
Priority Programme 1962

Using Second-Order Information in Gradient
Sampling Methods for Nonsmooth Optimization

Bennet Gebken

Non-smooth and Complementarity-based
Distributed Parameter Systems:
Simulation and Hierarchical Optimization

Preprint Number SPP1962-196

received on October 10, 2022

Edited by
SPP1962 at Weierstrass Institute for Applied Analysis and Stochastics (WIAS)

Leibniz Institute in the Forschungsverbund Berlin e.V.
Mohrenstraße 39, 10117 Berlin, Germany

E-Mail: spp1962@wias-berlin.de

World Wide Web: http://spp1962.wias-berlin.de/

http://spp1962.wias-berlin.de/

Using second-order information in gradient
sampling methods for nonsmooth optimization

Bennet Gebken

October 10, 2022

Abstract

In this article, we show how second-order derivative information can be incorporated into
gradient sampling methods for nonsmooth optimization. The second-order information we con-
sider is essentially the set of coefficients of all second-order Taylor expansions of the objective
in a closed ball around a given point. Based on this concept, we define a model of the objective
as the maximum of these Taylor expansions. Iteratively minimizing this model (constrained to
the closed ball) results in a simple descent method, for which we prove convergence to mini-
mal points in case the objective is convex. To obtain an implementable method, we construct
an approximation scheme for the second-order information based on sampling objective values,
gradients and Hessian matrices at finitely many points. Using a set of test problems, we com-
pare the resulting method to five other available solvers. Considering the number of function
evaluations, the results suggest that the method we propose is superior to the standard gradient
sampling method, and competitive compared to other methods.

1 Introduction

Nonsmooth optimization is concerned with optimizing functions that are not necessarily differen-
tiable. Such objective functions arise in many different areas like mechanics [31], statistics [35]
and machine learning [15]. Solution methods from smooth optimization generally fail to work in
this case, since the local behavior of the objective can not be described by a (single) gradient. To
overcome this issue, the gradient can be replaced by the so-called (Goldstein) ε-subdifferential [13],
which essentially contains all (existing) gradients of the objective (and their limits) in an ε-ball
around a given point. A descent direction can then be obtained by computing a direction that has
a negative scalar product with all elements of the ε-subdifferential. This is the idea of the gradient
sampling method [3], where the ε-subdifferential is approximated by randomly sampling gradients in
the ε-ball. As a generalization of the standard gradient descent method from smooth optimization,
only a linear convergence rate can be expected [20]. Since for the smooth case, there are higher-
order methods like Newton’s method involving second-order derivative information, the question
arises whether these methods can be generalized to the nonsmooth case in a similar fashion.

The first attempt to answer this question was already made in [30], where a model for the ob-
jective based on the maximum of second-order Taylor expansions was used. In [33, 27, 16], similar

1

models were employed in bundle methods and their superlinear convergence was analyzed. In all
of these methods, the second-order information is based on the Hessian of the objective function
(in points where it exists). As an alternative approach, in [37, 5], the second-order information was
introduced via second-order directional derivatives, and resulting solution methods were discussed
from a theoretical point of view. Without focusing on optimization, an overview of second-order in-
formation for nonsmooth (convex) functions can be found in [34, 22]. An approach for constructing
higher-order methods that avoids the need for explicit second-order information is the direct gen-
eralization of Quasi-Newton methods to nonsmooth objective functions. This was done in [7, 8], by
combining BFGS-SQP methods with gradient sampling, and in [26, 6], by directly applying smooth
BFGS methods to nonsmooth problems and analyzing their behavior.

In this article, we will consider a second-order model of a nonsmooth, nonconvex objective
function f : Rn → R and embed it into a gradient sampling framework. To motivate our approach,
note that the model of f used for computing descent directions in the classical gradient sampling
method can be denoted as

z 7→ max
ξ∈∂εf(x)

f(x) + ξ>(z − x) +
1

2
‖z − x‖22,

where ∂εf(x) is the ε-subdifferential of f in x ∈ Rn (and d := z − x is the resulting descent
direction). Formally, the expression over which the maximum is taken in this model is similar to a
second-order Taylor expansion of f , if we interpret the elements of the ε-subdifferential as gradients
and the identity matrix as the Hessian of f in x. Roughly speaking, the goal of this article is to
investigate what happens when we replace this expression by a “proper” second-order model of the
form

z 7→ max
y∈Bε(x)

f(y) +∇f(y)>(z − y) +
1

2
(z − y)>∇2f(y)(z − y), (1)

where Bε(x) := {y ∈ Rn : ‖x − y‖2 ≤ ε} is the closed ε-ball around x, ∇f is the gradient and
∇2f is the Hessian matrix of f . Here, the maximum is taken over the actual second-order Taylor
expansion in all points y ∈ Bε(x). Clearly, in the above form, this model is not well-defined due
to nonsmoothness of f . To overcome this issue, we will introduce the second-order ε-jet of f in x,
which is a set that contains the coefficients of all (existing) second-order Taylor expansions in Bε(x).
Since the model (1) may not be bounded below if f is nonconvex, we will employ a strategy similar
to a trust-region approach to be able to use it for minimization. (This also entails that we do not
have to compute a step length during our algorithm.) Furthermore, we will construct a practical
approximation scheme for the ε-jet that approximates it using only finitely many elements (similar
to [29, 12] for the ε-subdifferential). While we will not theoretically analyze the rate of convergence
of the resulting method, numerical experiments will suggest that it is faster than first-order methods
like standard gradient sampling.

Although the model (1) is similar to the ones used in [30, 33, 27, 16], our approach has several
differences: Firstly, in all of these works, the quadratic term in (1) was modified to be independent
of the maximum by taking a weighted sum of the Hessian matrices. This makes minimizing the
model significantly easier, but also impacts its approximation quality. Secondly, except for [16], all
these works only considered the case where the quadratic term is positive definite, which makes

2

it impossible to properly capture nonconvexity of f . Thirdly, we use the model in a gradient
sampling instead of a bundle framework, resulting in an arguably simpler method. Finally, we
introduce a theoretical foundation of our model via the second-order ε-jet, which allows us to
theoretically analyze the convergence of our method independently of any finite approximation of
subdifferentials (and any previous iterates).

