
Priority Programme 1962

Numerics and Control of Conservation Laws

Michael Herty, Stefan Ulbrich

Non-smooth and Complementarity-based
Distributed Parameter Systems:
Simulation and Hierarchical Optimization

Preprint Number SPP1962-199

received on October 31, 2022



Edited by
SPP1962 at Weierstrass Institute for Applied Analysis and Stochastics (WIAS)

Leibniz Institute in the Forschungsverbund Berlin e.V.
Mohrenstraße 39, 10117 Berlin, Germany

E-Mail: spp1962@wias-berlin.de

World Wide Web: http://spp1962.wias-berlin.de/

http://spp1962.wias-berlin.de/


NUMERICS AND CONTROL OF CONSERVATION LAWS ∗

MICHAEL HERTY† AND STEFAN ULBRICH ‡

Abstract. This article aims to present a review of existing results on theoretical and numerical
aspects of the control of hyperbolic balance laws. Several aspects will be covered including the dif-
ferential calculus in the presence of weak entropic discontinuous solutions in the scalar and system’s
case as well as results on the non–conservative adjoint equations. A further focus is on suitable nu-
merical integration methods and their convergence properties for state and adjoint equation. Results
on several different numerical schemes that are mostly of finite–volume type are presented. Recent
extensions up to the state–of–the–art are discussed and an extensive list of references for further
reading is given.

Key words. conservation laws, optimal control, numerical schemes, adjoint equation, conver-
gence analysis

AMS subject classifications. 68Q25, 68R10, 68U05

1. Introduction. In this overview article we consider the numerical approxima-
tion of optimal control problems for hyperbolic conservation laws as well as systems
of hyperbolic conservation laws including a possible source term. The prototypical
optimal control problem that we will use for concreteness is of the form

min
y,u

J(y) +R(u),(1.1)

s.t. (y, u) ∈ Yad × Uad, y is the entropy solution of (1.2),

where the state equation is a hyperbolic balance law or a system of balance laws

(1.2)
∂ty + ∂xf(y) = g on RT := (0, T )× R,

y(0, ·) = u on R,

The objective functional J is assumed to be of the integral form

(1.3) J(y) :=

∫
R
γ(x)ψ(y(T, x), yd(x)) dx

for some function ψ ∈ C1,1(R2n) depending on a desired state of bounded variation
(BV)

yd ∈ BVloc(R;Rn) ∩ L∞(R;Rn)

as well as the solution y ∈ Y ⊂ C([0, T ];L1
loc(R;Rn)) at some terminal time T >

0. Due to the regularity of the solution y pointwise functionals in time are well–
defined. However, the (similar case) of functionals being averaging other solution
over a possibly infinite time horizon might also be considered using a similar calculus,
but have so far not been investigated in detail in the literature.
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The function γ ∈ C1
c (Ω) is a weight function. We denote by

y ∈ Y ⊂ C([0, T ];L1
loc(R;Rn))

the state, u ∈ U ⊂ L∞(R;Rn) the control, f ∈ C2(Rn;Rn) is a flux function, and
g ∈ C2(RT ;Rn) a source term.

The term R(u) is a regularization term depending on the application, for example
of the form κ

2 ‖u‖
2
L2 , κ‖u‖L1 , or κ‖u‖TV with a regularization parameter κ ≥ 0.

Together with the choice of Uad it ensures existence of optimal solutions [84] and
influences the regularity and structure of optimal controls. Since the algorithmic
treatment of regularization terms in optimal control is well understood and does not
pose additional difficulties for hyperbolic problems, we will only focus on the state
dependent part J(y) of the objective function.

Further regularity requirements will be stated later as needed as well as possible
additional regularization terms of the control. For some results we need an objective
function with smoothed observation, where we choose for concreteness a convolution
leading to

(1.4) Js(y) :=

∫
R
γ(x)ψ((φ ∗ y(T ))(x), φ ∗ yd(x)) dx

with a symmetric mollifier φ ∈ C1
c (R). For the considered case, there has been

tremendous progress in both analytical and numerical studies of sensitivities of y
with respect to initial data u that will be reviewed in detail below. Publications
treating differentiability questions have been started around 1995 in order to develop
a well–posedness theory for system of conservation laws. Note that, even in the scalar
case without source terms, it has been shown that the evolution operator St : u(·)→
y(t, ·) = Stu(·) generated by the conservation law is generically non-differentiable in
L1, see e.g. [19, 54] for examples. Theoretical results on the first-order sensitivities
of Sty with respect to u has been established for general, spatially one-dimensional
systems of conservation laws. Here, the initial data u are assumed to be piecewise
Lipschitz continuous and contain finitely many discontinuities. Therein, the concept
of tangent vectors has been introduced to characterize the evolution of variations with
respect to u, see [18]. Moreover, the Lipschitz continuous dependence of St in L1 on
the initial data u has been shown in [15] and an adjoint calculus as well as optimality
conditions have been derived in [20]. Results on the existence of optimal controls are
given in [26, 4, 3, 26, 59, 60] and will be reviewed below.

In the scalar, one-dimensional case the results were extended for piecewise C1

initial data u from directional variations to general variations of discontinuities and
smooth parts, leading to Fréchet-type differentiability results of objective functionals,
see [85, 22, 86, 87, 81], and a complete sensitivity and adjoint calculus has been
developed for initial as well as initial-boundary value problems. The relation to the
weak formulation has been discussed in [9] for the Burgers’ equation. Further details
will be given in the forthcoming sections.

Another differential structure, called shift-differentiability, see e.g. [12, Definition
5.1], for BV initial data based on a horizontal shift of its graph has been developed
in [17] for the scalar case and in [12] for systems.

Numerical methods for the discretization of optimal control problems for hyper-
bolic conservation laws have been a topic of active research and will be discussed in
more detail below. Here, we mention in particular [44, 45], where the state equation
(1.2) has been discretized by a modified Lax-Friedrichs scheme with numerical vis-
cosity O(hρ), 2/3 < ρ < 1, and convergence of the corresponding sensitivity scheme
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and adjoint scheme has been shown in the presence of shocks. Convergence results
have also been obtained in [85, 79, 80] for state schemes satisfying a discrete one-sided
Lipschitz condition (OSLC) with associated adjoint scheme and in [5, 57] for implicit-
explicit methods. Other examples of finite volume methods and Lagrangian methods
are given e.g. in [56, 55, 25]. Using a vanishing viscosity approach has been studied
for the Burgers’ equation in [75].

Again, further details will be discussed in the forthcoming sections.
Furthermore, we would like to stress the fact that a sensitivity framework as

well as methods and results on optimal control of hyperbolic problems have a rich
field of application in engineering [46, 60, 62, 70, 77]. Among others, external flows
over trans- to supersonic aircraft and internal supersonic flows through nozzles or
diffuser lead to strong shock waves. Given a design parameter for some objective
function, the optimal choice of the design parameter leads naturally to a formulation
(1.1) and will have to take into account the discontinuities introduced by the shocks.
Given variations of the design parameter, the shock may or may not differently be
propagating inside the region of the flow where the objective function is evaluated
[62, 77, 46]. Another important class of applications involves networks of hyperbolic
conservation laws modelling for example traffic flow [78, 83], water flow or supply
networks [21, 38].

We conclude our introduction by mentioning also related work on feedback control
for hyperbolic systems. Today, a rich literature based on a novel Lyapunov function
exists [31, 33]. For sufficiently smooth solutions y ∈ H2(R) their analysis yields
exponential decay for any initial state u ∈ H2(R) under possibly (strong) bounds
on the norm of the initial data y0. Most of the results discussed use a quasi-linear
formulation of the state equation (1.2) and boundary control, see e.g. [30]. Several
extensions towards e.g. stochastic dynamics [43], consistent numerical discretization
[6, 42], input-to-state stabilization [11], networked systems [68, 39, 51] have been
pursued enlarging the range of possible applications. Given the scope of this overview
article we do not discuss those results in the following and refer to the recent books
[29, 10] for further details.

2. Notation and Variational Calculus. In the following, we consider mainly
the case of initial optimal control for weak entropic solutions and their numerical
discretization. It is well known that in general weak solutions of (1.2) develop discon-
tinuities (shocks) after finite time and that an entropy condition has to be imposed to
select physically relevant solutions [37]. We recall that a convex function η ∈ C1(Rn)
is an entropy for (1.2) if there exists a corresponding entropy flux q ∈ C1(Rn) satisfy-
ing Dq = DηDf such that the following entropy inequality holds in the distributional
sense

∂tη(y) + ∂xq(y) ≤ Dη(y)g in D′(RT ).

Here, Dq denotes the differential of q. The formation of discontinuities makes the
analysis and numerical approximation of optimal control problems (1.1) challenging.
In fact, this leads to the fact that the semi-group y(t) = St(u) generated by a nonlinear
hyperbolic conservation law (1.2) is generically nondifferentiable in L1 even in the
scalar one-dimensional (1-D) case (see, e.g., [19, Example 1]).

We will in some cases allow for piecewise C1 initial controls, where the smooth
parts as well as the jump locations can be controlled. Results using piecewise Lip-
schitz initial controls [19] are also available, as an extension towards BV controls
[17, 12] leading to a differentiable structure called shift–differentiability and this will
be discussed in the forthcoming section.
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In the case of a single spatial dimension, d = 1, we follow [86] and consider initial
controls of the form

(2.1) u(x) = 1(−∞,x1](x)u0(x) +

N−1∑
j=1

1(xj ,xj+1](x)uj(x) + 1(xN ,∞](x)uN (x), x ∈ R,

where
w := (u0, . . . , uN , x1, . . . , xN ) ∈ C1

c ((a, b);Rd)N+1 × RN =: W

are the controls. Now let

Wad = {(u0, . . . , uN , x1, . . . , xN ) ∈W : a < x1 < · · · < xN < b}.

The mapping
w ∈Wad ⊂W 7→ u(·;w) ∈ L1(R)

is Lipschitz continuous but only differentiable in the weak∗-topology of measures.
The admissible controls may be subject to further constraints as e.g. box constraints.
Hence, the set Wad might be a subset of W.

