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Risk-averse optimal control of random elliptic variational inequalities

Amal Alphonse∗ Caroline Geiersbach† Michael Hintermüller‡ Thomas M. Surowiec§

Abstract

We consider a risk-averse optimal control problem governed by an elliptic variational inequality (VI) subject
to random inputs. By deriving KKT-type optimality conditions for a penalised and smoothed problem and
studying convergence of the stationary points with respect to the penalisation parameter, we obtain two forms of
stationarity conditions. The lack of regularity with respect to the uncertain parameters and complexities induced
by the presence of the risk measure give rise to new challenges unique to the stochastic setting. We also propose
a path-following stochastic approximation algorithm using variance reduction techniques and demonstrate the
algorithm on a modified benchmark problem.
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1 Introduction

In this work, we consider the following nonsmooth stochastic optimisation problem

min
u∈Uad

R[J (S(u))] + %(u), (1)

where Uad is a set of controls, S is the solution map of a random elliptic variational inequality (VI), J is an objective
function, R is a so-called risk measure that scalarises the random variable J (S(u)), and % is the cost of the control
u.

Here, the state S(u) =: y satisfies, on a pointwise almost sure (a.s.) level, the VI

y(ω) ≤ ψ(ω) : 〈A(ω)y(ω)− f(ω)−B(ω)u, y(ω)− v〉 ≤ 0 ∀v : v ≤ ψ(ω), (2)

where ω ∈ Ω stands for the uncertain parameter taken from a probability space (Ω,F ,P), f(ω) is a random source
term, ψ(ω) is a random obstacle, and A(ω) and B(ω) are random operators. The map R is typically a convex
functional chosen to generate solutions according to given risk preferences, e.g., optimal performance on average,
weight of the tail of J (S(u)), and so on.

Numerous free boundary problems in partial differential equations such as contact problems in mechanics and
fluid flow through porous media can be modelled as elliptic VIs, and in some cases, coefficients or inputs in the
constitutive equations may be uncertain and are modelled as random. Such random VIs have been studied by
[18, 19, 11, 29, 5].

It is important to already note here that (1) typically contains two types of nonsmoothness: on the one hand
from the solution operator S, on the other due to the choice of R, which in many interesting cases is a nonsmooth
risk measure such as the average value at risk (usually written AVaR/CVaR). The problem (1)–(2) is formulated
in the spirit of a “here and now” two-stage stochastic programming problem, where the decision u is made before
the realisation ω is made known. The study of such stochastic mathematical programs with equilibrium constraints
(SMPECs), has been limited to the finite-dimensional, risk-neutral (i.e., R = E) case; see [40, 10, 47, 49]. For
deterministic elliptic MPECs, there have been many developments in terms of theory and algorithms; see, e.g.,
[4, 27, 38, 24, 26, 34, 25, 50, 20, 53, 23, 39].

The paper contains two contributions. First, using an adaptive smoothing approach, we derive stationarity
conditions related to the well-known weak and C-stationarity conditions. To the best of our knowledge, this is the
first attempt at such a derivation. Secondly, we provide a numerical study by applying a variance-reduced stochastic
approximation method to solve an example of (1). Concerning the theoretical developments, our method for
establishing the stationarity conditions is through a penalty approach similar to [25, 45]. As with the deterministic
case, the penalty approach has the advantage that it is directly linked to the convergence analysis of solutions
algorithms for the optimisation problem in a fully continuous, function space setting. The theoretical results will
also highlight a hidden difficulty unique to the stochastic setting that contrasts with the deterministic elliptic and
parabolic cases. We also believe that this is an inherent difficulity in SMPECs in general, regardless of the dimension
of the underlying decision space.

Our work is related to the problem setting in the recent paper [21] where the authors develop a bundle method
for problems of the form (1) with R = E the expectation. The focus in our work is on obtaining stationarity
conditions and a stochastic approximation algorithm for the general risk-averse case. Risk-averse optimisation is a
subject in its own right; cf. [48] and [42] and the references therein. Modeling choices in engineering were explored
in [43] and their application to PDE-constrained optimisation was popularised in [31, 32, 30]. However, these
papers typically require S to be Fréchet differentiable, which does not hold in general for solution operators of
variational inequalities. It is worth mentioning that typically random VIs are studied in combination with some
quantity of interest such as the expectation or variance as in [5, 29]. Another modeling choice could involve finding
a deterministic solution y satisfying (2), which leads to an expected residual minimisation problem, or a y satisfying
the expected-value problem

y ≤ ψ : 〈E[A(·)y − f(·)−B(·)u], y − v〉 ≤ 0 ∀v : v ≤ ψ.

These modeling choices are discussed in the survey [46], but will not be pursued in the present work.
With respect to the organisation of the paper, after defining in Section 1.1 some terms and notation, Section 1.2

is dedicated to introducing standing assumptions. An example of (1) with specific choices for the various terms there
is given in Section 1.3. In Section 2, the framework given above is formalised and it is shown that (2) has a unique
solution (see Lemma 2.1). We will show in Proposition 2.4 that the control-to-state map S maps into Lq(Ω;V ) and
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hence the composition in (1) is sensible. Moreover, we show in Proposition 2.7 that an optimal control to (1) exists.
In Section 3, we use a penalty approach on the obstacle problem and show that this penalisation is consistent with
(2) (see Proposition 3.2). Optimality conditions for the control problem associated to the penalisation are given
in Proposition 3.11 and Proposition 3.12 and form the starting point for the derivation of stationarity conditions.
The main results culminate in Section 4, namely Proposition 4.9 and Theorem 4.8, where stationarity conditions of
E-almost weak and C-stationarity type are derived. This is done by taking the limit of the optimality conditions
with respect to the penalisation parameter and is an especially delicate procedure due to the presence of the risk
measure. A numerical example is shown in Section 5. For the experiments, a novel path-following stochastic variance
reduced gradient method is proposed in Algorithm 1. Although, as specified, we work in a particular setting of
obstacle-type problems, we will explain in the concluding Section 6 how greater generality could also be an option.

1.1 Notation and background material

For exponents t ≥ 1, the Bochner space Lt(Ω;V ) := Lt(Ω,F ,P;V ) is the set of all (equivalence classes of) strongly
measurable functions y : Ω→ V having finite norm, where the norm is given by

‖y‖Lt(Ω;V ) :=

{
(
∫

Ω
‖y(ω)‖tV dP(ω))1/t for t ∈ [1,∞),

ess supω∈Ω‖y(ω)‖V for t =∞.

We set Lt(Ω) = Lt(Ω;R) for the space of random variables with finite t-moments. For a random variable Z : Ω→ R,
the expectation is defined by E[Z] :=

∫
Ω
Z(ω) dP(ω).

Recall that separability of V implies separability of V ∗. Moreover, if X is a separable Banach space, then
strong and weak measurability of the mapping y : Ω → X coincide (cf. [22, Corollary 2, p. 73]1). Hence, we can
call the mapping measurable without distinguishing between the associated concepts. Given Banach spaces X,Y ,
an operator-valued function A : Ω→ L(X,Y ) is said to be uniformly measurable in F if there exists a sequence of
countably-valued operator random variables in L(X,Y ) converging almost everywhere to A in the uniform operator
topology. A set-valued map with closed images is called measurable if the inverse image2 of each open set is a
measurable set, i.e., T−1(E) ∈ F for every open set E ⊂ X.

Set R := R ∪ {∞}. Recall that F : X → R is proper if its effective domain

dom(F ) := {x ∈ X : F (x) <∞}

satisfies dom(F ) 6= ∅. Observe that it is always the case that functions mapping into R satisfy F > −∞. The
subdifferential of a convex function F : X → R at z is the set ∂F (z) ⊂ X∗ defined as

∂F (z) := {g ∈ X∗ : F (z)− F (x) ≤ 〈g, z − x〉X∗,X ∀x ∈ X}.

We list some other notation and conventions that will be frequently used:

• Whenever we write the duality pairing 〈·, ·〉 without specifying the spaces, we mean the one on V ∗, i.e., 〈·, ·〉V ∗,V .

• For weak convergence, we use the symbol ⇀ and for strong convergence we use the symbol →.

• For a constant t ∈ [1,∞), t′ will denote its Hölder conjugate, i.e., 1
t + 1

t′ = 1.

• We write ↪→ to mean a continuous embedding and
c
↪−→ for a compact embedding.

• L(X,Y ) is the set of bounded and linear maps from X into Y .

• M(Ω;X) denotes the set of all measurable functions from Ω into X.

• Statements that are true with probability one are said to hold almost surely (a.s.).

• A generic positive constant that is independent of all other relevant quantities is denoted by C and may have a
different value at each appearance.

1As noted in [22], this result goes back to Pettis [41] from 1938.
2For a set-valued map T : Ω ⇒ X from Ω to a separable Banach space X, the inverse image on a set E ⊂ X is

T−1(E) := {ω ∈ Ω: T (ω) ∩ E 6= ∅}.
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1.2 Standing assumptions

Let us now describe our problem setup more precisely:

(i) D ⊂ Rd is a bounded Lipschitz domain for d ≤ 4, and take

H := L2(D) and V ∈ {H1(D), H1
0 (D)}.

(ii) Uad ⊂ U is a non-empty, closed and convex set where the control space U is a Hilbert space.

(iii) (Ω,F ,P) is a complete probability space, where Ω represents the sample space, F ⊂ 2Ω is the σ-algebra of
events on the power set of Ω, and P : Ω→ [0, 1] is a probability measure.

(iv) f ∈ Lr(Ω;V ∗) is a source term and ψ ∈ Ls(Ω;V ) is an obstacle for r, s ∈ [2,∞].

(v) R : Lp(Ω)→ R and % : U → R are proper and p ∈ [1,∞).

To ease the presentation of the results, we make the following assumption on the almost everywhere boundedness
of the operators in play in (2).

Assumption 1.1. The operators A : Ω→ L(V, V ∗) and B : Ω→ L(U, V ∗) are uniformly measurable and there exist
positive constants Cb, Ca, Cc such that for all y, z ∈ V and u ∈ U and for a.e. ω,

〈A(ω)y, y〉 ≥ Ca‖y‖2V ,
〈A(ω)y, z〉 ≤ Cb ‖y‖V ‖z‖V ,
〈B(ω)u, z〉 ≤ Cc ‖u‖U ‖z‖V .

(3)

In applications, the operators A and B may be generated by random fields. There are numerous examples of
random fields that are compactly supported; while this choice precludes a lognormal random field for A, in numerical
simulations truncated Gaussian noise is often employed to generate samples. See, e.g., [37, 51, 17] for examples of
compactly supported random fields, including approximations of lognormal fields as described.

The nature of the feasible set and composite objective function necessitates several assumptions on the objective
functional. These ensure integrability, continuity and later, differentiability.

Assumption 1.2. Assume that J : V × Ω→ R is a Carathéodory3 function and that there exists C1 ∈ Lp(Ω) and
C2 ≥ 0 such that

|J(v, ω)| ≤ C1(ω) + C2 ‖v‖q/pV ,

where
2 ≤ q <∞, q ≤ min(r, s). (4)

For y : Ω→ V, we define the superposition operator J (y) : Ω→ R by J (y)(ω) := J(y(ω), ω). The necessary and
sufficient conditions to obtain continuity of J are directly related to famous results by Krasnosel’skii; see [33] and
[52, Theorem 19.1]. Thanks to Assumption 1.2, it follows by [16, Theorem 4] that

J : Lq(Ω;V )→ Lp(Ω) is continuous. (5)

Remark 1.3. If f ∈ L∞(Ω;V ∗) and ψ ∈ L∞(Ω;V ) (so that r = s = ∞), (4) forces us to take q to be finite. The
case q =∞ creates technical difficulties that we will address in a future work.

In typical examples4, U
c
↪−→ V ∗ is a compact embedding and we would like the operator B to mimic this compact

embedding. For that purpose, we need the next assumption.

Assumption 1.4. If un ⇀ u in U then B(ω)un → B(ω)u in V ∗ a.s.

Further assumptions will be introduced as and when required later in the paper.

3That is, J(v, ·) is measurable for fixed v and J(·, ω) is continuous for fixed ω.
4Although U is often taken to be L2(D) in the literature, other examples of U one could consider include Rn, L2(∂Ω), H−1/2(∂Ω).
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1.3 Example

Take V = H1
0 (D) and let a ∈ L∞(Ω×D) be a given function such that a0 ≤ a(ω, x) ≤ a1 a.s. and for a.e. x, where

a0 > 0 and a1 > a0 are both constants. Define the operator

A(ω) := −∇ · (a(ω)∇u),

understood in the usual weak sense:

〈A(ω)y, z〉 =

∫
D

a(ω)∇y∇z dx for y, z ∈ H1
0 (Ω).