The rest of this article is organized as follows: In Section 2, we will introduce the basic concepts
from nonsmooth optimization that we build on in this article. Section 3 will introduce the second-
order ε-jet and the resulting model of the objective function (i.e., the well-defined version of (1)).
Subsequently, in Section 4, we will first construct a theoretical solution method based on this model
and show convergence to minimal points of f for the case where f is convex (and briefly discuss
convergence in the nonconvex case). Afterwards, we will construct a deterministic approximation
scheme for the ε-jet that allows us to avoid random sampling, turning the theoretical method into a
practical method. In Section 5, we will compare a MATLAB implementation of our method to five
other common methods for nonsmooth optimization in terms of performance. Finally, in Section
6, we will give a conclusion and discuss future work in this area.

2 Basic concepts

In this section, we will briefly introduce the basics of nonsmooth analysis that we build on through-
out this article. For a more detailed introduction, we refer to [4, 1].

Let f : Rn → R be a locally Lipschitz continuous function and let Ω be the set of points in
which f is not differentiable. Although f may be nonsmooth, we can obtain first-order derivative
information of f by considering so-called subdifferentials. To this end, let conv(·) be the convex
hull of a set.

Definition 2.1. Let x ∈ Rn. The set

∂f(x) := conv

({
ξ ∈ Rn : ∃(xj)j ∈ Rn \ Ω with lim

j→∞
xj = x and

lim
j→∞

∇f(xj) = ξ

})
is the Clarke subdifferential of f in x. An element ξ ∈ ∂f(x) is a Clarke subgradient.

In [4] it was shown that the Clarke subdifferential is nonempty, compact and upper semicon-
tinuous (as a set-valued map x 7→ ∂f(x)). Furthermore, the set of nondifferentiable points Ω in
Definition 2.1 can be replaced by any superset of Ω with Lebesgue measure 0 without affecting
∂f(x). If 0 ∈ ∂f(x) then x is called a critical point of f , which is a necessary condition for local
optimality.

Although it is possible to derive algorithms for minimizing f based on the Clarke subdifferential,
its usefulness in practice is hindered by its instability: Since ∂f(x) reduces to {∇f(x)} whenever
f is continuously differentiable in x, ∂f(x) can only be used to obtain nonsmooth information in
points where f is not continuously differentiable, which is typically a null set (cf. Rademacher’s
theorem [11]). On top of that, computing elements of ∂f(x) in practice is impossible in the general
case, since its definition is based on limits.

3

A more “stable” subdifferential was introduced in [13]. For a set A ⊆ Rn let A denote the closure
of A in Rn.

Definition 2.2. Let x ∈ Rn and ε ≥ 0. The set

∂εf(x) := conv

(⋂
δ>ε

{∇f(y) : y ∈ Bδ(x) \ Ω}

)

is the (Goldstein) ε-subdifferential of f in x.

In [13] it was shown that ∂εf(x) is compact and that ∂0f(x) = ∂f(x). More generally, the
ε-subdifferential can be expressed in terms of the Clarke subdifferential via the equation

∂εf(x) = conv(∂f(Bε(x))) (2)

(see also [25], Eq. (2.1)). Roughly speaking, the ε-subdifferential is more stable than the Clarke
subdifferential in the sense that for the ε-subdifferential ∂εf(x), it is sufficient for x to have a
distance of at most ε from Ω for ∂εf(x) to capture the nonsmoothness of f . Furthermore, by
definition, elements of ∂εf(x) can be computed by simply evaluating (or “sampling”) the classical
gradient of f in different points in Bε(x). The drawback is that the nonsmooth information from
the ε-subdifferential is more “blurry” than the one from the Clarke subdifferential, which makes it
less accurate when used in optimality conditions (see, e.g., [1], Chapter 4).

3 Second-order information and the corresponding model for nonsmooth, nonconvex
functions

In this section, we will introduce the second-order information and the corresponding model that
our algorithm is based on. We will begin by discussing the class of functions to which our approach
is applicable.

Let f : Rn → R and let D2 ⊆ Rn be the set of points in which f is twice differentiable. Since our
approach is based on evaluating the Hessian matrix of f in different points to obtain second-order
information, we restrict ourselves to cases where Rn \D2 is a null set (implying that D2 is dense
in Rn). Furthermore, since we also require first-order information of f , we assume that f is locally
Lipschitz continuous, such that we have access to the well-known concepts and results of Section
2. Although the assumptions so far already make it reasonable to sample the Hessian matrix, we
need an additional assumption to obtain “boundedness”. To this end, we assume that

∀x ∈ Rn∃U ⊆ Rn open, x ∈ U : {∇2f(y) : y ∈ U ∩D2} is bounded. (3)

(In case of first-order information, such an assumption is not required since the boundedness of the
gradient follows from the local Lipschitz continuity of f .)

The previous assumptions allow us to properly define what we mean by “second-order informa-
tion” of f . The idea is to replace the gradient ∇f(y) in Definition 2.2 by the coefficients of all
second-order Taylor expansions of f , i.e., by the 4-tuple (y, f(y),∇f(y),∇2f(y)), and to omit the
convex hull.

4

Definition 3.1. Let x ∈ Rn and ε ≥ 0. We refer to the set

J 2
ε f(x) :=

⋂
δ>ε

{(y, f(y),∇f(y),∇2f(y)) : y ∈ Bδ(x) ∩D2}

⊆ Rn × R× Rn × Rn×n

as the second-order ε-jet of f at x.1

In the following, we will analyze some of the properties of J 2
ε f(x). First of all, like the Clarke

and the ε-subdifferential, we will show that it is nonempty and compact.

Lemma 3.2. The set J 2
ε f(x) is nonempty and compact for all x ∈ Rn and ε ≥ 0.

Proof. We will first show that the set

T (δ) := {(y, f(y),∇f(y),∇2f(y)) : y ∈ Bδ(x) ∩D2}

is bounded for all δ > ε. Since we consider boundedness in a finite-dimensional product space,
it is equivalent to boundedness of the projections on the individual factors. Clearly, Bδ(x) ∩ D2

and f(Bδ(x) ∩D2) are bounded (due to continuity of f). Furthermore, {∇f(y) : y ∈ Bδ(x) ∩D2}
is bounded as a subset of the compact set ∂δf(x). To see that {∇2f(y) : y ∈ Bδ(x) ∩ D2} is
bounded as well, let (Ui)i∈I be an open cover of Bδ(x) induced by (3) with corresponding upper
bounds (Ki)i∈I . Due to compactness of Bδ(x) there is a finite subcover (Ui)i∈I′⊆I . In particular,
maxi∈I′ Ki is a bound for {∇2f(y) : y ∈ Bδ(x) ∩D2}.
Thus, T (δ) is bounded and T (δ) is compact. In particular, T (δ) is nonempty due to density of
D2. This means that (T (δ))δ>ε is a nested family of nonempty, compact sets and by Cantor’s
intersection theorem (see, e.g., Thm. 1 in [21]), the intersection J 2

ε f(x) =
⋂
δ>ε T (δ) is nonempty

and compact.

