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A topological derivative-based algorithm to solve

optimal control problems with L0(Ω) control cost

Daniel Wachsmuth∗

November 22, 2022

Abstract. In this paper, we consider optimization problems with L0-cost of
the controls. Here, we take the support of the control as independent optimiza-
tion variable. Topological derivatives of the corresponding value function with
respect to variations of the support are derived. These topological derivatives
are used in a novel algorithm. In the algorithm, topology changes happen at
large values of the topological derivative. Convergence results are given.
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1 Introduction

In this paper we are interested in the following optimal control problem: Mini-
mize

min
1

2
∥y − yd∥2L2(Ω) +

α

2
∥u∥2L2(Ω) + β∥u∥0

over all (y, u) satisfying
−∆y = u a.e. on Ω

and
ua ≤ u ≤ ub.

Here, ∥u∥0 is the measure of the support of u. This optimal control problem can
be interpreted in the context of optimal actuator placement: Find a (possibly
small) set A ⊆ Ω such that controls supported on A can still minimize a certain
objective functional.

In this work, we will take the support of the control u as own optimization
variable A ⊆ Ω. In addition, we will allow for a more general control problem
as above. The abstract problem we are interested in is: Minimize with respect
to u ∈ L2(Ω) and A ⊆ Ω the functional

J(u,A) :=
1

2
∥S(χAu) − yd∥2H +

∫
Ω

g(u(x)) + χA(x)β(x) dx, (1.1)

∗Institut für Mathematik, Universität Würzburg, 97074 Würzburg, Germany,
daniel.wachsmuth@mathematik.uni-wuerzburg.de. This research was partially supported by
the German Research Foundation DFG under project grant Wa 3626/3-2.
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where S : L2(Ω) → H is a solution operator of a linear partial differential
equation, H is a Hilbert space, yd ∈ H is given, g : R → R̄ is a strongly convex
function, and β ∈ L1(Ω) is non-negative.

Given A ⊆ Ω, the functional u 7→ J(u,A) admits minimizers, and we can
study the value function

J(A) := min
u∈L2(Ω)

J(u,A). (1.2)

We will investigate topological derivatives of the value function. In additions,
we are interested in the shape optimization problem

min
A⊆Ω

J(A). (1.3)

The topological derivative is the main result of Theorem 4.2. It can be extended
to non-strongly convex g, see Theorem 5.5. These results generalize available
results in the literature [2, 5, 4, 10], as we allow for non-smooth g and incorporate
control constraints. In comparison to earlier work, we will use less smoothness
assumptions, in particular no continuity of controls and adjoints is required.

The concept of topological derivatives goes back to the seminal work [13].
It was applied to an optimal control problem in [14], which is different than
ours: there, the observation term in the cost functional was taken on the set A,
i.e., the cost functional contained 1

2∥y − yd∥2L2(A). In these works, asymptotic

analysis with respect to radius of small inclusions/exclusions was performed.
Minimax-differentiability to compute topological derivatives was applied to op-
timal control problems in [4, 5, 16]. These results cannot be applied to problems
with control constraints. In addition, the abstract theory only allows to com-
pute the topological derivative at one fixed point, which necessitates continuity
assumptions on that point. In our proof, we get the topological derivative at
almost all x ∈ Ω at once using the Lebesgue differentiation theorem. Moreover,
we can allow for control constraints and non-smooth functions g. Let us also
mention [10], where the goal was to obtain controls that are robust with respect
to perturbations of the initial state of the state. One of the motivations of this
work was the question, how control constraints can be incorporated in the set-
ting of [10]. It would be interesting to see whether our approach also works in
this robust control framework.

In addition to the development of the topological derivative, we also investi-
gate a novel algorithm to solve the problem at hand. In the algorithm, variations
of a given set Ak ⊆ Ω are performed at points, where the topological derivative
has the wrong sign and has large absolute value. We incorporate a line-search
technique involving a step-size t > 0, which is required to satisfy an Armijo-like
descent condition. We emphasize that small values of the parameter may still
lead to topological changes of the set far away from the current boundary. This
is different to the (simplified) level-set method as considered, e.g., in [2, 3, 8,
11]. There, small values of t cannot result in topology changes but only lead to
boundary variations. This observation was the second motivation of this work:
to develop an algorithm, where the line-search corresponds to the derivation of
the topological derivative in the following way: Let Ak,t be the candidate for
the next iterate produced using the step-size t. Then the difference quotient
1
t (J(Ak,t) − J(A)) should converge for t ↘ 0 to an expression resembling the
topological derivative. Such a result is not true for level set methods. Our
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method is described in Section 6, see Algorithm 6.4. The mentioned estimate
of 1

t (J(Ak,t) − J(A)) is Lemma 6.2.
We also give a convergence result in Theorem 6.7. Here, we get the following

interesting result: if the sequence of characteristic functions (χAk
) of the iterates

Ak ⊆ Ω does not converge strongly in L1(Ω), then the sequence (Ak) is a
minimizing sequence for (1.3), see Corollary 6.8. To the best of our knowledge
there are no such convergence results in the literature. The sole exception being
[2], where the convergence analysis is done for a lower-semicontinuous envelope
of the level-set functional. In fact, the question of convergence of topological
derivative-based methods is mentioned as an open problem in [11, Section 5].

Notation

We will denote the Lebesgue measure of a measurable set A ⊆ Rd by |A|.
For r > 0 and x ∈ Rd, let Br(x) be the open ball with radius r centered at
x. Its Lebesgue measure will be denoted by |Br|. We set R̄ := R ∪ {+∞}.
For a function g : R → R̄, we set dom g := {u ∈ R : g(u) < +∞}. The
subdifferential of a convex function g at u will be denoted by ∂g(u). We will
write x+ := max(x, 0) and x− := min(x, 0) for x ∈ R.

2 Assumptions and preliminary results

Throughout this paper, we will work with the following assumptions concerning
the problem (1.1)

(A1) Ω ⊆ Rd is Lebesgue measurable with |Ω| < ∞.

(A2) H is a real Hilbert space, S ∈ L(L2(Ω), H), yd ∈ H.

(A3) g : R → R̄ is proper, convex, lower semi-continuous. In addition, g(u) ≥ 0
for all u ∈ R, and g(u) = 0 if and only if u = 0.

(A4) There is µ > 0 such that

µλ(1−λ)|u−v|2 +g(λu+ (1−λ)v) ≤ λg(u) + (1−λ)g(v) ∀u, v ∈ dom g.

(A5) There is q > 6 such that S∗S ∈ L(L2(Ω), Lq(Ω)), where S∗ ∈ L(H,L2(Ω))
denotes the Hilbert space-adjoint of S,

(A6) β ∈ L1(Ω).

Let us comment on these assumptions. As we plan to use the Lebesgue
differentiation theorem, we assume that the underlying measure space is induced
by the Lebesgue measure of Rd in (A1). Conditions (A2), (A3), (A4) imply
the well-posedness of the problem minu∈L2(Ω) J(u,A) for fixed A. Assumption
(A4) is strong convexity of the function g. The results of the paper are still valid
in the non-strong convex case (µ = 0) under slightly strengthened assumptions
on g and S, we will comment on this in Section 5. Condition (A5) implies that
certain remainder terms in the expansion of topological derivatives are of higher
order, see Theorem 4.2.

