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Abstract. In this paper, fully nonsmooth optimization problems in Banach spaces with

�nitely many inequality constraints, an equality constraint within a Hilbert space frame-

work, and an additional abstract constraint are considered. First, we suggest a (safeguarded)

augmented Lagrangian method for the numerical solution of such problems and provide a

derivative-free global convergence theory which applies in situations where the appearing

subproblems can be solved to approximate global minimality. Exemplary, the latter is pos-

sible in a fully convex setting. As we do not rely on any tool of generalized di�erentiation,

the results are obtained under minimal continuity assumptions on the data functions. We

then consider two prominent and di�cult applications from image denoising and sparse op-

timal control where these �ndings can be applied in a bene�cial way. These two applications

are discussed and investigated in some detail. Due to the di�erent nature of the two ap-

plications, their numerical solution by the (safeguarded) augmented Lagrangian approach

requires problem-tailored techniques to compute approximate minima of the resulting sub-

problems. The corresponding methods are discussed, and numerical results visualize our

theoretical �ndings.
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1 Introduction

Augmented Lagrangian methods provide a well-established framework for the numer-
ical solution of constrained optimization problems, see e.g. [3,5]. The method should
be viewed as a general framework which allows an adaptation to many di�erent sce-
narios simply by taking a suitable and problem-dependent subproblem solver. The
two standard references mentioned above consider the situation of a general nonlin-
ear program (in �nite dimensions), but a suitable (global) convergence theory tailored
for appropriate stationary points is also available for a couple of di�cult, structured,
and/or nonsmooth problems. This includes situations with an abstract geometric
constraint (with potentially nonconvex constraint set), cf. [20, 27], programs with a
composite objective function, see [12, 14, 15, 21, 31, 38]; speci�cally, [38] eliminates is-
sues of nonsmoothness by exploiting smoothness properties of the Moreau envelope in
a partially convex situation. The fully nonsmooth setting is also discussed in [17,48],
where all functions are smoothed, as well as in [33] in the framework of so-called
di�erence-of-convex programs.

While these references mainly deal with �nite-dimensional problems, the aug-
mented Lagrangian approach can also be extended to the in�nite-dimensional situa-
tion. Here, we distinguish between the �half� and �full� in�nite-dimensional setting.
Both settings share the property that the optimization variables belong to a Ba-
nach space, but the former allows only �nitely many inequality constraints (possibly
additional equality as well as abstract constraints), whereas the latter allows more
general functional constraints living in a Banach space (say, G(x) ∈ K for a mapping
G : X → Y between two Banach spaces X and Y as well as a convex set K ⊂ Y ). The
convergence theory for the �half� in�nite-dimensional setting was already considered
in the seminal paper [37] by Rockafellar, see also the monograph [26]. Extensions to
the fully in�nite-dimensional setting are given in [8, 9, 29].

We should note, however, that there exist di�erent versions for a realization of the
augmented Lagrangian approach. In particular, there is the classical method with the
standard Hestenes�Powell�Rockafellar update of the Lagrange multipliers, and there
is the safeguarded version with a more careful updating of the multiplier estimates,
see [5]. The counterexample in [28] shows that there cannot exist a satisfactory global
convergence theory for the classical method, at least not in the nonconvex setting,
while the existing convergence theory for the safeguarded version is rather complete
in the sense that it has all desirable (and realistic) properties. On the other hand,
for convex problems, there exists a convergence theory for the classical approach
even with a constant penalty parameter. This result was established by Rockafellar
[37], even for the �half� in�nite-dimensional setting, and is based on the duality of the
augmented Lagrangian and the proximal point method, see [38] as well. In particular,
this convergence theory is based on the existence of optimal Lagrange multipliers.

In this paper, we also consider the �half� in�nite-dimensional setting and inves-
tigate the convergence behavior of the safeguarded augmented Lagrangian method.
The approach is fully motivated by the two classes of problems that play a central role
within this paper, namely the variational Poisson denoising problem and an optimal
control problem with a single (hard) sparsity constraint. Both problem classes are
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nonsmooth and convex, apart from that, however, they are of a completely di�erent
nature and therefore require problem-tailored methods for the solution of the resulting
subproblems. This also shows the �exibility of the augmented Lagrangian approach
since it allows to choose or create suitable techniques depending on the structure of
these subproblems.

The �rst application, variational Poisson denoising, aims to minimize a (smooth-
ness- or sparsity-promoting) function over a set of local similarity measures which,
on the one hand, are induced by a Poisson process modeling the chosen discrete
observation points of the image and, on the other hand, are evaluated on a huge
number of sub-boxes of the underlying image while being inherently nonsmooth as
the involved Kullback�Leibler-divergence is a convex function whose domain is not the
full space. Within our algorithmic framework, all these constraints are augmented,
and the associated subproblem is solved with the aid of a suitable stochastic gradient
method.

In our second application, to obtain sparse controls, we suggest to use, as a hard
constraint, a single sparsity constraint which bounds the control's L1-norm from above
by a given constant. This idea is developed in the exemplary setting of the optimal
control of Poisson's equation. For the numerical solution of the problem, the non-
smooth sparsity constraint is augmented. It is demonstrated that the corresponding
subproblems can be tackled by solving the associated (nonsmooth) system of opti-
mality conditions with the aid of a (local) semismooth Newton method.

Though both applications are convex, the purely primal convergence theory for
our safeguarded augmented Lagrangian method is discussed in a more general non-
convex setting. We assume, however, that we are able to �nd an approximate global
minimum of the resulting subproblems. This is a realistic scenario in the convex set-
ting, but might also be applicable in some other situations (e.g., think of disjunctive
constraint systems composed of �nitely many convex branches). We note that we
do not apply the classical augmented Lagrangian approach with its nice convergence
property for convex problems from [37] since, on the one hand, the convergence the-
ory is written down in the more general nonconvex setting (recall from [28] that the
classical augmented Lagrangian technique fails to have suitable convergence proper-
ties in this setting), and since the variational Poisson denoising application is at least
unlikely to satisfy any constraint quali�cation (thus violating the assumptions of the
convergence theory from [37]).

The paper is organized in the following way. We begin with some notation and
preliminary statements in Section 2. The safeguarded augmented Lagrangian method
is stated and analyzed in Section 3, where we consider nonsmooth problems with
�nitely many inequality constraints, a general operator equation (representing, e.g.,
a partial di�erential equation), as well as an abstract convex constraint set such that
the associated augmented Lagrangian subproblems can be solved up to approximate
global optimality. This requirement is particularly reasonable for convex problems.
The application of this method to the variational Poisson denoising problem and the
sparse control problem, which we view as the main contributions of this paper, are
discussed in Sections 4 and 5, respectively. We conclude with some �nal remarks in
Section 6.
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2 Notation and Preliminaries

2.1 Basic Notation

Let R denote the set of real numbers. We make use of R := R∪{∞}. Throughout the
paper, for a given �nite set D, #D is used to denote the cardinality of D. Let n ∈ N
be a positive integer. For vectors x, y ∈ Rn, max(x, y) ∈ Rn and |x| ∈ Rn denote
the componentwise maximum of x and y and the componentwise absolute value of x,
respectively. For any p ∈ [1,∞], the `p-norm of x ∈ Rn will be denoted by ‖x‖p.

Whenever X is a Banach space, its norm will be denoted by ‖·‖X : X → [0,∞)
if not stated otherwise. Strong and weak convergence of a sequence {xk} ⊂ X to
x ∈ X are represented by xk → x and xk ⇀ x, respectively. If K ⊂ N is a set
of in�nite cardinality, we make use of xk →K x (xk ⇀K x) in order to express
that the subsequence {xk}k∈K converges (converges weakly) to x as k tends to ∞
in K (which we denote by k →K ∞ for brevity). The (topological) dual space of
X will be represented by X∗, and the associated dual pairing is then denoted by
〈·, ·〉X : X∗×X → R. Let Y be another Banach space. If A : X → Y is a continuous
linear operator, its norm will be denoted by ‖A‖ as the underlying spaces X and Y
will be clear from the context. Let idX : X → X be the identity mapping of X. If
h : X → Y is Fréchet di�erentiable at x ∈ X, h′(x) : X → Y denotes the derivative
of h at x. Similarly, if X1 and X2 are Banach spaces such that X = X1 ×X2, and if
h is Fréchet di�erentiable at x := (x1, x2) ∈ X, h′x1(x) : X1 → Y denotes the partial
derivative with respect to (w.r.t.) x1 of h at x. The inner product in a Hilbert space
H will be represented by (·, ·)H : H ×H → R.

For an arbitrary function ϕ : X → R de�ned on a Banach space X, domϕ :=
{x ∈ X |ϕ(x) < ∞} is referred to as the domain of ϕ. Whenever ϕ is convex and
x̄ ∈ domϕ is chosen arbitrarily, the set

∂ϕ(x̄) := {ξ ∈ X∗ |ϕ(x) ≥ ϕ(x̄) + 〈ξ, x− x̄〉X ∀x ∈ domϕ}

is called the subdi�erential (in the sense of convex analysis) of ϕ at x̄.
For an integer d ∈ N, a bounded open set Ω ⊂ Rd, and p ∈ [1,∞), Lp(Ω)

denotes the Lebesgue space of (equivalence classes of) measurable functions u : Ω→ R
such that Ω 3 ω 7→ |u(ω)|p ∈ R is integrable, and is equipped with the standard
norm which we denote by ‖·‖p : Lp(Ω) → [0,∞). Note that it will be clear from
the context where ‖·‖p is taken in Rn or Lp(Ω). If u ∈ Lp(Ω) is arbitrary, we use
the notation {u = 0} := {ω ∈ Ω |u(ω) = 0} for brevity. The sets {u < 0} and
{u > 0} are de�ned similarly. Note that {u = 0}, {u < 0}, and {u > 0} are well
de�ned up to subsets of Ω possessing measure 0. Whenever Ω′ ⊂ Ω is measurable,
χΩ′ : Ω → R denotes the characteristic function of Ω′ which is 1 for arguments in Ω′

and, otherwise, 0. Additionally, for any u ∈ Lp(Ω), we make use of the associated
function sign(u) : Ω → R which is given by sign(u) := χ{u>0} − χ{u<0}. Finally,
H1

0 (Ω) denotes the closure of C∞c (Ω), the set of all arbitrarily often continuously
di�erentiable functions with compact support in Ω, w.r.t. the standard H1-Sobolev
norm. Throughout the paper, H−1(Ω) := H1

0 (Ω)∗ is used.
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2.2 Preliminary Results

In the following lemma, we study conditions which guarantee that the composition
of a (weakly sequentially) lower semicontinuous function and a continuous function
is (weakly sequentially) lower semicontinuous again.