Set U = L2(D) with the box constraint set

Uad := {u ∈ L2(D) : ua ≤ u ≤ ub a.e.},

where ua, ub ∈ L2(D) are given functions. For B, we take it to be the canonical embedding L2(D)
c
↪−→ H−1(D), i.e.,

B(ω)u ≡ u as an element of V ∗ = H−1(Ω). Take f ∈ L2(Ω;H−1(D)), ψ ∈ L2(Ω;H1
0 (D)) and the exponent q = 2.

Let p = 1 and define

J(y) :=
1

2
‖y − yd‖2H and %(u) :=

ν

2
‖u‖2H (6)

where yd ∈ L2(D) is a given target state and ν > 0 is the control cost. The risk measure is chosen to be the
conditional value-at-risk, which for β ∈ [0, 1) is defined for a random variable X : Ω→ R by

R[X] = CVaRβ [X] = inf
s∈R

{
s+

1

1− β
E[max{X − s, 0}]

}
. (7)

This risk measure is finite, convex, monotone, continuous and subdifferentiable (see [48, §6.2.4]) and turns out to
satisfy every assumption we will make in this paper. CVaR is easily interpretable: given a random variable X,
CVaRβ [X] gives the average of the tail of values X beyond the upper β-quantile. The minimisers in (7) correspond
to the β-quantile. CVaRβ approaches the essential supremum as β → 1.

Further examples of risk measures can be found in [31, §2.4] and references therein.

2 Analysis of the optimisation problem

We begin by studying various properties of the solution map to the VI (2) and addressing the control problem (1).
The solution mapping u 7→ y(ω) in (2) is denoted by Sω : U → V and its associated superposition operator S by

S(u)(ω) := Sω(u). (8)

2.1 Analysis of the VI

We make heavy use, in particular, of the standing assumptions Assumption 1.1.

Lemma 2.1. For almost every ω, there exists a unique solution to (2) satisfying the estimate

‖Sω(u)‖V ≤ C (‖f(ω)‖V ∗ + ‖u‖U + ‖ψ(ω)‖V ) (9)

where the constant C > 0 depends only on Cb, Ca and Cc.

Proof. The conditions (3) ensure the existence and uniqueness of the solution to (2) for each ω by the Lions–
Stampacchia theorem; see [36].

For the estimate we argue as follows. Setting v = ψ(ω) in (2) and splitting with Young’s inequality with ε, we
obtain

Ca ‖y(ω)‖2V ≤ 〈A(ω)y(ω), ψ(ω)〉+ 〈f(ω) +B(ω)u, y(ω)− ψ(ω)〉
≤ Cb ‖y(ω)‖V ‖ψ(ω)‖V + (‖f(ω)‖V ∗ + Cc ‖u‖U ) ‖y(ω)‖V

+ (‖f(ω)‖V ∗ + Cc ‖u‖U ) ‖ψ(ω)‖V

≤ Ca
3
‖y(ω)‖2V +

3C2
b

4Ca
‖ψ(ω)‖2V +

3

4Ca
(‖f(ω)‖V ∗ + Cc ‖u‖U )2 +

Ca
3
‖y(ω)‖2V

+
1

2
(‖f(ω)‖V ∗ + Cc ‖u‖U )2 +

1

2
‖ψ(ω)‖2V .
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This gives the uniform bound

Ca
3
‖y(ω)‖2V ≤

(
3C2

b

4Ca
+

1

2

)
‖ψ(ω)‖2V +

(
3

4Ca
+

1

2

)
(‖f(ω)‖V ∗ + Cc ‖u‖U )2.

Thus we obtain (9) if we take

C ≥ max

(√
9C2

b

4C2
a

+
3

2Ca
,

√
9

4C2
a

+
3

2Ca
,

√
9Cb
4C2

a

+
3Cb
2Ca

)
.

Remark 2.2. In the proof above, we used as test function the obstacle ψ since we assumed (see Section 1.2) in
particular that ψ(ω) ∈ V a.s. and thus it is feasible. We could also have obtained a bound by testing with any map
v0 satisfying

v0 ∈M(Ω;V ) : v0(ω) ≤ ψ(ω) a.s. (10)

Assuming that such a map exists, this means that we could have asked for weaker regularity on ψ, e.g. ψ ∈
Ls(Ω;L2(D)) with ψ ≥ 0 on ∂D would suffice (to the extent that the latter condition is defined). The proof of
Proposition 3.1 can be modified similarly too.

Remark 2.3. If the constants Ca, Cb, Cc (in (3)) were functions defined on Ω instead, we can prove an estimate
similar to the one in Lemma 2.1. For technical simplicity, we will not work in such generality in this paper.

For the next result and later ones, it is useful to note that, since B(ω) is bounded uniformly, Assumption 1.4
on B(ω) being completely continuous also implies for un ⇀ u in U , by a simple Dominated Convergence Theorem
(DCT) argument, that

Bun → Bu in Lt(Ω;V ∗) for all t <∞. (11)

Proposition 2.4. The solution map S (defined in (8)) satisfies the following.

(i) S(u) : Ω→ V is measurable for all u ∈ U .

(ii) S(u) ∈ Lmin(r,s)(Ω;V ) for all u ∈ U .

(iii) The estimate
‖Sω(u)− Sω(v)‖V ≤ C

−1
a ‖B(ω)(u− v)‖U

holds.

(iv) If un ⇀ u in U , then
Sω(un)→ Sω(u) in V for a.e. ω

and

S(un)→ S(u) in Lq(Ω;V ),

S(un)− S(u)→ 0 in Lt(Ω;V ) for all t <∞.

Note that the final claim is not the same as S(un) → S(u) in Lt(Ω;V ) because we do not know whether
S(un), S(u) ∈ Lt(Ω;V ) for all t.

Proof. (i) Let u ∈ U be arbitrary but fixed and define the operator

F : V × Ω→ V ∗, (y, ω) 7→ F (y, ω) := A(ω)y − f(ω)−B(ω)u.

The uniform measurability of A and B from Assumption 1.1 implies (strong) measurability of A(·)y : Ω→ V ∗

for every y ∈ V and B(·)u : Ω→ V ∗. Thus F (y, ·) is measurable for every y ∈ V , and the almost sure continuity
of F (·, ω) is clear. In particular, F is a Carathéodory operator and is also superpositionally measurable [12,
Remark 3.4.2]. Note that the VI can be rewritten as: find y(ω) ≤ ψ(ω) such that 〈F (y(ω), ω), y(ω)− v〉 ≤ 0
for all v ≤ ψ(ω). Since the solution y(ω) = S(u)(ω) exists by Lemma 2.1, measurability follows from [19,
Theorem 2.3].

(ii) This is an easy consequence of the estimate (9).
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(iii) Let y(ω) = Sω(u) and z(ω) = Sω(v). Then for all v ≤ ψ(ω) we have

〈A(ω)(z(ω)− y(ω))−B(ω)(v − u), z(ω)− y(ω)〉 ≤ 0.

Using (3),

Ca ‖y(ω)− z(ω)‖2V ≤ ‖B(ω)(u− v)‖V ∗ ‖z(ω)− y(ω)‖V ,

and the claim follows.

(iv) From the previous property, we derive

‖Sω(un)− Sω(u)‖V ≤ C
−1
a ‖B(ω)(un − u)‖V ∗ .

By Assumption 1.4 we immediately obtain the pointwise a.e. claim. Exponentating both sides to a power
t < ∞, integrating and using (11), we obtain the Bochner convergence S(un)− S(u) → 0 in Lt(Ω;V ) for all
t <∞, and by the sum rule, S(un)→ S(u) in Lq(Ω;V ) (recall that q ≤ min(r, s) and q 6=∞).

In the above result, we needed Assumption 1.4 only for the final item (and later, it will be needed only for the
final item of Proposition 3.1).

Remark 2.5. It would also be possible to show measurability of the solution map if it is set-valued; see [19].

2.2 Existence of an optimal control

We need certain basic structural properties on the functionals appearing in (1) for the problem to be well posed.

Assumption 2.6. Let R : Lp(Ω) → R be proper and lower semicontinuous and % : U → R be proper and weakly
lower semicontinuous. Assume also that

dom(R ◦ J ◦ S + %) ∩ Uad 6= ∅ (12)

and
either Uad is bounded or R ◦ J ◦ S + % is coercive. (13)

If a map from Lp(Ω) to R is finite, convex and monotone, it is continuous (and also subdifferentiable) on Lp(Ω)
[48, Proposition 6.5]. If both R and % are finite, dom(R ◦ J ◦ S + %) = U and (12) holds.

Proposition 2.7. Under Assumption 2.6, there exists an optimal control of (1).

Proof. We can write the problem (1) as
min
u∈U

F (u),

where F : U → R is defined by
F := R ◦ J ◦ S + %+ δUad ,

with δUad : Uad → {0,∞} denoting the indicator function, i.e., δUad(v) = 0 if v ∈ Uad and δUad(v) = ∞ otherwise.
We need to show that F is proper, coercive and weakly lower semicontinuous.

This indicator function is proper since Uad is nonempty. Since we assumed that the effective domain ofR◦J ◦S+%
has a non-empty intersection with Uad, it follows that F is proper too.

We have shown in Proposition 2.4 that S : U → Lq(Ω;V ) is completely continuous. This fact, combined with the
continuity of J and lower semicontinuity of R implies that R ◦ J ◦ S is weakly lower semicontinuous. Since % and
δUad also possess this property (see, e.g., [9, p. 10] for the indicator function), we obtain weak lower semicontinuity
of F .

Now, if Uad is bounded, δUad is coercive and we can use the fact that R◦J ◦S+% > −∞ to deduce the coercivity
of F . Otherwise, if R ◦ J ◦ S + % is coercive, we deduce the same property for F by using the non-negativity of
δUad .

Applying now the direct method of the calculus of variations, we obtain the result.
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Remark 2.8. The conditions in Assumption 2.6, needed for the existence of controls, are weaker than those needed
in [31, Proposition 3.12] (where R is taken to be finite, lower semicontinuous, convex5 and monotone, and %6 to be
proper, lower semicontinuous and convex) and weaker also than the ones in [30, Proposition 3.1] (where R and %
are finite, lower semicontinuous and convex and % is finite, convex and continuous). Although it may appear that
we need an extra condition on the domain of the composition, when R is finite, it automatically holds.

Note however that the authors above only have or assume weak-weak continuity for S in their works.

3 A regularised control problem

In this section, we approximate the VI (2) by a certain sequence of PDEs through a penalty approach. This
leads to a regularised constraint in the overall control problem and is useful not only for numerical realisation and
computation but also for the derivation of stationarity conditions for (1).

3.1 A penalisation of the obstacle problem

As alluded to, we penalise the constraint and essentially approximate (2) by a sequence of solutions of PDEs. These
types of methods in the deterministic case have been comprehensively studied in the literature, see for example [35,
§3.5.2, p. 370], [15, Chapter 1, §3.2] for some classical references.

Define the following differentiable approximation of the positive part function max(0, ·):

mτ (r) :=


0 : r ≤ 0,
r2

2τ : 0 < r < τ,

r − τ
2 : r ≥ τ.

(14)

We have mτ ∈ C1(R), m′τ ∈ [0, 1] and thanks to the regularity of its derivative when seen as function between the
reals, mτ : H1(D) → L2(D) is C1 (see, e.g., [7, Proposition 4] for a direct proof). Before we proceed, note that
other choices of penalisations or smooth approximations mτ are possible, see [25, 34, 27].

Consider for a fixed ω the penalised problem

A(ω)y +
1

τ
mτ (y − ψ(ω)) = f(ω) +B(ω)u (15)

and denote the solution map u 7→ y as Tτ,ω : U → V and associated superposition map Tτ (u)(ω) ≡ Tτ,ω(u). The
solution map is well defined since (15) has a unique solution [44, Theorem 2.6]. In an analogous way to the properties
of S obtained in Proposition 2.4, we can show the following.

Proposition 3.1. We have

(i) Tτ (u) : Ω→ V is measurable for all u ∈ Uad.

(ii) The map

Tτ : U → Lmin(r,s)(Ω;V ) (16)

and
‖Tτ,ω(u)‖V ≤ C (‖f(ω)‖V ∗ + ‖u‖U + ‖ψ(ω)‖V ) . (17)

(iii) The estimate
‖Tτ,ω(u)− Tτ,ω(v)‖V ≤ C

−1
a ‖B(ω)(u− v)‖V ∗

holds.