Let Mloc(R) denote the space of locally bounded regular Borel measures. It is
easy to see that

(2.2) w ∈Wad ⊂W 7→ (u(·;w)) ∈ (Mloc(R)-weak∗)

is continuously differentiable with derivative

(2.3) δw ∈W 7→ δu.

Here, the jumps are denoted by

[u(xj)] = uj+1(xj)− uj(xj)(2.4)

and the notational convention x0 := −∞, xN+1 :=∞ is used. The derivative fulfills

∫
R
ϕ(x) δu(dx) =

N∑
j=0

∫ xj+1

xj

ϕ(x)δuj(x) dx−
N∑
j=1

[u(xj)]δxjϕ(xj), ∀ϕ ∈ Cc((a, b)).

(2.5)

The corresponding sensitivities δy of the entropy solution y of (1.2) satisfy the sensi-
tivity equation

(2.6)
∂tδy + ∂x(f ′(y)δy) = 0 on RT ,

δy(0, ·) = δu on R,

in an appropriate duality sense, see Definition 2.11.
In this article we focus on the sensitivity calculus as well as numerical approaches.

We will not discuss existence of optimal controls u∗ ∈ argmin J(y[u]), but refer to
results e.g. on networks [27, 4], on optimization of the scalar flux function f [3] or
to hyperbolic biological models [26] for results in a particular setting. Results on the
optimal control of 1D Riemann problems are also available, see e.g. [59, 60]. Further,
results on regularized optimal control problems including state constraints are given
in [81].

We also do not discuss algorithms for numerically computing u∗ based on the
sensitivities or adjoints derived above. The differential structure can be exploited in
gradient descent type methods and we refer to [22, 48, 70] for an analysis in the case
of Burgers’ equation.
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2.1. Scalar Case. Consider first the scalar case d = 1 with uniformly convex flux
function, i.e., f ′′ ≥ mf ′′ > 0. This condition implies an Oleinik entropy condition. In
[86, 87], see also [76, 81] for the case of boundary control, it was shown that at a control
w, for which u(·;w) satisfies a generic non-degeneracy assumption, the mapping

(2.7) w ∈W 7→ J(y(u(·;w))

is Fréchet-differentiable. In fact, by using Dafermos’ theory of generalized character-
istics [36] one can show the following [86, 87].

Theorem 2.1. Consider (1.1) with initial data (2.2). Assume that w̄ ∈ Wad is
nondegenerated in the sense that y(u(·; w̄)) has at time T on I := supp(γ) = [l, r]
with γ in (1.3) no shock generation points and finitely many nondegenerate shocks
at z1(w̄) < · · · < zK(w̄) that are no shock interaction points. Then w ∈ W 7→
y(u(·; w̄))(T ) is shift-differentiable at w̄ in the sense that in a neigborhood of w̄ the
shock locations w ∈W 7→ zi(w) and the functions

w ∈W 7→ yi(w) ∈ C([zi−1(w̄), zi(w̄)]), i = 1, . . . ,K + 1,

depend continuously differentiable on w, where we set z0(w) = l, zK+1(w) = r and
yi(w) is the continuous constant extension (if necessary) of y(u(·;w))(T )|(zi−1(w),zi(w))

to [zi−1(w̄), zi(w̄)].
As a consequence, if yd is continuous at zi(w̄), i = 1, . . . ,K, then the mapping

(2.7) with (1.3) is continuously differentiable at w̄. The same holds for the smoothed
objective functional (1.4).

The previous result requires that y(T, ·;u(·; w̄)) has on I = [l, r] finitely many
nondegenerate shocks that are no shock interaction points. To explain this, we have
to introduce generalized characteristics in the sense of Dafermos [36].

Definition 2.2 (Generalized characteristics). A Lipschitz continuous curve x =
ξ(t) t ∈ [a, b] ⊂ [0, T ] is a (generalized) characteristic if the differential inclusion holds

ξ̇(s) ∈ [f ′(y(s, ξ(s)+)), f ′(y(s, ξ(s)−))] a.a. s ∈ [a, b].

It can be shown [36] that under the one-sided Lipschitz condition (OSLC) (2.17)
generalized forward characteristics through (t, x) ∈ RT are unique and will be denoted
by

(2.8) s ∈ [t, T ] 7→ X(s; t, x).

However, backward characteristics are in general not unique, but through a point
(t, x) ∈ RT a unique minimal backward characteristic and a unique maximal backward
characteristic exists. They are genuine in the sense that they travel with classical
characteristic speed f ′(y(s, ξ(s)+)) = f ′(y(s, ξ(s)−)) for a.a. s ∈ [0, t].

Definition 2.3 (Nondegenerated shock). Let y(T, ·;u) have a shock at z̄. Denote
by ξ∓ the minimal and maximal backward characteristic through (T, x), respectively,
and set x̄∓ = ξ∓(0). Then the shock is called nondegenerated if u is differentiable at
x̄− and

d

dx
X(t; 0, x)|x=x̄− ≥ β > 0, ∀ 0 ≤ t ≤ T,

or x̄− is a rarefaction center (i.e., up-jump of u) and there is δ > 0 small enough
such that all backward characteristics through (T, z), z ∈ (z̄ − δ, z̄], meet t = 0 in z̄
and

d

dx
X(t; s, x)|x=ξ−(s) ≥ β

t

s
> 0, ∀ 0 < s < δ, s ≤ t ≤ T
5



and if an analogous condition holds for x̄+.

The nondegeneracy assumption ensures that y(T, ·;u) is C1 on both sides of the shock,
which is a generic situation, see [36, 86].

The derivative of the objective functional J in (1.3) ensured by Theorem 2.1
admits with δu as in (2.3), (2.5) an adjoint representation. This requires some prepa-
ration.

We consider as in [86, 87] the case that in addition to the smooth control parts
uj only shock generating switching locations xj can be controlled, i.e.,

(2.9) δxj = 0 if [u0(xj)] ≥ 0.

In this case, the adjoint representation reads

DuJ(y(u)) · δu =

∫
R
p(0, x)δu(dx),(2.10)

where, p is the reversible solution of the adjoint equation (see Definitions 2.4 and 2.8).
The existence of solutions p is non–trivial due to the possible low regularity of y and
we refer to Lemma 2.5 and 2.9 for a discussion.

∂tp+ f ′(y)∂xp = 0 on RT ,(2.11)

p(T, ·) = pT on R,(2.12)

with terminal data

(2.13) pT (x) =

{
γ(x)ψy(y(T, x), yd(x)) if y(T, ·) continuous at x,

γ(x) [ψ(y(T,x),yd(x))]
[y(T,x)] if y(T, ·) discontinuous at x.

Here, [y(T, x)] = y(T, x+)−y(T, x−) and [ψ(y(T, x), yd(x))] = ψ(y(T, x+), yd(x+))−
ψ(y(T, x−), yd(x−)) denote the jumps at x. For the objective functional (1.4) with
smoothed observation the terminal data reads

(2.14) pT = φ ∗ (γψ(φ ∗ y(T ), φ ∗ yd)),

where we have used the symmetry of the mollifier φ. Hence, the smoothed observation
ensures Lipschitz end data which leads to a more regular adjoint state and simplifies
the convergence analysis of numerical adjoint schemes.

If also rarefaction centers can be controlled, i.e., if (2.9) does not hold, then
(2.10) holds with a particular definition of p(0, xj) at rarefaction centers obtained by
a weighted average over the rarefaction wave, see [81]. For the convergence analysis
of discrete adjoint schemes this leads to additional technicalities that will not be
reviewed here.

To obtain the representation (2.10), one has to use the unique reversible solution
of (2.11)–(2.12). By Oleinik’s entropy condition y satisfies under the assumption
f ′′ ≥ mf ′′ > 0 a one-sided Lipschitz condition (OSLC) of the form

(2.15) ∂xy(t, ·) ≤ C

t+ 1/Lip+
R (u)

, t ∈]0, T ],

where C > 0 is a constant and the one-sided Lipschitz constant on I ⊂ R open is
defined by

Lip+
I (u) = inf{M ∈ R : x ∈ I 7→Mx− u is monotone increasing},
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see for example [82] for g = 0 and [86] for the general case.
If the initial data u have up-jumps, i.e. E := {z ∈ R : [u(z)] > 0} 6= ∅, and thus

generate a rarefaction wave then Lip+
R (u) =∞ and outside of the set

Rε := {(t, x) ∈ [0, ε)× R : dist(x,E) ≤ ε+Mf ′t},
Mf ′ ≥ ‖f ′(y(·, ·))‖L∞(RT ) arbitrary,

the OSLC can be refined to

(2.16) ∂xy(t, ·) ≤ 2C

t+ min{ε, 1/Lip+
R\Eclε

(u)}
, (t, x) ∈ RT \Rε

for all ε > 0, where Eε is the ε-neighborhood of E. With the convention Rε = ∅ if
E = ∅, (2.15) is a special case of (2.16) by setting ε =∞.

Using that 0 ≤ f ′′(y) ≤ ‖f ′′(y)‖L∞(RT ), we obtain in the case E := {z ∈ R :
[u(z)] > 0} = ∅

(2.17) ∂xf
′(y(t, x)) ≤ α(t), (t, x) ∈ RT , where α ∈ L1(0, T ),

and otherwise for all ε > 0

(2.18) ∂xf
′(y(t, x)) ≤ αε(t), (t, x) ∈ RT \Rε, where αε ∈ L1(0, T ).

Again, with the convention Rε = ∅ if E = ∅ (2.17) is a special case of (2.18) with
αε = α.

As discussed in [28] the solution of (2.11)–(2.12) is not unique if the state contains
a shock. To obtain the adjoint representation, a different notion of solution of (2.11)–
(2.12) is required that is stable with respect to the coefficient f ′(y). It turns out that
the reversible solution introduced in [14] with the extension in [86, 87] to discontinuous
terminal data yields an appropriate adjoint solution.

In the following, we denote by B(Ω), Ω ⊂ Rn, the space of bounded functions
equipped with the supremum norm and by B(Ω;Z), Z normed space, the space of
bounded functions w : Ω → Z with norm ‖w‖B(Ω;Z) = supx∈Ω ‖w(x)‖Z . The reason
for working with B(Ω;Z) instead of L∞(Ω;Z) lies in the fact that the estimates for
the adjoint equation hold everywhere and that values of the end data pT at shock
discontinuities of y(T, ·) determine the reversible solution p of the adjoint equation in
the whole shock funnel.

