stable w.r.t. loads converging in BV ([0, T ];Rd) in the sense that
the limit of an associated sequence of solutions to the rate independent system
need not be a solution any more. With regard to normalized p-parametrized BV
solutions this even occurs for loads converging in the intermediate sense, as the
example in Section 2.1 shows. Concerning local (and thus also global energetic)
solutions, the example in Section 4.2 shows the same lack of stability for loads
converging weakly∗ in BV ([0, T ];Rd). As the analysis in Section 3.1 shows, it is
possible to design a relaxed solution concept that is stable w.r.t. weak∗ convergence
of the loads. However, the considerations in Section 4 indicate that such a concept
is even weaker than the notion of local solutions and thus not really meaningful in
practice. Especially the example in Section 4.2 shows that completely unphysical
limits may arise, if the loads just converge weakly∗ in BV ([0, T ];Rd), even in case
of a uniformly convex energy. This already demonstrates that a stable solution
concept must necessarily allow for physically unreasonable solutions.

On the other hand, stability w.r.t. weak∗ convergence of the loads is an essen-
tial property of a solution concept, as one can often hardly expect more than this
type of convergence. This issue concerns the existence of optimal solutions as dis-
cussed at the end of Section 3.1, but will very likely also arise when a given load
in BV ([0, T ];Rd) is discretized in time. All in all, our results indicate that it might
make no sense to consider discontinuous loads when dealing with rate independent
systems due to a lack of stability of physically meaningful solution concepts.

Appendix A. The dissipative distance in the smooth case

Lemma A.1. Let R : Rd → [0,∞) comply with (1.9)–(1.11) and z ∈ W 1,1(0, T ;Rd).
Then

DissR(z; [t1, t2]) =

∫ t2

t1

R(z′(r))dr(A.1)

for all 0 ≤ t1 ≤ t2 ≤ T .
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Proof. Let an arbitrary partition t1 = ξ0 < ξ1 < · · · < ξn−1 < ξn = t2 be given.
Then applying Jensen’s inequality gives

R(z(ξi)− z(ξi−1)) = R
(∫ ξi

ξi−1

z′(r)dr
)
≤

∫ ξi

ξi−1

R(z′(r)) dr

for all i = 1, . . . , n. Summing up results in
∑n

i=1 R(z(ξi)−z(ξi−1)) ≤
∫ t2
t1

R(z′(r))dr

and, as the partition was arbitrary, this gives DissR(z; [t1, t2]) ≤
∫ t2
t1

R(z′(r))dr.

To show the reverse estimate, let a sequence of partitions ({ξhi }
nh
i=1)h with h :=

maxi=1,...,nh
ξhi − ξhi−1 → 0 be given. We define

ξh(t) :=
z(ξhi )− z(ξhi−1)

ξhi − ξhi−1

, t ∈ [ξhi−1, ξ
h
i ).

Then the 1-homogeneity of R yields

DissR(z; [t1, t2]) ≥
∑

i=1,...,nh

R(z(ξhi )− z(ξhi−1))

=
∑

i=1,...,nh

∫ ξhi

ξhi−1

R
(
z(ξhi )− z(ξhi−1)

ξhi − ξhi−1

)
dr =

∫ t2

t1

R(ξh(r)) dr.

By Lebesgue’s differentiation theorem we obtain z′(t) = limh↘0 ξh(t) for almost all
t ∈ (0, T ) such that the lower semicontinuity of R implies lim infh↘0 R(ξh(t)) ≥
R(z′(t)) a.e. in (0, T ). Thus Fatou’s lemma yields

DissR(z; [t1, t2]) ≥ lim inf
h↘0

∫ t2

t1

R(ξh(r)) dr

≥
∫ t2

t1

lim inf
h↘0

R(ξh(r)) dr ≥
∫ t2

t1

R(z′(r)) dr,

which finally gives the claim. □

Appendix B. Auxiliary results from convex analysis

The following results are well known, we only refer to [18] and the references
therein. For convenience of the reader, we present the proofs in detail.