We will explicitly mention in upcoming, important results (theorems and
propositions), which of these assumptions are used. If the strong convexity
assumption is not mentioned then µ can be taken equal to zero.
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2.1 Existence of minimizers of J for fixed A

Let A ⊆ Ω measurable be given. Here, we consider the problem

min
u∈L2(Ω)

J(u,A). (PA)

where J is given by (1.1). Note that due to the construction of J and (A3), we
have

J(χAu,A) ≤ J(u,A) (2.1)

for all u ∈ L2(Ω).
Due to strong convexity of g and g(0) = 0 by (A3), (A4), we have

g(u) ≥ µ|u|2 ∀u ∈ dom g. (2.2)

Proposition 2.1. Assume (A1), (A2), (A3), (A4). Let A ⊆ Ω measurable
be given. Then there is a uniquely determined minimizer uA of (PA).

Moreover, uA = 0 almost everywhere on Ω \A.

Proof. Due to (2.2), minimizing sequences of J(·, A) are bounded in L2(Ω).
In addition, u 7→ J(u,A) is weakly lower semi-continuous from L2(Ω) to R
because of (A2) and (A3). The existence of solutions follows now by standard
arguments. Uniqueness of solutions is a consequence of strong convexity of g
(A4). The last claim follows from (2.1).

Note that the last claim implies

χAuA = uA. (2.3)

In all what follows, we will not make use of the unique solvability of (PA).
We will just use that uA is any solution of (PA).

2.2 Optimality conditions for (PA)

Let A ⊆ Ω measurable be given, and let uA be a solution of (PA). Let us denote
the associated state by

yA := S(χAu) (2.4)

and adjoint state by

pA := S∗(yA − yd) = S∗(S(χAu) − yd). (2.5)

Let u ∈ L2(Ω) and B ⊆ Ω be given. Let y := S(χBu). Then by elementary
calculations, we find

1

2
∥y − yd∥2H − 1

2
∥yA − yd∥2H = (yA − yd, y − yA)H +

1

2
∥y − yA∥2H

= (pA, χBu− χAuA) +
1

2
∥y − yA∥2H .

(2.6)

For B = A, we get

1

2
∥y − yd∥2H − 1

2
∥yA − yd∥2H = (pA, χA(u− uA)) +

1

2
∥y − yA∥2H .

Hence, χApA ∈ L2(Ω) is the Frechet derivative of u 7→ 1
2∥S(χAu)− yd∥2H at uA.
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Proposition 2.2. Assume (A1), (A2), (A3). Let A ⊆ Ω measurable and let
uA by the unique solution of (PA). Let pA be given by (2.5). Then it holds

−χA(x)pA(x) ∈ ∂g(u(x)) for almost all x ∈ Ω (2.7)

and

uA(x) = arg min
u∈R

χA(x)pA(x) · u + g(u) for almost all x ∈ Ω. (2.8)

Proof. Let us denote G(u) :=
∫
Ω
g(u(x)) dx. As argued above, χApA ∈ L2(Ω)

is the Frechet derivative of u 7→ 1
2∥S(χAu) − yd∥2H at uA. Then by well-known

results, see, e.g., [7, Proposition II.2.2], we get −pA ∈ ∂G(uA). Using [12,
Theorem 3A], this is equivalent to the pointwise a.e. inclusion (2.7), which in
turn is equivalent to (2.8).

The condition (2.8) can be interpreted as Pontryagin’s maximum principle
for (PA).

2.3 Boundedness results for solutions of (PA)

In this section, we will derive bounds on (uA, yA, pA) that are uniform with
respect to A ⊆ Ω.

Lemma 2.3. There is M > 0 such that

∥yA − yd∥H + ∥uA∥L2(Ω) ≤ M

for all A ⊆ Ω.

Proof. This follows directly from J(A, uA) ≤ J(A, 0) and (2.2).

Corollary 2.4. There is P > 0 such that

∥uA∥Lq(Ω) ≤ P, ∥pA∥Lq(Ω) ≤ P

for all A ⊆ Ω, where q is from (A5).

Proof. First, we have

∥pA∥Lq(Ω) ≤ ∥S∗S∥L(L2(Ω),Lq(Ω))∥uA∥L2(Ω) ≤ ∥S∗S∥L(L2(Ω),Lq(Ω))M =: P,

with M as in Lemma 2.3. Using (2.8) with u = 0, (A3), and (2.2), we have for
almost all x ∈ Ω

µ|uA(x)|2 ≤ g(uA(x)) ≤ −pA(x)uA(x)

which implies µ|uA(x)| ≤ |pA(x)| and ∥uA∥Lq(Ω) ≤ P .

3 Analysis of the value function

In this section, we will investigate stability properties of A 7→ (uA, yA, pA),
where yA and pA solve (2.4) and (2.5). The goal is to derive formulas for the
topological derivative of A 7→ J(A), where J(A) is the value function defined in
(1.2) by

J(A) = min
u∈L2(Ω)

J(u,A).

For brevity, we refer to tuples (uA, yA, pA), where uA solves (PA) and yA, pA
are given by (2.4) and (2.5) as solutions of (PA).

5



3.1 Sensitivity analysis of (PA) with respect to A

Let us start with the following preliminary expansion.

Lemma 3.1. Let A,B ⊆ Ω, and let (uA, yA, pA) and (uB , yB , pB) be solutions
of (PA) and (PB). Then it holds

J(A, uA) − J(B, uB) +
1

2
∥yB − yA∥2H

=

∫
Ω

g(uA) − g(uB) + χApA(uA − uB) + (χA − χB)(β + pAuB) dx.

Proof. Doing the expansion of y 7→ 1
2∥y − yd∥2H similarly as in (2.6), we have

J(A, uA) − J(B, uB) +
1

2
∥yB − yA∥2H

=

∫
Ω

g(uA) − g(uB) + pA(χAuA − χBuB) + (χA − χB)β dx. (3.1)

In addition, we have due to (2.3)∫
Ω

pA(χAuA − χBuB) dx =

∫
Ω

pA(uA − uB) dx

=

∫
Ω

χApA(uA − uB) + (1 − χA)pA(uA − uB) dx

=

∫
Ω

χApA(uA − uB) − (χB − χA)pAuB dx,

which is the claim.

Lemma 3.2. Let A,B ⊆ Ω, and let (uA, yA, pA) and (uB , yB , pB) be solutions
of (PA) and (PB). Then it holds for almost all x ∈ Ω

µ|uB(x) − uA(x)| ≤ |pB(x) − pA(x)|.

Proof. Due to strong convexity of g by (A4) and (2.7), we have for almost all
x ∈ Ω

µ|uB(x) − uA(x)|2 ≤ −(χA(x)pA(x) − χB(x)pB(x))(uA(x) − uB(x)),

which proves the claim.