Furthermore, the second-order ε-jet is “compatible” with the ε-subdifferential in the following
sense. Let pri, i ∈ {1, . . . , 4}, be the projections of Rn × R× Rn × Rn×n onto its factors.

Lemma 3.3. Let x ∈ Rn and ε ≥ 0. Then

{(y, ϕ, ξ) : ∃H ∈ Rn×n with (y, ϕ, ξ,H) ∈ J 2
ε f(x)}

= {(y, f(y), ξ) : y ∈ Bε(x), ξ ∈ ∂f(y)}.

In particular, it holds

(i) pr1(J 2
ε f(x)) = Bε(x),

(ii) pr2(J 2
ε f(x)) = f(Bε(x)),

(iii) conv(pr3(J 2
ε f(x))) = ∂εf(x).

1The term “jet” is motivated by the classical notion of jets for smooth functions ([14], §2) and the related concept
of Fréchet second order subjets in [22].

5

Proof. “⊆”: Let (y, ϕ, ξ,H) ∈ J 2
ε f(x) and let T (δ) be defined as in the proof of Lemma 3.2. Then

we can construct sequences (J i)i = (yi, ϕi, ξi,Hi)i and (δi)i with δi > ε, limi→∞ δi = ε, J i ∈ T (δi)
and

lim
i→∞

J i = (y, ϕ, ξ,H).

Continuity of f shows that ϕ = f(y). Furthermore, since D2 ⊆ Rn \ Ω, ξ ∈ ∂f(y) follows from
Definition 2.1.
“⊇”: Let y ∈ Bε(x) and ξ ∈ ∂f(y). Then by definition of the Clarke subdifferential and since
Rn \ D2 is assumed to be a null set, there is a sequence (yi)i ∈ D2 with limi→∞ y

i = y and
limi→∞∇f(yi) = ξ. Let J i := (yi, f(yi),∇f(yi),∇2f(yi)) for i ∈ N. Then there is some ε0 > ε
such that Ji ∈ J 2

ε0f(x) for all i ∈ N. Since J 2
ε0f(x) is compact by Lemma 3.2, there is a subsequence

(ij)j and a matrix H ∈ Rn×n such that limj→∞ J
ij = (y, f(y), ξ,H) =: J̄ . By construction it holds

J̄ ∈ T (δ) for all δ > ε, so J̄ ∈ J 2
ε f(x).

Finally, for (i) and (ii) note that the Clarke subdifferential is always nonempty and for (iii) recall
(2).

Having established some basic properties of the second-order ε-jet, we will now use it to construct
a model function for f . To this end, let

qH(v) := v>Hv

be the quadratic form induced by a symmetric matrix H ∈ Rn×n. The idea is to assign to each
element of J 2

ε f(x) a quadratic polynomial via

(y, ϕ, ξ,H) 7→ ϕ+ ξ>(z − y) +
1

2
qH(z − y) (4)

and to then take the maximum of these polynomials over all elements of J 2
ε f(x). More formally,

we define the model

Tx,ε(z) := max
(y,f(y),ξ,H)∈J 2

ε f(x)
f(y) + ξ>(z − y) +

1

2
qH(z − y). (5)

Due to continuity of (4) (for fixed z ∈ Rn) and compactness of J 2
ε f(x) (cf. Lemma 3.2), Tx,ε

is well-defined. Furthermore, it is locally Lipschitz continuous as the maximum of continuously
differentiable functions. The following lemma shows that Tx,ε is an overestimate of f on Bε(x).

Lemma 3.4. Let x ∈ Rn and ε ≥ 0. Then f(z) ≤ Tx,ε(z) for all z ∈ Bε(x).

Proof. Let z ∈ Bε(x). By Lemma 3.3 there are ξz ∈ Rn and Hz ∈ Rn×n such that (z, f(z), ξz,Hz) ∈
J 2
ε f(x). By definition of Tx,ε(z), this implies

Tx,ε(z) ≥ f(z) + ξ>z (z − z) +
1

2
qHz(z − z) = f(z).

6

In the following, we will compare the model Tx,ε to two other classical model functions used in
nonsmooth, nonconvex optimization:

1. In the gradient sampling method [3], a direction d ∈ Rn is computed via

d := arg min
ξ∈∂εf(x)

‖ξ‖22,

which corresponds (via dualization [2], for z = x+ d) to the minimization of the model

z 7→ max
ξ∈∂εf(x)

f(x) + ξ>(z − x) +
1

2
‖z − x‖22. (6)

In words, (6) takes the maximum of all first-order Taylor expansions of f in x when we
consider the elements of ∂εf(x) to be gradients of f in x, and the quadratic term ensures
boundedness of the solution. If d 6= 0, then d is a descent direction for f in x in the sense that
ξ>d < 0 for all ξ ∈ ∂εf(x), and d = 0 is equivalent to Bε(x) containing a critical point of f .
While the latter property is a practical way to check if the point x is close to a minimum of f ,
it also shows a drawback of the model: Since d = 0 as soon as the distance of x to a minimum
is less than ε, the model is not able to describe the behavior of f around a minimum in a way
that is useful for minimization.

2. In the proximal bundle method ([24], Chapter 7 or [1], Chapter 12), a direction d ∈ Rn is
computed via minimization of the model

z 7→ max
y∈Bε(x),
ξ∈∂f(y)

f(x) + ξ>(z − x)−max({|α(y)|, γ‖x− y‖22}) +
1

2
u‖z − x‖22,

α(y) := f(x)− f(y)− ξ>(x− y),

(7)

for z = x+ d and γ > 0, u > 0. (In the actual method, the maximum in (7) is taken over all
previous iterates yi ∈ Rn (yielding the so-called bundle) rather than all y ∈ Bε(x), but the
formulation we stated here allows for a better comparison.) If f is convex then α(y) ≥ 0 and
for γ = 0, u = 1, (7) reduces to

z 7→ max
y∈Bε(x),ξ∈∂f(y)

f(y) + ξ>(z − y) +
1

2
‖z − x‖22. (8)

This model is similar to (6) except that here, for the Taylor expansion, an element ξ ∈ ∂εf(x)
is considered to be a gradient of f in y ∈ Bε(x) with ξ ∈ ∂f(y) (cf. (2)) rather than simply
a gradient in x. As a result, (7) can still be used for minimizing f even when the distance of
x to a minimum is less than ε.