Lemma 2.1. For some Banach space X, let ϕ : X → R be weakly sequentially lower
semicontinuous and let ψ : R → R be a continuous and monotonically increasing
function. Then ψ ◦ ϕ : X → R de�ned via

∀x ∈ X : (ψ ◦ ϕ)(x) :=

{
ψ(ϕ(x)) if ϕ(x) <∞,
limt→∞ ψ(t) if ϕ(x) =∞

is weakly sequentially lower semicontinuous.

Proof: Choose {xk} ⊂ X and x̄ ∈ X with xk ⇀ x̄ arbitrarily and pick an in�nite
set K ⊂ N as well as a number α ∈ R such that

α = lim inf
k→∞

(ψ ◦ ϕ)(xk) = lim
k→K∞

(ψ ◦ ϕ)(xk).

In case α = ∞, we automatically have α ≥ (ψ ◦ ϕ)(x̄) and, thus, there is nothing
to show. Thus, we assume α ∈ R. By weak sequential lower semicontinuity of ϕ,
we have β := lim infk→K∞ ϕ(xk) ≥ ϕ(x̄). Pick an in�nite set K ′ ⊂ K such that
limk→K′∞ ϕ(xk) = β. In case where β ∈ R holds, ϕ(x̄) and the tail of the sequence
{ϕ(xk)}k∈K′ are �nite, so we �nd

α = lim
k→K′∞

(ψ ◦ ϕ)(xk) = lim
k→K′∞

ψ(ϕ(xk)) = ψ(β) ≥ ψ(ϕ(x̄)) = (ψ ◦ ϕ)(x̄)

by continuity and monotonicity of ψ. Next, suppose that β =∞ holds. In case where
{ϕ(xk)}k∈K′ equals ∞ along the tail of the sequence, we �nd

α = lim
k→K′∞

(ψ ◦ ϕ)(xk) = lim
t→∞

ψ(t) ≥ (ψ ◦ ϕ)(x̄)

by monotonicity of ψ. Otherwise, there is an in�nite set K ′′ ⊂ K ′ such that
{ϕ(xk)}k∈K′′ ⊂ R. However, β = ∞ yields limk→K′′∞ ϕ(xk) = ∞. Hence, by def-
inition of the composition, we �nd

α = lim
k→K′′∞

(ψ ◦ ϕ)(xk) = lim
k→K′′∞

ψ(ϕ(xk)) = lim
t→∞

ψ(t) ≥ (ψ ◦ ϕ)(x̄)

by continuity and monotonicity of ψ. This completes the proof. �

We would like to note that, in general, for a (weakly sequentially) lower semicon-
tinuous function ϕ : X → R, the mappings x 7→ |ϕ(x)| and x 7→ ϕ2(x) are not (weakly
sequentially) lower semicontinuous (exemplary, choose X := R and set ϕ(x) := −1
for all x ≤ 0 and ϕ(x) := 0 for all x > 0). Observe that the absolute value function
and the square are not monotonically increasing, i.e., the assumptions of Lemma 2.1
are not satis�ed in this situation.

We comment on a typical setting where Lemma 2.1 applies.
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Example 2.2. For each α > 0 and β ∈ R, the function ψ : R→ R given by ψ(t) :=
max2(0, αt + β) for each t ∈ R is continuous, monotonically increasing, and satis�es
limt→∞ ψ(t) =∞. Thus, for each weakly sequentially lower semicontinuous function
ϕ : X → R, the composition ψ ◦ ϕ : X → R given by

∀x ∈ X : (ψ ◦ ϕ)(x) :=

{
ψ(ϕ(x)) if ϕ(x) <∞,
∞ if ϕ(x) =∞

is weakly sequentially lower semicontinuous as well by Lemma 2.1.
We also note that this particular function ψ is convex. Thus, keeping the mono-

tonicity of ψ in mind, whenever ϕ is convex, then the composition ψ ◦ ϕ is convex as
well.

3 An Augmented Lagrangian Method for Nonsmooth

Optimization Problems

In this section, we address the algorithmic treatment of the optimization problem

min f(x) s.t. g(x) ≤ 0, h(x) = 0, x ∈ C, (P)

where f : X → R, g : X → Rm
, and h : X → Y are given functions and C ⊂ X is a

weakly sequentially closed set. Moreover, X is a re�exive Banach space and Y is a
Hilbert space, which we identify with its dual, i.e., Y ∼= Y ∗. Throughout this section,
we assume that the feasible set F ⊂ X of (P) satis�es F ∩ dom f 6= ∅ in order to
exclude trivial situations. For later use, we introduce dom g :=

⋂m
i=1 dom gi and note

that dom g 6= ∅ since F 6= ∅. Here, g1, . . . , gm are the component functions of g.
In contrast to the standard setting of nonlinear programming, we abstain from

demanding any di�erentiability properties of the data functions. However, we assume
that the functions f, g1, . . . , gm : X → R are weakly sequentially lower semicontinuous,
while the function h is weakly-strongly sequentially continuous in the sense that

∀{xk} ⊂ X : xk ⇀ x̄ in X =⇒ h(xk)→ h(x̄) in Y.

Note that at least continuity of the function h is indispensable in order to guarantee
that F is closed. The assumptions from above already guarantee that F is weakly
sequentially closed. Together with the weak sequential lower semicontinuity of the ob-
jective functional f , this can be interpreted as a minimal requirement in constrained
optimization in order to ensure that the underlying optimization problem (P) pos-
sesses a solution. This would be inherent whenever F is, additionally, bounded or f
is, additionally, coercive as standard arguments show.
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3.1 Statement of the Algorithm

For the construction of our solution method, we make use of the classical augmented
Lagrangian function Lρ : X × Rm × Y → R associated with (P) which is given by

Lρ(x, λ, µ) := f(x) +
1

2ρ

m∑
i=1

(
max2 (0, λi + ρgi(x))− λ2

i

)
+ (µ, h(x))Y +

ρ

2
‖h(x)‖2

Y

(3.1)

for all x ∈ X, λ ∈ Rm, and µ ∈ Y , where ρ > 0 is a given penalty parameter.
Within our algorithmic framework, the function Lρ has to be minimized w.r.t. x,
which means that the term − 1

2ρ
‖λ‖2

2 could be removed from the de�nition of Lρ.
However, for some of the proofs we are going to provide, it will be bene�cial to keep
this shift. We would like to point the reader's attention to the fact that the function
Lρ(·, λ, µ) is weakly sequentially lower semicontinuous for each λ ∈ Rm and µ ∈ Y
due to Lemma 2.1, Example 2.2, and the fact that the function h is weakly-strongly
sequentially continuous.

Remark 3.1. Whenever (P) is a convex optimization problem, i.e., whenever the
functions f, g1, . . . , gm are convex while h is a�ne, then, for each λ ∈ Rm and µ ∈
Y , Lρ(·, λ, µ) is a convex function as well by monotonicity and convexity of t 7→
max2(0, αt+ β) for each α > 0 and β ∈ R.

For some penalty parameter ρ > 0, we introduce a function Vρ : X × Rm → R by
means of

Vρ(x, λ) :=

{
max

(
‖max(g(x),−λ/ρ)‖∞ , ‖h(x)‖Y

)
if x ∈ dom g,

∞ if x /∈ dom g

for all x ∈ X and λ ∈ Rm. Right from the de�nition of Vρ, we obtain

Vρ(x, λ) = 0 ⇐⇒ g(x) ≤ 0, λ ≥ 0, λ>g(x) = 0, h(x) = 0,

i.e., Vρ can be used to measure feasibility of x for (P) w.r.t. the constraints induced
by g and h as well as validity of the complementarity-slackness condition w.r.t. the
inequality constraints.

In Algorithm 3.2, we state a pseudo-code which describes our method.

Algorithm 3.2 (Safeguarded Augmented Lagrangian Method for (P)).

Require: bounded sets Bm ⊂ Rm and BY ⊂ Y , starting point (x0, λ0, µ0) ∈ C ×
Rm

+ × Y , initial penalty parameter ρ0 > 0, parameters τ ∈ (0, 1), γ > 1
1: Set k := 0.
2: while a suitable termination criterion is violated at iteration k do
3: Choose vk ∈ Bm and wk ∈ BY .
4: Compute xk+1 ∈ C as an approximate solution of the optimization problem

min
x
Lρk(x, v

k, wk) s.t. x ∈ C. (3.2)
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5: Set

λk+1 := max
(
0, vk + ρkg(xk+1)

)
, µk+1 := wk + ρkh(xk+1). (3.3)

6: If either k = 0 or the condition

Vρk(x
k+1, vk) ≤ τ Vρk−1

(xk, vk−1) (3.4)

holds, set ρk+1 := ρk, otherwise set ρk+1 := γρk.

7: Set k ← k + 1.
8: end while

9: return xk

In Algorithm 3.2, the quantities vk and wk play the role of Lagrange multiplier es-
timates. By construction, the sequences {vk} and {wk} remain bounded throughout
a run of the algorithm while this does not necessarily hold true for {λk} and {µk}.
Note that the classical augmented Lagrangian method could be recovered from Al-
gorithm 3.2 by replacing vk and wk by λk and µk everywhere, respectively. However,
the so-called safeguarded variant from Algorithm 3.2 has been shown to possess bet-
ter global convergence properties than the classical method, see, e.g., [28] for details.
Typically, {vk} and {wk} are iteratively constructed during the run of Algorithm 3.2.
Exemplary, one can choose Bm as the (very large) box [0,v] for some v ∈ Rm satis-
fying v > 0 and de�ne vk as the projection of λk onto this box in Step 3. Note that
this choice already incorporates desirable information about the sign of the correct
Lagrange multipliers (in case of existence). A similar procedure is possible for the
choice of wk. This way, Algorithm 3.2 is likely to parallel the classical augmented
Lagrangian method if the sequences {λk} and {µk} remain bounded.

Assuming for a moment that all involved data functions are smooth, the derivative
w.r.t. x of Lρ from (3.1) is given by

(Lρ)
′
x(x, λ, µ) = f ′(x) +

m∑
i=1

max(0, λi + ρ gi(x)) g′i(x) + h′(x)∗[µ+ ρh(x)].