(iv) If un ⇀ u in U , then
Tτ,ω(un)→ Tτ,ω(u) in V a.s.,

and
Tτ (un)→ Tτ (u) in Lq(Ω;V ),

Tτ (un)− Tτ (u)→ 0 in Lt(Ω;V ) for all t <∞.
5Note that if an extended function is convex and lower semicontinuous, it is also weakly lower semicontinuous.
6The domain condition (12) in the cited work is missing if % is taken to map into R, or otherwise, % needs to be finite, because

dom(R ◦ J ◦ S + %) ∩ Uad may be empty if this is not assumed.
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Proof. (i) This follows similarly to Proposition 2.4.

(ii) Let y = Tτ (u) so that

A(ω)y(ω) +
1

τ
mτ (y(ω)− ψ(ω)) = f(ω) +B(ω)u

is satisfied almost surely. Testing the equation with y(ω) − ψ(ω) and using mτ (r)r ≥ 0 leads to the same
situation as in the proof of Lemma 2.1 and we obtain the same bound (17). Then it follows as in Proposition 2.4
that y is bounded uniformly in Lmin(r,s)(Ω;V ) and the superposition map satisfies (16), just as for S.

(iii) If y = Tτ,ω(u) and z = Tτ,ω(v), we have

〈A(ω)(z(ω)− y(ω)), z(ω)− y(ω)〉+
1

τ
〈mτ (z(ω)− ψ(ω))−mτ (y(ω)− ψ(ω)), z(ω)− y(ω)〉

= 〈B(ω)(v − u), z(ω)− y(ω)〉,

whence the estimate follows from the monotonicity of mτ .

(iv) From the previous property, we have

‖Tτ,ω(un)− Tτ,ω(u)‖V ≤ C
−1
a ‖B(ω)(un − u)‖V ∗ .

From here, the argument is the same as in the proof of Proposition 2.4.

The next result is fundamental as it shows that the solution of the penalised problem converges to the solution
of the associated VI as the parameter is sent to zero. If we had defined mτ ≡ m to be a penalty operator that
is independent of τ , we could apply classical approximation theory such as [35, Theorem 5.2, §3.5.3, p. 371]. The
mτ -dependent case was addressed in [25, Theorem 2.3] but we need a slightly weaker assumption on the convergence
of the source terms than was assumed there.

Proposition 3.2. If uτ ⇀ u in U , then Tτ,ω(uτ )→ Sω(u) in V a.s. and Tτ (uτ )→ S(u) in Lq(Ω;V ).

Proof. The source term in the equation for Tτ,ω(uτ ) is f(ω) + B(ω)uτ and by Assumption 1.4, this converges
strongly to f(ω) + B(ω)u in V ∗ for almost every ω. Therefore, we can apply [3, Theorem 2.18] (which yields the
desired strong convergence for a subsequence) and the subsequence principle to obtain Tτ,ω(uτ )→ Sω(u) in V . By
the bound (17), a simple DCT argument gives the Bochner convergence.

Although [30] provides a number of sufficient conditions for the continuity and differentiability properties of Tτ
between U and a corresponding Bochner space, not all cases are covered and [30, Assumption 2.3] appears to put a
restriction on the integrability of the derivative of the nonlinearity that we may not have or need. In the following,
we exploit the explicit structure of our nonlinearity and prove the necessary properties including continuous Fréchet
differentiability directly.

Lemma 3.3. Let α ≤ s. The map mτ : Lα(Ω;V )→ Lβ(Ω;H) is C1 whenever β < α <∞. Furthermore,

m′τ : Lα(Ω;V )→ Lβ̃(Ω;L(V,H)) is continuous,

where β̃ := αβ/(α− β).

Proof. We want to apply the results in [16]. Define G(ω, y) := mτ (y − ψ(ω)) so that G : Ω × V → H. Set
G(y)(ω) := G(ω, y(ω)) to be the associated Nemytskii operator.

For y ∈ V , we have

‖G(ω, y)‖H = ‖mτ (y − ψ(ω))‖L2(D) ≤ C ‖y − ψ(ω)‖L2(D) ,

using the fact that mτ is Lipschitz and mτ (0) = 0. Hence

E
[
‖G(y)‖αH

]
≤ CE

[
‖y − ψ(·)‖αL2(D)

]
,

which shows that G maps Lα(Ω;V )→ Lα(Ω;H). Observe that we needed the assumption α ≤ s for the right-hand
side of the above to be finite. In particular, G : Lα(Ω;V )→ Lβ(Ω;H) whenever β ≤ α.
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Now, as noted before, mτ : V → H is a C1 map. Define an operator K : Ω×V → H by K(ω, y) := m′τ (y−ψ(ω))

and K(y)(ω) := K(ω, y(ω)). We need K : Lα(Ω;V ) → Lβ̃(Ω;L(V,H)) to be continuous. If we had this, then
applying [16, Theorem 7] we would obtain that G : Lα(Ω;V )→ Lβ(Ω;H) is a C1 map for β < α. We calculate

‖m′τ (y − ψ(ω))‖L(V,H) = sup
g∈V
‖g‖V =1

‖m′τ (y − ψ(ω))g‖L2(D)

≤ sup
g∈V
‖g‖V =1

‖g‖L2(D)

≤ 1

and hence, by [16, Theorem 1], K maps all of Lα(Ω;V ) into Lβ̃(Ω;L(V,H)). The continuity of K then follows from
[16, Theorem 4].

Remark 3.4. Using Lemma 3.3 and under the conditions on the exponents in the lemma, we can deduce that the
map F : U × Lα(Ω;V )→ Lβ(Ω;V ∗) is C1, where

F (u, y) := Ay +
1

τ
mτ (y − ψ)−Bu− f.

An application of the implicit function theorem would further restrict us to the setting where α ≤ β in order to meet
the condition of the isomorphism property for the partial derivative of F and this is impossible. We will argue that
Tτ is C1 differently by directly using the equation it satisfies.

From now on, we need to explicitly use the fact that V ↪→ L4(D), which is true for d ≤ 4 by Sobolev embeddings
[1, Theorem 4.12].

Proposition 3.5. The map Tτ : U → Lq(Ω;V ) is continuously Fréchet differentiable and the derivative T ′τ (u)(h)
belongs to L∞(Ω;V ) and satisfies a.s. the equation

A(ω)δ(ω) +
1

τ
m′τ (y(ω)− ψ(ω))δ(ω) = B(ω)h where y = Tτ (u).

For a given h ∈ U , the above equation admits a unique solution δ(ω) ∈ V. Moreover, for all α ∈ [1,∞] and u ∈ U ,

Tτ (u+ h)− Tτ (u)− T ′τ (u)(h)

‖h‖U
→ 0 in Lα(Ω;V ) as h→ 0 in U.

It is worth emphasising that T ′τ (u) ∈ L(U,L∞(Ω;V )) irrespective of r and s and that the quotient converges in
L∞(Ω;V ).

Proof. Let u, h ∈ U . Then the existence and uniqueness of the solution δ follows from the monotonicity of m′τ .
Define yh(ω) := Tτ,ω(u+ h), y(ω) := Tτ,ω(u) and the candidate derivative δ(ω), which are defined in the following,
on a pointwise a.s. level:

A(ω)yh(ω) +
1

τ
mτ (yh(ω)− ψ(ω)) = B(ω)u+B(ω)h+ f(ω),

A(ω)y(ω) +
1

τ
mτ (y(ω)− ψ(ω)) = B(ω)u+ f(ω),

A(ω)δ(ω) +
1

τ
m′τ (y(ω)− ψ(ω))δ(ω) = B(ω)h.

Note that δ ∈ L∞(Ω;V ) due to Assumption 1.1 and the non-negativity of m′τ . Let us for now omit the occurrences
of ω for clarity. We have

A(yh − y − δ) +
1

τ
(mτ (yh − ψ)−mτ (y − ψ)−m′τ (y − ψ)δ) = 0.

Now, using the mean value theorem on a pointwise a.e. level in the domain D

mτ (yh − ψ)−mτ (y − ψ)−m′τ (y − ψ)δ =

∫ 1

0

m′τ (yh − ψ + λ(y − yh))(y − yh) dλ−m′τ (y − ψ)δ

=

∫ 1

0

m′τ (yh − ψ + λ(y − yh))(y − yh)−m′τ (y − ψ)δ dλ

=

∫ 1

0

[m′τ (yh − ψ + λ(y − yh))−m′τ (y − ψ)](y − yh) +m′τ (y − ψ)(yh − y − δ) dλ.
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Denote by z := yh − y − δ. Plugging this in above, we find

Az +
1

τ

∫ 1

0

[m′τ (yh − ψ + λ(y − yh))−m′τ (y − ψ)](y − yh) +m′τ (y − ψ)z dλ = 0.

Testing with z, neglecting the final term due to non-negativity of m′τ , the above becomes

Caτ ‖z‖V ≤

(∫
D

∣∣∣∣∫ 1

0

[m′τ (yh − ψ + λ(y − yh))−m′τ (y − ψ)](y − yh) dλ

∣∣∣∣2 dx

) 1
2

≤
(∫

D

∫ 1

0

|yh − y + λ(y − yh)|2|y − yh|2 dλ dx

) 1
2

≤ C
(∫

D

|yh − y|4 dx

) 1
2

= C ‖yh − y‖2L4(D)

≤ C̃ ‖yh − y‖2V

using the embedding V ↪→ L4(D). Since Tτ is Lipschitz (see Proposition 3.1), we have

Caτ ‖Tτ,ω(u+ h)− Tτ,ω(u)− δ(ω)‖V
‖h‖U

≤ Ĉ ‖h‖U .

Taking the power α, integrating over Ω and taking the α-th root, we obtain the desired result for α < ∞; taking
the essential supremum recovers the remaining case.

Let us now characterise the adjoint of the derivative of T ′τ,ω (observe that T ′τ,ω(u)∗ : V ∗ → U∗ for u ∈ U). This
will come in use later.

Lemma 3.6. For u ∈ U and g ∈ V ∗, we have

T ′τ,ω(u)∗g = B∗(ω)η(ω),

where η(ω) ∈ V satisfies

A∗(ω)η(ω) +
1

τ
m′τ (y(ω)− ψ(ω))η(ω) = g, where y(ω) = Tτ,ω(u). (18)

If g ∈ Lt(Ω;V ∗), then η ∈ Lt(Ω;V ) for all t.

Proof. Define pointwise a.e. the quantity
λ(ω) := T ′τ,ω(u)∗g.

Now, since T ′τ,ω(u) = (A(ω) + 1
τm
′
τ (y(ω)−ψ(ω)))−1B(ω), we find, using the commutation of adjoints and inverses,

that

T ′τ,ω(u)∗ = B∗(ω)(A∗(ω) +
1

τ
m′τ (y(ω)− ψ(ω)))−1.

Thus λ(ω) = B∗(ω)(A∗(ω) + 1
τm
′
τ (y(ω)−ψ(ω)))−1g. If we then set η(ω) := (A∗(ω) + 1

τm
′
τ (y(ω)−ψ(ω)))−1g, then

λ(ω) = B∗(ω)η(ω)

and η(ω) satisfies (18). Testing the equation for η with the solution itself and manipulating, we obtain

Ca ‖η(ω)‖V ≤ ‖g(ω)‖V ∗ ,

from which we see that the integrability regularity is preserved.
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3.2 Stationarity for the regularised control problem

We consider the regularised problem
min
u∈Uad

R[J (Tτ (u))] + %(u) (19)

which, if conditions akin to (12) and (13) hold, by similar arguments to those made in Section 2.2 has optimal
controls u∗τ ∈ Uad with associated states

y∗τ := Tτ (u∗τ ) ∈ Lmin(r,s)(Ω;V )

(see Proposition 3.1 for the integrability claim). The states satisfy

A(ω)y∗τ (ω) +
1

τ
mτ (y∗τ (ω)− ψ(ω)) = f(ω) +B(ω)u∗τ a.s. (20)

We will show in Proposition 4.3 that the minimisers (y∗τ , u
∗
τ ) converge to a minimiser of the original control problem

(1).
We make the following standing assumption (in addition to the conditions assumed in Section 1.2). The as-

sumption introduces requirements on Jy that are needed to ensure the Fréchet differentiablity of J . We have to
slightly restrict the range of exponents that were available in Assumption 1.2 in order to avoid trivial situations
(see the comment after Lemma A.1). Note that if we had allowed for q = ∞, we would also need p = ∞ in order
to apply the theory of [16] to get J to be C1, however p =∞ is problematic, see Remark 4.5.

Assumption 3.7. Assume the following.

(i) For a.e. ω, J(·, ω) : V → R is continuously Fréchet differentiable with Jy(·, ω) : V → V ∗ Carathéodory.