The model Tx,ε considered in this article is similar to (8), except that we take the second-order
rather than the first-order Taylor expansion of f in all y ∈ Bε(x) and omit the term 1

2‖z − x‖
2
2. In

particular, while both (6) and (7) are convex models even when f is nonconvex, Tx,ε is potentially
nonconvex. The impact of this on the approximation of f is shown in the following example.

7

Example 3.5. Let

f : R→ R, x 7→ max({
√
|x|,−4|x|2.5 + x+ 1}).

It is easy to see that f satisfies the assumptions from the beginning of this section. (Note that f
does not admit the value of

√
|x| near 0.) Figure 1 shows the corresponding models of the gradient

sampling method (6), the proximal bundle method (7) (with γ = u = 1) and the model Tx,ε (5)
for x = 0.1, ε = 0.75 and an approximation of Bε(x) using 19 equidistant sample points. For

(a) Gradient sampling (6) (b) Proximal bundle (7) (c) Tx,ε (5)

Figure 1: Different models for f in Example 3.5. The circles show the positions of the sample
points, the blue lines show the boundary of Bε(x), the gray lines show the the individual
functions over which the maximum is taken in the respective model and the red squares
show the minimal points of the models (in Bε(x))

the gradient sampling method in (a), we see that no descent step can be made based on the model
(i.e., d = 0). As discussed above, this is caused by Bε(x) containing a critical point of f (or, more
precisely, the global minimum, a local minimum and a local maximum of f in this case). Further
descent with this method can only be achieved after decreasing ε. In contrast to this, the proximal
bundle method in (b) is still able to decrease the value of f , albeit the predicted decrease from the
model is small considering the minimal value of f in Bε(x). Finally, for the model Tx,ε in (c), we
see that the approximation quality around the minimum of f is relatively high, and the minimum of
Tx,ε (constrained to Bε(x)) is relatively close to the minimum of f . (Nonetheless, the approximation
quality to the right of x is a lot worse, showing that we can not always expect as good of a behavior
of Tx,ε as in this example.)

While the previous example shows the possible advantage of using the nonconvex model Tx,ε for
the minimization of f , it also shows the issue that the model might be unbounded below. In the
following section, we will introduce a strategy for solving this issue.

4 A descent method based on the second-order model

In this section, we will construct a descent method based on minimizing the second-order model
Tx,ε from the previous section. We begin by deriving a theoretical version of this method for

8

which we assume that the whole second-order ε-jet J 2
ε f(x) is available in all x ∈ Rn. We prove

convergence to a minimum of f for the case where f is convex and briefly discuss convergence for
the general nonconvex case. Since the assumption of being able to evaluate the whole set J 2

ε f(x)
is too strong for the theoretical algorithm to have any practical use, we then construct a (heuristic)
approximation scheme for J 2

ε f(x) based on only sampling single points that allows us to turn the
theoretical algorithm into a practical one.

4.1 Theoretical algorithm

Since there are negative-definite matricesH ∈ pr4(J 2
ε f(x)) when f is nonconvex, the model function

Tx,ε may be unbounded below. To solve this issue, we constrain Tx,ε to Bε(x), i.e., we consider the
problem

min
z∈Bε(x)

Tx,ε(z) = min
z∈Bε(x)

max
(y,f(y),ξ,H)∈J 2

ε f(x)
f(y) + ξ>(z − y) +

1

2
qH(z − y). (9)

This problem is well-defined since Tx,ε is continuous. Let θ(x, ε) ∈ R be the optimal value and
z̄(x, ε) ∈ arg minz∈Bε(x) Tx,ε(z) be an arbitrary solution of (9). (For the sake of readability, we will
omit the dependency of θ(x, ε) and z̄(x, ε) on x and ε whenever the context allows it.)

The idea of our method is to generate a descending sequence (xi)i ∈ Rn for f via xi+1 = z̄(xi, εi)
for an initial point x0 ∈ Rn. For (xi)i to be a descending sequence for f , we have to choose εi such
that the model Txi,εi is a “good enough” model for f in Bεi(x

i). To this end, note that Lemma 3.4
immediately yields the following result.

Corollary 4.1. Let x ∈ Rn and ε ≥ 0. Then f(z̄) ≤ θ.

By Corollary 4.1, the difference θ(xi, εi)− f(xi) can be used to estimate the descent when going
from xi to z̄(xi, εi). In particular, θ(xi, εi)− f(xi) ≥ 0 means that descent can not be guaranteed.
In this case, we will decrease εi and solve (9) again. Simply assuring θ(xi, εi) − f(xi) < 0 for the
acceptance of z̄(xi, εi) would be sufficient for (xi)i to be a descending sequence, but it may happen
that the improvement in each iteration becomes too small too fast, such that the sequence never
reaches an actual minimum of f . Thus, we will instead enforce the stronger inequality

θ(xi, εi)− f(xi)

εi
≤ −τi < 0 (10)

for a threshold value τi > 0. In words, this inequality checks whether the predicted descent relative
to the radius εi is steeper than −τi. Since we can not expect this predicted descent to always be
below a fixed threshold when approaching a minimal point, we will decrease τi alongside εi. The
resulting method is summarized in Algorithm 1.

By our considerations above, Algorithm 1 generates a sequence (xi)i with

f(xi) = f(z̄i−1) ≤ θi−1 ≤ f(xi−1)− εi−1τi−1. (11)

(Note that (xi)i is a finite sequence when steps 2 and 3 loop infinitely.) In the following, we will
analyze the convergence behavior of Algorithm 1. We will begin by considering the special case

9

Algorithm 1 Theoretical descent method

Require: Starting point x0 ∈ Rn, initial radius εinit > 0, initial improvement tolerance τinit > 0,
reduction factors κε, κτ ∈ (0, 1).

1: Initialize i = 0, ε = εinit and τ = τinit.
2: Compute z̄i = z̄(xi, ε) and θi = θ(xi, ε) via (9).
3: If (θi − f(xi))/ε > −τ then set ε = κεε, τ = κττ and go to step 2.
4: Set xi+1 = z̄i, εi = ε, τi = τ , i = i+ 1 and go to step 2.

where f is convex. The following lemma shows a relationship between the behavior of the sequence
of fractions on the left-hand side of (10) and minimality for f (for general sequences (xi)i ∈ Rn
and (εi)i ∈ R>0).