Thus, the updating rule for the multipliers in (3.3) yields

(Lρk)
′
x(x

k+1, vk, wk) = L′x(x
k+1, λk+1, µk+1), (3.5)

which is the basic idea behind Step 5. Here, L : X×Rm×Y → R denotes the standard
Lagrangian function associated with (P) which is given by

L(x, λ, µ) := f(x) + λ>g(x) + (µ, h(x))Y

for x ∈ X, λ ∈ Rm, and µ ∈ Y . Note that a similar formula as (3.5) can be obtained in
terms of several well-known concepts of subdi�erentiation whenever a suitable chain
rule applies.
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Finally, let us mention that in Step 6, the penalty parameter is increased when-
ever the new iterate (xk+1, vk, wk) is not (su�ciently) better from the viewpoint of
feasibility (and complementarity) than the old iterate (xk, vk−1, wk−1). Note that our
choice for the in�nity norm in the de�nition of Vρ is a matter of taste since all norms
are equivalent in �nite-dimensional spaces. However, this particular measure Vρ keeps
track of the largest violation of the feasibility and complementarity condition w.r.t.
all inequality constraints, which is why we favor it here.

For further information about (safeguarded) augmented Lagrangian methods in
nonlinear programming, we refer the interested reader to [5].

3.2 Convergence to Global Minimizers

In this subsection, we provide a convergence analysis for Algorithm 3.2 where we as-
sume that in Step 4, the subproblem (3.2) is solved to (approximate) global optimality.
Exemplary, this is possible whenever (P) is a convex program, see Remark 3.1, but
also in more general situations where (P) is of special structure, e.g. if the feasible set
can be decomposed into a moderate number of convex branches while the objective
function is convex. Within the assumption below, which will be standing throughout
this section, we quantify the requirements regarding the subproblem solver.

Assumption 3.3. In each iteration k ∈ N of Algorithm 3.2, the approximate solution
xk+1 ∈ C of (3.2) satis�es

Lρk(x
k+1, vk, wk)− εk ≤ Lρk(x, v

k, wk) ∀x ∈ C (3.6)

where εk ≥ 0 is some given constant.

Typically, the inexactness parameter εk in Assumption 3.3 is chosen to be positive.
While εk := 0 corresponds to the situation where the subproblems (3.2) are solved ex-
actly, we will see that the augmented Lagrangian technique generally works �ne if only
approximate solutions of the subproblems are computed. This also has the advantage
that whenever infx{Lρk(x, vk, wk) |x ∈ C} is �nite, then one can always �nd points
xk+1 satisfying (3.6) for arbitrarily small εk > 0 while an exact global minimizer may
not exist. Furthermore, we note that, due to F ∩ dom f 6= ∅, Lρk(xk+1, vk, wk) < ∞
holds for each k ∈ N, i.e., xk+1 ∈ dom f ∩ dom g ∩C holds for each computed iterate.
Finally, it is worth mentioning that validity of (3.6) guarantees that Lρk(·, vk, wk) is
bounded from below on C.

Throughout the section, we make use of the following lemma.

Lemma 3.4. Let v ∈ Rm, w ∈ Y , and ρ > 0 as well as a feasible point x ∈ F of (P)
be arbitrary. Then Lρ(x, v, w) ≤ f(x) is valid.

Proof: Due to h(x) = 0 and by de�nition of the augmented Lagrangian function Lρ
from (3.1), we �nd

Lρ(x, v, w) = f(x) +
1

2ρ

m∑
i=1

(
max2(0, vi + ρ gi(x))− v2

i

)
,

9



i.e., in order to show the claim, it is su�cient to verify max2(0, vi+ρ gi(x)) ≤ v2
i for all

i ∈ {1, . . . ,m}. Thus, �x i ∈ {1, . . . ,m} arbitrarily. In case vi + ρ gi(x) ≤ 0, we �nd
max2(0, vi +ρ gi(x)) = 0 ≤ v2

i . Conversely, vi +ρ gi(x) > 0 yields 0 ≤ vi +ρ gi(x) ≤ vi
since gi(x) ≤ 0 is valid by feasibility of x for (P), so by monotonicity of the square
on the non-negative real line, max2(0, vi + ρ gi(x)) ≤ v2

i follows. �

Let us now start with the convergence analysis associated with Algorithm 3.2.
Therefore, we �rst study issues related to the feasibility of limit points.

Proposition 3.5. Assume that Algorithm 3.2 produces a sequence {xk} such that
Assumption 3.3 holds for some bounded sequence {εk}, and let {ρk} and {vk} be the
associated sequences of penalty parameters and Lagrange multiplier estimates associ-
ated with the inequality constraints in (P), respectively. Let the subsequence {xk+1}k∈K
and x̄ ∈ X be chosen such that xk+1 ⇀K x̄. Then we have Vρk(x

k+1, vk) →K 0, and
x̄ is feasible to (P).

Proof: We proceed by distinguishing two cases.
Case 1 : Suppose that {ρk} remains bounded. Then Step 6 yields that ρk remains

constant on the tail of the sequence, i.e., there is some k0 ∈ N such that ρk = ρk0
is valid for all k ∈ N satisfying k ≥ k0. Particularly, condition (3.4) is satis�ed for
all k ≥ k0, which immediately yields Vρk(x

k+1, vk) → 0 due to {xk+1} ⊂ dom g. On
the one hand, we infer h(xk+1) → 0 and, by weak-strong sequential continuity of h,
h(xk+1) →K h(x̄) on the other hand. By uniqueness of the limit, h(x̄) = 0 follows.
By boundedness of {vk}, we may also assume w.l.o.g. that vk →K v̄ is valid for
some v̄ ∈ Rm. The componentwise weak sequential lower semicontinuity of g yields
max(g(x̄),−v̄/ρk0) ≤ 0 in the light of (3.4), i.e., g(x̄) ≤ 0 follows. Recalling that C is
weakly sequentially closed, x̄ is feasible to (P).

Case 2 : Now, assume that {ρk} is not bounded. Then, by construction, we have
ρk →∞.

We �rst verify that {f(xk+1)}k∈K is bounded. Fix an arbitrary point x̃ ∈ F ∩
dom f . Observe that Assumption 3.3 and Lemma 3.4 together with the feasibility of
x̃ yield the estimate

Lρk(x
k+1, vk, wk)− εk ≤ Lρk(x̃, v

k, wk) ≤ f(x̃) ∀k ∈ N. (3.7)

Respecting the de�nition of the augmented Lagrangian function from (3.1) and leaving
out some non-negative terms yield

f(xk+1) + (wk, h(xk+1))Y − 1
2ρk
‖vk‖2

2 − εk ≤ f(x̃) ∀k ∈ N.

From xk+1 ⇀K x̄, we �nd h(xk+1) →K h(x̄) by weak-strong sequential continuity of
h. Thus, {(wk, h(xk+1))Y }k∈K remains bounded as {wk} is bounded by construction.
Since {vk} is bounded by construction while ρk → ∞ holds, and since {εk} is as-
sumed to be bounded, {f(xk+1)}k∈K is bounded from above. Noting that f is weakly
sequentially lower semicontinuous, this sequence must also be bounded from below.

10



Next, we combine the de�nition of the augmented Lagrangian function Lρk and
(3.7) to �nd

f(xk+1) +
1

2ρk

m∑
i=1

(
max2

(
0, vki + ρkgi(x

k+1)
)
− (vki )2

)
+ (wk, h(xk+1))Y +

ρk
2
‖h(xk+1)‖2

Y − εk ≤ f(x̃),

and dividing this estimate by ρk yields, after some simple manipulations,

f(xk+1)

ρk
+

1

2

∥∥max(g(xk+1),−vk/ρk)
∥∥2

2

+ (wk/ρk, h(xk+1))Y +
1

2
‖h(xk+1)‖2

Y −
εk
ρk
≤ f(x̃)

ρk
.

(3.8)

Observing that {vk}, {wk}, and {εk} are bounded, we have vk/ρk → 0, wk/ρk → 0,
and εk/ρk → 0. Furthermore, f(xk+1)/ρk →K 0 and (wk/ρk, h(xk+1))Y →K 0 are ob-
tained from the boundedness of {f(xk+1)}k∈K and {(wk, h(xk+1))Y }k∈K , respectively.
Thus, taking into account the weak sequential lower semicontinuity of f, g1, . . . , gm
and weak-strong sequential continuity of h, after taking the lower limit along K, we
�nd

1

2
‖max(g(x̄), 0)‖2

2 +
1

2
‖h(x̄)‖2

Y ≤ 0.

This gives g(x̄) ≤ 0 and h(x̄) = 0. Hence, weak sequential closedness of C yields
feasibility of x̄. Observe that (3.8) also gives

lim sup
k→K∞

(∥∥max(g(xk+1),−vk/ρk)
∥∥2

2
+ ‖h(xk+1)‖2

Y

)
≤ 0.

This yields ‖max(g(xk+1),−vk/ρk)‖2 →K 0 and ‖h(xk+1)‖Y →K 0, and since all
norms in �nite-dimensional spaces are equivalent, Vρk(x

k+1, vk)→K 0 follows. �

Next, we want to show that under Assumption 3.3, Algorithm 3.2 can be used to
compute a global minimizer of (P) provided there exists one.

Theorem 3.6. Assume that Algorithm 3.2 produces a sequence {xk} such that As-
sumption 3.3 holds for some sequence {εk} satisfying εk → 0. Then, for each subse-
quence {xk+1}k∈K and each point x̄ ∈ X satisfying xk+1 ⇀K x̄, we have f(xk+1)→K

f(x̄) and x̄ is a global minimizer of (P).

Proof: To start, note that Proposition 3.5 guarantees that x̄ is a feasible point of
(P). Furthermore, for each feasible point x ∈ F ∩ dom f of (P), Assumption 3.3 and
Lemma 3.4 yield

Lρk(x
k+1, vk, wk)− εk ≤ Lρk(x, v

k, wk) ≤ f(x) ∀k ∈ N. (3.9)

We note that the same inequality holds trivially for all x ∈ F \ dom f . We will �rst
prove that lim supk→K∞ f(xk+1) ≤ f(x̄) is valid. Again, we proceed by investigating
two disjoint cases.
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Case 1 : Suppose that {ρk} remains bounded. As in the proof of Proposition 3.5,
this implies that condition (3.4) holds along the tail of the sequence. Thus, for each
i ∈ {1, . . . ,m}, we �nd∣∣max

(
0, vki /ρk + gi(x

k+1)
)
− vki /ρk

∣∣ =
∣∣max

(
gi(x

k+1),−vki /ρk
)∣∣→ 0

as k → ∞. By boundedness of {vki /ρk}, {max(0, vki /ρk + gi(x
k+1))} needs to be

bounded as well which is why we already �nd∣∣∣max2
(
0, vki /ρk + gi(x

k+1)
)
−
(
vki /ρk

)2
∣∣∣→ 0,

and by boundedness of {ρk}, this yields

1

ρk

(
max2(0, vki + ρk gi(x

k+1))− (vki )2
)
→ 0.