(ii) Take
p < q <∞

and defining

p̃ :=
pq

q − p
,

there exists C̃1 ∈ Lp̃(Ω) and C̃2 ≥ 0 such that

‖Jy(v, ω)‖V ∗ ≤ C̃1(ω) + C̃2 ‖v‖q/p̃V . (21)

(iii) Suppose
either Uad is bounded or both R ◦ J ◦ S + % and R ◦ J ◦ Tτ + % are coercive.

(iv) The map R : Lp(Ω)→ R is convex and lower semicontinuous.

(v) The map % : U → R is convex and Gâteaux directionally differentiable with %′(u)(v) denoting the Gâteaux
derivative at u ∈ U in the direction v ∈ U .

(vi) The map %′(·)(· − v) : U → R is weakly lower semicontinuous for every v ∈ Uad, i.e.,

wn ⇀ w in U =⇒ %′(w)(w − v) ≤ lim inf
n→∞

%′(wn)(wn − v).

Under items (i) and (ii), we obtain through Lemma A.1 that J : Lq(Ω;V ) → Lp(Ω) is continuously Fréchet
differentiable with

J ′(y)(h) ≡ Jy(y(·), ·)h(·).

Furthermore,
J ′ : Lq(Ω;V )→ Lp̃(Ω;V ∗) is continuous. (22)

A few additional words on these assumptions are in order.

Remark 3.8. (i) Observe that we have assumed R and % to be finite, meaning that the domain condition (12)
in Assumption 2.6 is automatic.

(ii) The coercivity part of Assumption 3.7 (iii) is automatic in the typical case where R is monotonic, J is a

tracking-type functional (thus R ◦ J ◦ Tτ ≥ 0) and %(u) = (ν/2) ‖u‖2U where ν > 0 is a constant.
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(iii) By Assumption 3.7 (iv), it follows that R is continuous (since it is finite, lower semicontinuous and convex),
see [6, Proposition 2.111]. Then by [6, Proposition 2.126 (v)], R is Hadamard differentiable with

R′[z](h) = sup
ν∈∂R(z)

E[νh].

(iv) It is easy to see that
p̃ > p and p̃ ≥ q′. (23)

Some further relations between the various exponents can be found in Appendix B.

(v) Assumption 3.7 (v) implies weak lower semicontinuity of %. Indeed, take a sequence wn ⇀ w in U . Since % is
Gâteaux differentiable and convex, we have

%(wn) ≥ %(w) + %′(w)(wn − w),

and we get the claim by using the fact that the derivative of % is linear in the direction.

Example 3.9. If J is of tracking type as in (6), we have that Jy(y, ω) = (y − yd, ·)H so that ‖Jy(y, ω)‖V ∗ ≤
C(‖yd‖H + ‖y‖V ) and the growth condition assumption (21) is satisfied.

Now, we have that J ◦ Tτ : U → Lp(Ω) is C1 since Tτ : U → Lq(Ω;V ) and J : Lq(Ω;V ) → Lp(Ω) are C1 (see
Proposition 3.5 for the former). Since R is Hadamard differentiable, the chain rule [6, Proposition 2.47] yields that

(R ◦ J ◦ Tτ )′(u∗τ )(h) = R′(J (y∗τ ))J ′(y∗τ )T ′τ (u∗τ )h ∀h ∈ U.

Using the expression for the derivative R′ above and the fact that J ′(y∗τ )T ′τ (u∗τ ) : U → Lp(Ω) is continuous, arguing
in the usual way for B-stationarity (see [26] for the corresponding notion), we obtain

sup
π∈∂R[J (y∗τ )]

E[J ′(y∗τ )(T ′τ (u∗τ )h)π] + %′(u∗τ )(v) ≥ 0 ∀h ∈ TUad(u∗τ ),

where TUad(u∗τ ) is the tangent cone of Uad at u∗τ . This condition is not so convenient due to the supremum present.
However, making use of subdifferential calculus, we have the following characterisation.

Lemma 3.10. There exists π∗τ ∈ ∂R[J (y∗τ )] such that

E[J ′(y∗τ )(T ′τ (u∗τ )(u∗τ − v))π∗τ ] + %′(u∗τ )(u∗τ − v) ≤ 0 ∀v ∈ Uad. (24)

Proof. We begin by checking some properties of R◦J ◦ Tτ that we need to apply the sum rule for subdifferentials.
Note first that R is locally Lipschitz on Lp(Ω) (which means that it is locally Lipschitz near every point of

Lp(Ω)). Also, J ◦ Tτ : U → Lp(Ω) is strictly differentiable at u∗τ (in the sense of Clarke) since it is C1 (see [8,
Corollary, p. 32]), and by [8, Proposition 2.2.1], it is Lipschitz near u∗τ . It follows that the composition R ◦ J ◦ Tτ
is locally Lipschitz near u∗τ .

Since % is convex and weakly lower semicontinuous (see Remark 3.8), % is also locally Lipschitz near every point
of U . Thus the sum R ◦ J ◦ Tτ + % is also locally Lipschitz near u∗τ . Hence by the corollary on page 52 of [8], we
have

0 ∈ ∂(R ◦ J ◦ Tτ + %)(u∗τ ) +NUad(u∗τ )

where NUad(u) stands for the normal cone of Uad at u. By [8, Proposition 2.3.3], we get

∂(R ◦ J ◦ Tτ + %)(u∗τ ) ⊂ ∂(R ◦ J ◦ Tτ )(u∗τ ) + ∂%(u∗τ ).

With R being locally Lipschitz on Lp(Ω), we can apply the subdifferential chain rule [8, Theorem 2.3.10 and Remark
2.3.11] to obtain

∂(R ◦ J ◦ Tτ )(u∗τ ) = [(J ◦ Tτ )′(u∗τ )]∗∂R(J ◦ Tτ (u∗τ )).

Equality here holds since R is convex and thus regular [8, Proposition 2.3.6 (b)]. Consolidating all of the above, we
have

0 ∈ [(J ◦ Tτ )′(u∗τ )]∗∂R(J ◦ Tτ (u∗τ )) + ∂%(u∗τ ) +NUad(u∗τ ).

Now we argue similarly to the corrigendum to [31]. It follows that there exists a ν ∈ ∂R(J (y∗τ )) and η ∈ ∂%(u∗τ )
satisfying

−[(J ◦ Tτ )′(u∗τ )]∗ν − η ∈ NUad(u∗τ ).
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By [8, Proposition 2.1.2 (b) and Proposition 2.2.7], %′(u∗τ ) is the support function of ∂%(u∗τ ), i.e.,

%′(u∗τ )(h) = sup
g∈∂%(u∗τ )

〈g, h〉Lp′ (Ω),Lp(Ω) ∀h ∈ U

and hence, by linearity of the derivative, η = %′(u∗τ ). By definition of the normal cone and using the convexity of
Uad, we then have that ν ∈ ∂R(J (y∗τ )) satisfies

〈[J ′(y∗τ )T ′τ (u∗τ )]∗ν + %′(u∗τ ), u∗τ − z〉U∗,U ≤ 0 ∀z ∈ Uad.

Unravelling the adjoint operator, we get the desired claim.

An adjoint equation can be obtained, like in [31] and [30], by setting (T ′τ (u∗τ ))∗J ′(y∗τ ) = B∗p∗τ = B∗(·)p∗τ (·) with
p∗τ taking the role of the adjoint variable (this allows for the formulation of more explicit optimality conditions).
Doing so, we get the following.

Proposition 3.11. There exists (p∗τ , π
∗
τ ) ∈ Lp̃(Ω;V )× Lp′(Ω) such that

A∗(ω)p∗τ (ω) +
1

τ
m′τ (y∗τ (ω)− ψ(ω))p∗τ (ω) = Jy(y∗τ (ω), ω) a.s., (25a)

E[〈B∗p∗τ , u∗τ − v〉U∗,Uπ∗τ ] + %′(u∗τ )(u∗τ − v) ≤ 0 ∀v ∈ Uad, (25b)

R[g]−R[J (y∗τ )]− E[π∗τ (g − J (y∗τ ))] ≥ 0 ∀g ∈ Lp(Ω). (25c)

Proof. Define p∗τ to satisfy (25a). By Lemma 3.6, we have

(T ′τ,ω(u∗τ ))∗Jy(y∗τ , ω) = B∗(ω)p∗τ (ω).

Using this, the first term in inequality (24) can be rewritten as

E[J ′(y∗τ )(T ′τ (u∗τ )(u∗τ − v))] = E[〈J ′(y∗τ ), T ′τ (u∗τ )(u∗τ − v)〉]
= E[〈(T ′τ (u∗τ ))∗J ′(y∗τ ), u∗τ − v〉U∗,U ]

= E[〈B∗p∗τ , u∗τ − v〉U∗,U , ]

which gives (25b). The stated integrability on p∗τ follows by Lemma 3.6 from the regularity on its source term, see
(21). Finally, (25c) is simply equivalent to the statement π∗τ ∈ ∂R(J (y∗τ )).

Now, in the sequel, we study the behavior of the corresponding sequences as τ → 0. Inspecting (25b), we see
that limiting arguments will require a statement for the product p∗τπ

∗
τ . It will turn out that our assumptions do not

appear to provide strong convergence in either p∗τ or π∗τ , making the identification of limits difficult. Therefore, we
additionally pursue a different and slightly weaker formulation of the optimality conditions. First, let us note that
q′, the Hölder conjugate of q, satisfies7

1

q′
=

1

p′
+

1

p̃
. (26)

and that q′ > 1 (this is needed for applications of Banach–Alaoglu).

Proposition 3.12. There exists (q∗τ , π
∗
τ ) ∈ Lq′(Ω;V )× Lp′(Ω) such that

A∗(ω)q∗τ (ω) +
1

τ
m′τ (y∗τ (ω)− ψ(ω))q∗τ (ω) = Jy(y∗τ (ω), ω)π∗τ (ω) a.s., (27a)

E[〈B∗q∗τ , u∗τ − v〉U∗,U ] + %′(u∗τ )(u∗τ − v) ≤ 0 ∀v ∈ Uad, (27b)

R[g]−R[J (y∗τ )]− E[π∗τ (g − J (y∗τ ))] ≥ 0 ∀g ∈ Lp(Ω). (27c)

7Indeed, we have p′ = p
p−1

and p̃ = pq
q−p

and so

1

p′
+

1

p̃
=

p− 1

p
+

q − p

pq
=

pq − p

pq
=

q − 1

q
=

1

q′
.
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Proof. Define q∗τ to satisfy (27a). By Lemma 3.6, we have

(T ′τ,ω(u∗τ ))∗Jy(y∗τ , ω)π∗τ (ω) = B∗(ω)q∗τ (ω).

Using this, the first term in inequality (24) can be rewritten as

E[J ′(y∗τ )(T ′τ (u∗τ )(u∗τ − v))π∗τ ] = E[〈J ′(y∗τ ), T ′τ (u∗τ )(u∗τ − v)〉π∗τ ]

= E[〈(T ′τ (u∗τ ))∗J ′(y∗τ )π∗τ , u
∗
τ − v〉U∗,U ]

= E[〈B∗q∗τ , u∗τ − v〉U∗,U ]

which gives (27b). Recalling (26), we apply Hölder’s inequality to obtain(∫
Ω

|π∗τ |q
′
‖Jy(y∗τ (ω), ω)‖q

′

V ∗ dP(ω)

) 1
q′

≤ C ‖π∗τ‖Lp′ (Ω) ‖J
′(y∗τ )‖Lp̃(Ω;V ∗) ,

which is finite. It follows that q∗τ is also in this space.

Lemma 3.13. We have that in fact
q∗τ = p∗τπ

∗
τ .

Proof. If we multiply the equation (25a) for p∗τ by the scalar π∗τ and set q̂ := p∗τπ
∗
τ , it immediately follows that

A(ω)q̂(ω) +
1

τ
m′τ (y∗τ (ω)− ψ(ω))q̂(ω) = Jy(y∗τ (ω), ω)π∗τ (ω).

Since q∗τ also satisfies this equation, by uniqueness we must have that q∗τ = q̂.

Proposition 3.14. If p∗τ satisfies (25), then the quantity q̂ = p∗τπ
∗
τ satisfies (27).

This shows that the system (25) is in some sense stronger than (27). More precisely, if we begin with (25), we
can obtain (27). For the converse to hold (and thus for equivalence of the two systems) we would need π∗τ 6= 0 a.s.,
which is not the case in general.