Lemma 3.3. Let A,B ⊆ Ω, and let (uA, yA, pA) and (uB , yB , pB) be solutions
of (PA) and (PB). Then it holds

µ∥uB − uA∥2L2(Ω) + ∥yB − yA∥2H ≤
∫
Ω

(χA − χB)(pAuB − pBuA) dx

with µ from (A4).

Proof. Due to Lemma 3.1, we have

J(A, uA) − J(B, uB) +
1

2
∥yB − yA∥2H

=

∫
Ω

g(uA) − g(uB) + χApA(uA − uB) + (χA − χB)(β + pAuB) dx
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as well as

J(B, uB) − J(A, uA) +
1

2
∥yA − yB∥2H

=

∫
Ω

g(uB) − g(uA) + χBpB(uB − uA) + (χB − χA)(β + pBuA) dx.

Adding both equations gives

∥yA − yB∥2H =

∫
Ω

(χApA − χBpB)(uA − uB) + (χA − χB)(pAuB − pBuA) dx.

Due to strong convexity of g by (A4) and (2.7), we have∫
Ω

(χApA − χBpB)(uA − uB) ≤ −µ∥uA − uB∥2L2(Ω), (3.2)

and the claim is proven.

Note that the previous result remains true with µ = 0 in the non-convex
case. Now we can prove the main result of this section, which is a stability
estimate of solutions of (PA) with respect to variations of A (or χA). In the
proof, we will use the fact that for characteristic functions

∥χA − χB∥Ls(Ω) = ∥χA − χB∥
1
s

L1(Ω) ∀s ∈ (1,∞).

Theorem 3.4. Assume (A1), (A2), (A3), (A4), (A5). There is a constant
K > 0 such that for all A,B ⊆ Ω

∥pA − pB∥Lq(Ω) + ∥uA − uB∥L2(Ω) + ∥yB − yA∥L2(Ω) ≤ K∥χA − χB∥
1
2−

1
q

L1(Ω),

where (uA, yA, pA) and (uB , yB , pB) are solutions of (PA) and (PB), and q is
from (A5).

Proof. From (A5), we find

∥pA − pB∥Lq(Ω) ≤ ∥S∗S∥L(L2(Ω),Lq(Ω))∥uA − uB∥L2(Ω).

Define µ′ := µ/∥S∗S∥2L(L2(Ω),Lq(Ω)). Let s be such that 1
s + 1

q + 1
2 = 1. From

the inequality of Lemma 3.3, we obtain with Hölder’s inequality

µ′

2
∥pA − pB∥2Lq(Ω) +

µ

2
∥uB − uA∥2L2(Ω) + ∥yB − yA∥2H

≤ µ∥uB − uA∥2L2(Ω) + ∥yB − yA∥2H

≤
∫
Ω

(χA − χB)(pAuB − pBuA) dx

≤ ∥χA − χB∥Ls(Ω)(∥pA∥Lq(Ω)∥uB − uA∥L2(Ω)

+ ∥pA − pB∥Lq(Ω)∥uA∥L2(Ω))

≤ (P + M)∥χA − χB∥
1
s

L1(Ω)(∥uB − uA∥L2(Ω) + ∥pA − pB∥Lq(Ω)),

where P and M are from Corollary 2.4 and Lemma 2.3, and the claim is proven.

7



3.2 Expansions of the value function

Let us define H : R× R → R̄ by

H(u, p) := p · u + g(u).

This function reminds of the Hamiltonian of optimal control problems. In ad-
dition, we need its infimum with respect to u,

min
u∈R

H(u, p) = min
u∈R

(p · u + g(u)) = − sup
u∈R

(−p · u− g(u)) = −g∗(−p),

where g∗ is the convex conjugate to g. The existence of this minimum follows
from the coercivity of g, see (2.2). Let us denote this function by H̄, i.e.,

H̄(p) := min
u∈R

H(u, p) = −g∗(−p).

We will need some Lipschitz estimate of H̄.

Lemma 3.5. Let A,B ⊆ Ω, and let (uA, yA, pA) and (uB , yB , pB) be solutions
of (PA) and (PB). Then we have

∥H̄(pA) − H̄(pB)∥Lq/2(Ω) ≤ P∥pA − pB∥Lq(Ω) ≤ PK∥χA − χB∥
1
2−

1
q

L1(Ω),

where P and K are from Corollary 2.4 and Theorem 3.4, respectively.

Proof. Let p1, p2 ∈ R be given. Let ui = arg minv∈[ua,ub]
H(pi, v) for i = 1, 2.

Then we get by the properties of H̄

H̄(p1) ≤ H(p1, u2) = (p1 − p2)u2 + H(p2, u2) = (p1 − p2)u2 + H̄(p2).

This implies
H̄(p2) ≤ −(p1 − p2)u1 + H̄(p1)

by exchanging (p1, u1) and (p2, u2) in the above estimate. Summarizing, we
obtain

|H̄(p1) − H̄(p2)| ≤ |p1 − p2|max(|u1|, |u2|).

Using Corollary 2.4 yields the claim.

We will proceed with the following expansion of the value function. Note
that in the non-strongly convex case, i.e., without assuming (A4), the claim is
valid with µ = 0.

Lemma 3.6. Let A,B ⊆ Ω, and let (uA, yA, pA) and (uB , yB , pB) be solutions
of (PA) and (PB). Then it holds

J(A, uA) − J(B, uB) +
µ

2
∥uB − uA∥2L2(A∩B) +

1

2
∥yB − yA∥2H

≤
∫
A\B

β + H̄(pA) dx +

∫
B\A

−β − H̄(pB) − (pA − pB)uB dx.
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Proof. From Lemma 3.1 we get

J(A, uA) − J(B, uB) +
1

2
∥yB − yA∥2H

=

∫
Ω

g(uA) − g(uB) + χApA(uA − uB) + (χA − χB)(β + pAuB) dx. (3.3)

We will now split the integral on the right-hand side into integrals on A ∩ B,
A \B, and B \A. This is sufficient as the integrand vanishes outside of A ∪B.
For the integral on A ∩ B, we can use the optimality condition (2.7) as well as
the strong convexity of g to obtain∫

A∩B

g(uA) − g(uB) + χApA(uA − uB) dx ≤ −µ

2
∥uB − uA∥2L2(A∩B). (3.4)

Moreover, uB vanishes on A \ B, while uA vanishes on B \ A. This allows to
simplify∫

Ω

g(uA) − g(uB) + χApA(uA − uB) dx ≤ −µ

2
∥uB − uA∥2L2(A∩B)

+

∫
A\B

g(uA) + pAuA dx−
∫
B\A

g(uB) dx (3.5)

In addition, we have∫
Ω

(χA − χB)(β + pAuB) dx =

∫
A\B

β + pAuB dx−
∫
B\A

β + pAuB dx

=

∫
A\B

β dx−
∫
B\A

β + pAuB dx.

(3.6)

Applying (3.4), (3.5), and (3.6), in (3.3), results in the upper bound

J(A, uA) − J(B, uB) +
µ

2
∥uB − uA∥2L2(A∩B) +

1

2
∥yB − yA∥2H

≤
∫
A\B

β + pAuA + g(uA) dx +

∫
B\A

−β − pAuB − g(uB) dx.