Furthermore, we �nd (wk, h(xk+1))Y →K 0 and 1
2ρk
‖h(xk+1)‖2

Y →K 0 from xk+1 ⇀K

x̄, weak-strong sequential continuity of h, h(x̄) = 0, and boundedness of {wk}. Plug-
ging all this into (3.9) while respecting the de�nition of the function Lρk and εk → 0,
we �nd lim supk→K∞ f(xk+1) ≤ f(x).

Case 2 : Let {ρk} be unbounded. Then we already have ρk →∞ by construction
of Algorithm 3.2. Furthermore, (3.9) implies validity of the estimate

f(xk+1) + (wk, h(xk+1))Y − 1
2ρk
‖vk‖2

2 − εk ≤ f(x) ∀k ∈ N

by leaving out some of the non-negative terms on the left-hand side. As above, we �nd
(wk, h(xk+1))→K 0 by boundedness of {wk}, weak-strong sequential continuity of h,
and h(x̄) = 0. The boundedness of {vk} and ρk →∞ yield 1

2ρk
‖vk‖2

2 → 0 as k →∞.

Thus, taking the upper limit in the above estimate shows lim supk→K∞ f(xk+1) ≤
f(x).

In order to �nalize the proof, we observe that the weak sequential lower semicon-
tinuity of f now yields the estimate

f(x̄) ≤ lim inf
k→K∞

f(xk+1) ≤ lim sup
k→K∞

f(xk+1) ≤ f(x)

for each x ∈ F ∩ dom f . Thus, x̄ is a global minimizer of this problem. Using the
above estimate with x := x̄, we additionally �nd the convergence f(xk+1)→K f(x̄). �

As a consequence of the previous result, we obtain the following stronger version
for convex problems with a uniformly convex objective function.

Corollary 3.7. Assume that Algorithm 3.2 produces a sequence {xk} such that As-
sumption 3.3 holds for some sequence {εk} satisfying εk → 0. Furthermore, let f be
continuous as well as uniformly convex, g1, . . . , gm be convex, h be a�ne, and C be
convex. Then the entire sequence {xk} converges (strongly) to the uniquely determined
global minimizer of (P).
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Proof: Since f is uniformly convex, the (convex) optimization problem (P) has a
unique solution x̄ ∈ X, see [49, Theorem 2.5.1, Propositions 2.5.6, 3.5.8]. As x̄ is
a minimizer of the underlying convex problem (P) and since f is assumed to be
continuous, there exists ξ̄ ∈ ∂f(x̄) such that

〈
ξ̄, x− x̄

〉
X
≥ 0 is valid for all x ∈ F ,

see [49, Theorem 2.9.1]. By uniform convexity of f , there exists a constant µ > 0
such that

f(x) ≥ f(x̄) + 〈ξ̄, x− x̄〉X +
µ

2
‖x− x̄‖2

X ∀x ∈ X, (3.10)

see, e.g., the �rst part of the proof of [49, Proposition 3.5.8]. This implies

f(x̄) + 〈ξ̄, xk+1 − x̄〉X +
µ

2
‖xk+1 − x̄‖2

X −
1

2ρk
‖vk‖2

2 + (wk, h(xk+1))Y

≤ f(xk+1)− 1

2ρk
‖vk‖2

2 + (wk, h(xk+1))Y

≤ f(xk+1) +
1

2ρk

m∑
i=1

(
max2

{
0, vki + ρkgi(x

k+1)} − (vki )2
)

+ (wk, h(xk+1))Y +
ρk
2
‖h(xk+1)‖2

Y

= Lρk(x
k+1, vk, wk)

≤ Lρk(x̄, v
k, wk) + εk

≤ f(x̄) + εk

for all k ∈ N, where the �rst inequality results from (3.10), the second one comes
from adding some nonnegative terms, the subsequent equation is simply the de�-
nition of the augmented Lagrangian, the penultimate inequality takes into account
Assumption 3.3, and the �nal estimate uses Lemma 3.4.

Note that the term on the right-hand side is bounded. On the other hand, since
{vk} and {wk} are bounded sequences and h is a�ne, the growth behavior of the
left-hand side is dominated by the quadratic term. Consequently, the sequence {xk}
is bounded and, therefore, has a weakly convergent subsequence in the re�exive space
X. But the weak limit is necessarily a solution of the optimization problem by
Theorem 3.6. Since the entire sequence {xk} is bounded, we therefore get xk ⇀ x̄
and f(xk)→ f(x̄) from Theorem 3.6.

Let us now test (3.10) with x := xk+1. Then, after some rearrangements, we �nd

f(xk+1)− f(x̄)−
〈
ξ̄, xk+1 − x̄

〉
X
≥ µ

2
‖xk+1 − x̄‖2

X ≥ 0.

From xk+1 ⇀ x̄ and f(xk+1)→ f(x̄), the left-hand side in this estimate tends to 0 as
k →∞. This immediately gives xk+1 → x̄, and the proof is complete. �

We end this section by discussing a suitable termination criterion for Algorithm 3.2.

Remark 3.8. Observe that Proposition 3.5 indicates that checking Vρk−1
(xk, vk−1) ≤

εalmabs for some εalmabs ≥ 0 in each of the iterations k ∈ N, k ≥ 1, is a reasonable termi-
nation criterion for Algorithm 3.2. On the one hand, if Vρk−1

(xk, vk−1) is small, then
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the underlying point xk is close to be feasible, and the associated Lagrange multiplier
estimate vk−1 is close to satisfy the associated complementarity-slackness condition
w.r.t. the inequality constraints. On the other hand, along weakly convergent sub-
sequences of the iterates produced by Algorithm 3.2, Vρk−1

(xk, vk−1) indeed becomes
small under the assumptions of Proposition 3.5. Furthermore, under the assumptions
of Theorem 3.6, weak accumulation points are already global minimizers of (P).

4 Variational Poisson Denoising

4.1 Description of the Problem

We consider the problem to estimate an image u ∈ L2 (Ω) on the unit square Ω :=
(0, 1)2 from a random number N ∈ N of discrete random observations ω1, . . . , ωN ∈ Ω.
We denote

Z :=
N∑
i=1

δωi ,

with δω being the Dirac measure centered at ω ∈ Ω, such that

Z(A) = #{i ∈ {1, . . . , N} |ωi ∈ A}

for any measurable A ⊂ Ω. In the following, we will assume that Z is a Poisson point
process with intensity u, i.e., N ∈ N is random and

(a) for each measurable set A ⊂ Ω it holds E [Z(A)] =
∫
A
u dω, and

(b) whenever A1, . . . , A` ⊂ Ω are measurable and pairwise disjoint, then the random
variables Z(A1), . . . , Z(A`) are stochastically independent.

We refer to [24] for details on Poisson point processes. As the Poisson distribution
is a natural model in applications ranging from astronomy to biophysics, see e.g.
[1, 2, 24, 47], this problem has received considerable attention over the past decades.
We refer to [42, 43] for early references concerned with the noise removal occurring
in CCD cameras, to [4, 19] for statistical approaches, and to [6, 7, 18, 32] for methods
based on (convex) estimation. Here, we follow the path from [19] and reconstruct u by
minimizing a suitable (smoothness or sparsity promoting) functional f : L2 (Ω) → R
over a set generated by local similarity measures.

Therefore, supposing that B ⊂ 2Ω is a (carefully chosen) �nite system of mea-
surable regions in Ω (e.g., a set of square sub-boxes of the image), consider a can-
didate denoised image û as compatible with the data if and only if its mean ûB :=
|B|−1

∫
B
û dω with the Lebesgue measure |B| of B deviates not too much from the

mean ZB := |B|−1Z(B) of the data Z on B for all B ∈ B. Given the Poisson distri-
bution of ZB, deviation of ûB from ZB can be made precise by means of statistical
hypothesis testing, or as a speci�c instance by the local likelihood ratio test (LRT for
short) statistic

TB (Z, û) :=
√

2 |B| (ûB − ZB + ZB ln (ZB/ûB)).

14



Whenever the local LRT statistic TB (Z, û) is too large (which can be made precise
when specifying the type 1 error of the LRT), the candidate image û is considered
incompatible with Z on B.

This motivates the consideration of the optimization problem

min f(u) s.t. η (ZB, uB) ≤ r(|B|) ∀B ∈ B (4.1)

with a smoothness-promoting function f : L2 (Ω) → R, a function r : [0, 1] → R
re�ecting that the right-hand side of the constraints should � simlar to the potential
number of possible regions � depend on the scale |B| only, and the so-called Kullback�
Leibler-divergence η : R2 → R given by

η (a, b) :=


b− a+ a ln (a/b) if a > 0, b > 0,

b if a = 0, b ≥ 0,

+∞ otherwise

∀(a, b) ∈ R2.

Note that η is a non-negative, convex, and lower semicontinuous function which is
continuously di�erentiable on {(a, b) ∈ R2 | a, b > 0}, see e.g. [24, 45]. However, η is
discontinuous precisely at the points from {(a, b) ∈ R2 | 0 ≤ a ⊥ b ≥ 0} and, thus,
essentially nonsmooth.

If the function r is chosen such that

P [η (ZB, uB) ≤ r(|B|)∀B ∈ B] ≥ α (4.2)

holds for the true image u, i.e., if 0 is a (1 − α)-quantile of the random variable
supB∈B [η (ZB, uB)− r(|B|)], see [30], then the reconstruction ū solving (4.1) satis�es
automatically

P [f(ū) ≤ f(u)] ≥ α, (4.3)

i.e., with probability at least α, the reconstruction is at least as smooth as the true
image.