Lemma 4.2. Assume that f is convex. Let (xi)i ∈ Rn and (εi)i ∈ R>0 be sequences with
limi→∞ x

i = x̄ ∈ Rn and limi→∞ εi = 0. If

lim sup
i→∞

θ(xi, εi)− f(xi)

εi
≥ 0 (12)

then x̄ is a minimal point of f .

Proof. Assume that x̄ is not a minimal point. Then x̄ is not critical, so there are v ∈ Rn and
ε̄ > 0 with ξ>v < 0 for all ξ ∈ ∂fε̄(x̄) (by Prop. 6.2.4 in [4] and upper semicontinuity of the Clarke
subdifferential). Assume w.l.o.g. that ‖v‖2 = 1 and that (εi)i is small enough such that

xi + εiv ∈ Bεi(xi) ⊆ Bε̄(x̄) ∀i ∈ N. (13)

Due to convexity of f we have

f(y)− f(xi) + ξ>(xi − y) ≤ 0

for all y ∈ Rn and ξ ∈ ∂f(y) (cf. Prop. 2.2.7 in [4]), which (together with Lemma 3.3) implies

θ(xi, εi)− f(xi) ≤ Txi,εi(x
i + εiv)− f(xi)

= max
(y,f(y),ξ,H)∈J 2

εi
f(xi)

f(y)− f(xi) + ξ>(xi + εiv − y) +
1

2
qH(xi + εiv − y)

= max
(y,f(y),ξ,H)∈J 2

εi
f(xi)

f(y)− f(xi) + ξ>(xi − y) + εiξ
>v +

1

2
qH(xi + εiv − y)

≤ max
(y,f(y),ξ,H)∈J 2

εi
f(xi)

εiξ
>v +

1

2
qH(xi + εiv − y).

(14)

Division by εi leads to

θ(xi, εi)− f(xi)

εi
≤ max

(y,f(y),ξ,H)∈J 2
εi
f(xi)

ξ>v +
1

2εi
qH(xi + εiv − y). (15)

10

For the second summand on the right-hand side we have∣∣∣∣ 1

2εi
qH(xi + εiv − y)

∣∣∣∣ =
1

2εi
|qH(xi − y) + 2εi(x

i − y)>Hv + ε2
i qH(v)|

≤ 1

2εi
|qH(xi − y)|+ ‖xi − y‖2‖Hv‖2 +

1

2
εi|qH(v)|

for all (y, f(y), ξ,H) ∈ J 2
εif(xi) ⊆ J 2

ε̄ f(x̄) (cf. (13)). Due to compactness of pr4(J 2
ε̄ f(x̄)) there has

to be some K > 0 such that we can further estimate∣∣∣∣ 1

2εi
qH(xi + εiv − y)

∣∣∣∣ ≤ 1

2εi
K‖xi − y‖22 +K‖xi − y‖2‖v‖2 +

1

2
εiK‖v‖22

≤ 1

2
εiK + εiK‖v‖2 +

1

2
εiK‖v‖22

= εiK

(
1

2
+ ‖v‖2 +

1

2
‖v‖22

)
for all (y, f(y), ξ,H) ∈ J 2

εif(xi), i ∈ N. Thus, the second summand in (15) vanishes for i→∞.
Since Bεi(x

i) ⊆ Bε̄(x̄) we have ∂εif(xi) ⊆ ∂ε̄f(x̄), so with Lemma 3.3(iii) we obtain

max
(y,f(y),ξ,H)∈J 2

εi
f(xi)

ξ>v = max
ξ∈pr3(J 2

εi
f(xi))

ξ>v = max
ξ∈conv(pr3(J 2

εi
f(xi)))

ξ>v

= max
ξ∈∂εif(xi)

ξ>v ≤ max
ξ∈∂ε̄f(x̄)

ξ>v < 0.

Therefore, by (15), there has to be some N ∈ N with

θ(xi, εi)− f(xi)

εi
<

1

2
max

ξ∈∂ε̄f(x̄)
ξ>v < 0 ∀i > N,

which completes the proof.

Application of the previous lemma to the sequences generated by Algorithm 1 shows convergence
for the convex case:

Theorem 4.3. Assume that f is convex with bounded level sets. Let (xi)i be the sequence generated
by Algorithm 1. Then (f(xi))i converges to the minimal value of f . In particular, if f is strictly
convex, then (xi)i converges to the unique minimal point of f .

Proof. Case 1: (xi)i is finite. Let xl be the final element of (xi)i. Then the condition in step 3 of
Algorithm 1 has to hold an infinite number of times in a row, implying that

θ(xl, κjεεl−1)− f(xl)

κjεεl−1

> −κjττl−1 ∀j ∈ N⇒ lim sup
j→∞

θ(xl, κjεεl−1)− f(xl)

κjεεl−1

≥ 0.

Application of Lemma 4.2 to the constant sequence (xl)i and the sequence (κjεεl−1)j from step 3 in
Algorithm 1 shows that xl must be a minimal point of f .

11

Case 2: (xi)i is infinite. Then by (11) and since f must be bounded below, (εi)i and (τi)i must
tend to zero, so the condition in step 3 of Algorithm 1 has to hold infinitely many times (but not
in a row). Thus, there is a subsequence (xij)j with

θ(xij , εij−1)− f(xij)

εij−1
> −τij−1 ∀j ∈ N⇒ lim sup

j→∞

θ(xij , εij−1)− f(xij)

εij−1
≥ 0.

Since the level sets of of f are assumed to be bounded (and since f is continuous), we can choose
the subsequence (xij)j such that it converges to some x̄ ∈ Rn. Application of Lemma 4.2 to the
sequence (xij)j and the corresponding sequence (εij−1)j again shows that x̄ must be a minimal point
of f . Since (f(xi))i is monotonically decreasing by construction, this completes the proof.

After the convex case, we briefly discuss convergence for nonconvex f . The main issue when
trying to generalize Lemma 4.2 and Theorem 4.3 to the nonconvex case is discussed in the following
remark.