Definition 2.4 (Reversible solution). Let pT ∈ C0,1
loc (R) be arbitrary. Denote

by L ⊂ C0,1
loc (]0, T ]×R) the set of Lipschitz solutions of (2.11) (i.e., satisfying (2.11)

almost everywhere). Then p ∈ L is a reversible solution of (2.11)–(2.12) if p satisfies
(2.12) and if there exist p1, p2 ∈ L such that ∂xp1 ≥ 0, ∂xp2 ≥ 0 and p = p1 − p2.

One can show the following existence and uniqueness result [14, 87].

Lemma 2.5. Let pT ∈ C0,1
loc (R). Then there exists a unique reversible solution

p ∈ C0,1
loc (]0, T ]× R). p satisfies

(2.19) ‖p(t, ·)‖B(I) ≤ ‖pT ‖B(Jt)

for all I = (a, b), a < b, and Jt = (a−‖f ′(y)‖L∞(RT )(T−t), b+‖f ′(y)‖L∞(RT )(T−t)),
(including a = −∞ b =∞). Moreover, if the (weakened) OSLC (2.18) holds then

‖∂xp(t, ·)‖B(I\{x:(t,x)∈Rε}) ≤ e
∫ T
t
αε‖∂xpT ‖B(Jt),

where we set Rε = ∅ and αε = α in the case E := {z ∈ R : [u(z)] > 0} 6= ∅.
7



The reversible solution can also equivalently be defined along generalized character-
istics, see [14].

Lemma 2.6. Let (t, x) ∈ RT and denote by s ∈ [t, T ] 7→ X(s; t, x) the unique
generalized forward characteristic according to Definition 2.2 and (2.8).

Then the reversible solution of Lemma 2.5 can equivalently be obtained from

(2.20) p(t, x) = pT (X(T ; t, x)), (t, x) ∈ RT .

Remark 2.7. Lemma 2.6 provides a convenient interpretation of the reversibel
solution. The value pT (x) is transported along all backward characteristics through
(T, x). The OSLC ensures that backward characteristics staring in different points
(T, x), (T, y) cannot approach too fast which leads to the Lipschitz continuity of p for
Lipschitz continuous end data.

If x is a shock point of y(T, ·;u) then pT (x) is propagated along the shock and
along all backward characteristics emanating from the shock, which fill the whole
shock funnel, i.e. the area between the minimal and the maximal backward charac-
teristic through (T, x). Reversible solutions provide essential stability properties as
for example stability with respect to smoothed initial and terminal data. Hence, p
has the constant value pT (x) in the shock funnel.

Note that any assignment of data along the shock, which are then propagated
along backward characteristics emanating from the shock would lead to other solutions
of the adjoint equation that are not reversible and not stable with respect to the
coefficient.

Since the end data (2.13) can be discontinuous, we need the following extension.

Definition 2.8 (Reversible solution for discontinuous data). If merely

pT ∈ BLip(R) := {w : R→ R : w is pointwise everywhere the limit of a sequence

(wn) ⊂ C0,1
loc (R) that is bounded in C(R) ∩W 1,1

loc (R)},

then a reversible solution of (2.11)–(2.12) is defined by (2.20).

Then the following existence, uniqueness and stability result can be shown [87].

Lemma 2.9. Let the weakened OSLC (2.18) hold. Then for end data p ∈ BLip(R)
there exists a unique reversible solution p ∈ B(RT ) according to Definition 2.8. More-
over, p satisfies the bound (2.19) and

p ∈ B(RT ) ∩ C0,1([0, T ];L1
loc(R)) ∩B([0, T ];BVloc(R)) ∩BVloc([0, T ]× R).

Let p be the reversible solution for terminal data pT . Then the following stability
property holds. If (pTn ) ⊂ C0,1

loc (R) is bounded in C(R) ∩ W 1,1
loc (R) with pTn → pT

pointwise and pn ∈ C0,1
loc (RT ) are the reversible solutions for end data pTn , then pn → p

in C0,1([0, T ];L1
loc(R)) and for all ε > 0 one has pn(t, x)→ p(t, x) uniformly bounded

for all (t, x) ∈]0, T ]× R ∪ [0, T ]× (R \ Eε).

Remark 2.10. Since reversible solutions transport by (2.20) the terminal data pT

along backward characteristics, the particular values of the discontinuous data pT in
(2.13) at the shock locations are propagated within the shock funnel. This poses a
challenge for the design and analysis of convergent adjoint discretizations. Moreover,
the adjoint state is discontinuous at rarefaction centers.

After the reversible solution of the adjoint equation (2.11)–(2.12) has been defined,
we can also characterize measure-valued solutions of the sensitivity equation (2.6) by
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a duality relation [14, 86]. The following result shows that the differential δy can be
expressed in terms of the adjoint variable p. For a definition of Eε we refer to the line
after (2.16).

Definition 2.11 (Duality solution). Let S = C([0, T ];Mloc(R) − weak), where
Mloc(R)−weak denotes the space Mloc(R) of locally bounded regular Borel measures
on R equipped with the weak topology on Mloc(R) generated by the space Cc(R).

Let the weakened OSLC (2.18) hold and let δu ∈ Mloc(R) ∩ Lrloc(Eε) for some
r > 1 and ε > 0. Then δy ∈ S is called duality solution of (2.6), if for all τ ∈]0, T ]
and all pτ ∈ C0,1

c (R) with the reversible solution of

∂tp+ f ′(y)∂xp = 0 on Ωτ , p(τ, ·) = pτ

the duality relation holds∫
R
pτ δy(τ, dx) =

∫
R
p(0, x) δu( dx).

By using the properties of the reversible solution, one obtains the following result [14].

Lemma 2.12. Let the weakened OSLC (2.18) hold. Then for all δu ∈Mloc(R) ∩
Lrloc(Eε) with some r > 1 and ε > 0 there exists a unique duality solution δy ∈ S of
(2.6) and δy satisfies

‖δy(t, ·)‖M(I) ≤ ‖δu‖M(Jt)

for all t ∈ [0, T ], I = (a, b), a < b, and Jt = (a−‖f ′(y)‖L∞(RT )t, b+ ‖f ′(y)‖L∞(RT )t).

Using the duality relation, the adjoint based derivative representation (2.10) of the
objective functional can also be expressed by the sensitivity based formula

DuJ(y(u)) · δu =

∫
R
pT (x)δy(T )(dx) =

∫
R
p(0, x)δu(dx),(2.21)

where pT is defined in (2.13) and δy is the duality solution of (2.6) for initial data δu
in (2.5). Equation (2.21) is a key equation for numerical approaches of computing a
minimizer u∗ since it allows to express the differential of J in terms of adjoint p and
control variation δu. An iterative scheme for approximation of u∗ might now utilize
the adjoint representation to update the control estimate.

2.1.1. Further Results. We give now some pointers to additional results for
optimal control theory of scalar conservation laws.

Extensions of the presented results to boundary control problems have been ob-
tained in [76, 81]. Here, analogoulsy as described above for the initial data in addi-
tion variations of piecewise C1 boundary controls are considered, where the boundary
condition is understood in the sense of Bardos, LeRoux, Nédélec [7]. Again, a differ-
entiability result similar to Theorem 2.1 can be shown and the derivative of objective
functionals of the form (1.3) with respect to initial and boundary controls can be
represented by an adjoint formula. To this end, the concept of reversible solutions is
extended to initial-boundary value problems leading to boundary conditions for the
adjoint equation at the outflow boundaries of the state y.

Optimality conditions for initial-boundary control problems with state constraints
and convergence results of penalty methods using Moreau-Yosida regularization have
been derived in [81].

By using a non-standard first order variation of BV initial (called shift-differential)
data obtained by horizontal shifts of the points of its graph, it is shown in [17] that
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the flow generated by a conservation law with strictly convex flux is generically shift-
differentiable with respect to this differential structure.

There exist also specialized approaches that solve problem (1.1) with g = 0,
uniformly convex flux and an objective functional of the form

J(y) :=

∫
R
(y(T, x)− yd(x))2 dx

by a direct backward-forward method without using derivative based optimization
methods [70] if yd belongs to the attainable set. The advantage lies in the fact that
general BV entropy solutions and BV data yd can be considered. However, only exact
identification can be treated and the approach is only developed for the homogeneous
case. In [70] the attainable set and all initial data u leading to an attainable yd are
characterized. The criterion is closely related to the stationary condition resulting
from (2.21) that the adjoint state should vanish at t = 0, i.e. p(0, ·) = 0. Moreover,
a backward-forward method for the computation of the optimal solution u leading to
the attainable end data yd is developed.

A similar approach (1.1) with g = 0 and uniformly convex flux based on the Hopf-
Lax-Oleinik explicit formula is proposed in [1]. Here, it is not required that yd is at-
tainable but the particular objective functional J(y) :=

∫
R(f ′(y(T, x))−f ′(yd(x)))2 dx

is considered. In this case it is shown that (1.1) is equivalent to a convex optimization
problem and a backward construction algorithm of its solution is proposed. Again,
no additional regularity assumptions are required, but the approach is limited to a
very particular instance of (1.1).

To obtain efficient descent methods for the optimal control of conservation laws,
[22, 66] propose an alternating descent method for the optimal control of Burgers’
equation and the shallow–water equations [72]. It alternates the descent directions
corresponding to the shock sensitivities to move the shock and those of the smooth
parts between the shocks to produce fast descent algorithms. In [23] the method is
considered for the viscous case and it is shown that the optimal controls converge
to those of the inviscid case as the viscosity parameter tends to zero. An extension
to general scalar conservation laws with uniformly convex flux function should be
possible. In the case of hyperbolic systems it is known that the limit depends on
the particular form of the viscosity added to the system. A corresponding result is
therefore not expected.

The convergence of sensitivities and adjoints for viscous approximations of con-
servation laws in the vanishing viscosity limit has been shown in [75].