The smoothness-promoting function f : L2 (Ω) → R can be chosen depending on
the application. Famous choices include classical L2-norm penalties, sparsity promot-
ing penalties such as f(u) :=

∑∞
i=1 |(u, ei)2| with a complete orthonormal system or

frame {ei}i∈N ⊂ L2(Ω), or the TV-seminorm given by

TV(u) := sup

{∫
Ω

u div(ϕ) dω

∣∣∣∣ϕ ∈ C1
c (Ω;R2), ‖ϕ‖∞ ≤ 1

}
,

which equals TV(u) =
∫

Ω
‖∇u‖1 dω for di�erentiable u. Above, C1

c (Ω;R2) represents
the space of all continuously di�erentiable functions mapping from Ω to R2 with
compact support in Ω. In the following, we focus for simplicity on Sobolev-type
penalties

f(u) :=

∫
R2

(
1 + ‖ζ‖2

2

)s |(Fu)(ζ)|2 dζ, (4.4)

where s ≥ 0, and Fu denotes the Fourier transform of u extended by 0 to all of R2.
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4.2 Implementation

For the numerical realization, we discretize Ω = (0, 1)2 using n2 equally sized pixels
and �x n := 256. The image u is therefore approximated by an n×n matrix of pixels
with pixel-size s := 1

n2 = 256−2. With this resolution, the family of regions B ⊂ 2Ω

is chosen as all sub-squares of the image with side length (scale) between 1 and 64
pixels. This results into 3.541.216 constraints which is roughly 54 times more than the
number of pixels. The size |B| of a region is numerically computed as |B| := s#B.

As there are way more sub-squares with small side length, a penalty term

pen(|B|) :=
√

2 (log (n2/ |B|) + 1),

which only depends on the size of the sub-squares, is introduced. This is necessary
to avoid the small sub-squares to dominate the statistical behavior of the overall test
statistic

Tn(Z, u,B) := max
B∈B

[TB(Z, u)− pen(|B|)],

see [30]. We approximate the (1−α)-quantile q1−α of Tn by the (empirically sampled)
(1− α)-quantile q̃1−α of

Mn(B) := max
B∈B

[
|B|−1/2

∣∣∣∑
i∈B

Xi

∣∣∣− pen(|B|)
]

with i.i.d. standard normal random variables Xi. If the smallest scale in B was at
least of size log(n), then this approximation was shown to be valid in [30]. However,
the chosen penalization pen e�ectively over-damps the small scales, cf. [41], which
makes this approximation reasonable over all scales considered here. Altogether, this
leads to the right-hand side

r(|B|) :=
(q̃1−α + pen(|B|))2

2|B|

in (4.1). In the numerical experiments, the 0.1-quantile q̃0.1 := 1.63 is used, because
for bigger values of α, the local hypothesis tests are not restrictive enough such that
the reconstruction image is oversmoothed. For the same reason, s := 0.01 is chosen
relatively small in the Sobolev-type penalty (4.4).

In the safeguarded augmented Lagragian method from Algorithm 3.2, we choose
vk as the componentwise projection of the Lagrange multiplier λk onto the interval
[0, 108]. The noisy observation is taken as initial starting image which, together with
the parameters ρ0 := 4, τ := 0.9, and γ := 4, delivers a stable convergence in the
numerical experiments. Note, that x0 = Z is only possible in the discretized setting,
in case of continuous computations one could e.g. use a kernel density estimator to
obtain x0 ∈ L2(Ω). Furthermore, we make use of the termination criterion from
Remark 3.8 with εalmabs := 10−2.

4.3 Stochastic Gradient Descent as a Subproblem Solver

Solving the unconstrained associated subproblem (3.2) is computationally expensive,
especially as our problem has O(n3) constraints. This obstacle is tackled by using
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NADAM [16] - a �rst-order gradient descent method - which outperformed other
gradient descent methods in our experiments. It is also utilized that the constraints
are redundant to a certain degree and thus a stochastic version of the NADAMmethod
can be used.

For the �xed penalty parameter ρk > 0 and a family vk := {vkB}B∈B of Lagrange
multiplier estimates, the augmented Lagrangian subproblem (3.2) takes the particular
form

min
u

f(u) +
1

2ρk

∑
B∈B

(
max 2

(
0, vkB + ρk(η(ZB, uB)− r(|B|))

)
− (vkB)2

)
in the present situation. Here and in what follows, we approximate the continuous
mean |B|−1

∫
B
u dω by uB := s|B|−1

∑
i∈B ui = (#B)−1

∑
i∈B ui, which corresponds

to the discrete mean. For the NADAM method, one needs to calculate the gradient
of the augmented Lagrangian function. Therefore, the partial derivative of u 7→
η(ZB, uB) w.r.t. pixel ui (where it exists) is given by (#B)−1(1−ZB/uB) if i ∈ B and,
otherwise, 0. Thus, the partial derivative of the associated augmented Lagrangian
function w.r.t. the pixel ui (where it exists) is

f ′ui(u) +
∑
B∈B(i)

1

#B
max

(
0, vkB + ρk(η(ZB, uB)− r(|B|))

)(
1− ZB

uB

)
,

where
B(i) := {B ∈ B | i ∈ B}.

The above formula is valid whenever uB > 0 for all B ∈ B(i). To account for the
non-di�erentiability on the boundary, we set

(Lρk)
′
ui

(u, vk) := f ′ui(u) +
∑
B∈B(i)

bρk(Z, u,B, v
k)

with

bρk(Z, u,B, v
k)

:=


1

#B
max

(
0, vkB + ρk(η(ZB, uB)− r(|B|))

) (
1− ZB

uB

)
if uB > 0,

c if uB = 0 and ZB > 0

0 if uB = ZB = 0.

In the case uB = ZB = 0, the constraint is satis�ed and thus we can set the corre-
sponding gradient to 0. The rationale behind the de�nition for uB = 0 and ZB > 0
is to enforce a step into positive direction. Numerically, we use c := −10 < 0. By
de�nition it always holds ZB ≥ 0 and thus we do not need to cope with the case
ZB < 0. As the NADAM method may step into the negative domain, we set all
pixels to zero which are negative after one NADAM iteration. Thus we also ensure
that uB ≥ 0.
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Instead of calculating the summand for every B ∈ B, we choose a random family
Br ⊂ B and approximate the gradient by

(Lρk)
′
ui

(u, vk) ≈ f ′ui(u) +
∑

B∈Br∩B(i)

bρk(Z, u,B, v
k).

As it is possible to e�ciently calculate all summands with same scale |B| with the
help of the discrete Fourier transform, we pick only the scales at random and include
all sets B of those scales in Br. In practice, it was �rst tried to use a �xed number
of 10 scales. This yielded fast convergence in the beginning, but convergence slowed
down during the runs due to missing accuracy in solving the subproblems. Thus, we
decided to increase the number of scales picked during the algorithm although this
worsens the running time of a single augmented Lagrangian step. More precisely, in
our experiments, we now increase the amount of scales by one after every augmented
Lagrangian step. For simplicity, a �xed number of 300 iterations of the NADAM
method is chosen, and the stepsize is picked constant as max

(
0.005, 0.8k

)
in the k-th

iteration of Algorithm 3.2 to solve the augmented Lagrangian subproblem.

4.4 Numerical Results

In this section, we comment on the numerical behavior of the safeguarded augmented
Lagragian method from Algorithm 3.2 for the denoising of the three standard test
images �Butter�y�, �Cameraman�, and �Brain�, where the hyper-parameters are cho-
sen as described in the previous sections. Furthermore, we pick r such that (4.2) and,
consequently, (4.3) hold true with α = 0.1.

The reconstructions in Figure 4.1 show that the method yields reasonable results
as convergence to a meaningful solution is observed. As mentioned before, using
α = 0.1 ensures the statistical guarantee (4.3), and thus leads by construction to
a method tending to oversmoothing. This is clearly visible in the right column of
Figure 4.1, but must be seen as a feature of the variational Poisson denoising method
under consideration.

To cope with this, we applied the method with a smaller function r (shifted by a
constant) to prevent oversmoothing, see Figure 4.2. This implies that the statistical
guarantee (4.3) is lost, but therefore the constraints are more restrictive and prevent
oversmoothing. Note that a similar observation was made in [19]. It can be seen from
Figure 4.2 that the corresponding reconstruction is less smooth, but seems superior
over the one in Figure 4.1a.

To further analyze the convergence behavior of Algorithm 3.2 in the present set-
ting, we also depict in Figure 4.3 the value of the smoothness promoting functional
f from (4.4), the percentage of violated constraints

#{B ∈ B : η(ZB, uB) ≤ r(|B|)}
#B

,

and the maximum

max
B∈B

η(ZB, uB)− r(|B|)
r(|B|)

18



(a) �Cameraman�

(b) �Butter�y�

(c) �Brain�

Figure 4.1: Reconstruction of the three test images with r chosen such that (4.2) holds
true for α = 0.1: original image (left panel), noisy image (center), reconstructed image
(right panel).

as well as average
1

#B
∑
B∈B

max(0, η(ZB, uB)− r(|B|))
r(|B|)

of the relative constraint violation over all B ∈ B, associated with the experiments
corresponding to Figure 4.1a, respectively. It becomes clear that the function values
of f drop rapidly to a plateau. Only after updating the Lagrange multiplier estimate
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Figure 4.2: Reconstruction of the cameraman image with decreased r to reduce over-
smoothing.

vk in iteration k = 2, the value jumps up again as in the augmented Lagrangian
function, the constraints are weighted higher in comparison to the functional f . The
noisy behavior in the graph is clearly due to the usage of a stochastic gradient descent
method, which, however, does not in�uence the long time behavior. The immediate
decay of f , followed by an increase, also agrees with the number of ful�lled constraints.
In the beginning, about 80 percent of the constraints are violated as the Lagrange
multiplier estimate is 0 and, thus, the focus is on minimizing the functional f without
constraints. Exactly with updating the estimate vk, the graph drops down such that
in the end almost all constraints are ful�lled, indicating that the reconstruction is in
fact a solution of (4.1).

5 Sparse Control

5.1 Description of the Problem

Let Ω ⊂ Rd be a bounded open set and consider the optimal control problem

min
y,u

1

2
‖y − yd‖2

2 +
σ

2
‖u‖2

2

s.t. −∆y = u

‖u‖1 ≤ κ

y ∈ H1
0 (Ω), u ∈ L2(Ω)

(OC)

where yd ∈ L2(Ω) is a desired state, σ > 0 is a regularization parameter, and κ > 0 is
a constant which is used to model the desired level of sparsity of the optimal control
function. The appearing elliptic PDE −∆y = u has to be understood in the weak
sense, i.e., ∫

Ω

∇y>∇φ dω =

∫
Ω

uφ dω ∀φ ∈ H1
0 (Ω).