Using H̄, this can be written as

J(A, uA) − J(B, uB) +
α

2
∥uB − uA∥2L2(A∩B) +

1

2
∥yB − yA∥2H

≤
∫
A\B

β + H̄(pA) dx +

∫
B\A

−β − H̄(pB) − (pA − pB)uB dx,

which is the claim.

The next result is the main result of this section. It gives an expansion of
the value function J(A) together with an remainder term that is of higher order
in ∥χA − χB∥L1(Ω).
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Theorem 3.7. Assume (A1), (A2), (A3), (A4), (A5), (A6). Let A,B ⊆
Ω, and let (uA, yA, pA) and (uB , yB , pB) be solutions of (PA) and (PB). Then
it holds∣∣∣∣J(A, uA) − J(B, uB) −

∫
Ω

(χA − χB)(β + H̄(pB)) dx

∣∣∣∣
+

µ

2
∥uB − uA∥2L2(A∩B) +

1

2
∥yB − yA∥2H

≤ 2PK∥χA − χB∥
3
2−

3
q

L1(Ω),

where P , K, q are from Corollary 2.4, Theorem 3.4, and (A5), respectively.

Proof. Using the result of Lemma 3.6, we get

J(A, uA) − J(B, uB) +
µ

2
∥uB − uA∥2L2(A∩B) +

1

2
∥yB − yA∥2H

≤
∫
A\B

β + H̄(pA) dx +

∫
B\A

−β − H̄(pB) − (pA − pB)uB dx

=

∫
Ω

(χA − χB)(β + H̄(pB)) dx

+

∫
A\B

H̄(pA) − H̄(pB) dx +

∫
B\A

(pA − pB)uB dx.

The latter two integrals can be estimated using Lemma 3.5, Corollary 2.4, the
property |A \B| + |B \A| = ∥χA − χB∥L1(Ω), and Theorem 3.4 as follows∫

A\B
H̄(pA) − H̄(pB) dx +

∫
B\A

(pA − pB)uB dx

≤ P∥χA − χB∥
1− 2

q

L1(Ω)∥pA − pB∥Lq(Ω)

≤ PK∥χA − χB∥
3
2−

3
q

L1(Ω).
(3.7)

This results in the upper bound

J(A, uA) − J(B, uB) +
µ

2
∥uB − uA∥2L2(A∩B) +

1

2
∥yB − yA∥2H

≤
∫
Ω

(χA − χB)(β + H̄(pB)) dx + PK∥χA − χB∥
3
2−

3
q

L1(Ω). (3.8)

To obtain a lower bound, we use the result of Lemma 3.6 but with the roles of A
and B reversed (and multiplying the resulting inequality by −1), which yields

J(A, uA) − J(B, uB) − µ

2
∥uB − uA∥2L2(A∩B) −

1

2
∥yB − yA∥2H

≥
∫
A\B

β + H̄(pA) − (pA − pB)uA dx +

∫
B\A

−β − H̄(pB) dx.

With the help of Lemma 3.5, Corollary 2.4, and Theorem 3.4, we can estimate∫
A\B

H̄(pA) − H̄(pB) − (pA − pB)uA dx ≤ 2PK∥χA − χB∥
3
2−

3
q

L1(Ω), (3.9)
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which gives the lower bound

J(A, uA) − J(B, uB) − µ

2
∥uB − uA∥2L2(A∩B) −

1

2
∥yB − yA∥2H

≥
∫
Ω

(χA − χB)(β + H̄(pB)) dx− 2PK∥χA − χB∥
3
2−

3
q

L1(Ω).

Both inequalities together prove the claim.

As a by-product of the previous proof, we get the improved stability estimate

∥uB − uA∥2L2(A∩B) + ∥yB − yA∥2H ≤ K ′∥χA − χB∥
3
2 (

1
2−

1
q )

L1(Ω) ,

which improves the exponent from Theorem 3.4 by a factor 3
2 .

Remark 3.8. If S∗ ∈ L(H,Lq(Ω)) then the estimate can improved to

∥uB − uA∥2L2(A∩B) + ∥yB − yA∥2H ≤ K ′∥χA − χB∥
2( 1

2−
1
q )

L1(Ω)

by estimating ∥pA − pB∥Lq(Ω) against ∥yA − yB∥H in the estimates (3.7) and
(3.9).

4 Topological derivatives

Definition 4.1. Let B ⊆ Ω. Then the topological derivative of J at B at the
point x is defined by

DJ(B)(x) =


lim
r↘0

J(B ∪Br(x)) − J(B)

|Br|
if x ̸∈ B

lim
r↘0

J(B \Br(x)) − J(B)

|Br|
if x ∈ B.

The existence of the topological derivative is now a consequence of the ex-
pansion in Theorem 3.7 and the Lebesgue differentiation theorem.

Theorem 4.2. Assume (A1), (A2), (A3), (A4), (A5), (A6). Let B ⊆ Ω,
and let (uB , yB , pB) be a solution of (PB).

Then for almost all x ∈ Ω the topological derivative DJ(B)(x) exists, and is
given by

DJ(B)(x) = σ(B, x)(β(x) + H̄(pB(x)))

with

σ(B, x) :=

{
+1 if x ̸∈ B

−1 if x ∈ B.

Proof. Let x0 ∈ B. Let r > 0. Define A(x0, r) := B \ Br(x0). Then it follows
χA(x0,r) − χB = −χB∩Br(x0), which implies ∥χA(x0,r) − χB∥L1(Ω) ≤ |Br|. Using
this in the result of Theorem 3.7, we find∣∣∣∣∣J(A(x0, r)) − J(B) +

∫
B∩Br(x0)

β + H̄(pB) dx

∣∣∣∣∣ ≤ 2PK|Br|
3
2−

3
q . (4.1)

11



Let us now define

v(x0, r) :=
1

|Br|

∫
Br(x0)

χB · (β + H̄(pB)) dx.

By the Lebesgue differentiation theorem, we have

lim
r↘0

v(x, r) = χB(x) · (β(x) + H̄(pB(x)))

for almost all x ∈ Ω. This implies together with (4.1)

lim
r↘0

J(A(x, r)) − J(B)

|Br|
= −(β(x) + H̄(pB(x)))

for almost all x ∈ B. Here we used that 3
2 − 3

q > 1 by (A5). This proves the
claim for x ∈ B.

The claim for x ̸∈ B can be proven completely analogously: this time we set
A(x0, r) := B ∪ Br(x0) for x0 ̸∈ B, which implies χA(x0,r) − χB = χBr(x0)\B ,
resulting in the different sign of the topological derivative.

Note that in contrast to other works, we do not need to impose continuity
of uB near x0 as in [10, Corollary 4.1], nor do we need to argue by Hölder
continuity of the adjoint as in [1, Corollary 3.2].

We can now formulate a necessary optimality condition for (1.3) using the
topological derivative.