Remark 4.4. In the proof of Lemma 4.2, the convexity of f was only used in the inequalities (14)
and (15) to estimate the term

f(y)− f(xi)− ξ>(y − xi)
εi

=
f(y)− f(xi)− ξ>(y − xi)

‖y − xi‖2
‖y − xi‖2

εi

for (y, f(y), ξ,H) ∈ J 2
εif(xi). Since ‖y − xi‖2 ≤ εi, it would suffice to show that

lim
i→∞

f(y)− f(xi)− ξ>(y − xi)
‖y − xi‖2

= 0 for (y, f(y), ξ,H) ∈ J 2
εif(xi) (16)

to be able to essentially generalize Lemma 4.2 to the nonconvex case. The property (16) is similar
to semismoothness (cf. [36], Prop. 2.3) of f at xi, but only follows from it if xi is constant (with
respect to i). More precisely, if f is semismooth at xi then

lim
y→xi

f(y)− f(xi)− ξ>(y − xi)
‖y − xi‖2

= 0,

where ξ is any element of ∂f(y). Note that this does not imply (16), so a different approach has
to be found to prove convergence in the nonconvex case.

Nonetheless, replacing convexity with semismoothness in Lemma 4.2 allows us to prove the
following, weaker result.

Lemma 4.5. Assume that f is semismooth. Let x̄ ∈ Rn and (εi)i ∈ R>0 with limi→∞ εi = 0. If

lim sup
i→∞

θ(x̄, εi)− f(x̄)

εi
≥ 0

then x̄ is a critical point of f .

12

Proof. Analogously to the proof of Lemma 4.2, except that

lim
i→∞

f(y)− f(x̄)− ξ>(y − x̄)

εi
= lim

i→∞

f(y)− f(x̄)− ξ>(y − x̄)

‖y − x̄‖2
‖y − x̄‖2

εi
= 0

for (y, f(y), ξ,H) ∈ J 2
εif(xi) in (14) and (15) follows from semismoothness.

Although Lemma 4.5 can not directly be used to show convergence of Algorithm 1 in the non-
convex case, it gives us hope that xi is at least close to a critical point when the fraction in (10) is
close to 0 or positive for small εi.

4.2 Approximating the second-order ε-jet

The algorithm introduced in Section 4.1 can only be used in theory, since the assumption of having
access to the complete second-order ε-jet J 2

ε f(x) in all x ∈ Rn rules out any (nontrivial) practical
use. In the following, we will show how we can turn Algorithm 1 into a practical method by
approximating J 2

ε f(x) with only finitely many points. To this end, for the rest of this section, we
assume that we can merely evaluate a single, arbitrary element of J 2

0 f(x) for any x ∈ Rn.
The idea is to only consider a finite subset W ⊆ J 2

ε f(x) in the model Tx,ε, i.e., to consider the
model

T Wx,ε (z) := max
(y,f(y),ξ,H)∈W

f(y) + ξ>(z − y) +
1

2
qH(z − y)

and the resulting problem

min
z∈Bε(x)

T Wx,ε (z). (17)

Let θW (x, ε) be the optimal value and z̄W (x, ε) ∈ arg minz∈Bε(x) T Wx,ε (z) be an arbitrary solution of
(17) (analogously to (9)).

Remark 4.6. Problem (17) has the equivalent formulation

min
z∈Bε(x),β∈R

β

s.t. f(y) + ξ>(z − y) +
1

2
qH(z − y) ≤ β ∀(y, f(y), ξ,H) ∈W,

(18)

which is a (smooth) linear problem with (possibly nonconvex) quadratic constraints. As such, it can
be solved using methods for smooth, constrained problems.

We could take the route of standard gradient sampling methods at this point and simply approx-
imate W by evaluating (or “sampling”) f(y), ∇f(y) and ∇2f(y) in random points y ∈ Bε(x). If we
would sample enough points, then we expect that the algorithm would converge in some stochastic
sense. But while this approach is simple, it has several drawbacks: Firstly, in the case of gradient
sampling, Carathéodory’s Theorem [9] implies that in theory, n+ 1 subgradients are sufficient for
the approximation of ∂εf(x) ⊆ Rn. Due to Lemma 3.3, we expect that many more points are

13

required for the approximation of J 2
ε f(x), making it more costly. Secondly, since the sampling in

the gradient sampling approach is random, it is likely that more points than required are sampled.
Since evaluating the Hessian matrix of f is expensive in many cases, we want to avoid evaluating it
unnecessarily. Finally, convergence can only guaranteed in a stochastic sense, making it somewhat
unpredictable in practice.

Thus, we present an alternative, deterministic approach for constructing W that has certain
advantages over random sampling. For the sake of readability, we write x = xi for the current
iterate of Algorithm 1. The idea is to start (in each iteration) with an initial approximation
W ⊆ J 2

ε f(x) consisting of only finitely many elements (e.g., W = {(x, f(x), ξ,H)} ⊆ J 2
0 f(x))

and to then iteratively add more elements to W until T Wx,ε is a satisfying approximation of Tx,ε (in

Bε(x)). To this end, in the following, we define what it means for T Wx,ε to be a “satisfying” model

and construct a way to add elements to W that improve the approximation quality of T Wx,ε .

Note that W ⊆ J 2
ε f(x) and the definition of T Wx,ε imply

T Wx,ε (z) ≤ Tx,ε(z) ∀z ∈ Rn and θW (x, ε) ≤ θ(x, ε),

so if

θW − f(x)

ε
> −τ, (19)

then also the inequality in step 3 of Algorithm 1 must hold and we can restart the iteration (of
Algorithm 1) with decreased ε and τ . Otherwise, (19) being violated implies, in particular, that
θW < f(x). By Corollary 4.1, for W = J 2

ε f(x) this would mean that f(z̄) ≤ θ = θW < f(x).
Unfortunately, we can not guarantee that f(z̄W) ≤ θW for finite W , since the proof of Corollary
4.1 (cf. Lemma 3.4) relies on having at least one element (y, f(y), ξ,H) ∈ J 2

ε f(x) for all y ∈ Bε(x).
Thus, we weaken f(z̄W) ≤ θW to

f(z̄W) ≤ f(x) + c(θW − f(x)) (20)

for some fixed c ∈ (0, 1) and consider T Wx,ε to be a satisfying model for f (in Bε(x)) if this inequality

holds. Since θW < f(x), this ensures that we have a decrease in f when going from x to z̄W , and,
depending on c, it ensures that our approximated model T Wx,ε has a similar property to Corollary
4.1.

For adding new elements to W in case T Wx,ε is not a satisfying model (i.e., in case (20) is violated),
consider the following lemma.

Lemma 4.7. Let x ∈ Rn, ε ≥ 0, W ⊆ J 2
ε f(x) and c ∈ (0, 1). If θW ≤ f(x) and f(z̄W) >

f(x) + c(θW − f(x)), then

a) W ∩ J 2
0 f(z̄W) = ∅, i.e., z̄W /∈ pr1(W),

b) T W∪{J}x,ε (z̄W) = f(z̄W) > T Wx,ε (z̄W) for any J ∈ J 2
0 f(z̄W),

c) θW∪{J} > θW for any J ∈ J 2
0 f(z̄W), if z̄W is the unique minimizer of (17).