Results on the optimal control of conservation laws with monotone but discon-
tinuous local fluxes can be found in [65, 34]. The case of optimal control for local
flux functions has been discussed e.g. in [24], and for nonlocal flux functions e.g. in
[34, 32].

Steady–state problems have been analysed e.g. in [41].

2.2. System’s Case. A calculus for first–order variations of piecewise Lipschitz
continuous solutions of hyperbolic systems (1.2) that contain finitely many disconti-
nuities has been proposed in [19]. We will recall the necessary definitions and state
the main result in Theorem 2.16 below. Corresponding optimality conditions have
been derived in [20, 18]. Here, the variations of the initial data are of the same type
(2.2) as discussed for the scalar case, but only directional variations are considered.
This approach will be introduced below. An alternative variational calculus based on
horizontal shifts of initial controls in BV, which we will not discuss in detail, has been
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extended from the scalar case [17] to the systems case in [12].
As an analytical foundation for sensitivity calculations in the case of hyperbolic

systems, we sketch now a fundamental result of [19, Theorem 2.2]. Following [19] we
consider piecewise Lipschitz functions of the form (2.1) and allow for variations of the
discontinuities and the smooth parts.

Definition 2.13 (Generalized tangent vector). Consider a piecewise Lipschitz
continuous function u : [a, b] → Rn of the form (2.1) with jumps at the points a <
x1 < . . . < xN < b and denote by Σu the family of all continuous paths γ : [0, δ0] 7→
L1([a, b];Rn) with γ(0) = u.

The space of generalized tangent vectors to u is defined as Tu := L1([a, b];Rn) ×
RN . A continuous path γ ∈ Σu generates the tangent vector (v, ξ) ∈ Tu if the path

γ(v,ξ;u)(δ) := u+ δ · v +
∑
ξα<0

[u(xα)]1[xα+ξαδ,xα] −
∑
ξα>0

[u(xα)]1[xα,xα+ξαδ]

is equivalent to γ in the sense that

lim
δ→0+

1

δ
‖γ(δ)− γ(v,ξ;u)(δ)‖L1 = 0.

The choice of Tu reflects possible variations in the values of u as well as possible shifts
in the positions xi of the N jump discontinuities, see also equation (2.1).

For the variation of initial data, continuous paths γ with γ(0) = u are considered
that preserve the piecewise Lipschitz structure.

Definition 2.14 (Regular variation). A piecewise Lipschitz continuous function
u : [a, b] → Rn of the form (2.1) with jumps at the points a < x1 < . . . < xN < b
is in the class PLSD of Piecewise Lipschitz functions with simple discontinuities, if
each jump of u consists of a contact discontinuity or of a single, stable shock (see [19,
Definition 2]).

Let u be a PLSD function. A path γ ∈ Σu is a Regular Variation for u, if all
functions uδ := γ(δ), δ ∈ [0, δ0], are in PLSD with jumps at points a < xδ1 < . . . <
xδN < b depending continuously on δ and having a Lipschitz constant between the
jumps independently of δ.

Hence, if γ is a regular variation of a PLSD function u and (v, ξ) ∈ Tu is a generalized
tangent vector then ξα provide derivatives for the shock locations xδα at δ = 0 and v
a derivative in L1 for the Lipschitz parts uδ|[xα−1+ε,xα−ε] at δ = 0 for all ε > 0 small
enough. For more details we refer to [19].

It is now shown in [19, Theorem 2.2] that regular variations of the initial data
u are locally preserved by the system of conservation laws (1.2) and that generalized
tangent vectors can be obtained by an appropriate linearized equation. To state this
result, we recall the definition of broad solutions of semi-linear systems.

Definition 2.15 (Broad solution). Consider the semi-linear partial differential
equation

(2.22) yt(t, x) +A(t, x)yx(t, x) = g(t, x, y),

where A ∈ Rn×n is strictly hyperbolic, Lipschitz and g is measurable with respect to
(t, x) and Lipschitz continuous with respect to y. Assume an initial condition y(0, x) =
u(x) with u ∈ L1(R;Rn). Denote by `i, ri the ith left and right eigenvectors of A.
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Denote by λi the ith eigenvalues of A. We denote by t→ zi(t; τ, ξ) the solution to the
Cauchy problem

d

dt
z(t) = λi(t, z(t)), z(τ) = ξ.(2.23)

Denote by 〈·, ·〉 the scalar product on Rn and by

gi := 〈`i, g〉+ 〈∂t`i + λi∂x`i, y〉, y =

n∑
i=1

yiri.

We define a broad solution y =
n∑
i=1

yiri to equation (2.22) as a locally integrable

function fulfilling

d

dt
yi(t, zi(t; τ, ξ)) = gi (t, zi(t; τ, ξ), y(t, zi(t; τ, ξ))

in the sense that for a.e.(τ, ξ) and all i = 1, . . . , n the following holds

yi(τ, ξ) = ui(zi(0; τ, ξ)) +

∫ τ

0

gi (s, zi(s; τ, ξ), y(s, zi(s; τ, ξ)) ds.

Note that equation (2.23) are the characteristics and the values are propagated with
the local eigenvalues λi. If strict hyperbolicity of A is imposed, the eigenvalues λi are
simple and depend as A Lipschitz continuously on (t, x). Hence, the characteristics
zi are well defined and C1. This leads to assumptions (H1) and (H2). Further,
assumption (H3) guarantees that the linearized Rankine Hugoniot jump conditions
can be solved uniquely with respect to the outgoing variables.

(H1) The vector field f : Ω→ Rn is C2

where Ω ⊂ Rn is closed and bounded. For each y ∈ Ω the matrix A(y) =
Df(y) has n real distinct eigenvalues. Its eigenvalues λi are increasingly or-
dered and its left and right eigenvectors `i and ri, respectively, are normalized
such that 〈`i, rj〉 = δij . Let

A(u, v) =

∫ 1

0

A(θu+ (1− θ)v)dθ

with corresponding eigenvectors `i(u, v), ri(u, v) and eigenvalues λi(u, v).
Suppose that `i(u, v), ri(u, v) and λi(u, v) are uniformly bounded for all u, v ∈
Ω.

(H2) Denote by λ̂ the uniform bound on λi(i, v) for all i. Then, solutions to (2.22)
are considered in the domain

D := {(t, x) : 0 ≤ t ≤ T, x ∈ [a+ λ̂t, b− λ̂t]}

Assume further that the function g : D×Ω→ Rn is bounded and continuously
differentiable.

(H3) Whenever y+ ∈ Ω and y− ∈ Ω are connected by a shock or a contact discon-
tinuity, say of the kth characteristic family, the linear system

0 = Φi(y
+, y−, v+, v−) =

n∑
j=1

〈D`i(y+, y−) · (v+
j r

+
j , v

−
j r
−
j ), y+ − y−〉+

n∑
j=1

〈`i(y+, y−), v+
j r

+
j − v

−
j r
−
j 〉, ∀i 6= k

12



can be uniquely solved in terms of the outgoing variables v±j± j
± ∈ {j− : j <

k} ∪ {j+ : j > k} =: O. Further assume, that the function Wj defined by

v±j = Wj±(y+, y−)((vj)j± 6∈O), j 6= k, j± ∈ O

satisfies a bound of the form

‖Wj±(y+, y−)((vj)j± 6∈O)‖ ≤ C‖(vj)j± 6∈O‖.

Here, r±j = rj(u
±). Then the following result is shown in [19, Theorem 2.2]. Note

that the solution y and yδ are in the class PLSD. Hence, between discontinuities the
functions are Lipschitz and equation (2.24) is only defined therein. The solution y is
assumed to have α = 1, . . . , N discontinuities located at xα.

Theorem 2.16. Let the assumptions (H1)–(H3) hold true. Let y be a piecewise
Lipschitz continuous solution to equation (1.2) with u(0, ·) = u in the class PLSD.
Let (v0, ξ0) ∈ L1 × RN be a tangent vector to u generated by a regular variation
γ0 : δ 7→ uδ, Let yδ be the solution of equation (1.2) with initial condition uδ. Then,
there exists τ0 > 0 such that for all t ∈ [0, τ0] the path γt : δ 7→ yδ(t, ·) is a regular
variation for y(t, ·) generating the tangent vector (v(t), ξ(t)) ∈ L1 × RN . The vector
is the unique broad solution of the initial boundary value problem

ξ(0) = ξ0, v(0, x) = v0(x),(2.24)

vt +A(y)vx + (DA(y)v)yx = gy(t, x, y)v,(2.25)

outside the discontinuities of y while for α = 1, . . . , N

〈D`i(y+, y−) · (v+ + ξαy
+
x , v

− + ξαy
−
x ), y+ − y−〉(2.26)

+〈`i(y+, y−), v+ + ξαy
+
x − v− − ξαy−x 〉 = 0, ∀ i 6= kα,

d

dt
ξα = Dλkα(y+, y−)(v+ + ξαy

+
x , v

− + ξαy
−
x )(2.27)

along each line x = xα(t) where y suffers a discontinuity in the kα characteristic
direction. Here, y+, v+ and y−, v− denote the right and left traces of y, v along x =
xα(t), respectively.

Note that (2.26) and (2.27) result form the linearization of the Rankine-Hugoniot
jump condition. The evolution of tangent vetors can be continued beyond times,
where shocks interact. For details we refer to [19].

Finally, note that there exist also formal derivations of sensitivities and adjoints
for piecewise smooth solutions of systems with a single shock also for several space
dimensions, see e.g. [9] and also [67]. Under the assumption that the shock and the
solution to both sides of the shock depend differentiable on a parameter, a parame-
trization of the shock curve is added as state variable and sensitivity equations away
form the shock and along the shock are derived. Moreover, an adjoint equation away
form the shock with an interior boundary condition along the shock is obtained. The
results are applied to the p-system.