Theorem 4.3. Assume (A1), (A2), (A3), (A4), (A5), (A6). Let B be a
solution of (1.3). Then

β + H̄(pB) ≤ 0 a.e. on B

and
β + H̄(pB) ≥ 0 a.e. on Ω \B.

Proof. The result follows immediately from Theorem 4.2.

Remark 4.4. Using the celebrated Ekeland’s variational principle [6], a fol-
lowing result can be proven for ϵ-solutions: There is an ϵ-solution, such that
optimality conditions are satisfied up to ϵ. We briefly sketch the proof.

Let V be the metric space of characteristic functions χB, B ⊆ Ω measurable,
supplied with the L1(Ω)-metric, which makes it a complete space. Applying [6,
Theorem 1.1] with ϵ > 0 and λ = 1 there is Bϵ ⊆ Ω such that

J(Bϵ) ≤ inf
B⊆Ω

J(B) + ϵ (4.2)

and
J(A) ≥ J(Bϵ) − ϵ∥χA − χBϵ∥L1(Ω) (4.3)

for all A ⊆ Ω. Owing to (4.2) the set Bϵ is then an ϵ-solution of (1.3). Due to
inequality (4.3), we can consider variations of J(Bϵ) to obtain estimates of the
topological derivative:

For x0 ∈ Ω and r > 0, define A(x0, r) as in the proof of Theorem 4.2. Then
1

|Br| (J(A(x0, r))− J(Bϵ)) ≥ −ϵ by (4.3), which results in DJ(Bϵ)(x0) ≥ −ϵ for

12



almost all x0. Using the expression of the topological derivative of Theorem 4.2
implies

β + H̄(pBϵ
) ≤ ϵ a.e. on Bϵ

and
β + H̄(pBϵ

) ≥ −ϵ a.e. on Ω \Bϵ.

In addition, the defect in the optimality condition of Theorem 4.3 can be
used to get an error estimate as follows.

Lemma 4.5. Assume (A1), (A2), (A3), (A6). Let A ⊆ Ω, and let (uA, yA, pA)
be a solution of (PA). Let the defect δA be defined by

δA :=

∫
A

(
β + H̄(pA)

)+
dx−

∫
Ω\A

(
β + H̄(pA)

)−
dx.

Then we have
J(A) − inf

B⊆B
J(B) ≤ δA.

If B is a solution of (1.3) then we have the error estimate

J(A, uA) − J(B, uB) +
1

2
∥yB − yA∥2H +

µ

2
∥uB − uA∥2L2(A∩B) ≤ δA.

Proof. Let B ⊆ Ω and (uB , yB , pB) be a solution of (PB). By Lemma 3.1, we
have

J(A, uA) − J(B, uB) +
1

2
∥yB − yA∥2H

=

∫
Ω

g(uA) − g(uB) + χApA(uA − uB) + (χA − χB)(β + pAuB) dx.

Using (3.4), we obtain

J(A, uA) − J(B, uB) +
1

2
∥yB − yA∥2H ≤ −µ

2
∥uB − uA∥2L2(A∩B)

+

∫
A\B

g(uA) + pAuA + β dx−
∫
B\A

g(uB) + β + pAuB dx.

Employing the definition of H̄ yields

J(A, uA) − J(B, uB) +
1

2
∥yB − yA∥2H +

µ

2
∥uB − uA∥2L2(A∩B)

≤
∫
A\B

β + H̄(pA) dx−
∫
B\A

β + H(uB , pA) dx

≤
∫
A\B

β + H̄(pA) dx−
∫
B\A

β + H̄(pA) dx

≤
∫
A

(
β + H̄(pA)

)+
dx−

∫
Ω\A

(
β + H̄(pA)

)−
dx.

If B is a solution of (1.3) then the claim follows. Otherwise, we take the supre-
mum of −J(B, uB) on the left-hand side.
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5 The non-strongly convex case

Let us briefly comment on the non-strongly convex case. That is, we no longer
assume the strong convexity of g as in (A4). We will replace (A4) and (A5)
by the following two assumptions.

(A4’) dom g is a bounded subset of R,

(A5’) There is q > 3 such that S∗ ∈ L(H,Lq(Ω)), where S∗ ∈ L(H,L2(Ω))
denotes the Hilbert space-adjoint of S.

(A4’) implies the solvability of (PA). In addition, solutions uA of (PA)
will be L∞(Ω). Due to the missing strong convexity, we have to replace the
assumption on S∗S in (A5) by an assumption on S∗. The L∞(Ω)-regularity
of optimal controls will allows us to work with a smaller exponent q in (A5’)
when compared to (A5).

Note that we do not add assumptions that imply unique solvability of (PA).

Proposition 5.1. Let A ⊆ Ω measurable be given. Then there is a minimizer
uA of (PA). Moreover, χAuA is also a minimizer of (PA).

Proof. Due to (A4’) minimizing sequences of u 7→ J(A, u) are bounded in
L∞(Ω). Then the proof of existence follows as in Proposition 2.1. The last
claim is a consequence of (2.1).

In the sequel, we will assume that a solution uA of (PA) satisfies χAuA = uA.
Due to the previous result, this is not restriction at all, as for every minimizer
uA also χAuA is a minimizer. Let us start with a replacement of Lemma 2.3
and Corollary 2.4.

Lemma 5.2. There is M > 0 and P ′ > 0 such that

∥yA − yd∥H ≤ M

and
∥uA∥L∞(Ω) ≤ P ′, ∥pA∥Lq(Ω) ≤ P ′

for all A ⊆ Ω and all solutions (uA, yA, pA) of (PA). Here, q is as in (A5’).

Proof. The bound of yA can be obtained as in Lemma 2.3, the bounds of uA

and pA are consequences of (A4’) and (A5’).

Due to the missing strong convexity of g, we cannot expect stability of
controls as in Theorem 3.4. Here, we have the following replacement.

Theorem 5.3. Assume (A1), (A2), (A3), (A4’), (A5’). Then there is a
constant K ′ > 0 such that for all A,B ⊆ Ω

∥pA − pB∥Lq(Ω) + ∥yB − yA∥L2(Ω) ≤ K ′∥χA − χB∥
1
2−

1
2q

L1(Ω),

where (uA, yA, pA) and (uB , yB , pB) are solutions of (PA) and (PB), and q is
from (A5’).
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Proof. From (A5’), we get ∥pA − pB∥Lq(Ω) ≤ ∥S∗∥L(H,Lq(Ω))∥yA − yB∥L2(Ω).

Define µ′ := 1/∥S∗∥2L(H,Lq(Ω)). Let q′ be such that 1
q′ + 1

q = 1. From the
inequality of Lemma 3.3, we obtain with Hölder’s inequality

µ′

2
∥pA − pB∥2Lq(Ω) +

1

2
∥yB − yA∥2H ≤

∫
Ω

(χA − χB)(pAuB − pBuA) dx

≤ 2(P ′)2∥χA − χB∥
1− 1

q

L1(Ω),

where P ′ is from Lemma 5.2, and the claim is proven.

This stability result has to replace Theorem 3.4 in the proof of Theorem 3.7.
The result corresponding to the latter theorem now reads as follows.