Proof. If we define q̂ := p∗τπ
∗
τ , we have, just like we argued above,

A(ω)q̂(ω) +
1

τ
m′τ (y∗τ (ω)− ψ(ω))q̂(ω) = Jy(y∗τ (ω), ω)π∗τ (ω)

is satisfied, i.e., we have (27a), and (27b) is also immediate.

4 Stationarity conditions

MPECs may admit various types of stationarity conditions based on the assumptions and derivation techniques. In
this section, we derive forms of weak and C-stationarity for the problem (1). Note that there are many refinements
of the concept of C-stationarity and the terminology is used somewhat inconsistently in the literature. Let us also
remark that a number of related stationarity concepts can be derived for elliptic MPECs; see [24, 20] and also [26]
for a systematic treatment of derivation techniques. Our approach is to derive strong stationarity conditions for
the penalised problem (19) and then to pass to the limit. First of all however, we must prove that (19) is indeed a
suitable penalisation for (1).

4.1 Consistency of the approximation

We begin with an uniform estimate.

Lemma 4.1. The following bound holds uniformly in τ > 0:

‖y∗τ‖Lq(Ω;V ) + ‖u∗τ‖U ≤ C. (28)

Thus, we have (for a subsequence that we do not distinguish)

y∗τ ⇀ y∗ in Lq(Ω;V ),

u∗τ ⇀ u∗ in U

as τ ↓ 0.
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Proof. The second bound in (28) is due to Assumption 3.7 (iii). Since y∗τ = Tτ (u∗τ ), it follows by Proposition 3.1
that y∗τ is bounded uniformly in Lq(Ω;V ).

In fact, we can do better for the state: since y∗τ = Tτ (u∗τ ) and u∗τ ⇀ u∗, we can immediately obtain strong
convergence thanks to Proposition 3.2.

Lemma 4.2. We have
y∗τ → y∗ in Lq(Ω;V )

and y∗ solves in an a.s. sense the variational inequality

y∗(ω) ≤ ψ(ω), 〈A(ω)y∗(ω)− f(ω)−B(ω)u∗, y∗(ω)− v〉 ≤ 0 ∀v ∈ V : v ≤ ψ(ω).

Proposition 4.3. We have that (y∗, u∗) ∈ Lq(Ω;V )× U , which is the limit of {(y∗τ , u∗τ )} as τ ↓ 0, is a minimiser
of (1).

Proof. If ū is an arbitrary minimiser of (1) and ȳ := S(ū), then

R[J (ȳ)] + %(ū) ≤ R[J (S(u))] + %(u) ∀u ∈ Uad.

In particular, for u = u∗, we get
R[J (ȳ)] + %(ū) ≤ R[J (y∗)] + %(u∗).

On the other hand, we have for the penalised control problem

R[J (y∗τ )] + %(u∗τ ) ≤ R[J (Tτ (û))] + %(û) ∀û ∈ Uad,

since u∗τ is a minimiser of (19). In particular, with û selected as ū, we obtain

R[J (y∗τ )] + %(u∗τ ) ≤ R[J (Tτ (ū))] + %(ū).

Using Proposition 3.2, we have Tτ (ū)→ S(ū) = ȳ, and hence by continuity of J , we have

R[J (ȳ)] + %(ū) ≤ R[J (y∗)] + %(u∗) ≤ lim inf
τ→0

R[J (y∗τ )] + %(u∗τ ) ≤ lim sup
τ→0

R[J (y∗τ )] + %(u∗τ ) ≤ R[J (ȳ)] + %(ū),

where the first inequality is because ū was assumed to be a minimiser and for the second inequality we used weak
lower semicontinuity of R◦J ◦S (see the proof of Proposition 2.7) and of % (see the discussion after Assumption 3.7).
We see that R[J (y∗)] + %(u∗) coincides with the minimal value R[J (ȳ)] + %(ū) and hence u∗ must be a minimiser.

4.2 Passage to the limit

Lemma 4.4. The following bound holds uniformly in τ > 0 (for τ sufficiently small):

‖p∗τ‖Lp̃(Ω;V ) + ‖q∗τ‖Lq′ (Ω;V ) + ‖π∗τ‖Lp′ (Ω) ≤ C.

Thus, we have (for a subsequence that we do not distinguish)

p∗τ ⇀ p∗ in Lp̃(Ω;V ),

q∗τ ⇀ q∗ in Lq
′
(Ω;V ),

π∗τ ⇀ π∗ in Lp
′
(Ω) (

∗
⇀ if p′ =∞)

as τ ↓ 0.

Proof. Test the equation (25a) with p∗τ and use the boundedness of Jy in (21) to obtain

Ca ‖p∗τ (ω)‖V ≤ C̃1(ω) + C̃2 ‖y∗τ (ω)‖q/p̃V .

By Lemma 4.1, y∗τ is bounded uniformly in Lq(Ω;V ) and hence p∗τ is bounded uniformly in Lp̃(Ω;V ).
For the bound on the risk identifiers, first observe that there exists a δ > 0 such that R is Lipschitz with a

Lipschitz constant L on (the open ball) Bδ(J (y∗)) ⊂ Lp(Ω;V ) since R is locally Lipschitz. The constant L is
obviously independent of τ . For sufficiently small τ , we get by continuity that J (y∗τ ) ∈ Bδ(J (y∗)). It follows that
R is Lipschitz with the same Lipschitz constant L near J (y∗τ ) for τ small enough and hence, by [8, Proposition
2.1.2 (a)] and the fact that π∗τ ∈ ∂R[J (y∗τ )], we obtain the boundedness ‖π∗τ‖Lp′ (Ω) ≤ L.

The bound for q∗τ follows similarly to the bound on p∗τ , using the fact that π∗τ is bounded in Lp
′
(Ω).
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Remark 4.5. If q =∞, by the theory in [16], we would also need to have p =∞ for the C1 property for J . In this
case, ∂R(yτ ) is a subset of Lp(Ω)∗ ≡ L∞(Ω)∗, which is a space of measures (and π∗τ would belong to this space).
This is one reason why we postponed the case of q =∞ to later work.

Unfortunately, we cannot retrieve a (weak or strong) convergence pointwise a.s. for p∗τ by the same argument
we used to prove Lemma 4.2 because the limit may not be uniquely determined, as a (subsequence-dependent)
multiplier would come into play.

Remark 4.6. When Uad is the entire space, we obtain in the usual tracking-type non-stochastic setting that p∗ and
the multipler associated to the adjoint are both uniquely determined by y∗ and u∗. We explore this idea further.

If Uad ≡ U , the inequality (25b) simplifies to

〈E[π∗τB
∗(·)p∗τ ], v〉U∗,U + %′(u∗τ )(v) = 0 ∀v ∈ U.

Consider the case where %(u) := ν
2 ‖u‖

2
H and U ≡ H. Then this further reduces to

E[π∗τB
∗(·)p∗τ ] + νu∗τ = 0

as an equality in H∗. Unfortunately, this does not seem to give us any strong convergence of p∗τ or π∗τ (unlike in
the deterministic setting where the former would be available).

Let us make an observation. If y ∈ Lt(Ω;V ) and z ∈ Lt′(Ω;V ), by Hölder’s inequality, we have∣∣∣∣∫
Ω

〈A(ω)y(ω), z(ω)〉 dP(ω)

∣∣∣∣ ≤ Cb ‖y‖Lt(Ω;V ) ‖z‖Lt′ (Ω;V )

which implies that the associated operator (still denoted by A) considered between Bochner spaces, defined via the
pairing

(Ay)(z) :=

∫
Ω

〈A(ω)y(ω), z(ω)〉 dP(ω),

and mapping Lt(Ω;V ) to (Lt
′
(Ω;V ))∗, is a bounded linear operator for any t > 1. Making free use of reflexivity

and non-borderline exponent cases, we see that A : Lt(Ω;V ) → Lt(Ω;V ∗) and the associated adjoint operator
A∗ : Lt

′
(Ω;V )→ Lt

′
(Ω;V ∗) are both continuous.

For the ensuing analysis, it is useful to define

λ∗τ (ω) :=
1

τ
m′τ (y∗τ (ω)− ψ(ω))p∗τ (ω) = Jy(y∗τ (ω), ω)−A∗(ω)p∗τ (ω),

λ̂∗τ (ω) :=
1

τ
m′τ (y∗τ (ω)− ψ(ω))q∗τ (ω) = Jy(y∗τ (ω), ω)π∗τ −A∗(ω)q∗τ (ω),

(these are equalities in V ∗). Note the relationship

λ̂∗τ = π∗τλ
∗
τ .

Lemma 4.7. There exists λ∗ ∈ Lp̃(Ω;V ∗) and λ̂ ∈ Lq′(Ω;V ∗) such that

λ∗ := J ′(y∗)−A∗p∗, λ̂∗ := J ′(y∗)π∗ −A∗q∗,

and

λ∗τ ⇀ λ∗ in Lp̃(Ω;V ∗),

λ̂∗τ ⇀ λ̂∗ in Lq
′
(Ω;V ∗).

Proof. Take ϕ ∈ Lp̃′(Ω;V ) and consider

E[〈λ∗τ , ϕ〉] =

∫
Ω

〈Jy(y∗τ (ω), ω), ϕ(ω)〉 − 〈A(ω)ϕ(ω), p∗τ (ω)〉 dP(ω).

By (22), we have J ′(y∗τ ) → J ′(y∗) in Lp̃(Ω;V ∗), taking care of the first term on the right-hand side above. The
second follows trivially since we have p∗τ ⇀ p∗ in Lp̃(Ω;V ).
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For λ̂∗τ , take now ϕ ∈ Lq(Ω;V ) and consider

E[〈λ̂∗τ , ϕ〉] =

∫
Ω

π∗τ (ω)〈Jy(y∗τ (ω), ω), ϕ(ω)〉 − 〈A(ω)ϕ(ω), q∗τ (ω)〉 dP(ω).

Since J is C1, J ′ : Lq(Ω;V ) → L(Lq(Ω;V ), Lp(Ω)) is continuous and π∗τ ⇀ π∗ in Lp
′
(Ω), thus we can pass to the

limit in the first term on the right-hand side and using q∗τ ⇀ q∗ in Lq
′
(Ω;V ), we can conclude.

In preparation for the main result, recall from (26) that

1

q′
=

1

p′
+

1

p̃
.

Let us also define the inactive set at y∗ by

I∗ := {y∗ < ψ} := {(ω, x) ∈ Ω×D : y∗(ω)(x) < ψ(ω)(x)}.

Theorem 4.8 (E-almost weak stationarity). Let Assumption 3.7 hold. For any local minimiser (u∗, y∗) ∈ Uad ×
Lq(Ω;V ) of (1), there exists ζ∗ ∈ Lq(Ω;V ), q∗ ∈ Lq

′
(Ω;V ), π∗ ∈ Lp

′
(Ω) and λ̂∗ ∈ Lq

′
(Ω;V ∗) such that the

following system is satisfied:

A(ω)y∗(ω)− f(ω)−B(ω)u∗ + ζ∗(ω) = 0 a.s., (29a)

ζ∗(ω) ≥ 0, y∗(ω) ≤ ψ(ω), 〈ζ∗(ω), y∗(ω)− ψ(ω)〉 = 0 a.s., (29b)

A∗(ω)q∗(ω) + λ̂∗(ω) = Jy(y∗(ω), ω)π∗(ω) a.s., (29c)

E[〈B∗q∗, u∗ − v〉U∗,U ] + %′(u∗)(u∗ − v) ≤ 0 ∀v ∈ Uad, (29d)

R[g]−R[J (y∗)]− E[π∗(g − J (y∗))] ≥ 0 ∀g ∈ Lp(Ω), (29e)

E[〈ζ∗, q∗〉] = 0 if q = 2, (29f)

lim sup
τ→0

E[〈λ̂∗τ , q∗τ 〉] ≥ 0, (29g)

E[〈λ̂∗, y∗ − ψ〉] = 0, (29h)

∀ε > 0,∃Eε ⊂ I∗ with |I∗ \ Eε| ≤ ε : E[〈λ̂∗, v〉] = 0 ∀v ∈ Lq(Ω;V ) : v = 0 a.s.-a.e. on Ω×D \ Eε. (29i)

Let us comment on this result.

(i) The first two lines (29a)–(29b) encapsulate the well known complementarity form of the VI for y∗.

(ii) We have not been able to obtain the sign condition E[〈λ̂∗, q∗〉] ≥ 0 (we only have (29g)). This is why we
cannot call this a system of C-stationarity type; it resembles instead a weak stationarity system, only.

(iii) In addition, we have (29f) only when q = 2. We explain the complications that give rise to this (and a lack of
further properties) after the proof of the theorem.

(iv) Note here that Theorem 4.8 holds true for local minimisers whereas Proposition 4.3 argues for global minimisers
of the the respective problems.