To the best of our knowledge approaches using viscosity on systems of conservation
laws and their corresponding differential calculus in the zero viscosity limit have not
been discussed.
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3. Numerical Analysis. We introduce a spatial grid on R with cell centers xi
for i ∈ Z and cells Ci = [xi− 1

2
, xi+ 1

2
) where for simplicity ∆x = xi+1 − xi > 0 is fixed

for all i. In the fully discrete case a temporal grid tn = n∆t with n ∈ N is introduced
and the cell average of a function y(t, ·) ∈ L1(R) at time t and t = tn is denoted by

yi(t) =
1

∆x

∫
Ci

y(t, x) dx and yni =
1

∆x

∫
Ci

y(tn, x) dx, i ∈ Z,(3.1)

respectively. The time step ∆t is ∆t = λ∆x, where λ > 0 is chosen such the CFL
condition holds. If not stated otherwise, a numerical solution is obtained as piecewise
constant approximation yh(t, x) of y given by

yh(t, x) =
∑
n≥0

∑
i∈Z

χ[tn,tn+1)×Ci(t, x)yni .(3.2)

The subscript h denotes the numerical approximation of the corresponding quantity.
Hence, given any function v ∈ L1

loc(R), we obtain a grid function Ahv by the averaging
operator

(Ahv)(x) =
1

∆x

∫
Ci

v(ξ) dξ for x ∈ Ci.

3.1. First-Order Finite-Volume Schemes. Let NT be defined such that T ∈
[tNT , tNT+1) (analogously, we define Nt for t ∈ (0, T ]). To discretize the state equation
(1.2) we start by considering first-order finite-volume schemes (which can also be
interpreted as conservative finite difference schemes) of the form

yn+1
i = yni − λ∆−Fni+ 1

2
:= H(yni−K , . . . , y

n
i+K), i ∈ Z, n = 0, . . . , NT − 1,

y0
i = ui, i ∈ Z,

(3.3)

for a stencil of width K ≥ 1, where

Fni+ 1
2

= F (yni−K+1, . . . , y
n
i+K), ∆−Fni+ 1

2
= Fni+ 1

2
− Fni− 1

2

with a consistent numerical flux F , i.e.,

(3.4) F ∈ C1,1
loc (R2K ;Rn), F (y, . . . , y) = f(y) for all y ∈ Rn.

For concreteness, the control u ∈ L∞(R) is approximated by the cell averages

(3.5) uh(x) = (Ahu)(x), ui = (Ahu)(xi).

The grid function yh corresponding to yni approximates the entropy solution y. The
discrete control-to-state mapping is thus

(3.6) uh 7−→ yh.

As discrete approximation of the objective functional J in (1.3) we choose for
example

(3.7) uh 7−→ Jh(yh) :=

∫
R
γh(x)ψ(yh(T, x), yd,h(x)) dx =

∑
i

∆x γi ψ(yNTi , yd,i),
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where γh = Ahγ and yd,h = Ahyd with associated grid values γi, yd,i. In the case of
the objective functional (1.4) with smoothed observation we consider for simplicity

uh 7−→ Js,h(yh) :=

∫
R
γh(x)ψ((φ ∗h yh(T ))(x), (φ ∗h yd,h)(x)) dx

=
∑
i

∆xγiψ((φ ∗ yh(T ))(xi), (φ ∗ yd,h)(xi)),
(3.8)

where (φ ∗h yh(T ))(x) = (φ ∗ yh(T ))(xi) for x ∈ Ci.
By the above assumptions the discrete control-to-state mapping (3.6) and conse-

quently also the discrete objective functional (3.7) is continuously differentiable. The
derivative is obviously given by

(3.9) Duhyh(uh) · δuh = δyh,

where δyh is the discrete sensitivity and its grid values δyni solve the discrete sensitivity
equation obtained by linearizing the scheme (3.3)

δyn+1
i = δyni − λ

K∑
k=1−K

∆−(Fnyk,i+ 1
2
δyni+k),

δy0
i = δui,

(3.10)

where λ = ∆t
∆x is chosen such that the CFL condition holds and

Fnyk,i+ 1
2

= Fyk(yi+1−K , . . . , yi+K)

and Fyk , k = 1 − K, . . . ,K, denotes the partial derivative of F (y1−K , . . . , yK) with
respect to the (k +K)-th argument yk. Using (3.9), it is obvious that

DuhJ
h(yh(uh)) · δuh =

∫
R
γh(x)∂yψy(yh(T, x), yd,h(x)) δyh(T, x) dx(3.11)

=
∑
i

∆xγi∂yψ(yNTi , yd,i) δy
NT
i ,

DuhJ
s,h(yh(uh)) · δuh =

∫
R

(φ ∗h (γh∂yψ(φ ∗h yh(T ), (φ ∗h yd,h)))(x)δyh(T, x) dx

(3.12)

with the sensitivities δyh and corresponding grid values δyni according to (3.10). Here,
the symmetry of the mollifier φ has been used in the last equation.

By applying standard adjoint calculus one obtains the adjoint representation of
the derivative [79]

(3.13) DuhJ
h(yh(uh)) · δuh = ∆x

∑
i

p0
i δui,

where pi are the point values of ph that solves the discrete adjoint equation

pni = pn+1
i + λ

K∑
k=1−K

(Fni−k+ 1
2 ,k

) ∆+pn+1
i−k , i ∈ Z, n = 0, . . . , NT − 1,(3.14)

pNTi = γi∇yψ(yNTi , yd,i), i ∈ Z,(3.15)
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where ∆+pn+1
i = pn+1

i+1 − p
n+1
i .

A derivative representation of the form (3.13) holds also for (3.8), where the end
data (3.15) are replaced by

ph(T ) = φ ∗h (γh∇yψ(φ ∗h yh(T ), yd,h).(3.16)

3.2. Scalar Case. For the scalar case with uniformly convex flux function, i.e.
f ′′ ≥ mf ′′ > 0, the convergence properties of discrete adjoints is nowadays quite
well understood. To state suitable CFL conditions, it will be useful to define the
coefficients for i ∈ Z and n ∈ N and K ≥ 1 being the width of the stencil:

ani+ 1
2 ,k

= Fyk,i+ 1
2
,

Bni,k = δ0,k + λ(ani−k− 1
2 ,k+1 − a

n
i−k+ 1

2 ,k
), −K < k < K,

Bni,−K = λani+K− 1
2 ,1−K

, Bni,K = −λani−K+ 1
2 ,K

,

Cni,k = Bni,k + λ∆−ani−k+ 1
2 ,k+1, −K ≤ k < K,Cni,K = Bni,K .

(3.17)

Then for scalar problems the adjoint scheme (3.14) can be written in the following
forms

(3.18) pni =

K∑
k=−K

Bni,kp
n+1
i−k , ∆+pni =

K∑
k=−K

Cni,k∆+pn+1
i−k .

The convergence analysis of discrete adjoint schemes (3.14) poses two main chal-
lenges. Firstly, convergence to the reversible solution has to be shown.

Secondly, as noted in Remark 2.10 the values of the discontinuous end data pT in
(2.13) at the shock locations are propagated within the shock funnel while in (3.14)
some averaging over the discrete shock profile takes place and it is quite involved to
study this averaging process. Schemes of the form (3.18) for homogeneous transport
equations have been analyzed in [47], but not in the context of optimal control such
that the coefficients do not depend on a discrete state. The extension to adjoint
equations in optimal control has been studied in [85, 79, 80].

Rigorous results have so far mainly been obtained for adjoint schemes correspond-
ing to monotone schemes (3.3), i.e.,

(3.19) H(yni−K , . . . , y
n
i+K) is nondecreasing in each argument.

This comprises the Engquist-Osher scheme with numerical flux

FEO(y0, y1) = f(ȳ) +

∫ y0

ȳ

max(f ′(y), 0) dy +

∫ y1

ȳ

min(f ′(y), 0) dy,

where ȳ ∈ R is fixed and the modified Lax-Friedrichs or Rusanov scheme with numer-
ical flux

(3.20) FLF(y0, y1) =
1

2

(
f(y0) + f(y1)− ν

λ
(y1 − y0)

)
, ν ∈ [λ max

y∈[y0,y1]
|f ′(y)|, 1),

where the maximum is taken over the whole region in which y0, y1 vary. The classical
Lax-Friedrichs scheme corresponds to ν = 1, but for the convergence of the adjoint
scheme ν < 1 is required. Then under a suitable CFL condition it can be ensured that
the coefficients in (3.17) satisfy Bni,k ≥ 0 and Cni,k ≥ 0. The classical Lax–Friedrichs
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decouples the computation of yni for even and odd i and does not ensure that the
coefficient Cni,0 is nonnegative, which prohibits a BV-estimate for the discrete adjoint.

Moreover, it is well known that many monotone schemes such as the modified Lax-
Friedrichs scheme and the Engquist-Osher scheme [69] the discrete state yh satisfies
under a suitable CFL condition in analogy to (2.16) a discrete one–sided Lipschitz
condition of the form, see e.g. [74, 82],

∆+yni
∆x

≤ 2C

t+ min{ε, 1/Lip+
R\Eclε

(u)}
, (tn, xi), (tn, xi+1) ∈ RT \Rε(3.21)

with Mf ′′ = 1/λ in the definition of Rε and the convention that Rε = ∅ and ε = ∞
if E := {z ∈ R : [u(z)] > 0} = ∅.

This motivates the following assumption, that allows us to cover 1) the discretize-
then-optimize approach where (3.14) is chosen as discrete adjoint scheme of the dis-
crete state equation (3.3), 2) the optimize-the-discretize approach, where an adjoint
scheme of the form (3.14) is used, but the state is computed by another convergent
scheme. We make the following assumption on the state and the flux function used
in (3.14).

(H4) 1. F ∈ C1,1
loc (R2K) and is consistent with f , i.e., (3.4) holds.

2. With constants h0,My > 0 and the entropy solution y = y(u) of (1.2)
for all h = ∆x = ∆t/λ ≤ h0 it holds for all t ∈ [0, T ]

‖yh‖L∞(RT ) ≤My, yh(t, ·)→ y(t, ·) in L1
loc(R) as h→ 0,

∂ykF are on [−My,My]2K nondecreasing in each argument.

3. With a function βε ∈ L1(0, T ) and some h0 > 0 for all h = ∆t/λ ≤ h0

the discrete one-sided Lipschitz condition holds

(3.22)
∆+yni
∆x

≤ 1

∆t

∫ tn+1

tn

βε(t) dt ∀ (tn, xi), (tn, xi+1) ∈ RT \Rε

with some Mf ′′ in the definition of Rε and the convention that Rε = ∅
and ε =∞ if E := {z ∈ R : [u(z)] > 0} = ∅.