Theorem 5.4. Assume (A1), (A2), (A3), (A4’), (A5’), (A6). Let A,B ⊆
Ω, and let (uA, yA, pA) and (uB , yB , pB) be solutions of (PA) and (PB). Then
it holds∣∣∣∣J(A, uA) − J(B, uB) −

∫
Ω

(χA − χB)(β + H̄(pB)) dx

∣∣∣∣ +
1

2
∥yB − yA∥2H

≤ 2P ′K ′∥χA − χB∥
3
2 (1−

1
q )

L1(Ω) ,

where P ′, K ′, q are from Lemma 5.2 and (A5’), respectively.

Proof. We can proceed exactly as in the proof of Theorem 3.7 with µ = 0. Only
the estimates (3.7) and (3.9) have to be modified. The estimate of Lemma 3.5
has to be changed to

∥H̄(pA) − H̄(pB)∥Lq(Ω) ≤ P ′∥pA − pB∥Lq(Ω) (5.1)

using the L∞(Ω)-bound of Lemma 5.2, as well as the estimate of H̄ from the
proof of Lemma 3.5. Note that due to (A4’), H̄(p) is well-defined and finite for
all p ∈ R.

Then the error term of (3.7) can be estimated using Lemma 3.5 and Theo-
rem 5.3 as∫

A\B
H̄(pA) − H̄(pB) dx +

∫
B\A

(pA − pB)uB dx

≤ P ′∥χA − χB∥
1− 1

q

L1(Ω)∥pA − pB∥Lq(Ω)

≤ P ′K ′∥χA − χB∥
3
2 (1−

1
q )

L1(Ω) .
(5.2)

The error contribution from (3.9) can be estimated similarly as∫
A\B

H̄(pA) − H̄(pB) − (pA − pB)uA dx ≤ 2P ′K ′∥χA − χB∥
3
2 (1−

1
q )

L1(Ω) .

The claimed estimate can now be obtained with the same arguments as in the
proof of Theorem 5.4.

Theorem 5.5. Assume (A1), (A2), (A3), (A4’), (A5’), (A6). Let B ⊆ Ω.
Then for almost all x ∈ Ω the topological derivative DJ(B)(x) exists, and it

is given by the expression in Theorem 4.2.
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6 Optimization method based on the topologi-
cal derivative

In this section, we introduce a new optimization algorithm that is motivated
by the work on the topological derivative. Here, we work under the set of
assumptions of Theorem 4.2 or Theorem 5.5. We assume that we can choose
q = +∞ in (A5) or (A5’).

Let Ak ⊆ Ω be a given iterate together with solutions of (PAk
) denoted by

(yk, uk, pk). Let us define the residual in the optimality condition of Theorem 4.3
as

ρk := χAk
(β + H̄(pk))+ + χΩ\Ak

(β + H̄(pk))−. (6.1)

Note that
δAk

= ∥ρk∥L1(Ω),

with δ as in Lemma 4.5.
New iterates Ak+1 will now be defined by adding/removing points to/from

Ak, where the absolute value of ρk is large. We will achieve this in the following
way. Given t ∈ (0, 1), define

Ãk,t := (Ak \ {x ∈ Ω : ρk(x) ≥ (1 − t)∥ρk∥L∞(Ω)})

∪ {x ∈ Ω : ρk(x) ≤ −(1 − t)∥ρk∥L∞(Ω)} (6.2)

Using the expression of the topological derivative DJ(Ak) from Theorem 4.2,
we have

ρk = (DJ(Ak))−

and

Ãk,t = (Ak \ {x ∈ Ω : DJ(Ak)(x) ≤ −(1 − t)∥(DJ(Ak))−∥L∞(Ω)})

∪ {x ∈ Ak \ Ω : DJ(Ak)(x) ≤ −(1 − t)∥(DJ(Ak))−∥L∞(Ω)}.

Hence, a point x belongs to the symmetric difference of Ak and Ãk,t if the
topological derivative DJ(Ak)(x) is negative and has relatively large absolute
value. In difference to other methods, even small step-sizes t may result in a
change of the topology. That is, domain variations are not reduced to boundary
variations for small t.

Now, we determine the step-size t ∈ (0, 1) and Ak,t ⊆ Ãk,t such that the
conditions

∥χAk,t
− χAk

∥L1(Ω) ≤ c1t (6.3)

and

J(Ak,t) ≤ J(Ak) + σ

∫
Ω

(χAk,t
− χAk

)ρk dx (6.4)

are satisfied, where c1 > 0 and σ ∈ (0, 1) is given. The first condition is to
ensure that remainder terms in the expansions of Theorem 3.7 or Theorem 5.4
are of higher order. The second condition is inspired by the Armijo descent
condition from nonlinear optimization. It can be replaced by a non-monotone
linesearch with obvious modifications.

We start with the following observation, which shows that (6.4) ensures
descent of J .
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Lemma 6.1. Let Ak,t be defined as above. Then it holds for all t ∈ (0, 1)∫
Ω

(χAk,t
− χAk

)ρk dx ≤ −(1 − t)∥ρk∥L∞(Ω)∥χAk,t
− χAk

∥L1(Ω).

Proof. The claim follows directly from the definition of Ak,t and (6.2)∫
Ω

(χAk,t
− χAk

)ρk dx =

∫
Ak,t\Ak

ρk dx−
∫
Ak\Ak,t

ρk dx

≤ −(1 − t)∥ρk∥L∞(Ω)∥χAk,t
− χAk

∥L1(Ω).

In addition, we have the following estimate of J(Ak,t) − J(Ak).

Lemma 6.2. There is R > 0 and τ > 0 such that

J(Ak,t) − J(Ak) ≤
∫
Ω

(χAk,t
− χAk

)ρk dx + R∥χAk,t
− χAk

∥1+τ
L1(Ω).

Proof. This is a direct consequence of Theorems 3.7 and 5.4, and (6.2).

Similar results are proven for the level set method in [1, Section 5]. There
it was shown that the decrease of the cost functional for small step-sizes is
determined by the values of the topological derivative at the boundary of the
current set. This is in contrast to our result: the decrease of the functional is
determined by large values of the topological derivative, and domain variations
may happen far away from the boundary of Ak even for small step-sizes.

Now, we are in the position to prove that a step-size satisfying (6.3) and
(6.4) exists. Again, we use an Armijo-type approach.

Lemma 6.3. Define

tk := max{τ l : l = 0, 1, 2, . . . such that (τ l, Ak,τ l) satisfies (6.3) and (6.4)}.

Then tk is well-defined.

Proof. Given t > 0 we can choose Ak,t ⊆ Ãk,t satisfying (6.3). For such Ak,t we
have

J(Ak,t) − J(Ak) − σ

∫
Ω

(χAk,t
− χAk

)ρk dx

≤ (1 − σ)

∫
Ω

(χAk,t
− χAk

)ρk dx + R∥χAk,t
− χAk

∥1+r
L1(Ω)

≤
(
R∥χAk,t

− χAk
∥rL1(Ω) − (1 − σ)(1 − t)

)
∥ρk∥L∞(Ω)∥χAk,t

− χAk
∥L1(Ω).