The theorem essentially follows by passing to the limit in the q∗τ system (27). Before we get to that, it is useful
and instructive to first pass to the limit in the adjoint equation in the p∗τ system (25) and to derive properties of
its associated quantities.

Proposition 4.9 (Weak E-almost C-stationarity). Let Assumption 3.7 and

q ≤ 2p or p ≥ 2 (30)

hold. For any local minimiser (u∗, y∗) ∈ Uad × Lq(Ω;V ) of (1), there exists ζ∗ ∈ Lq(Ω;V ∗), p∗ ∈ Lp̃(Ω;V ) and
λ∗ ∈ Lp̃(Ω;V ∗) such that the following system is satisfied:

A(ω)y∗(ω)− f(ω)−B(ω)u∗ + ζ∗(ω) = 0 a.s., (31a)

ζ∗(ω) ≥ 0, y∗(ω) ≤ ψ(ω), 〈ζ∗(ω), y∗(ω)− ψ(ω)〉 = 0 a.s., (31b)

A∗(ω)p∗(ω) + λ∗(ω) = Jy(y∗(ω), ω) a.s., (31c)

E[〈ζ∗, p∗〉] = 0, (31f)

E[〈λ∗, p∗〉] ≥ 0, (31g)

E[〈λ∗, y∗ − ψ〉] = 0, (31h)

∀ε > 0,∃Eε ⊂ I∗ with |I∗ \ Eε| ≤ ε : E[〈λ∗, v〉] = 0 ∀v ∈ Lp̃
′
(Ω;V ) : v = 0 a.s.-a.e. on Ω×D \ Eε. (31i)
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Before we prove this result, some remarks are in order.

(i) The system (31) resembles the so-called E-almost C-stationarity system in the deterministic setting [24].
However, in contrast to what we expected from the deterministic setting, we are unable to show that

E[〈ζ∗, (p∗)+〉] = E[〈ζ∗, (p∗)−〉] = 0,

see Remark 4.10. This is why we added the adjective ‘weak’ to refer to the system.

(ii) We have not been able to relate the adjoint p∗ with the control u∗ nor π∗. This is why we have presented the
system (29) as our main result where such a relationship between the adjoint and control is available.

(iii) Taking a cue from Lemma 3.13, we would ideally like to identify as q∗ with p∗π∗; this is a major issue. We
show in Proposition 4.11 that this identification does hold in certain circumstances.

(iv) Regarding relations such as (31g), we cannot say anything about the duality products in an a.s. sense (i.e.,
without the expectation present) because we do not have the desired convergences of elements such as λ∗τ (ω)
and p∗τ (ω) for fixed ω.

(v) If (30) is not available, we do not get (31f)–(31g) (but the remaining statements still hold). This is essentially
because we need the estimate (32) and we have it under (30) as it implies that Lemma B.1 is applicable, which
yields p̃ ≥ 2.

Proof. The proof is in part similar to that of [25, Theorem 3.4] but more delicate due to the low regularity
convergence results.

1. The adjoint equation (31c). This is a simple consequence of Lemma 4.7.

2. Sign condition (31g) on the product. Observe that

E[〈λ∗τ , p∗τ 〉] ≤ ‖λ∗τ‖L2(Ω;V ∗) ‖p
∗
τ‖L2(Ω;V ) ≤ C ‖λ

∗
τ‖Lp̃(Ω;V ∗) ‖p

∗
τ‖Lp̃(Ω;V ) (32)

since (as remarked above) Lp̃(Ω;V ) ↪→ L2(Ω;V ); so the left-hand side is well defined. Now, since 〈λ∗τ , p∗τ 〉 ≥ 0
a.s. (using the definition), we have

0 ≤ lim sup
τ→0

E[〈λ∗τ , p∗τ 〉]

≤ lim sup
τ→0

E[J ′(y∗τ )(p∗τ )]− lim inf
τ→0

E[〈A∗p∗τ , p∗τ 〉]

≤ E[〈J ′(y∗), p∗〉]− E[〈A∗p∗, p∗〉]
= E[〈λ∗, p∗〉].

Here, to derive the penultimate line, we used the strong convergence of y∗τ , the continuity of J ′ into Lp̃(Ω;V ∗) from
(22) in combination with the fact that p̃ ≥ p̃′ (see Lemma B.3), which implies that p∗τ ⇀ p∗ in Lp̃

′
(Ω;V ) as well as

the weak lower semicontinuity of the bounded, coercive bilinear form8 E[〈A∗·, ·)〉] : L2(Ω;V )× L2(Ω;V )→ R.

3. Relation (31h) between multiplier and y∗ − ψ. We have

〈λ∗τ (ω), (y∗τ (ω)− ψ(ω))−〉 =
1

τ
〈m′τ (y∗τ (ω)− ψ(ω))p∗τ (ω), (y∗τ (ω)− ψ(ω))−〉 = 0

because the duality product above is just the integral over the domain and m′τ vanishes on the negative line. Taking
the expectation and using the strong convergence y∗τ → y∗ in Lq(Ω;V ), which certainly implies strong convergence
of its positive (and negative) part in Lq(Ω;V ), and using also λ∗τ ⇀ λ∗ in Lq

′
(Ω;V ∗) by (23), we can pass to the

limit and then realising that (y∗ − ψ)− ≡ −(y∗ − ψ), we find the desired condition.

4. E-almost statement (31i). Since y∗τ → y∗ in Lq(Ω;L2(D)), due to the identification L1(Ω;L1(D)) ≡ L1(Ω×D),
we have y∗τ − ψ → y∗ − ψ pointwise a.s.-a.e. in Ω×D =: ΩD for a subsequence that we do not distinguish. Let the
measure of I∗ be positive; otherwise nothing needs to be shown. Then take z ∈ ΩD such that y∗(z) − ψ(z) < 0,
then there exists a τ̂ = τ̂(z) such that if τ ≤ τ̂ , then

y∗τ (z)− ψ(z) ≤ 1

2
(y∗(z)− ψ(z)) < 0

8The expectation in the bilinear form is finite by Lemma B.1 as we argued above.
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and hence τ−1m′τ (y∗τ (z)− ψ(z)) = 0 for τ ≤ τ̂ . That is, τ−1m′τ (y∗τ (z)− ψ(z))→ 0 pointwise a.s.-a.e. on {y∗ < ψ}
and by Egorov’s theorem, for every ε > 0, there exists Bε ⊂ {y∗ < ψ} with |Bε| < ε such that this convergence also
holds uniformly on {y∗ < ψ} \Bε.

Take v ∈ Lp̃′(Ω;V ) with v = 0 a.s.-a.e. on {y∗ = ψ} ∪ Bε ⊂ ΩD. By the uniform convergence, for any γ > 0,
there exists τ̄ such that if τ ≤ τ̄ ,∣∣∣∣∫

Ω

〈λ∗τ , v〉 dP(ω)

∣∣∣∣ =

∣∣∣∣∣
∫
{y∗<ψ}∩(Bε)c

1

τ
m′τ (yτ − ψ)p∗τv dP(ω)

∣∣∣∣∣ ≤ γ ‖p∗τv‖L1(ΩD) = γ ‖p∗τv‖L1(Ω;L1(D)) .

The norm on the right-hand side is bounded independently of τ and the left-hand side converges to |E[〈λ∗, v〉]|
(thanks to λ∗τ ⇀ λ∗ in Lp̃(Ω;V ∗)), thus giving

|E[〈λ∗, v〉]| ≤ Cγ

for a constant C > 0. Since this holds for every γ, we obtain (31i) (simply set Eε := I∗ \Bε).

5. Relation (31f) between ζ∗ and p∗. Define

ζ∗τ :=
1

τ
mτ (y∗τ − ψ) = f +Bu∗τ −Ay∗τ

which satisfies ζ∗τ → ζ∗ in Lq(Ω;V ∗). Hence, since q ≥ 2 we have

E[〈ζ∗τ , y∗τ − ψ〉]→ E[〈ζ∗, y − ψ〉] = 0,

with the equality due to (29b). Recall the definition of mτ from (14). Introducing

M1(τ) := {0 ≤ y∗τ − ψ < τ} and M2(τ) := {y∗τ − ψ ≥ τ},

by the convergence above, we find

E[〈ζ∗τ , y∗τ − ψ〉] =
1

τ

∫
Ω

∫
D

mτ (y∗τ − ψ)(y∗τ − ψ) dx dP(ω)

=
1

τ

∫
M1(τ)

(y∗τ − ψ)3

2τ
dx dP(ω) +

1

τ

∫
M2(τ)

(
y∗τ − ψ −

τ

2

)
(y∗τ − ψ) dx dP(ω) (33)

→ 0,

and as both integrands in (33) are non-negative, each integral must individually converge to zero too. Hence, using
L2(Ω;L2(D)) ≡ L2(Ω×D),∥∥∥∥∥χM1(τ)(y

∗
τ − ψ)

3
2

τ

∥∥∥∥∥
L2(Ω;L2(D))

→ 0 and

∥∥∥∥χM2(τ)(y
∗
τ − ψ − τ

2 )
√
τ

∥∥∥∥
L2(Ω;L2(D))

→ 0, (34)

where for the second convergence we used the fact that y∗τ − ψ ≥ y∗τ − ψ − τ/2 ≥ 0. We calculate

E[〈ζ∗τ , p∗τ 〉] =
1

τ

∫
Ω

∫
M1(τ)

(y∗τ − ψ)2

2τ
p∗τ +

1

τ

∫
Ω

∫
M2(τ)

(
y∗τ − ψ −

τ

2

)
p∗τ

=
1

2

∫
Ω

∫
D

χM1(τ)
(y∗τ − ψ)3/2

τ

(y∗τ − ψ)1/2

τ
χM1(τ)p

∗
τ +

∫
Ω

∫
D

χM2(τ)

(
y∗τ − ψ − τ

2

)
√
τ

χM2(τ)p
∗
τ√

τ

=
1

2

(
χM1(τ)

(y∗τ − ψ)3/2

τ
,

(y∗τ − ψ)1/2

τ
χM1(τ)p

∗
τ

)
+

(
χM2(τ)

(
y∗τ − ψ − τ

2

)
√
τ

,
χM2(τ)p

∗
τ√

τ

)
, (35)

where the inner products in the final line are in L2(Ω;L2(D)). Now, using (34), the first term in each inner product
above converges to zero and hence the above right-hand side will converge to zero if we are able to show that the
second term in each inner product remains bounded.
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From (32), making use of the boundedness of λ∗τ and p∗τ , we derive

C ≥ |E[〈λ∗τ , p∗τ 〉]|

=
1

τ

∣∣∣∣∫
Ω

∫
D

m′τ (y∗τ − ψ)(p∗τ )2 dx dP(ω)

∣∣∣∣
=

1

τ

∫
Ω

∫
D

χM1(τ)
y∗τ − ψ
τ

(p∗τ )2 dx dP(ω) +
1

τ

∫
Ω

∫
D

χM2(τ)(p
∗
τ )2 dx dP(ω).

Both of the terms on the right-hand side are individually bounded uniformly in τ as the integrands are non-negative.
This fact then implies from (35) that

E[〈ζ∗, p∗〉] = 0.

Remark 4.10. Replacing p∗τ by (p∗τ )+ in (35) and in the above calculation, we obtain in the same way as in the
proof above

E[〈ζ∗τ , (p∗τ )+〉] = 0.

From here, since we have only weak convergence of p∗τ , we cannot say that (p∗τ )+ converges (weakly) to (p∗)+ and
pass to (and be able to identify) the limit in the above. We can only deduce

lim
τ→0

E[〈ζ∗τ , (p∗τ )+〉] = 0.

We now prove the main result of this paper.

Proof of Theorem 4.8. We can in part capitalise on the proof of Proposition 4.9 but first we begin with the VI for
q∗.

1. The VI (29d) relating the control to a multiplier. Since the first term in the inequality (27b) contains a product
of a strongly convergent sequence with another product of two weakly convergent sequences, we need to use some
compactness to pass to the limit here. First, we write the first term of that inequality as

E[〈B∗q∗τ , u∗τ − v〉U∗,U ] =

∫
Ω

〈q∗τ (ω), B(ω)(u∗τ − v)〉 dP(ω).

Now, by (11), we have B(u∗τ − v) → B(u∗ − v) in Lq(Ω;V ∗). This and the weak lower semicontinuity of Assump-
tion 3.7 (vi) on %′ allows us to pass to the limit in the inequality (27b).