We note that (H4) is satisfied for the Engquist-Osher scheme under a 1/2-CFL condi-
tion and for the modified Lax-Friedrichs scheme under a min(ν, 1− ν)-CFL condition
[35, 74, 79]. In particular, (3.22) is implied by (3.21).

We collect now some convergence results for different scenarios. The first result
addresses the objective functional with smoothed observation (1.4) and its discretiza-
tion (3.8) and follows from results in [79].

Theorem 3.1. Let (H4) hold. Consider the discrete objective function (3.8) with
discrete gradient representation (3.13) based on the adjoint scheme (3.14), (3.16) (if
yh is generated by the state scheme (3.3) corresponding to (3.14) the representation
is exact).

Let a CFL condition hold such that the coefficients Bni,k, C
n
i,k in (3.17) satisfy

Bni,k, C
n
i,k ≥ 0, −K ≤ k ≤ K, for all i ∈ Z, 0 ≤ n ≤ NT − 1.

Then the solution of the adjoint scheme (3.14), (3.16) satisfies

‖ph‖L∞(RT ) ≤ ‖ph(T )‖L∞(R)
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and the discrete Lipschitz estimate

|∆+pni |
∆x

≤ sup
i

|∆+pNTi |
∆x

e
∫ tNT
tn

βε(s) ds∀ (tn, xi), (tn, xi+1) ∈ RT \Rε

with Rε as in (H4) and the convention that Rε = ∅ and ε = ∞ if E := {z ∈ R :
[u(z)] > 0} = ∅.

Moreover, ph converges on RT \ Rε for all ε > 0 locally uniformly to the unique
reversible solution p ∈ B(RT )∩C0,1(RT \Rε) of the adjoint equation (2.11) with end
data (2.14).

In particular, the discrete gradient approximation ph(0) of Js,h in (3.8), (3.13)
converges locally uniformly on R \ Eε to the gradient representation p(0) of Js in
(1.4), (2.10).

As already mentioned, the previous Theorem applies in particular to the Engquist-
Osher scheme under a 1/2-CFL condition and for the modified Lax-Friedrichs scheme
under a min(ν, 1− ν)-CFL condition.

Next we turn to objective functionals J(y) in (1.3) without smoothing. Then the
additional challenge arises that the values of the discontinuous end data pT in (2.13)
at the shock locations have to be propagated in the shock funnel which requires an
appropriate averaging across the discrete shock profile. One possible solution are
schemes with numerical viscosity of order O(hρ), 2/3 < ρ < 1, at shocks. We follow
[44, 45] and make the following assumption.

(H5) f ∈ C∞(R), f ′′ ≥ mf ′′ > 0, g ≡ 0, ‖u‖L∞(R) < ∞. Moreover, denoting
by X0 the set of points x for which the characteristics propagate up to the
final time T without entering a shock, i.e., X0 = {x : y(x + f ′(u(x))t, t) =
u(x), 0 < t < T}, there exists an open set X1 containing Xcl

0 such that u(x)
is C∞ on X1, all of its derivatives have a finite L1 norm on X1, and

f ′′(u(x))u′(x) > − 1

T
∀x ∈ Xcl

1 .

The second part of the assumption ensures that no new shocks form at time T , pre-
existing shocks have a smooth behavior in an open neighborhood of T , and between
the shocks the solution y(T, x) is smooth.

Then for a modified Lax-Friedrichs scheme with numerical viscosity of order
O(hρ), 2/3 < ρ < 1, the following was shown in [44, 45] by a careful asymptotic
expansion with respect to the numerical viscosity.

Theorem 3.2. Consider the optimal control problem (1.1) with objective func-
tional (1.3) and its discretization by a modified Lax-Friedrichs scheme (3.3), (3.20)
with

0 < ν < 1, ∆t =
T

NT
=
ν

2
∆x2−ρ, 2/3 < ρ < 1,

and discrete objective functional (3.7). Let (H5) hold true. Then for h → 0 the
following holds.

Outside of the extreme backward characteristics emanating form shocks at time T
the error in the discrete adjoint is |p(0, x)−ph(0, x)| = O(hρ) for all x ∈ R. Moreover,
within the shock region (more precisely, within any subdomain with positive distance
from its two bounding characteristics) the discrete adjoint is constant to within o(hq),
for any q > 0, and the error to the correct constant value of the adjoint is O(hρ).
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Remark 3.3. It should be possible to extend the result to schemes that use a
numerical viscosity of O(hρ), 2/3 < ρ < 1, only in a sufficiently large vicinity of the
shocks.

In [45] an example is presented that shows that with a numerical viscosity of O(h)
convergence of the discrete adjoint ph to the correct value within the shock funnel is
in general not ensured. This is for example the case for the classical Lax–Friedrichs
scheme. Hence, a modified diffusion needs to be taken into account as shown in
the previous Theorem. Therefore, a naive discretization leads usually to the wrong
derivative concerning the contribution of the sensitivity of the shock locations to the
derivative of the objective functional. As the example in [45] illustrates, the obtained
discrete adjoint need not even provide a descent direction within the shock funnels.

To obtain convergent discrete adjoints for objective functionals J(y) in (1.3) with-
out using a scheme with numerical viscosity O(hρ), 2/3 < ρ < 1, it is also possible to
modify the end data of the adjoint scheme in a vicinity of shocks appropriately. A
possible procedure that ensures convergence of the discrete adjoint within the shock
funnels to the correct value, is described as follows.

We make the following assumption that is in particular satisfied for monotone
schemes, see [64].

(H5) Assume that for u ∈ BV (R) there exists a constant C(t) > 0 such that

‖yh(t, ·;uh)− y(t, ·;u)‖L1(R) ≤ C(t) ‖u‖TV h1/2 ∀ t ∈ [0, T ], 0 < h ≤ h0.

Using an interpolation inequality between the one-sided Lipschitz norm and the L1-
norm, one can show the following, see [74]. Here, h0 is as in assumptions (H4), (H5).

Theorem 3.4. Let u ∈ BV (R) (H5) hold and let yh satisfy the discrete OSLC
(3.22). Then for any t > 0 and x ∈ R there exists a constant C(t) > 0 such that

|y(t, x)− yh(t, x)| ≤ C(t)

(
1 + max

|ξ−x|≤h1/3
|∂xy(t, ξ)|

)
h1/3

O(h1/3) is the best known pointwise convergence rate that can be obtained to
hold up to a distance of the same order from discontinuity points of y. It follows
by a careful usage of the one-sided Lipschitz continuity and a balancing of the L1

convergence rate O(h1/2) with the considered distance to discontinuity points of y.
Assume that y(T, ·) has shock locations at x1, . . . , xK and that yh satisfies (H4),

(H5). To estimate x1, . . . , xK from the discrete solution yh we determine the K

regions, where ∆+yNt̄j = −O(
√
h) and choose xhk as the middle point xik of the k-th

region. We approximate pT (xk) in (2.13) by

pTxhk
= γ(xhk)

ψ(yh(T, xhk + h1/3), yd(x
h
k))− ψ(yh(T, xhk − h1/3), yd(x

h
k))

yh(T, xhk + h1/3)− yh(T, xhk − h1/3)
.

Next let ω ∈ C0,1
c ((−2, 2)) with 0 ≤ ω ≤ 1, ω[−1,1] ≡ 1 be a weighting function and

approximate for r > 0 with r < min1≤k<K |xhk+1 − xhk |/8 the end data (2.13) by

(3.23) pNT ,ri = ω((xi − xhk)/r)pTxhk
+ (1− ω((xi − xhk)/r))γi∂yψ(yNTi , yd,i), i ∈ Z.

We have the following result [79].

Theorem 3.5. Consider the scheme (3.14) with end data (3.23). Assume that
assumptions (H4), (H5) hold. Then there exists a piecewise constant function r(h) > 0
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with r(h) → 0 as h → 0 such that with the choice r = r(h) in (3.23) the solution of
the adjoint scheme (3.14), (3.23) satisfies

ph → p in C([0, T ];L1
loc(R)) and boundedly everywhere on RclT \Rε as h→ 0

for all ε > 0 with the unique reversible solution p of the adjoint equation (2.11), (2.13).

Remark 3.6. For the simplified case of a piecewise constant state yh with one
stationary shock it is shown in [79] that for the adjoint EO-scheme Theorem 7 holds
with r(h) = O(hρ) for any ρ ∈ [1/3, 1/2).

It should be possible to show this generally by using Theorem 3.4 together with
the monotonicity of the adjoint scheme under assumption (H4).

In [53] higher order strong stability preserving (SSP) total variation diminishing
Runge-Kutta (TVD-RK) schemes for the time discretization have been considered.
It is shown that providing an SSP state scheme is enough to ensure stability of the
discrete adjoint. However requiring SSP for both discrete state and adjoint is too
strong. Also order conditions for the corresponding discrete adjoint are derived.

An extension of the presented results in this subsection to boundary control prob-
lems has recently been established in [80].

A numerical analysis of general finite–difference schemes for homogeneous trans-
port equations leading to reversible solutions is given in [47]. Consistency with the
continuous solutions and their relation to duality solutions of the associated forward
problem is shown.

A numerical analysis in the scalar case but for problems with large–time optimal
control is given in [2, 61] where in particular the long–time effect of spurious numerical
viscosity is analysed.

3.3. Higher–Order Finite–Volume and Lagragian Schemes. For a solu-
tion to problem (1.1) numerical methods [56, 55, 25] have been proposed by iteratively
solving (1.2), (2.11)–(2.12) and equation (2.10), respectively. In [56, 55] a central
upwind scheme of second–order has been proposed to numerically discretize (1.2) for
the scalar and the systems case. More precisely, in the scalar case, the semi–discrete
formulation of (3.3) for the evolution of the cell–averages yi reads

(3.24)
d

dt
yi = −λ∆−Fi+ 1

2
, yi(0) = ui, i ∈ Z,

λ = ∆t/∆x, and the flux Fi+ 1
2

is given by

Fi+ 1
2

=
a+
i+ 1

2

f(yEi )− a+
i+ 1

2

f(yWi+1)

a+
i+ 1

2

− a−
i+ 1

2

+
a+
i+ 1

2

a−
i+ 1

2

a+
i+ 1

2

− a−
i+ 1

2

(
yWi+1 − yEi

)
,(3.25)

where the one–sided local speeds are given by

a+
i+ 1

2

= max
{

max
y∈[min{yEi ,yWi+1},max{yEi ,yWi+1}]

{f ′(y)}, 0
}
,

a−
i+ 1

2

= min
{

min
y∈[min{yEi ,yWi+1},max{yEi ,yWi+1}]

{f ′(y)}, 0
}
.