It is folklore that this variational problem possesses a unique solution in H1
0 (Ω) for

each u ∈ L2(Ω). Further, the associated solution operator is linear and continuous. It
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Figure 4.3: Convergence behavior of cameraman image with statistical r: number
of iterations vs. objective function value (left upper panel), percentage of violated
constraints (right upper panel), maximal relative constraint violation (left middle
panel), average relative constraint violation (right middle panel), termination criterion
from Remark 3.8 (left lower panel), penalty parameter (right lower panel).

is well known that incorporating the L1-norm of the control function into the objective
function of an optimal control problem promotes sparsity of controls, i.e., the optimal
control tends to vanish on large parts of the underlying domain. Here, we strike a
di�erent path to sparse controls by incorporating a hard sparsity constraint into a
standard optimal control problem. A related approach to sparse control (in space)
of parabolic equations can be found in the recent papers [10, 11]. It is easily seen
that (OC) is a convex optimization problem which possesses a unique solution, see
Remark 3.1 as well. Here, we aim to solve this problem numerically via the augmented
Lagrangian method discussed in Section 3. Since the objective function is strongly
convex (w.r.t. the control), the convergence result from Corollary 3.7 applies.

Therefore, we will augment the crucial cardinality constraint which we will inter-
pret as a single scalar but nonsmooth inequality (and not as a geometric constraint
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enforcing that the control is in the κ-ball around 0 w.r.t. the L1-norm which might
also be possible). Respecting this, for a given penalty parameter ρ > 0 and some
Lagrange multiplier estimate v, the augmented Lagrangian subproblem (3.2) takes
the precise form

min
y,u

1

2
‖y − yd‖2

2 +
σ

2
‖u‖2

2 +
1

2ρ

(
max2

(
0, v + ρ(‖u‖1 − κ)

)
− v2

)
s.t. −∆y = u

y ∈ H1
0 (Ω), u ∈ L2(Ω),

(5.1)

and it is a convex optimization problem as well, see Example 2.2. The feasible set of
(5.1) consists of all state-control pairs which satisfy the given PDE constraint. It is
a closed subspace of H1

0 (Ω)× L2(Ω). Particularly, it is weakly sequentially closed.
In the remainder of this section, we will �rst describe how (5.1) can be solved with

the aid of a semismooth Newton method, see e.g. [13, 23, 26, 40, 46], in Section 5.2.
Afterwards, we discuss the discretization of the subproblem (5.1) in Section 5.3. In
Section 5.4, we comment on the implementation of the superordinate augmented
Lagrangian method from Algorithm 3.2 for the actual numerical solution of (OC)
before presenting illustrative results of numerical experiments.

5.2 Semismooth Newton Method as a Subproblem Solver

Let us reinspect the augmented Lagrangian subproblem (5.1) for �xed penalty pa-
rameter ρ > 0 and multiplier estimate v. To start, observe that the quadratic regular-
ization term in the objective function of this convex optimization problem guarantees
that it possesses a unique minimizer. Next, we are going to characterize this min-
imizer with the aid of optimality conditions. Proceeding via the standard adjoint
approach of optimal control, see e.g. [44], while exploiting a suitable chain rule (from
nonsmooth analysis), see e.g. [34, Corollary 3.8], one can easily show that a pair
(ȳ, ū) ∈ H1

0 (Ω)×L2(Ω) is the minimizer of (5.1) if and only if there exists an adjoint
state p̄ ∈ H1

0 (Ω) such that the following conditions are valid:

p̄− σū ∈ max
(
0, v + ρ(‖ū‖1 − κ)

)
∂ ‖·‖1 (ū),

−∆ȳ = ū,

−∆p̄ = yd − ȳ.
(5.2)

The appearing subdi�erential ∂ ‖·‖1 (ū) can be easily computed as

∂ ‖·‖1 (ū) :=

ξ ∈ L2(Ω)

∣∣∣∣∣∣∣
ξ = −1 a.e. on {ū < 0}
ξ = 1 a.e. on {ū > 0}
ξ ∈ [−1, 1] a.e. on {ū = 0}

 ,

see e.g. [25, Chapter 0.3.2]. We now aim to rewrite (5.2) as a system of nonsmooth
equations. Therefore, we make use of the shrinkage operator Sσ : R2 → R given by

Sσ(a, b) := max(0, (a− b+)/σ) + min(0, (a+ b+)/σ) ∀(a, b) ∈ R2
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where we use b+ := max(0, b) for brevity of notation. The precise de�nition of Sσ is
not only motivated by our desire to reformulate the conditions from (5.2) in compact
form, but it also turns out to be bene�cial when invertibility issues in the context of
the underlying semismooth Newton method are discussed. With the aid of Sσ, we
can rewrite (5.2) by means of the system

−∆p̄+ ȳ − yd = 0,

ū− Sσ(p̄, β̄) = 0,

−∆ȳ − ū = 0,

β̄ −max
(
0, v + ρ(‖ū‖1 − κ)

)
= 0

(5.3)

in the unknown variables (ȳ, ū, p̄, β̄) ∈ H1
0 (Ω) × L2(Ω) × H1

0 (Ω) × R. The second
equation, in which Sσ is evaluated in pointwise fashion, has to hold almost everywhere
on Ω.

As an abbreviation, we use V := H1
0 (Ω) × L2(Ω) × H1

0 (Ω) × R, and introduce a
residual mapping F : V → V ∗ by means of

F (z) :=


−∆p+ y − yd
u− Sσ(p, β)
−∆y − u

β −max
(
0, v + ρ(‖u‖1 − κ)

)
 ∀z = (y, u, p, β) ∈ V.

Clearly, z̄ ∈ V solves (5.3) if and only if F (z̄) = 0, i.e., we need to �nd the roots of
F . In order to apply the semismooth Newton method for this purpose, we need to
clarify that F is actually semismooth, its generalized derivative has to be determined,
and, in order to guarantee local fast convergence, local uniform invertibility of the
generalized derivative has to be investigated.

Let us start with the discussion of the semismoothness of F . This is not an issue
for the �rst and third components as they are induced by continuous a�ne operators.
As H1

0 (Ω) is continuously embedded in L2+δ(Ω) for some su�ciently small δ > 0
(depending on the dimension d), we can apply e.g. [23, Proposition 4.1] in order
to obtain that the superposition operators associated with max(0, ·) and min(0, ·)
are semismooth as mappings from H1

0 (Ω) to L2(Ω). Hence, the second component
of F is semismooth as all remaining �nite-dimensional operations are semismooth.
Finally, observe that the superposition operator associated with | · | is semismooth as
a mapping from L2(Ω) to L1(Ω), again due to [23, Proposition 4.1]. As integration
is a continuous linear operation on L1(Ω), ‖·‖1 is a semismooth function from L2(Ω)
to R. The remaining �nite-dimensional operations in the last component of F are
semismooth as well.

With the aid of [23, Proposition 4.1] and suitable chain rules for semismooth
compositions, see e.g. [46, Section 7], we are in position to characterize a suitable
generalized derivative of F which can be used in the semismooth Newton method.
These results show that

F ′(z) :=


I∗I 0 −∆ 0

0 idL2(Ω) −σ−1DII σ−1θ1(χI1 − χI2)
−∆ −I∗ 0 0

0 −ρθ2 Signu 0 1

 (5.4)
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serves as a generalized derivative of F at z = (y, u, p, β) ∈ V . Above, I : H1
0 (Ω) →

L2(Ω) denotes the canonical injection ofH1
0 (Ω) into L2(Ω), and its adjoint I∗ : L2(Ω)→

H−1(Ω) is the canonical injection of L2(Ω) into H−1(Ω) (note that we identify L2(Ω)
and its dual with each other). We made use of the index sets

I1 := {p− β+ > 0}, I2 := {p+ β+ < 0}, I := I1 ∪ I2.

Furthermore, DI : L2(Ω)→ L2(Ω) denotes the pointwise multiplication with χI , and
Signu : L2(Ω)→ R is given by

Signu(ũ) := (sign(u), ũ)2 ∀ũ ∈ L2(Ω),

where we used (·, ·)2 : L2(Ω) × L2(Ω) → R in order to denote the standard inner
product in the Hilbert space L2(Ω) for brevity of notation. Finally, we made use of

θ1 :=

{
0 if β < 0,

1 if β ≥ 0,
θ2 :=

{
0 if v + ρ(‖u‖1 − κ) < 0,

1 if v + ρ(‖u‖1 − κ) ≥ 0.

In the subsequent result, we show local uniform invertibility of the derivative from
(5.4) under an additional assumption.

Lemma 5.1. There exists a constant c > 0, such that for all z = (y, u, p, β) ∈ V
with u > 0 a.e. on I1 and u < 0 a.e. on I2, the operator F ′(z) is invertible with
‖F ′(z)−1‖ ≤ c.

Proof: Fix z = (y, u, p, β) ∈ V such that I1 ⊂ {u > 0} and I2 ⊂ {u < 0}. Let a right-
hand side r = (r1, r2, r3, r4) ∈ V ∗ be given. We have to �nd d = (d1, d2, d3, d4) ∈ V
with F ′(z)d = r, i.e.,

I∗I 0 −∆ 0
0 idL2(Ω) −σ−1DII σ−1θ1(χI1 − χI2)
−∆ −I∗ 0 0

0 −ρθ2 Signu 0 1



d1

d2

d3

d4

 =


r1

r2

r3

r4

 .

Now, we multiply the �rst equation (from the left) by σ−1DII(−∆)−1 and the third
equation (from the left) by −σ−1DII(−∆)−1I∗I(−∆)−1 and add everything to the
second equation. By only considering the second and fourth equation, this gives(

idL2(Ω) +σ−1DIQQ σ−1θ1(χI1 − χI2)
−ρθ2 Signu 1

)(
d2

d4

)
=

(
r5

r4

)
. (5.5)

with the self-adjoint operator Q := I(−∆)−1I∗ : L2(Ω)→ L2(Ω) and

r5 := r2 + σ−1DII(−∆)−1r1 − σ−1DII(−∆)−1I∗I(−∆)−1r3.