2. Inequality (29e) for the risk measure. It is easy to pass to the limit in the inequality (27c) since π∗τ converges
weakly in Lp

′
(Ω) and by continuity (see (5)), J (y∗τ ) converges strongly in Lp(Ω); thus we get the inequality after

making use of the lower semicontinuity of R.

3. The statements (29c), (29f)–(29i). The proof of the remaining statements in (29) is more or less identical to

the proof of Proposition 4.9. Let us point out the changes. Since λ̂∗τ and q∗τ are both uniformly bounded in Lq
′

with respect to Ω, if q′ ≥ 2, we would have that the left-hand side of (32) (with q∗τ instead) is bounded uniformly.
However, recalling that we assumed in (4) that q ≥ 2, we must choose q = q′ = 2 to avail of the estimate. In this
case (32) (with p∗τ replaced by q∗τ ) still holds, and the right-hand side is bounded uniformly:

E[〈λ̂∗τ , q∗τ 〉] ≤ ‖λ̂∗τ‖L2(Ω;V ∗) ‖q∗τ‖L2(Ω;V ) ≤ C.

Thus, step 5 of the proof of Proposition 4.9 is still valid and we obtain (29f).

4. Conclusion. We are left to show that the stationarity system in fact holds for all local minimisers, not just for a
cluster point of {(y∗τ , u∗τ )}. The argument is classical. Suppose that (ŷ, û) is an arbitrary local minimiser, so there
exists a ball BUγ (û) in U of radius γ on which it is the minimiser. We modify (19) as follows:

min
u∈Uad∩BUγ (û)

R[J (Tτ (u))] + %(u) + ‖u− û‖2U , (36)

and we denote by (ȳτ , ūτ ) a minimiser of this problem. Let us denote the non-reduced functional appearing above
as

F (y, u) := R[J (y)] + %(u) + ‖u− û‖2U .
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From F (ȳτ , ūτ ) ≤ F (Tτ (û), û) and Tτ (û)→ S(û) = ŷ (recall Proposition 3.2), we have

lim sup
τ→0

F (ȳτ , ūτ ) ≤ R[J (ŷ)] + %(û).

On the other hand, due to Assumption 3.7 (iii), we obtain the existence of v ∈ U such that (for a subsequence that we
will not distinguish) ūτ ⇀ v in U and ȳτ → S(v) =: z in Lq(Ω;V ), giving (by the identity lim sup(an)+lim inf(bn) ≤
lim sup(an + bn) and using weak lower semicontinuity)

lim sup
τ→0

F (ȳτ , ūτ ) ≥ R[J (z)] + %(v) + lim sup
τ→0

‖ūτ − û‖2U ≥ R[J (ŷ)] + %(û) + lim sup
τ→0

‖ūτ − û‖2U ,

with the last inequality because (ŷ, û) is a local minimiser and v remains in BUγ (û). Combining these two last
displayed inequalities shows that û = v and ūτ → û in U . The latter fact implies that for τ sufficiently small,
ūτ ∈ BUγ (û) automatically and hence the feasible set in (36) can be taken to be just Uad. For such τ the same
arguments as above can be used to derive stationarity conditions for (36) and in passing to the limit in those
conditions, we will find that (ŷ, û) satisfies the same conditions as above.

Inspecting the proof, we see that even if q = 2, we cannot pass to the limit in E[〈λ̂∗τ , q∗τ 〉] (as in step 2 of the
proof of Proposition 4.9) due to the quantity E[π∗τJ ′(y∗τ )(q∗τ )], where we again have a product of weakly convergent

sequences. If q > 2, then E[〈λ̂∗τ , q∗τ 〉] may not be finite since it is the integral of two elements that are only known
to be q′-integrable with respect to Ω and q′ ∈ (1, 2). Therefore, a version of the estimate (32) may not even exist,
which, at least via our method of proof, rules out (29f).

Proposition 4.11. Suppose ∂R(z) = {R′(z)} holds for all z ∈ Lp(Ω) and R′ satisfies the property

zn → z in Lp(Ω;V ) =⇒ R′(zn)→ R′(z) in Lp
′
(Ω). (37)

Then
π∗τ → π∗ in Lp

′
(Ω),

and we can identify
q∗ = π∗p∗.

Hence (29d) can be strengthened to

E[〈B∗p∗, u∗ − v〉U∗,Uπ∗] + %′(u∗)(u∗ − v) ≤ 0 ∀v ∈ Uad.

If R is Gâteaux differentiable, then the subdifferential reduces to a singleton [8, Proposition 2.3.6 (d)] as required
above. The assumption (37) is a strong one, but if for example R is continuously Fréchet differentiable, then it
holds. Clearly, the case R := E meets all of these conditions.

Proof. We now have that π∗τ = R′(J (y∗τ )). Since y∗τ → y∗, using the assumption, we obtain the strong convergence
π∗τ → π∗ in Lp

′
(Ω).

Take ϕ ∈ L∞(Ω;V ∗) and suppose that p′ <∞. We have then

‖π∗τϕ− π∗ϕ‖
p′

Lp′ (Ω;V ∗)
=

∫
Ω

|π∗τ − π∗|p
′
‖ϕ‖p

′

V ∗ dP(ω) ≤ ‖ϕ‖p
′

L∞(Ω;V ∗) ‖π
∗
τ − π∗‖

p′

Lp′ (Ω)
→ 0.

Now, using (23), we have p∗τ ⇀ p∗ in Lp(Ω;V ) and thus

E[〈p∗τπ∗τ , ϕ〉] = E[〈p∗τ , π∗τϕ〉]→ E[〈p∗, π∗ϕ〉] = E[〈p∗π∗, ϕ〉].

This shows that p∗τπ
∗
τ
∗
⇀ p∗π∗ in (L∞(Ω;V ∗))∗ (and also in some space of vector-valued distributions). But since

we already know that p∗τπ
∗
τ ⇀ q∗ in Lq

′
(Ω;V ), we must have q∗ = p∗π∗.

If p′ =∞, obvious modifications to the above yield the same conclusions.

It is well worth stating the full system that we obtain under the conditions of the above proposition. As
mentioned, we do obtain this when R is chosen to be E, i.e., the risk-neutral case is covered.
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Corollary 4.12. Let Assumption 3.7, (30), and the assumptions of Proposition 4.11 hold. For any local minimiser
(u∗, y∗) ∈ Uad × Lq(Ω;V ) of (1), there exists ζ∗ ∈ Lq(Ω;V ), p∗ ∈ Lp̃(Ω;V ), π∗ ∈ Lp′(Ω) and λ∗ ∈ Lp̃(Ω;V ∗) such
that the following system is satisfied:

A(ω)y∗(ω)− f(ω)−B(ω)u∗ + ζ∗(ω) = 0 a.s., (38a)

ζ∗(ω) ≥ 0, y∗(ω) ≤ ψ(ω), 〈ζ∗(ω), y∗(ω)− ψ(ω)〉 = 0 a.s., (38b)

A∗(ω)p∗(ω) + λ∗(ω) = Jy(y∗(ω), ω) a.s., (38c)

E[〈B∗p∗, u∗ − v〉U∗,Uπ∗] + %′(u∗)(u∗ − v) ≤ 0 ∀v ∈ Uad, (38d)

R[g]−R[J (y∗)]− E[π∗(g − J (y∗))] ≥ 0 ∀g ∈ Lp(Ω), (38e)

E[〈ζ∗, p∗〉] = 0, (38f)

E[π∗〈ζ∗, p∗〉] = 0 if q = 2, (38f’)

E[〈λ∗, p∗〉] ≥ 0, (38g)

E[〈λ∗, y∗ − ψ〉] = 0, (38h)

E[π∗〈λ∗, y∗ − ψ〉] = 0, (38h’)

∀ε > 0,∃Eε ⊂ I∗ with |I∗ \ Eε| ≤ ε : E[〈λ∗, v〉] = 0 ∀v ∈ Lp̃
′
(Ω;V ) : v = 0 a.s.-a.e. on Ω×D \ Eε, (38i)

∀ε > 0,∃Eε ⊂ I∗ with |I∗ \ Eε| ≤ ε : E[π∗〈λ∗, v〉] = 0 ∀v ∈ Lq(Ω;V ) : v = 0 a.s.-a.e. on Ω×D \ Eε. (38i’)

5 Numerical example

In this section, we take a specific example for which lack of strict complementarity holds; this gives rise to a genuinely
nonsmooth solution map S for the underlying VI. As a proof of concept, we use a stochastic approximation algorithm
(rather than developing an algorithm tailored to this specific problem class). rather than a specific algorithmic
development tailored to this

5.1 Problem formulation

For the numerical experiments, we focus on a particular realisation of problem (1) subject to the random VI (2),
namely a modification of the example in Section 1.3. We use D = (0, 1) × (0, 1), Uad = L2(D), the tracking-type
function and cost of control term with ν = 1 in (6). For the risk measure, an approximation of the conditional
value-at-risk measure (7) is used as in [32]. In place of the nonsmooth term v(s) = (1− β)−1 max{s, 0} appearing
in the definition of the conditional value-at-risk, the following smooth approximation is used:

vε(s) =


− ε2 , if s ≤ −ε
1
2εs

2 + s, if s ∈
(
−ε, εβ

1−β

)
1

1−β

(
s− εβ2

2(1−β)

)
, if s ≥ εβ

1−β

with ε = 0.05. Note that the smoothed CVaR is still a convex risk measure. The constraint set is given by
K = {v ∈ V : v ≥ 0}; i.e., ψ ≡ 0. Note that in the numerical section, the state should be greater than or equal to
the obstacle. To fit the framework presented in the previous sections, the problem can be transformed using the
substitution ỹ = −y..

We construct a modification of Example 5.1 from [25], an example for which lack of strict complementarity
holds (i.e., the measure of the set {y∗ = 0} ∩ {ζ∗ = 0} is positive). We use A ≡ −∆, B ≡ Id, and the deterministic
functions

û(x) = ŷ(x) =

{
160(x3

1 − x2
1 + 0.25x1)(x3

2 − x2
2 + 0.25x2) in (0, 0.5)2,

0 else,

ζ̂(x) = max(0,−2|x1 − 0.8| − 2|x1x2 − 0.3|+ 0.5),

constructed in [25]. Random noise is added to the right-hand side in the form of the (truncated) random field
b : D × Ω → R, which is defined by a Karhunen–Loève expansion; this is described in more detail below. Each
random field depends on finite dimensional vectors ξ : Ω → Ξ ⊂ Rm. With these functions, we define the random
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field f and the target yd by

f(·, ω) := −∆ŷ − ŷ − ζ̂ − b(·, ω),

yd := ŷ + ζ̂ −∆ŷ.

For simulations, problem (1) is replaced by the penalised problem (19); i.e., the inequality constraint is penalised
as in (15) using the smoothed max function defined in (14) with τ 7→ τ1.1. We replace (19) by its sample average
approximation (SAA) with the finite set Ξ = {ξ1, . . . , ξn} ⊂ Rm of randomly drawn vectors. To simplify notation,
a sample vector will be denoted by its inverse, i.e., ωi := ξ−1

i (ω). In summary, the following SAA problems are
solved with a decreasing sequence of penalisation parameters {τj}:

min
(z,s)∈L2(D)×R

{
s+

1

n

n∑
i=1

vε

(
1

2
‖y(·, ωi)− yd‖2L2(D) − s

)
+

1

2
‖z‖2L2(D)

}

s.t. −∆y(·, ω`) +
1

τ
mτ (y(·, ω`)) = f(·, ω`) + z(·), ` = 1, . . . , n.

(Pτ )

Due to the special structure of CVaR, the control variable is extended by one dimension with u := (z, s) and
Uad := L2(D)× R.

Choices for random fields. Now we specify our choices for the random field b. We observe two examples: one
such that b has a pointwise mean zero (in D), and the other where b is modelled as a lognormal random field. Both
are modifications of examples of random fields on (−1/2, 1/2)2 from [37]. These are translated to D and are defined
in such a way so that noise is added to only a subset of the biactive set. Examples of realisations of these random
fields are displayed in Figure 1.

Example 5.1 (Mean-zero noise). For the first example, we choose

b(x, ω) =

{∑20
i=1

√
λiφi(x)ξi(ω) in (0, 1/2)× (0, 1),

0 elsewhere,

where ξi ∼ U(−0.2, 0.2) for i = 1, . . . , 20. The eigenfunctions and eigenvalues are given for j, k ≥ 1 by φ̃j,k(x) :=

2 cos(jπx2) cos(kπx1) and λ̃k,j := 1
4 exp(−π4 (j2 + k2)), where we reorder terms so that the eigenvalues appear in

descending order (i.e., φ1 = φ̃1,1 and λ1 = λ̃1,1).