The values yE,Wi are the point values of the piecewise linear reconstruction for y on
the cell Ci = [xi− 1

2
, xi+ 1

2
)

yEi = yi + (yx)i
∆x

2
, yWi = yi − (yx)i

∆x

2
,
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and the numerical derivatives (yx)i are at least first–order approximations to yx(xi, t)
obtained using a nonlinear limiter to ensure a non–oscillatory reconstruction. This
can be achieved by for example using a minmod limiter [71] for θ ∈ [1, 2] :

(yx)i = minmod

(
θ
yi − yi−1

∆x
,
yi+1 − yi−1

∆x
, θ

yi+1 − yi
∆x

)
.

For the temporal discretization of (3.24) a third–order strong–stability preserving
Runge–Kutta method is used, see [49] and also [53]. A first–order HLL method
is obtained when using an explicit Euler discretization in time and the following
reconstruction and estimate of the local speeds, respectively:

yEi = yWi = yi and a+
i+ 1

2

= −a−
i+ 1

2

= max{|f ′(yi)|, |f ′(yi+1)|}.

For this choice, the flux (3.25) reduces to the modified Lax–Friedrichs flux (3.20) for
the choice ν = λmax

i∈Z
a+
i+ 1

2

.

The adjoint equation (2.11) is linear in p with space and time–dependent transport
velocity and source term. In the systems case the set of equations are diagonalized.
In [25] a Lagrangian scheme has been proposed that propagates the terminal quantity
pT backwards along the characteristics. The terminal point of the characteristic xci
is xi and the speed is given by f ′(y). Due to the absence of a source term, the value
pNTi is transported backwards along (t, xci (t)). This leads to the following system for
the computation of p :

dxci (t)

dt
= f ′(y(t, xci (t))), x

c
i (T ) = xi, i ∈ Z,

dpci (t)

dt
= 0, pci (T ) = pNTi , i ∈ Z.

The previous system is solved using an explicit Euler equation with time–step ∆t and
for y(t, xci (t)) = yni in the case of a piecewise constant reconstruction at time t = tn.
For CFL number less than 1

2 the characteristics emerging at the cell center xi of cell
Ci remain inside the cell Ci within a single time step. This leads to the following
discrete scheme

pni =

 pn+1
i f ′(ynj ) = 0,

(1− βni )pn+1
i + βni p

n+1
i+1 f ′(ynj ) > 0,

(1− γni )pn+1
i + γni p

n+1
i−1 f ′(yni ) < 0

 ,(3.26)

βni = λ
f ′(yni )

1− λ(f ′(yni+1)− f ′(yni ))+
, γni = −λ

f ′(ynj )

1− λ(f ′(yni )− f ′(yni−1))+
,(3.27)

where pNTi is given by equation (3.15). Denote by ph the piecewise constant recon-
struction ph(t, x) =

∑
i,n

χ[tn,tn+1)×Ci(t, x)pni . The following result holds true, see [25,

Appendix A]:

Theorem 3.7. Assume that f ∈ C2(R) and is strictly convex. Let pT ∈ C0,1(R),
let y fulfill (H4), and let the discretization ph(T, ·) =

∑
i∈Z

χCip
NT
i of pT be consistent,

i.e.,

‖ph(T, ·)‖L∞(R) ≤MT , sup
x∈R

∥∥∥∥ph(T, x+ ∆x)− ph(T, x)

∆x

∥∥∥∥ ≤ LT .
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Furthermore, we assume that ph(T, ·) converges locally uniformly on [−R,R] for
h→ 0 and that the CFL condition holds:

λ max
i∈Z
{|f ′(yni )|} ≤ 1

4
.

Then, the discrete approximation ph converges on RT \Rε for all ε > 0 locally uni-
formly to the unique reversible solution p ∈ B(RT ) ∩ C0,1(RT \Rε) in the sense of
Definition 2.4 for h→ 0.

Furthermore, for smooth objectives convergence towards the gradient of J is estab-
lished , see [25, Theorem A.2]. The problem (1.1) may also be formulated in multiple
spatial dimensions. In this case, only formal computations are available. Neglecting
the equations for variations in the shock location xi, the resulting formal optimality
system has been derived in [25] for dynamics in two spatial dimensions. A discretiza-
tion of the corresponding forward equation (1.2) using a multi–d extension of the
previously shown second–order central Upwind scheme has been proposed. This is
combined with a numerical integration using a multi-d Lagrangian formulation for
the adjoint equation. Numerical results also in the multi-dimensional case on track-
ing type cost functionals are reported. Further, in order to decrease the total variation
on the numerical approximation of the control u obtained by solving (2.10), a non-
linear filtering has been proposed in [55] similar to [40]. Numerical results on the
optimal control of isothermal gas dynamics as well as Euler equations have been re-
ported. Further results in the case of Burgers’ equation but in the presence of shocks
are given in [67].

3.4. Relaxation Schemes. Numerical methods based on relaxation have been
introduced [63] and rigorously analysed e.g. [13]. Due to their linear transport struc-
ture, the tangent vector calculus severely simplifies and this fact has been exploited
in [57, 5] to develop a numerical method. For simplicity, we consider only the Jin–Xin
relaxation in the case n = 1 and in the case g ≡ 0. Then, the hyperbolic relaxation
to (1.2) is given by a system for Y = (Y (1), Y (2)) = (y, Y (2)) with

∂tY +

(
0 1
a2 0

)
∂xY =

(
0

1
ε (f(Y (1))− Y (2))

)
, Y (0, x) =

(
u(x)

f(u(x))

)
,(3.28)

and positive parameters ε > 0 and a a > 0, such that the sub characteristic condition
[63] holds. If u ∈ L∞(R) and has small total variation, the sequence Y (1),ε converges
in L1

loc(R) towards a weak solution to equation (1.2), see [13, Theorem 1.2]. For non–
negative and fixed ε > 0 the following result shows the differentiability of the flow
generated by the relaxation system [57, Lemma 2.1 and Lemma 2.3]:

Theorem 3.8. Let Y (·, ·) be a piecewise Lipschitz continuous solution to (3.28)
for some ε > 0. Let the initial data Y (0, ·) = Ȳ be piecewise Lipschitz with N simple
discontinuities. Let (V̄ , ξ̄) ∈ TȲ be a tangent vector to Ȳ generated by the regular
variation γ with γ(δ) = Ȳδ for δ > 0. Let Yδ be the solution to (3.28) and initial data
Yδ(0, ·) = Ȳδ. Then there exists a time t0 > 0 such that for all t ∈ [0, t0] the path
γ̄ with γ̄(δ) = Yδ(t, ·) is a regular variation of Y (t, ·) generating the tangent vector
(V (t), ξ(t)) ∈ TY (t,·). Further, (V, ξ) is the unique broad solution to

V (0, ·) = V̄ , Vt +

(
0 1
a2 0

)
Vx =

(
0

1
ε (f ′(Y (1))V (1) − V (2))

)
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outside of the discontinuities of Y. For i = 1, . . . , N and along each line of disconti-
nuity xi(t) where Y has a discontinuity in the kith characteristic family, it holds

ξi(t) = ξ̄i, 〈`j , [V (t, xi(t))] + [Yx(t, xi(t))] ξi(t)〉 = 0, j 6= ki,(3.29)

where `j is the jth left eigenvector to the matrix

(
0 1
a2 0

)
. Furthermore, for J∗(Y ) =

J(Y (1)) given by (1.3) the variation with respect to a tangent vector (V, ξ) is given by

DuJ
∗(Y (u)) =

∫
R
j(x)(V (1))(T, x) dx

+

N∑
i=1

(j(xi(T )+) + j(xi(T )−)) [Y (1)(T, xi(T ))]ξi(t),

where j(x) = γ(x)ψ′(Y 1(T, x), yd(x)), such that the following expansion holds true

J∗(Yδ) = J∗(Y ) + δDuJ
∗(Y (u)) + o(δ).

Some remarks are in order. The linear transport structure implies that ξi(t) is constant
in time and a linear hyperbolic balance equation for V of similar structure as equation
(3.28). Further, a descent direction for J∗ can be obtained explicitly for Y (T, ·) =
−(j(·), 0) and for ξi(T ) accordingly based on the explicit representation of the gradient
above.

In [57] a first–order splitting and an Upwind–discretization for the equations for
(Y, V ) is proposed. For a fixed grid ∆x > 0 a discretization of Y (0, ·) is proposed ful-
filling the transversality condition (2.26), see also [18, Theorem 2.2, Equation (2.18)].
The scheme ensures that this condition remains valid for any positive time. Further
results and higher–order schemes are stated in [5]. A particular case is the first–order
limiting scheme ε = 0. In this case, the forward scheme is given by the Rusanov
method and the approximation of the solution to the adjoint equation (3.14) is given
by

pni =
λ

2
f ′(yni )

(
pn+1
i+1 − p

n+1
i−1

)
+
λ

2
a

(
pn+1
i+1 + 2

(
1

aλ
− 1

)
pn+1
i + pn+1

i−1

)
with terminal condition (3.15). The following result holds true, see [5].

Theorem 3.9. Assume f is strictly convex. Consider the fully discrete scheme
(3.26) with terminal data (3.15). Assume that yni are given by a Lax–Friedrich scheme
(3.3) and (3.20). Further, assume that a > 0 is such that the subcharacteristic condi-
tion

max
y∈R
|f ′(y)| ≤ a,

holds true. Then, the scheme (3.26) is monotone.
If λa ≤ 1

2 , then ph converges on RT \Rε for all ε > 0 locally uniformly to the
unique reversible solution p ∈ B(RT ) ∩ C0,1(RT \Rε) of the adjoint equation (2.11)
with terminal data (2.13).