Due to (6.3), the right-hand side will be negative for sufficiently small t.

These ideas lead to the following algorithm.

Algorithm 6.4. 1. Choose τ ∈ (0, 1), σ ∈ (0, 1), A0 ⊆ Ω. Set k := 0.

2. Compute a solution (uk, yk, pk) of (PAk
).
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3. Compute ρk as in (6.1).

4. Determine (tk, Ak+1) satisfying (6.3) and (6.4) using the line-search strat-
egy of Lemma 6.3.

5. Set k := k + 1, go to step 2.

Due to Lemma 6.3, the algorithm is well-defined. The iteration can be
terminated if ∥ρk∥L1(Ω) is small enough. This is motivated by Lemma 4.5: if
∥ρk∥L1(Ω) is less than some tolerance ϵ > 0 then Ak is an ϵ-solution of (1.3).
If not terminated, the algorithm will produce an infinite sequence of sets (Ak),
such that (J(Ak)) is monotonically decreasing. We have the following basic
convergence result.

Lemma 6.5. Let (Ak) be the iterates of Algorithm 6.4 with step sizes (tk) and
ρk from (6.1). Then it holds

∞∑
k=0

∫
Ω

|(χAk+1
− χAk

)ρk|dx < +∞

and
∞∑
k=0

(1 − tk)∥ρk∥L∞(Ω)∥χAk+1
− χAk

∥L1(Ω) < +∞.

Proof. Due to the descent condition (6.4) and the result of Lemma 6.1, we have
the chain of inequalities

J(Ak+1) − J(Ak) ≤ σ

∫
Ω

(χAk+1
− χAk

)ρk dx

≤ −σ(1 − tk)∥ρk∥L∞(Ω)∥χAk+1
− χAk

∥L1(Ω) ≤ 0.

Since J is bounded from below, we can sum the above inequalities for k = 0, . . . ,
which proves the claim.

Let us prove an estimate of ρk in terms of the expressions in the claim of
the previous lemma.

Lemma 6.6. Let (Ak) be the iterates of Algorithm 6.4 with step sizes (tk) and
ρk from (6.1). Then it holds∫
Ω

|ρk| ≤
∫
Ω

|(χAk+1
−χAk

)ρk|dx+ (1− tk)∥ρk∥L∞(Ω)∥1− |χAk+1
−χAk

|∥L1(Ω).

Proof. By construction, we have |ρk| ≤ (1− tk)∥ρk∥L∞(Ω) on Ak ∩Ak+1 and on
(Ω \Ak) ∩ (Ω \Ak+1). This proves the claim.

The first term in the estimate of the previous lemma converges to zero by
Lemma 6.5. Consequently, the term (1 − tk)∥ρk∥L∞(Ω) is the crucial quantity
when studying the convergence.

Theorem 6.7. Let (Ak) be the iterates of Algorithm 6.4 with step sizes (tk)
and ρk from (6.1). Then it holds:
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1. If lim infk→∞(1− tk)∥ρk∥L∞(Ω) > 0 then (χAk
) converges in L1(Ω) to χA

for some A ⊆ Ω. In addition, ∥ρk∥L1(Ω) → δA > 0 for k → ∞, where δA
is as in Lemma 4.5. The set A is a δA-solution of (1.3).

2. If lim infk→∞(1 − tk)∥ρk∥L∞(Ω) = 0 then lim infk→∞ ∥ρk∥L1(Ω) = 0, and
(Ak) is a minimizing sequence of (1.3).

Proof. Suppose lim infk→∞(1 − tk)∥ρk∥L∞(Ω) > 0. Then due to Lemma 6.5
we get

∑∞
k=0 ∥χAk+1

− χAk
∥L1(Ω) < +∞. This implies that (χAk

) is a Cauchy
sequence in L1(Ω), and consequently converges in L1(Ω) to a characteristic
function χA.

Let (uA, yA, pA) be a solution of (PA). By Theorems 3.4 and 5.3, the adjoint
states converge in Lq(Ω), i.e., pk → pA in Lq(Ω) with q from (A5) or (A5’).
Due to Lemma 3.5 or (5.1), we get the convergence of H̄(pk) → H̄(pA) in
L1(Ω), which implies the convergence ∥ρk∥L1(Ω) → δA. The assumptions imply
lim infk→∞ ∥ρk∥L∞(Ω) > 0, hence δA > 0. By Lemma 4.5, A is a δA-solution of
(1.3).

Now, let us assume lim infk→∞(1 − tk)∥ρk∥L∞(Ω) = 0. Then Lemma 6.6
implies lim infk→∞ ∥ρk∥L1(Ω) = 0. In addition, Lemma 4.5 shows

lim inf
k→∞

(J(Ak) − inf
B⊆B

J(B)) ≤ lim inf
k→∞

δAk
= lim inf

k→∞
∥ρk∥L1(Ω) = 0.

Consequently, (Ak) contains a minimizing sequence of (1.3). Since (J(Ak)) is
monotonically decreasing, (Ak) is a minimizing sequence.

Let us note that the convergence theorem is valid under the assumptions
of Lemma 4.5, as long as the algorithm produces a sequence of iterates. The
full set of assumptions was only needed to guarantee that the line-search is
well-defined, cf., see Lemma 6.3, which uses Lemma 6.2.

Let us add the following remarkable consequence of the theorem: if the
sequence of iterates (χk) does not converge strongly, the sequence (Ak) is a
minimizing sequence.

Corollary 6.8. Let (Ak) be the iterates of Algorithm 6.4 with step sizes (tk)
and ρk from (6.1). Suppose (χk) does not converge strongly in L1(Ω). Then
(Ak) is a minimizing sequence for (1.3).

Proof. Due to the first case of Theorem 6.7, the assumption implies lim infk→∞(1−
tk)∥ρk∥L∞(Ω) = 0, and the claim follows by the second case of Theorem 6.7.

7 Numerical experiments

7.1 Optimal control problem with L0-control cost

Let us report about numerical results of the application of Algorithm 6.4 to the
following problem: Minimize

min
1

2
∥y − yd∥2L2(Ω) +

α

2
∥u∥2L2(Ω) + β∥u∥0

over all (y, u) ∈ H1
0 (Ω) × L2(Ω) satisfying

−∆y = u a.e. on Ω

19



and
ua ≤ u ≤ ub a.e. on Ω.

This corresponds to the abstract setting with the choices S := (−∆)−1 :
L2(Ω) → H1

0 (Ω) ↪→ L2(Ω), H := L2(Ω), g(u) := α
2 u

2 + I[ua,ub](u), β(x) := β.
Here, IC denotes the indicator function of the convex set C, defined by IC(x) = 0
for x ∈ C and IC(x) = +∞ for x ̸∈ C. The assumptions are all satisfied. In
particular g is strongly convex with modulus µ := α. Assumption Item (A5)
and Item (A5’) are satisfied with q = ∞ due to Stampacchia’s result [15].