Example 5.2 (Lognormal noise). In this example, noise is added to a subset of the biactive set in the form of
lognormal field with truncated Gaussian noise by

b(x, ω) =

{
e−4+

∑100
i=1

√
λiφi(x)ξi(ω) in (0, 1/2)× (0, 1/2),

0 elsewhere,

where ξi distributed according to the truncated normal distribution N (0, 3,−100, 100) with mean 0 and standard
deviation 3. The eigenfunctions φj(x) = φi,1(x1)φk,2(x2) and eigenvalues λj = λi,1λk,2 are given by the following
functions (relabeled after sorting by decreasing eigenvalues):

φi,m(xm) =

{√
1/2 + sin(wi)/(2wi)

−1
cos(wixm) for i odd,√

1/2− sin(wi)/(2wi)
−1

sin(wixm) for i even,

λi,m =
2

w2
i + 1

, wi =

{
ŵdi/2e for i odd,

w̃i/2 for i even,

where ŵj is the jth positive root of 1− w tan(w/2), and w̃j is the jth positive root of tan(w/2) + w.

5.2 Path-following stochastic approximation

In numerical experiments, we solve a sequence of the SAA-approximated proxy problems (Pτ ) and iteratively
decrease the penalisation term τ in an outer loop. The proxy problems are solved using the stochastic variance
reduced gradient (SVRG) method from [28]. Let

J(u, ω) := s+ vε

(
1

2
‖y(·, ω)− yd‖2L2(D) − s

)
+

1

2
‖z‖2L2(D)
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Figure 1: Example realisations of random field zero-mean b (left) and lognormal random fields b (middle, right).

be the parametrised objective function corresponding to the problem (Pτ ). For the algorithm, we rely on a stochastic
gradient G : L2(D) × Ω → L2(D), i.e., the function satisfying E[G(u, ·)] = ∇E[J(u, ·)]. The stochastic gradient is
defined by

G(u, ω) =

(
p(·, ω) + z

1− v′ε( 1
2 ‖y(·, ω)− yd‖2L2(D) − s)

)
,

where p(·, ω) solves (27a) and y(·, ω) solves (20). The full gradient for the SAA approximation is denoted by

g(u) =
1

n

n∑
i=1

G(u, ωi).

For the termination of the middle loop, we use the residual

r̂(u) :=

∥∥∥∥∥ 1

n

n∑
i=1

p(·, ωi) + z

∥∥∥∥∥
L2(D)

+

∣∣∣∣∣∣1− v′ε
1

2

∥∥∥∥∥ 1

n

n∑
i=1

y(·, ωi)− yd

∥∥∥∥∥
2

L2(D)

− s

∣∣∣∣∣∣ .

Algorithm 1 Path-following SVRG

1: Initialisation: Choose ũ1, penalty smoothing parameter τ1, update frequency r, step-size sequence {tk`},
tolerance tol, smoothing multiplier γ, k = 1

2: for j = 1, 2, . . . do
3: while r̂(u) > tol do
4: u1 := ũk
5: ĝ := g(u1)
6: Randomly sample nk from {1, . . . , r}
7: for ` = 1, 2, . . . , nk do
8: Randomly sample i` from {1, . . . , n}
9: Set u`+1 := u` − tk`(G(u`, ωi`)−G(u1, ωi`) + ĝ)

10: end for
11: k := k + 1
12: ũk := unk+1

13: end while
14: τj+1 := γτj
15: end for

In the simulations, the random indices from lines 7 and 9 in Algorithm 1 are generated according to the uniform
distribution, i.e., nk ∼ U({1, . . . , r}) and i` ∼ U({1, . . . , n}), although other choices are possible. While the
convergence of Algorithm 1 has yet to be proven in the function space setting, the convergence of the stochastic
gradient method (without variance reduction) has been established; see [13, 14] for convergence results when the
method is applied to nonconvex PDE-constrained optimisation problems.

Numerical details. All simulations were done using Python along with the finite element environment FEniCS
(2018.1.0) [2]. For the generation of random numbers, we use numpy.random.seed(4). This seed is used to generate
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random numbers in the following order: first, for the ik, a random vector of length 5,000 is generated (according to
the discrete uniform distribution over {1, . . . , r} with update frequency r = 1000). Then, 10,000 vectors of length
m (m = 20 for the zero-mean example and m = 100 for the lognormal example) are produced. Finally, for each
k, a random vector of length ik is generated (according to the discrete uniform distribution over {1, . . . , n}.) Full
gradient computations are done with the help of the multiprocessing module. All functions are discretised using
P2 Lagrange finite elements with h = 0.035. The state equation (20) is solved with relative tolerance 10−8 using a
Newton solver. The adjoint equation (27a) is solved with a relative tolerance 10−8 using the Krylov solver GMRES
with the ILU preconditioner.

Termination conditions are informed by [25]. The tolerance in the middle loop is chosen to be tol = 5 ·10−4 ·h2.
The smoothing multiplier in the outer loop is chosen to be γ = 0.1. The step-size from the original SVRG method
[28] is a constant that depends on the Lipschitz constant of the gradient and strong convexity, which are clearly
not available. Consequently, we use the step-size rule

tk` =

√
θ

k`+ ν
, θ =

1

2ν
+ 1, ν =

2θ

2ν − 1
− 1

inspired by a similar rule developed for convex problems in [14].
For starting values, we choose u1 ≡ 1 and s1 = 1. We remark that a proper choice of s1 appears to greatly

impact the performance of the method. This value was chosen to be in the neighborhood of the first sk such that
second component of the gradient satisfies |1− v′ε( 1

2 ‖E[y]− yd‖2L2(D) − s)]| < 1.

In Table 1, numerical values are displayed showing the final objective value obtained for τ = 10−6 with the afore-
mentioned error tolerance. It seems that the tracking-type objective for the state potentially levels out information
due to an averaging effect by integration, and it does not distinguish between positive and negative deviations from
the target state. This may render CVaRβ less effective as a risk measure. The risk-averse examples are significantly
more expensive than their risk-neutral counterparts and the lognormal case, which exhibits higher variance than
the mean-zero case and requires more PDE solves for the given risk level β. The control uτ and averaged solutions

Mean-zero, β = 0 Mean-zero, β = 0.95 Lognormal, β = 0 Lognormal, β = 0.95

j̄∗τ 1.3952056 1.3954905 1.3965497 1.3969087

# Full gradient computations 14 37 16 48

# PDE solves 291,808 758,108 342,104 1,063,756

Table 1: Final objective function value j̄∗τ achieved for τ = 10−6 and computational cost

ȳ∗τ =
1

n

n∑
i=1

y(·, ωi), ζ̄∗τ =
1

n

n∑
i=1

ζ(·, ωi)

are shown for different levels of CVaRβ in Figures 2 to 5 for τ = 10−6. One sees here that the lack of strict
complementarity persists in the averaged solutions. In the case of mean-zero noise, the solutions resemble the
deterministic solution as expected. The risk-averse case with β = 0.95 shows a slight difference in the minimal and
maximal values of the solutions and states. For the lognormal case, where the variance of the random field is also
greater, we see greater differences in function values in Figures 4 to 5. The additional noise is above all apparent
in the multiplier ζ̄τ .

6 Conclusion

In this paper, we focused on VIs of obstacle type in an L2(D) setting. We could instead have worked in an abstract
Gelfand triple setting (V,H, V ∗) and with a more general assumption on the constraint set for the VI (2) such as

K(ω) ⊂ V is a non-empty, closed and convex subset.

The maps mτ would need to be modified for this abstract setting, see [3, §2.3]. Results up to and including
the existence of optimal controls should hold with the same assumptions on the various operators (with obvious
modifications where necessary) but the derivation of stationarity conditions would require more thought (see the
comments after Theorem 5.5 of [3]).
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Figure 2: Mean-zero noise: Control u∗τ (left), state ȳ∗τ (middle), multiplier ζ̄∗τ (right) for β = 0.0.

Figure 3: Mean-zero noise: Control u∗τ (left), state ȳ∗τ (middle), multiplier ζ̄∗τ (right) for β = 0.95.

Figure 4: Lognormal noise: Control u∗τ (left), state ȳ∗τ (middle), multiplier ζ̄∗τ (right) for β = 0.0.

Figure 5: Lognormal noise: Control u∗τ (left), state ȳ∗τ (middle), multiplier ζ̄∗τ (right) for β = 0.95.
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One could also attempt to tackle the nonsmooth problem (1) directly (making use of the VI directional differen-
tiability results of [38]) without the penalisation approach we took here, but then it is rather unclear how to unfold
the primal conditions and obtain a dual stationarity system.

While the proposed path-following SVRG method was able to compute solutions up to a high accuracy, the
method is not yet optimised and theoretical justification on the appropriate function spaces is missing. In particular,
development of step-size rules coupled with a mesh refinement strategy in the style of [14] will be the topic of future
research.

A Differentiability of superposition operators

Combining Theorem 7 and Remark 4 of [16]9, we have the following lemma.

Lemma A.1. Let α be a number satisfying 1 ≤ p < α < ∞ and let X and Y be (real) Banach spaces. Suppose
H : X × Ω → Y is a Carathéodory function that is Fréchet differentiable with respect to x ∈ X and assume that
Hx : X ×Ω→ L(X,Y ) is a Carathéodory function. Furthermore, assume there exists C1 ∈ Lp(Ω) and C2 ≥ 0 such
that

‖H(x, ω)‖Y ≤ C1(ω) + C2 ‖x‖α/pX a.s. ∀x ∈ X

and assume that there exists C̃1 ∈ Lr̃(Ω) where r̃ = pα/(α− p) and C̃2 ≥ 0 such that

‖Hx(x, ω)‖L(X,Y ) ≤ C̃1(ω) + C̃2 ‖x‖α/r̃X a.s. ∀x ∈ X.

Then the Nemytskii operator H : Lα(Ω;X) → Lp(Ω;Y ) is continuously Fréchet differentiable with the derivative
H′ : Lα(Ω;X)→ L(Lα(Ω;X), Lp(Ω;Y )), where

(H′(x)h)(ω) = Hx(x(ω), ω)h(ω) for ω ∈ Ω, x, h ∈ Lα(Ω;X).

In addition, Ĥ′ : Lα(Ω;X)→ Lpα/(α−p)(Ω;L(X,Y )) is continuous where

Ĥ′(x)(ω) := Hx(x(ω), ω).

Proof. The conditions on H imply that H maps Lα(Ω;X) to Lp(Ω;Y ) due to [16, Theorem 1]. Under the conditions
on Hx, we find that the Nemytskii operator Ĥ′ : Lα(Ω;X)→ Ls(Ω;L(X,Y )) is a continuous map [16, Theorems 4
and 5] (see also [16, Remark 4]) where s = pα/(α− p) in the first case. Then we simply apply [16, Theorem 7].

Note that the Fréchet differentiability in combination with α < p ≤ ∞ would imply H is constant, whereas with
p = α <∞ implies affineness and thus these cases are excluded from the above.

B Other results

Lemma B.1. Let p < q. If
either p ≥ 2 or if 2 ≤ q ≤ 2p,

we have p̃ ≥ 2.

Proof. If p ≥ 2, this follows immediately from (23) and in fact in this case we get strict inequality.
Consider

pq

q − p
− 2 =

pq

q − p
− 2q − 2p

q − p

=
pq − 2q + 2p

q − p

≥ 4p− 2q

q − p

and this is non-negative if q ≤ 2p.

9Note that p and q are switched in that paper to what we have here.
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Lemma B.2. Let p < q. If q ≤ 2p, then p̃ ≥ q.

Proof. Consider

pq

q − p
− q =

pq

q − p
− q2 − pq

q − p

=
2pq − q2

q − p

=
q(2p− q)
q − p

and this is non-negative if q ≤ 2p.

Lemma B.3. If p̃ ≥ 2, we have p̃ ≥ p̃′.

Proof. We have

p̃− p̃′ = p̃− p̃

p̃− 1

=
p̃2 − 2p̃

p̃− 1

=
p̃(p̃− 2)

p̃− 1

which is non-negative when p̃ ≥ 2.
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[45] A. Schiela and D. Wachsmuth. Convergence analysis of smoothing methods for optimal control of stationary
variational inequalities with control constraints. ESAIM. Mathematical Modelling and Numerical Analysis,
47(3):771–787, 2013.

[46] U. V. Shanbhag. Stochastic variational inequality problems: Applications, analysis, and algorithms. In IN-
FORMS TutORials in Operations Research, pages 71–107. 2013.

[47] A. Shapiro. Stochastic programming with equilibrium constraints. Journal of Optimization Theory and Appli-
cations, 128(1):221–243, 2006.
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