14

Proof. a) By definition of z̄W it holds θW = T Wx,ε (z̄W). Assume that z̄W ∈ pr1(W). Then

f(x) ≥ θW = T Wx,ε (z̄W) ≥ f(z̄W),

so

f(z̄W) > f(x) + c(θW − f(x)) = (1− c)f(x) + cθW ≥ θW ≥ f(z̄W),

which is a contradiction.
b) As in a) it holds f(z̄W) > θW = T Wx,ε (z̄W), so J must be the element where the maximum in

T W∪{J}x,ε (z̄W) is admitted. In particular, it holds

T W∪{J}x,ε (z̄W) = f(z̄W) + ξ>(z̄W − z̄W) +
1

2
qH(z̄W − z̄W)

= f(z̄W) > T Wx,ε (z̄W)

for J = (z̄W , f(z̄W), ξ,H).
c) If z̄W is the unique minimizer of (17) and θW∪{J} = θW , then

T Wx,ε (z̄W) = θW = θW∪{J} = T W∪{J}x,ε (z̄W∪{J}) ≥ T Wx,ε (z̄W∪{J}) > T Wx,ε (z̄W),

which is a contradiction.

By Lemma 4.7 a), a new element of the ε-jet (that is not already contained in W) can be
computed by evaluating J 2

0 f in the current solution z̄W of (9). By b), adding such an element
changes T Wx,ε around z̄W and by c), this also increases θW if z̄W was a unique solution. In other

words, the discrepancy between the approximated optimal value θW and the actual optimal value
θ of the exact model becomes smaller. The following example illustrates a simple application of
these results.

Example 4.8. Let

f : R→ R, x 7→
√
|x|+ 0.1.

It is easy to see that f satisfies the assumptions from the beginning of Section 3. Figure 2 visualizes
our strategy for adding new elements to W for the case x = −0.2 and ε = 0.5: In Figure 2(a), the
model T W1

x,ε for the initial approximation

W1 = {(x, f(x),∇f(x),∇2f(x))}

is shown. While T W1
x,ε is a good model for f locally around x, it clearly does not factor in the

nonsmoothness of f , such that the minimizer z̄W1 = 0.3 of T W1
x,ε does not decrease the value of f .

Figure 2(b) shows how sampling a new element of the ε-jet at z̄W1 and setting

W2 = W1 ∪ {(z̄W1 , f(z̄W1),∇f(z̄W1),∇2f(z̄W1))}

improves the approximation quality of the model. In particular, we see that the minimizer of T W2
x,ε

is close to the actual minimizer of f .

15

(a) (b)

Figure 2: Visualization of our strategy for adding new elements to W in Example 4.8. (The colors
and markers have the same meaning as in Figure 1)

Algorithm 2 Second-order ε-jet approximation

Require: Current point xi ∈ Rn, approximation parameter c ∈ (0, 1), radius ε > 0, improvement
tolerance τ > 0.

1: Sample Jxi = (xi, f(xi), ξxi ,Hxi) ∈ J 2
0 f(xi) and set W = {Jxi}.

2: Compute θW = θW (xi, ε) and z̄W = z̄W (xi, ε) via (17) (or (18)).
3: If f(z̄W) ≤ f(xi) + c(θW − f(xi)) or (θW − f(xi))/ε > −τ then stop.
4: Sample Jz̄W = (z̄W , f(z̄W), ξz̄W ,Hz̄W) ∈ J 2

0 f(z̄W), set W = W ∪ {Jz̄W } and go to step 2.

The method resulting from our above considerations is shown in Algorithm 2. For the initial-
ization of W , a single element Jxi ∈ J 2

0 f(xi) is sampled, but any other subset of J 2
ε f(xi) can be

used as well. By Lemma 4.7, the algorithm generates a sequence (Wj)j of subsets of J 2
ε f(xi) with

θWj+1 ≥ θWj . Since the inequalities in step 3 are more likely to hold the larger θWj , the hope is
that they are met at some point such that the algorithm and the sequence are finite. While an
actual proof of this behavior is left for future work, the numerical experiments in the following
section motivate us to believe that this may be the case (for a sufficiently large class of objective
functions).

Finally, the method resulting from using Algorithm 2 for approximating the ε-jet in Algorithm
1 is summarized in Algorithm 3. Compared to Algorithm 2, the set W in step 2 of Algorithm 3
additionally contains all elements from the previous iteration corresponding to points that also lie
in Bε(x

i), which (potentially) reduces the overall number of function evaluations.

16

Algorithm 3 Practical descent method

Require: Starting point x0 ∈ Rn, approximation parameter c ∈ (0, 1), initial radius εinit > 0,
initial improvement tolerance τinit > 0, reduction factors κε, κτ ∈ (0, 1).

1: Initialize i = 0, ε = εinit, τ = τinit and W = ∅.
2: Sample Jxi = (xi, f(xi), ξxi ,Hxi) ∈ J 2

0 f(xi) and set W = {Jxi} ∪ {Jy ∈ W : y ∈ Bε(xi)} ⊆
J 2
ε f(xi).

3: Compute θW = θW (xi, ε) and z̄W = z̄W (xi, ε) via (17) (or (18)).
4: If (θW − f(xi))/ε > −τ then set ε = κεε, τ = κττ and go to step 2.
5: If f(z̄W) > f(xi) + c(θW − f(xi)) then sample Jz̄W = (z̄W , f(z̄W), ξz̄W ,Hz̄W) ∈ J 2

0 f(z̄), set
W = W ∪ {Jz̄W } and go to step 3.

6: Set xi+1 = z̄W , i = i+ 1 and go to step 2.

5 Numerical experiments

In this section, we will compare the performance of Algorithm 3 to the performance of the following
implementations of other solution methods:

• Gradient sampling (GS) implementation from [3]2

• HANSO [26]3: Quasi-Newton (BFGS) method

• GRANSO [6]4: Quasi-Newton (BFGS) method (for constrained problems)

• SLQPGS [7]5: SQP-method combined with gradient sampling

• LMBM [18]6: Limited-memory bundle method

As test problems, we choose the 20 problems from [18] (originally from [19, 28], also considered in
[23]), consisting of convex and nonconvex problems. They are scalable in the number of variables
n, and we choose n = 50 for all problems. For the evaluation of gradients and Hessians we use the
analytic formulas.