3.5. Wave–Front Tracking Schemes. In the systems case, the existence of
a solution to the sensitivity equation for y with respect to w ∈ Wad is proven using
the wave–front tracking algorithm [15]. Despite the fact that wave–front tracking or
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front–tracking [58] has been used as a numerical scheme for equation (1.2), so far,
only a few results on the application of those methods for the numerical integration
of δy or p exist.

In [52] the wave–front–tracking method for equation (1.2) with g ≡ 0, n = 1 and
f piecewise linear and Lipschitz continuous on [−M,M ] for some M > 0 (but not
necessarily convex) is considered. The control is also piecewise constant with values
in [−M,M ] and a single discontinuity at x = x1. The solution y = y(t, x) to equation
(1.2) is piecewise constant and the Rankine–Hugoniot condition holds at each point of
discontinuity. For variations in u but not in x1 it has been shown that y allows for a
first order Taylor-expansion in L1

loc with an explicit formula for δy, see [52, Theorem
7.1]. Also, differentiability of J has been established [52, Theorem 7.1] and some
numerical examples of the calculus have been presented.

In [38] the differential structure for piecewise constant controls u and a piecewise
linear, monotone flux f(y) = min{C1y, C2} for some constants Ci, i = 1, 2 coupled to
a set of finitely many ordinary differential equations has been studied. Here, it has
been exploited that if y0 is piecewise constant with a number of 1/∆x discontinuities,
the solution in y remains piecewise constant and the shifts in the discontinuities xi are
constant in time. Explicit computations for the sensitivities δy and δxi are possible
and detailed convergence results for ∆x → 0 are available [38, Theorem 2]. This
calculus explicitly computes the tangent vectors for wave–front–tracking in case of a
(very) particular flux function f and space of controls.

In [70, 16] wave–front–tracking approximation has been used to characterize the
attainable set of nonlinear hyperbolic balance laws. Hence, in the case of tracking–type
functionals those results provide also optimal controls without necessarily constructing
a differential calculus. Those controllability type results will not be investigated
further at this point.

3.6. Automatic Differentiation. For many existing numerical simulation
codes automatic or algorithmic differentiation (AD) is a possibility to obtain sensitiv-
ity information [50, 73]. However, black-box application of those AD software tools,
like e.g. www.autodiff.org, towards a finite–volume or discontinuous Galerkin code
require at least directional differentiabilty of the solution to state mapping u → y.
In order to obtain an algorithmic framework that allows for a numerical computation
using AD in the context of hyperbolic balance laws, it is required, in particular, to
augment a possible numerical simulation code for equation (1.2) by an equation that
allows to have the variations with respect to w ∈W.

This augmentation has been followed in several publications [54, 8, 22] based on
the following result [54, Lemma 2.8].

Theorem 3.10. Assume y ∈ Y is a weak solution to equation (1.2) for u ∈ U such
that it has a shock discontinuity across (t, x(t)), t ≥ 0, and the Rankine– Hugoniot
condition holds true:

x′(t)[y(t, x(t))] = [f(y(t, x(t)))],(3.30)

where [u(t, x)] = u(t, x+) − u(t, x−). Consider a perturbation of the shock position
as xε(t) = x(t) + εν(t) for some function ν. Then, linearization of (3.30) yields that
ν = ξ pointwise in t up to O(ε2), where ξ(t) is a part of the tangent vector (v(t, ·), ξ(t))
generated by a regular variation γ(ε) = yε and where ξ fulfills equation (2.27).

In [54, 22] this connection has been exploited by augmenting forward numerical
schemes by condition (3.30) prior to applying a (customized) AD. In [54] this approach
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has been applied to a state–of–the–art computational fluid flow solver and problems
of the Burgers’ equation and the Euler equations. The correct sensitivities has been
correctly numerically computed, whereas the application of black-box algorithmic
differentiation fails. For the scalar case and under an one-sided Lipschitz assumption
on the jump discontinuities, a descent method based on the differentiation of equation
(3.30) has been proposed in [22]. Therein, also Γ−convergence of the discrete states
has been proven. The formal concept has also been extended to the multi-dimensional
case in [8].

4. Outlook. In this review, we have collected a variety of results reflecting the
state of the art in theory and numerical approximation of optimal control problems
for scalar and systems of hyperbolic balance laws. Here, our focus was on a variational
calculus for discontinuous solutions and convergent discretizations in one spatial di-
mension. While significant progress has been achieved for the case of strictly convex
scalar equations in the last decade, many open problems remain for nonconvex scalar
equations, systems and problems in several space dimensions. For the case of systems,
so far mainly directional variations are considered, while Fréchet-type differentiability
results would be desirable for optimization methods. Moreover, in the case of systems
a rigorous sensitivity and adjoint calculus is so far usually based on including the
shock curves as state variables, which leads to explicit interior boundary conditions
for the adjoint. In particular, this is inconvenient for design and convergence analysis
of numerical sensitivity and adjoint schemes. Hence, it would be desirable to have
– similar to the scalar case – a convenient characterization of reversible solutions for
the adjoint equation that allow the construction and analysis of convergent adjoint
schemes without imposing explicit interior boundary conditions. Moreover, the de-
velopment of convergent discretizations of higher order and the treatment of optimal
control problems in several space dimensions poses many open problems for future
research regarding, for example, the resolution along multi-dimensional shock curves
or the stability of corresponding high–order numerical schemes for sensitivity and
adjoint equations.

While the focus of this survey paper was on the optimal control of a single hyper-
bolic PDE, also networks of hyperbolic conservation laws play an important role, e.g.,
for the modelling of gas and water networks, communication networks and vehicular
traffic networks, see for example [21, 4, 27, 68]. Here, the control enters in the coupling
conditions rendering them nontrivial and the development of a variational calculus
as well as of convergent sensitivity and adjoint schemes poses additional challenges.

REFERENCES

[1] Adimurthi, S. S. Ghoshal, and G. D. V. Gowda, Optimal controllability for scalar con-
servation laws with convex flux, J. Hyperbolic Differ. Equ., 11 (2014), pp. 477–491,
https://doi.org/10.1142/S0219891614500131.

[2] N. Allahverdi, A. Pozo, and E. Zuazua, Numerical aspects of large-time optimal control of
Burgers equation, ESAIM Math. Model. Numer. Anal., 50 (2016), pp. 1371–1401, https:
//doi.org/10.1051/m2an/2015076.

[3] F. Ancona, A. Cesaroni, G. M. Coclite, and M. Garavello, On the optimization of
conservation law models at a junction with inflow and flow distribution controls, SIAM J.
Control Optim., 56 (2018), pp. 3370–3403, https://doi.org/10.1137/18M1176233.

[4] F. Ancona, A. Cesaroni, G. M. Coclite, and M. Garavello, On optimization of traffic
flow performance for conservation laws on networks, Minimax Theory Appl., 6 (2021),
pp. 205–226.

[5] M. K. Banda and M. Herty, Adjoint IMEX-based schemes for control problems governed
by hyperbolic conservation laws, Comput. Optim. Appl., 51 (2012), pp. 909–930, https:

25

https://doi.org/10.1142/S0219891614500131
https://doi.org/10.1051/m2an/2015076
https://doi.org/10.1051/m2an/2015076
https://doi.org/10.1137/18M1176233
https://doi.org/10.1007/s10589-010-9362-2
https://doi.org/10.1007/s10589-010-9362-2


//doi.org/10.1007/s10589-010-9362-2.
[6] M. K. Banda and M. Herty, Numerical discretization of stabilization problems with boundary

controls for systems of hyperbolic conservation laws, Math. Control Relat. Fields, 3 (2013),
pp. 121–142, https://doi.org/10.3934/mcrf.2013.3.121.

[7] C. Bardos, A. Y. le Roux, and J.-C. Nédélec, First order quasilinear equations with
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[85] S. Ulbrich, Optimal control of nonlinear hyperbolic conservation laws with source terms,
(2001). Habilitation.

[86] S. Ulbrich, A sensitivity and adjoint calculus for discontinuous solutions of hyperbolic con-
servation laws with source terms, SIAM J. Control Optim., 41 (2002), pp. 740–797,
https://doi.org/10.1137/S0363012900370764.

[87] S. Ulbrich, Adjoint-based derivative computations for the optimal control of discontinuous
solutions of hyperbolic conservation laws, Systems Control Lett., 48 (2003), pp. 313–328,
https://doi.org/10.1016/S0167-6911(02)00275-X.

29

https://doi.org/10.1137/S0363012900375664
https://doi.org/10.1137/S0363012900375664
https://doi.org/10.1017/CBO9780511791253
https://doi.org/10.1017/CBO9780511791253
https://doi.org/10.1137/S1064827501392880
https://doi.org/10.1093/imamat/hxy067
https://doi.org/10.1093/imamat/hxy067
https://doi.org/10.1016/j.nonrwa.2013.02.001
https://doi.org/10.1137/140995799
https://doi.org/https://doi.org/10.1016/j.jcp.2004.05.001
https://www.sciencedirect.com/science/article/pii/S0021999104001883
https://www.sciencedirect.com/science/article/pii/S0021999104001883
https://doi.org/10.1007/s10957-015-0749-1
https://opus4.kobv.de/opus4-trr154/files/481/SchaeferAguilarUlbrichpapernumadjoint.pdf
https://opus4.kobv.de/opus4-trr154/files/481/SchaeferAguilarUlbrichpapernumadjoint.pdf
https://doi.org/10.1137/19M129797X
https://doi.org/10.1137/19M129797X
https://doi.org/10.1007/978-1-4612-0873-0
https://doi.org/10.1109/tac.2021.3069394
https://doi.org/10.1137/S0363012900370764
https://doi.org/10.1016/S0167-6911(02)00275-X

	Introduction
	Notation and Variational Calculus
	Scalar Case
	Further Results

	System's Case

	Numerical Analysis
	First-Order Finite-Volume Schemes
	Scalar Case
	Higher–Order Finite–Volume and Lagragian Schemes
	Relaxation Schemes
	Wave–Front Tracking Schemes
	Automatic Differentiation

	References