Lemma B.1. For every (S, t̂, ẑ, ℓ̂) ∈ (0,∞) × W 1,∞(0, S) × W 1,∞(0, S;Rd) ×
BV ([0, S];Rd) and all 0 ≤ s1 ≤ s2 ≤ S there holds

(B.1)

E(ẑ(s2)) +
∫ s2

s1

R(ẑ′(r)) + ∥ẑ′(r)∥dist(−DzÎ(r, ẑ(r)), ∂R(0)) dr

≥ E(ẑ(s1)) +
∫ s2

s1

⟨ℓ̂(r), ẑ′(r)⟩ dr.

Proof. The compactness of ∂R(0) implies that, for all r ∈ (s1, s2), there exists

wr ∈ ∂R(0) such that dist(−DzÎ(r, ẑ(r)), ∂R(0)) = ∥ −DzÎ(r, ẑ(r)) − wr∥. From
this we conclude

⟨−DzÎ(r, ẑ(r)), ẑ′(r)⟩ = ⟨−DzÎ(r, ẑ(r))− wr, ẑ
′(r)⟩+ ⟨wr, ẑ

′(r)⟩

≤ ∥ −DzÎ(r, ẑ(r))− wr∥ ∥ẑ′(r)∥+ ⟨wr, ẑ
′(r)⟩

≤ ∥ẑ′(r)∥ dist(−DzÎ(r, ẑ(r)), ∂R(0)) +R(ẑ′(r)),
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where we used wr ∈ ∂R(0) for the last inequality. Now integrating over (s1, s2)
yields ∫ s2

s1

∥ẑ′(r)∥dist(−DzÎ(r, ẑ(r)), ∂R(0)) +R(ẑ′(r)) dr

≥
∫ s2

s1

⟨−DzÎ(r, ẑ(r)), ẑ′(r)⟩ dr

=

∫ s2

s1

⟨−DzE(ẑ(r)), ẑ′(r)⟩+ ⟨ℓ̂(r), ẑ′(r)⟩ dr

= E(ẑ(s1))− E(ẑ(s2)) +
∫ s

0

⟨ℓ̂(r), ẑ′(r)⟩ dr,

which is (B.1). □

Lemma B.2. Let R : Rd → [0,∞) comply with (1.9)–(1.11) and τ > 0 be given.
Then there holds

τ dist(η, ∂R(0)) = sup
v∈Rd, ∥v∥≤τ

(
⟨η, v⟩ − R(v)

)
for all η ∈ Rd.

Proof. Let us denote the indicator functional of a set M ⊂ Rd by IM , i.e.,

IM (z) :=

{
0, if z ∈ M,

∞, else.

Then the inf-convolution formula from [1, Prop. 3.4] yields

(B.2)
(
R+ I

Bτ (0)

)∗
(η) = inf

v∈Rd

(
R∗(v) + I∗

Bτ (0)
(η − v)

)
,

where Bτ (0) denotes the ball of radius τ centered at zero. The conjugate of I
Bτ (0)

is

given by I∗
Bτ (0)

(·) = τ∥·∥, while the positive homogeneity of R implies R∗ = I∂R(0).

Inserted in (B.2), we obtain(
R+ I

Bτ (0)

)∗
= inf

v∈Rd
I∂R(0)(v) + τ∥η − v∥ = τ inf

v∈∂R(0)
∥η − v∥ = τ dist(η, ∂R(0)),

which is the claim. □
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Matematiky 114 (01 1989).

Technische Universität Dortmund, Fakultät für Mathematik, Lehrstuhl LSX, Vo-

gelpothsweg 87, 44227 Dortmund, Germany
Email address: merlin.andreia@tu-dortmund.de

Technische Universität Dortmund, Fakultät für Mathematik, Lehrstuhl LSX, Vo-
gelpothsweg 87, 44227 Dortmund, Germany

Email address: christian2.meyer@tu-dortmund.de


	1. Introduction
	1.1. Notation
	1.2. Standing Assumptions

	2. A solution concept for discontinuous loads in BV
	2.1. A first counterexample

	3. A relaxed solution concept
	3.1. Stability of the relaxed solution concept

	4. Physical plausibility of the relaxed solution concept
	4.1. Relation to local solutions
	4.2. A second counterexample

	5. Conclusion
	Appendix A. The dissipative distance in the smooth case
	Appendix B. Auxiliary results from convex analysis
	References