It is well known that the operator idL2(Ω) +σ−1DIQQ from L2(Ω) into itself is invert-
ible with(

idL2(Ω) +σ−1DIQQ
)−1

= idL2(Ω)−σ−1DIQ
(
idL2(Ω) +σ−1QDIQ

)−1Q.
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Since Q is self-adjoint, we can use the Lax�Milgram Lemma to show that∥∥(idL2(Ω) +σ−1QDIQ)−1
∥∥ ≤ 1,

and together with the fact that the operator norm of DI is bounded from above by
1, we �nd the uniform bound∥∥(idL2(Ω) +σ−1DIQQ)−1

∥∥ ≤ 1 + σ−1 ‖Q‖2 ,

see, e.g., [35, Lemma 3.14] or [22] for a di�erent proof. Thus, we can consider a Schur
complement in (5.5) and arrive at(

1 +
ρθ1θ2

σ
Signu(idL2(Ω) +σ−1DIQQ)−1(χI1 − χI2)

)
d4 = r6 (5.6)

with
r6 := r4 + ρθ2 Signu(idL2(Ω) +σ−1DIQQ)−1r5. (5.7)

Note that equation (5.6) lives in R. In order to prove its stable solvability, we
check that the number

θ1 Signu(idL2(Ω) +σ−1DIQQ)−1(χI1 − χI2)
= (sign(u), θ1(idL2(Ω) +σ−1DIQQ)−1(χI1 − χI2))2

is non-negative. As this is trivially satis�ed for θ1 = 0, let us assume that θ1 = 1, i.e.,
β ≥ 0. We set

ũ := (idL2(Ω) +σ−1DIQQ)−1(χI1 − χI2),
i.e.,

χI1 − χI2 = (idL2(Ω) +σ−1DIQQ)ũ.

Since DI is the pointwise multiplication with χI , this shows that ũ vanishes outside
of I. The assumptions on u guarantee sign(u)χI = χI1 − χI2 . Thus,

(sign(u), ũ)2 = (sign(u)χI , ũ)2 = (χI1 − χI2 , ũ)2

= ((idL2(Ω) +σ−1DIQQ)ũ, ũ)2

= ((idL2(Ω) +σ−1DIQQDI)ũ, ũ)2 ≥ 0.

In order to �nish the proof, we solve the above systems in reverse order. First, we
set

d4 :=

(
1 +

ρθ1θ2

σ
Signu(idL2(Ω) +σ−1DIQQ)−1(χI1 − χI2)

)−1

r6

in order to satisfy (5.6), and we have

|d4| ≤ |r6| ≤ |r4|+ c1 ‖r5‖2

from (5.7) for some constant c1 > 0 which is independent of z as the operator norm
of Signu is bounded from above by

√
|Ω|. Similarly, the de�nition of r5 gives

‖r5‖2 ≤ c2 ‖r‖V ∗
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for some constant c2 > 0 independent of z. Hence, |d4| ≤ c3 ‖r‖V ∗ for some constant
c3 > 0 independent of z. Next, we set

d2 :=
(
idL2(Ω) +σ−1DIQQ

)−1(
r5 − σ−1θ1d4(χI1 − χI2)

)
.

Again, ‖d2‖2 ≤ c4 ‖r‖V ∗ for some constant c4 > 0 independent of z. Finally, we set

d1 := (−∆)−1(r3 + I∗d2), d3 := (−∆)−1(r1 − I∗Id1)

and we have F ′(z)d = r by construction. By combining the above estimates, we get
‖d‖V ≤ c ‖r‖V ∗ for some constant c > 0 independent of z. �

In Algorithm 5.2, we now state a semismooth Newton method for the computa-
tional solution of (5.1).

Algorithm 5.2 (Local Semismooth Newton Method for (5.1)).

Require: (y0, p0, β0) ∈ H1
0 (Ω)×H1

0 (Ω)× R, parameter εssnabs ≥ 0
1: Set ` := 0.
2: Set u0 := Sσ(p0, β0) and z0 := (y0, u0, p0, β0).
3: while ‖F (z`)‖V ∗ > εssnabs do

4: Compute the solution δz`+1 := (δy`+1, δu`+1, δp`+1, δβ`+1) ∈ V of

F ′(z`)δz = −F (z`).

5: Set z̃`+1 := z` + δz`.
6: Set u`+1 := Sσ(p̃`+1, β̃`+1) and z`+1 := (ỹ`+1, u`+1, p̃`+1, β̃`+1).
7: Set `← `+ 1.
8: end while

9: return z`

Let us comment on the rather uncommon Steps 2 and 6 in Algorithm 5.2. There-
fore, �x an iteration ` ∈ N as well as an iterate z` = (y`, u`, p`, β`) ∈ V of Algo-
rithm 5.2. The aforementioned additional application of the shrinkage operator gives
u` = Sσ(p`, β`) almost everywhere on Ω, and this guarantees that u` > 0 almost
everywhere on {p` − (β`)+ > 0} and u` < 0 almost everywhere on {p` + (β`)+ < 0}.
Now, due to Lemma 5.1, it is clear that the generalized derivative F ′(z`) is invertible
and, thus, Step 4 is well de�ned.

Classical convergence results for semismooth Newton methods in function spaces
show that, if the method is initialized in a su�ciently small neighborhood of a solution
where the generalized derivative is locally nonsingular and uniformly invertible, then
the computed sequence converges superlinearly to this solution, see e.g. [23, Theo-
rem 1.1]. Let us point out that, due to the presence of Steps 2 and 6, Algorithm 5.2
is seemingly not a semismooth Newton method in the narrower sense. However, in
our next result, we will demonstrate that Algorithm 5.2 corresponds to a semismooth
Newton method applied to a reduced version of the system (5.3), so that we can rely
on the aforementioned classical �nding.
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To this end, set Ṽ := H1
0 (Ω)×H1

0 (Ω)× R and consider F̃ : Ṽ → Ṽ ∗ given by

F̃ (z̃) :=

 −∆p+ y − yd,
−∆y − Sσ(p, β),

β −max
(
0, v + ρ(‖Sσ(p, β)‖1 − κ)

)
 ∀z̃ = (y, p, β) ∈ Ṽ .

Using similar arguments as above, we can easily check that F̃ is semismooth, and
that

F̃ ′(z̃) :=

I∗I −∆ 0
−∆ −σ−1I∗DII σ−1θ1I∗(χI1 − χI2)

0 −ρσ−1θ̃2JI1,I2 1 + ρσ−1θ1θ̃2(|I1|+ |I2|)

 (5.8)

serves as a generalized derivative of F̃ at z̃ = (y, p, β) ∈ Ṽ . Above, we used
JI1,I2 : H1

0 (Ω)→ R given by

∀p̃ ∈ H1
0 (Ω) : JI1,I2(p̃) := (I p̃, χI1 − χI2)2,

and

θ̃2 :=

{
0 if v + ρ(‖Sσ(p, β)‖1 − κ) < 0,

1 if v + ρ(‖Sσ(p, β)‖1 − κ) ≥ 0.

Furthermore, let us point out that

−ρσ−1θ̃2JI1,I2 = −ρσ−1θ̃2

(
SignSσ(p,β) DII),

ρσ−1θ1θ̃2(|I1|+ |I2|) = −ρθ̃2 SignSσ(p,β)

(
σ−1θ1(−χI1 + χI2)

)
,

(5.9)

see (5.4) as well.

Lemma 5.3. Fix z = (y, u, p, β) ∈ V such that u = Sσ(p, β) and set z̃ := (y, p, β).

(a) We have ‖F (z)‖V ∗ = ‖F̃ (z̃)‖Ṽ ∗.
(b) If the quadruple δz = (δy, δu, δp, δβ) ∈ V solves

F ′(z)δz = −F (z), (5.10)

then the triplet δ̃z := (δy, δp, δβ) ∈ Ṽ solves

F̃ ′(z̃)δ̃z = −F̃ (z̃). (5.11)

(c) If the triplet δ̃z = (δy, δp, δβ) ∈ Ṽ solves (5.11), then the quadruple δz :=
(δy, δu, δp, δβ) ∈ V with δu := σ−1(DII)δp− σ−1θ1δβ(χI1 − χI2) solves (5.10).

Proof: The proof of the �rst assertion is obvious by de�nition of F and F̃ due to
u = Sσ(p, β).

For the proof of the second statement, we �x a solution δz := (δy, δu, δp, δβ) ∈ V
of (5.10). The �rst equation in (5.10) and (5.11) coincide. Note that the second
equation of (5.10) gives

δu = σ−1(DII)δp− σ−1θ1δβ(χI1 − χI2)
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as u− Sσ(p, β) = 0. Hence, we �nd

−∆δy − σ−1(I∗DII)δp+ σθ1δβI∗(χI1 − χI2) = −∆δy − I∗δu = −∆y − u,

i.e., the second equation of (5.11) holds. Similarly, respecting (5.9) yields

− ρσ−1θ̃2JI1,I2δp+ (1 + ρσ−1θ1θ̃2(|I1|+ |I2|))δβ
= −ρθ2 Signu(σ

−1(DII)δp) +
(
1− ρθ2 Signu

(
σ−1θ1(−χ1 + χI2)

))
δβ

= −ρθ2 Signu
(
δu+ σ−1θ1δβ(χI1 − χI2)

)
+
(
1− ρθ2 Signu

(
σ−1θ1(−χ1 + χI2)

))
δβ

= −ρθ2 Signu δu+ δβ

= β −max
(
0, v + ρ(‖u‖1 − κ)

)
= β −max

(
0, v + ρ(‖Sσ(p, β)‖1 − κ)

)
,

i.e., the third equation of (5.11) holds. Hence, δ̃z is a solution of (5.11).
The proof of the �nal assertion is completely analogous. �

The above lemma gives rise to the following corollary.

Corollary 5.4.

(a) Combining Lemmas 5.1 and 5.3, we �nd that the linear operators (5.8) are

uniformly invertible on Ṽ .

(b) Algorithm 5.2 precisely corresponds to the application of the standard semi-

smooth Newton method for the solution of F̃ (z̃) = 0 based on the general-
ized derivative given in (5.8) initialized at (y0, p0, β0) with termination criterion

‖F̃ (z̃`)‖Ṽ ∗ ≤ εeps.