We choose Ω = (0, 1). We used a standard finite-element discretization
on a shape-regular mesh on Ω. State and adjoint variables (i.e., y, p) were
discretized using continuous piecewise linear functions, while the control variable
was discretized using piecewise constant functions. Let us remark that for the
finest discretization, the control functions have 2, 000, 000 degrees of freedom.
The subproblems (PA) were solved by a semismooth Newton implementation.
The parameters in the line-search of Algorithm 6.4 were chosen to be c1 = 1,
τ = 0.5, and σ = 0.1. The algorithm was stopped if one of the following
condition was fulfilled: ∥ρk∥L∞(Ω) ≤ 10−12, the support of ρk contained ≤ 3
elements, or the line-search failed to find a valid step-size. Termination due
to the latter condition can happen if the relevant quantities in (6.4), are very
small so that errors in the inexact solve of the sub-problem (PA) are of the same
order.

In addition, we used the following data

yd(x1, x2) = 10x1 sin(5x1) cos(7x2), α = 0.01, β = 0.01, ua = −4, ub = +4,

which was also used in [9, 17]. The computed optimal control, which is obtained
by the last iterate of Algorithm 6.4 on the finest mesh, can be seen in Figure 1.
Due to the presence of the L0-term in the objective, the control is zero on a
relatively large part of Ω.

Figure 1: Solution for h = 2.24 · 10−3, Section 7.1

The results of the computations for different meshes can be seen in Table 1.
There, h denotes the mesh-size of the triangulation, J denotes the value of the
functional J at the final iterate, similarly ∥χ∥L1(Ω) is the size of the support
of the optimal control, and ∥ρ∥L1(Ω) is the error estimate from the topological
derivative at the final iteration. The values corresponding to the mesh-size
h = 2.83 · 10−3 are in agreement with those from [17]. For this example, all
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computations stopped due to the support of ρk containing less than 3 elements.
In addition, for this example, the step-size t = 1 was always accepted. Algorithm
Algorithm 6.4 was started with the initial choice A0 = Ω. As can be seen
from Table 1, the optimal values of J and ∥χ∥L1(Ω) converge for h ↘ 0, and
∥ρ∥L1(Ω) → 0 for h ↘ 0. According to Theorem 6.7, this strongly suggests that
the iterates are a minimizing sequence of (1.3).

h J ∥χ∥L1(Ω) ∥ρ∥L1(Ω)

4.42 · 10−2 4.712 0.43896 4.33 · 10−3

2.21 · 10−2 5.054 0.44299 2.12 · 10−8

1.13 · 10−2 5.216 0.44352 2.09 · 10−8

5.66 · 10−3 5.299 0.44432 2.04 · 10−8

2.83 · 10−3 5.340 0.44455 2.11 · 10−11

1.41 · 10−3 5.360 0.44460 4.05 · 10−11

Table 1: Results of optimization, Section 7.1

Let us report about the influence of the choice of the initial guess A0 ⊆ Ω.
Here we chose the following set of parameters: yd was as above, and

α = 0.001, β = 0.1, ua = −40, ub = +40.

For this example, the method returned the same solution independent of the
initial guess. We depicted the iteration history for different choices of A0 in
Figure 2. In general, the method was faster when starting from A0 = Ω than
from A0 = ∅. As one can see from Figure 2, the convergence of ∥ρ∥L1(Ω) is
stable with respect to mesh refinement.

Figure 2: Comparison of iteration history of ∥ρk∥L1(Ω) for different choice of
A0: A0 = ∅ (left), A0 = Ω (right), Section 7.1

7.2 Binary control problems

Following the idea of [1, 2], we will apply our algorithm to a binary control
problem, where controls only can take values in {0,+1}. The problem considered
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in [1, 2] reads: Minimize

min
1

2
∥y − yd∥2L2(Ω) + ν∥u∥L1(Ω)

over all (y, u) ∈ H1
0 (Ω) × L2(Ω) satisfying

−∆y = u a.e. on Ω

and
u(x) ∈ {0, 1} f.a.a. x ∈ Ω.

Hence u itself is a characteristic function of type χA. And the above problem
can be written in our setting as: Minimize

J(A, u) :=
1

2
∥y − yd∥2L2(Ω) + ν

∫
A

dx

over all (y, u) ∈ H1
0 (Ω) × L2(Ω) satisfying

−∆y = χAu a.e. on Ω

and the (trivial) constraint

u = 1 a.e. on Ω.

This setting fits into our framework with β = ν, g(u) := I{1}(u). However,
the assumption g(0) = 0 is not valid, and the crucial relation (2.3) does not
hold. Still we can compute the topological derivative as follows. The solution
of u 7→ J(A, u) is given by uA ≡ 1, which greatly simplifies the computations of
Section 3. And we have the following result concering the topological derivative
of the value function.

Theorem 7.1. The topological derivative DJ(B)(x) of the value function of
the binary control problem exists for almost all x ∈ Ω, and is given by

DJ(B)(x) = σ(B, x)(β(x) + pB(x))

with σ(B, x) as in Theorem 4.2.

Proof. The result of Lemma 3.1 in this situation has to be modified to

J(A, uA) − J(B, uB) +
1

2
∥yB − yA∥2H =

∫
Ω

(χA − χB)(β + pA) dx,

where we have used χAuA − χBuB = χA − χB in (3.1). Since pA − pB =
S∗S(χA − χB), we have the estimate ∥pA − pB∥L∞(Ω) ≤ c∥χA − χB∥L2(Ω) =

c∥χA − χB∥1/2L1(Ω), which replaces the result of Theorem 3.4. Now the claim can

be proven as in the proof of Theorem 4.2.

The topological derivative coincides with the result [1, Corollary 3.2]. The
computation of the topological derivative does not involve the solution of any
optimization problem: given A, only yA and pA have to be computed.
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Let us report about the results for the following choice of parameters, cor-
responding to Case 3 in [1, Section 9]:

yd = 0.05, ν = 0.002.

The computed control on the finest discretization can be seen in Figure 3, which
agrees with [1, Figure 4]. The results of the optimization runs for different
discretizations can be seen in Table 2. In all cases, the algorithm stopped due
to a failed line-search. Nevertheless, the error quantity ∥ρ∥L1(Ω) is very small,
and is decreasing with decreasing mesh-size. According to Theorem 6.7 this
indicates that the algorithm produces a minimizing sequence.

h J ∥χ∥L1(Ω) ∥ρ∥L1(Ω)

6.99 · 10−2 1.799 · 10−3 1.63770 3.33 · 10−7

3.49 · 10−2 1.872 · 10−3 1.63818 2.21 · 10−8

1.79 · 10−2 1.909 · 10−3 1.63802 1.51 · 10−9

8.94 · 10−3 1.928 · 10−3 1.63805 1.28 · 10−11

4.47 · 10−3 1.938 · 10−3 1.63802 8.15 · 10−12

2.24 · 10−3 1.943 · 10−3 1.63802 2.38 · 10−13

Table 2: Results of optimization, Section 7.2

Figure 3: Solution for h = 2.24 · 10−3, Section 7.2
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