Taking into account that the superposition operators associated with max(0, ·)
and min(0, ·), mapping from L2(Ω) to itself, are Lipschitz continuous with Lipschitz
modulus one, the superposition operator associated with Sσ is Lipschitz continuous
as a mapping from H1

0 (Ω) × R to L2(Ω) with Lipschitz modulus σ−1. Furthermore,
for each quadruple z = (y, u, p, β) ∈ V , ‖z‖V ≥ ‖z̃‖Ṽ trivially holds for the triplet

z̃ := (y, p, β) ∈ Ṽ . Together with [23, Theorem 1.1] and Corollary 5.4, we obtain the
following convergence result.

Theorem 5.5. Let (ȳ, ū) ∈ H1
0 (Ω)× L2(Ω) be the uniquely determined minimizer of

(5.1), let p̄ ∈ H1
0 (Ω) be the uniquely determined associated adjoint state according to

(5.2), and set β̄ := max
(
0, v+ρ(‖ū‖1−κ)

)
. Whenever (y0, p0, β0) ∈ H1

0 (Ω)×H1
0 (Ω)×

R is chosen su�ciently close to (ȳ, p̄, β̄) while Algorithm 5.2 started at (y0, p0, β0)
does not terminate due to Step 3, then the computed sequence {(yk, uk, pk, βk)} ⊂ V
converges superlinearly to (ȳ, ū, p̄, β̄).

5.3 Discretization

The problem (OC) is discretized by a standard �nite element approach. That is, we
choose a triangulation of Ω, and the variables y and u as well as the adjoint state p are
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discretized by piecewise linear and continuous functions. The nodal basis functions
are denoted by ψi, i = 1, . . . , N . The discretized counterparts of y, u, and p will be
denoted by yh, uh, and ph, respectively. We introduce the sti�ness matrix, the mass
matrix, and a lumped mass matrix via

K :=

(∫
Ω

∇ψ>i ∇ψj dω

)N
i,j=1

, M :=

(∫
Ω

ψiψj dω

)N
i,j=1

, ML := diag

(∫
Ω

ψi dω

)N
i=1

,

respectively. Since the functions ψi, i = 1, . . . , N , are non-negative, the diagonal of
ML is strictly positive and, thus,ML is invertible. We discretize problem (OC) as

min
yh,uh

1

2
(yh − yd,h)>M(yh − yd,h) +

σ

2
u>hMLuh

s.t. Kyh =MLuh

e>ML |uh| ≤ κ

yh, uh ∈ RN .

(OCh)

Here, yd,h is the interpolation of the desired state and e ∈ RN is the all-ones vector.
The use of the lumped mass matrices yields that the part of the optimality system of
(OCh) corresponding to the control can be interpreted coe�cientwise. Consequently,
it can again be rewritten by using a shrinkage operator. For the use of mass lumping
for higher-order �nite elements and for further references, we refer to [39].

In order to solve (OCh), we augment the sparsity constraint in the objective via
an additional summand as in (5.1). Noting that e>|uh| = ‖uh‖1 holds for all uh ∈ RN ,
the optimality system of this augmented Lagrangian subproblem is given by

p̄h − σūh ∈ max
(
0, v + ρ(e>ML |ūh| − κ)

)
∂ ‖·‖1 (ūh), (5.12a)

Kȳh =MLūh, (5.12b)

Kp̄h =M(yd,h − ȳh). (5.12c)

Note that we already have canceled out the matrixML in (5.12a). Since (5.12) is a
discretized version of (5.2), we can use the same steps as in Section 5.2 to arrive at a
semismooth Newton method for its numerical solution.

5.4 Implementation and Numerical Results

We implemented Algorithm 3.2 for the numerical solution of the sparsity-constrained
optimization problem (OC) in MATLAB2022b. The parameters in Algorithm 3.2
are chosen as ρ0 := 10−4, τ := 0.1, and γ := 2. Furthermore, we exploit λ0 :=
0. The Lagrange multiplier estimate vk is chosen to be the projection of λk onto
the interval [0, 108] in Step 3 of Algorithm 3.2. Additionally, we made use of the
termination criterion from Remark 3.8 with εalmabs := 10−6. In order to construct the
starting point x0 = (y0, u0) of Algorithm 3.2, we chose y0 ≡ 0. Furthermore, p0 is
the associated adjoint state, and β0 := 10−6 is used to set u0 := Sσ(p0, β0). The
triplet (y0, p0, β0) is also used to initialize the subproblem solver Algorithm 5.2 in the
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�rst iteration of Algorithm 3.2. For termination of Algorithm 5.2, we made use of
εssnabs := 10−6 2−k in the k-th iteration of Algorithm 3.2. Note that, in each iteration
k ≥ 1 of Algorithm 3.2, we exploited the quadruple computed in the prior iteration
k − 1 to initialize Algorithm 5.2 in a canonical way.

The instance of problem (OC) we are considering for our numerical experiments
is given on the unit square Ω := (0, 1)2 ⊂ R2. The desired state yd : Ω→ R is chosen
as

yd(ω) := sin(πω1) exp(ω2) ∀ω = (ω1, ω2) ∈ Ω.

Note that, as y ∈ H1
0 (Ω) has to be chosen in (OC), this desired state is not reachable.

Furthermore, σ := 10−2 is �xed. In order to discretize the problem, Ω has been
triangulated by a uniform mesh of 211 triangles. Figure 5.1 illustrates solutions of
(OC) (or, more precisely, of the discretized problem (OCh)) obtained for the four
di�erent sparsity parameters κ ∈ {100, 10, 2, 0.5}. Let us note that the sparsity
constraint is not active for the solution found for κ = 100, i.e., this setting illustrates
how the solution of (OC) looks like in situations where no sparsity constraint is
present. In all four scenarios, the subproblem solver Algorithm 5.2 found a reasonable
solution of the associated augmented Lagrangian subproblem (5.1). Thus, the local
convergence guarantees from Theorem 5.5 already seemed to be enough for a satisfying
behavior of the method, and the incorporation of an additional globalization technique
in the semismooth Newton framework became completely super�uous.

Figure 5.1: Optimal controls for (OC) for the di�erent values κ = 100, κ = 10, κ = 2,
and κ = 0.5 of the sparsity parameter.
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In Table 5.1, we monitor some more precise numbers which document the behav-
ior of Algorithm 3.2 for the particular choice κ = 0.5 which is the most challenging
setting. We observe that a maximum of 3 iterations of the semismooth Newton
method from Algorithm 5.2 is necessary in order to solve the augmented Lagrangian
subproblem in each (outer) iteration of Algorithm 3.2. Throughout the whole run,
Vρk(x

k+1, vk) is monotonically decreasing, and after 16 iterations, falls below the
threshold εalmabs . The penalty parameter is enlarged 12 times throughout the run, but
stays constant (and, still, comparatively small) throughout the last three iterations.
We also note that this behavior is caused, on the one hand, since ρ0 is comparatively
small and, on the other hand, by our rather excessive choice of the parameter τ .
Exemplary, for ρ0 := 0.01 and τ := 0.9, Algorithm 3.2 needs 44 (outer) iterations
to solve (OC) for κ = 0.5, and the penalty parameter stays constant throughout the
whole run.

k ` ρk Vρk(x
k+1, vk)

0 2 1.00e-4 1.135259e+1
1 2 1.00e-4 1.106969e+1
2 2 2.00e-4 1.054008e+1
3 2 4.00e-4 9.625707e+0
4 3 8.00e-4 8.220058e+0
5 3 1.60e-3 6.408010e+0
6 3 3.20e-3 4.402918e+0
7 3 6.40e-3 2.589087e+0
8 3 1.28e-2 1.271296e+0
9 3 2.56e-2 4.984998e-1
10 3 5.12e-2 1.453159e-1
11 3 1.02e-1 2.766288e-2
12 2 2.05e-1 3.082315e-3
13 2 4.10e-1 1.828053e-4
14 1 4.10e-1 1.087269e-5
15 1 4.10e-1 6.466741e-7

Table 5.1: Documentation of the numerical performance of Algorithm 3.2 on (OC) for
κ = 0.5: (outer) iteration number k of Algorithm 3.2, number of (inner) semismooth
Newton iterations ` of Algorithm 5.2, value of penalty parameter ρk, and value of
constraint-complementarity violation Vρk(x

k+1, vk).

6 Concluding Remarks

In this paper, we presented a rather general (safeguarded) augmented Lagrangian
framework for fully nonsmooth problems in Banach spaces with �nitely many inequal-
ity constraints, equality constraints within a Hilbert space setting, and additional
abstract constraints, where the inequality and equality constraints are augmented.
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An associated derivative-free global convergence theory has been developed which
applies in situations where the appearing subproblems can be solved to approximate
global minimality, and the latter is likely to be possible in convex situations. Our re-
sults generalize related �ndings in (partially) smooth settings, see e.g. [29, Section 4]
or [31, Theorem 6.15]. For our analysis, we only relied on minimal requirements
regarding semicontinuity properties of all involved data functions as (generalized)
di�erentiation played no role, and this makes our results broadly applicable.

The developed algorithm has been used for the numerical solution of two rather
di�erent convex optimization problems in abstract spaces which arise in the context
of image denoising and sparse optimal control. On the one hand, the main challenge
in the context of variational Poisson denoising was the handling of a huge number of
inequality constraints, whose nonsmoothness in mainly caused by the fact that the
domain of the underlying Kullback�Leibler-divergence is not the full space. For the
numerical solution of the augmented Lagrangian subproblems, a suitable stochastic
gradient descent method has been used as the computation of the full gradient of the
associated augmented Lagrangian function is, due to the presence of a huge number of
augmentation terms, very costly. On the other hand, the sparsity-constrained optimal
control problem of our interest has been interpreted as an optimization problem with
precisely one nonsmooth inequality constraint whose nonsmoothness is encapsulated
within the involved L1-norm. We veri�ed that the associated augmented Lagrangian
subproblem can be solved by tackling the corresponding system of (necessary and
su�cient) optimality conditions with the aid of a (local) semismooth Newton method.
For both problem classes, results of numerical experiments demonstrated the power
and �exibility of our framework.

It remains to be seen whether the obtained global convergence theory can be ex-
tended to situations where the subproblems are solved up to approximate stationarity.
The latter, on the one hand, is a standard assumption in the context of augmented
Lagrangian frameworks. On the other hand, it is not clear which subproblem solvers
are in position to reliably produce such points in a fully nonsmooth setting. How-
ever, working with (approximately) stationary points instead of (approximate) global
minimizers has the advantage to open the method up to applications in non-convex
settings but comes along with the challenging issue of choosing a numerically suitable
generalized derivative in in�nite-dimensional spaces.
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