For our numerical experiments we have implemented Algorithm 3 in MATLAB (R2021a)7. The
subproblem (18) is solved via the interior-point method (see, e.g., [32], Chapter 19) of fmincon.
(If fmincon terminates in an infeasible point, we restart it using a random starting point. If it
terminates in a feasible point but the optimality condition is violated, we simply use the final point
as the solution.) For the parameters of Algorithm 3, we choose

c = 0.5, εinit = 10, τinit = 10−5, κε = 0.1, κτ = 1.

2https://cs.nyu.edu/~overton/papers/gradsamp/alg/
3https://cs.nyu.edu/~overton/software/hanso/
4https://gitlab.com/timmitchell/GRANSO/
5https://github.com/frankecurtis/SLQPGS
6http://napsu.karmitsa.fi/lmbm/
7Code for the reproduction of our numerical results is available at https://github.com/b-gebken/SOGS.

17

https://cs.nyu.edu/~overton/papers/gradsamp/alg/
https://cs.nyu.edu/~overton/software/hanso/
https://gitlab.com/timmitchell/GRANSO/
https://github.com/frankecurtis/SLQPGS
http://napsu.karmitsa.fi/lmbm/
https://github.com/b-gebken/SOGS

Table 1: Result of applying Algorithm 3, GS, HANSO, GRANSO, SLQPGS and LMBM to the
20 test problems from [18] (in the same order). Listed are the number of subgradient
evaluations required (#∂f) and the difference to the smallest objective value found by
any method (Acc.). For each problem, the values corresponding to the method with the
lowest number of subgradient evaluations while having an accuracy of at least 10−4 are
written in bold.

Algo. 3 GS HANSO GRANSO SLQPGS LMBM
No. #∂f Acc. #∂f Acc. #∂f Acc. #∂f Acc. #∂f Acc. #∂f Acc.
1. 373 5e-14 61200 0 2125 1e-12 2125 1e-12 48581 7e-07 501 5e-06
2. 83 1e-05 20200 7e-08 988 4e-12 1447 0 12625 8e-03 1382 2e-05
3. 85 5e-06 51700 3e-06 1241 0 773 1e-08 27674 3e-06 1233 4e-03
4. 348 0 19200 6e-06 968 4e-05 1055 3e-05 31815 3e-06 750 2e-02
5. 30 3e-08 65600 3e-06 37 9e+01 48 9e+01 5050 2e-06 525 0
6. 18 4e-08 4800 2e-07 92 0 26 4e-04 29896 1e-06 97 7e-11
7. 624 1e-06 12900 1e-06 226 0 99 2e-04 16766 1e-06 2241 1e-06
8. 291 3e-05 62000 3e-05 1107 6e-06 2980 0 42824 2e-04 1894 2e-02
9. 15 1e-08 61700 3e-06 175 0 185 1e-16 6161 2e-06 307 3e-09
10. 18 4e-08 67100 2e+00 453 7e-07 878 0 73023 3e-05 4446 6e-05
11. 458 1e-07 60500 1e-08 100 0 1658 1e-08 101101 1e+01 1001 4e+01
12. 82 1e-05 24000 7e-07 573 2e-11 937 0 8888 4e-04 1529 9e-07
13. 113 0 46200 1e-07 32 3e+00 42 3e+00 11716 3e-06 48 2e+00
14. 149 4e+00 60900 4e+00 675 3e-04 1255 0 101101 4e+00 1731 6e+00
15. 883 6e-06 46800 7e-05 1254 0 486 2e-05 11009 4e-05 1821 8e-02
16. 379 2e-07 54800 0 35 2e-02 45 2e-02 10201 4e-07 3208 2e-02
17. 1226 5e-09 27500 0 2536 2e-10 2524 2e-10 13534 3e-05 7817 9e-01
18. 113 2e-10 600000 1e-01 3263 0 2615 3e-08 23735 1e-06 3087 5e-01
19. 488 0 225400 4e-04 2689 5e-04 2689 5e-04 5858 6e-04 2816 6e-04
20. 2070 0 436000 8e-03 32 4e+01 48 4e+01 41814 6e-04 5519 1e-01

Choosing κτ = 1 means that we can not apply our theoretical convergence results, but it leads
to better performance in practice in our experiments. (A similar behavior was observed for the
optimality tolerance in the gradient sampling method in [3], Section 4.) We stop our method as
soon as ε < 10−5 or i > 1000. For the other five methods above, we set the maximum number
of iterations to 1000 and use the default parameters otherwise. The results are shown in Table
1. For each method and each test problem, it contains the number of subgradient evaluations and
the distance of the final objective value to the smallest objective value found by any method for
the respective problem. For Algorithm 3, the number of subgradient evaluations coincides with
the number of Hessian evaluations and is by one smaller than the number of f evaluations. For
HANSO, GRANSO and LMBM, the subgradient evaluations coincide with the f evaluations and
for GS and SLQPGS, the number of f evaluations is significantly smaller than the number of
subgradient evaluations.

If we consider a method to be convergent on a problem if the difference between its final objective
value and the best objective value found by any method is less than 10−4, then Algorithm 3 has the
lowest number of subgradient evaluations of all convergent methods for 16 of the 20 test problems.
For problem 14, Algorithm 3 finds a point which is only locally optimal and for problems 7, 11
and 15, it requires more subgradient evaluations than other methods. (Note that this is not a
perfect way to compare the methods, since one method may require more subgradient evaluations

18

than another method while computing better solutions. In theory one should try to choose the
parameters of the methods such that they all produce solutions of the same quality, but this is
difficult due to the diversity of their stopping criteria.)

We can further analyze the results in Table 1 by considering so-called performance profiles [10].
Figure 3 shows the performance profile resulting from Table 1 when using the number of subgradient
evaluations as the performance measure. For each method, it shows what percentage of the 20 test

Figure 3: Performance profile resulting from Table 1 when using the number of subgradient evalu-
ations as performance measure (and the accuracy 10−4 as convergence threshold)

problems can be solved (meaning that the accuracy is less than 10−4) while not performing worse
than a certain factor of the best performing method on each problem. More formally, the curve of
a method passing through a point (r, p) in Figure 3 means that p percent of the 20 test problems
can be solved by the method while not using more than 10r times the number of subgradient
evaluations of the best performing method on each problem. We see that Algorithm 3 is either the
best performing method or within a (relatively) small factor of the best performing method for all
test problems (except problem 14).

While the results above suggest that Algorithm 3 is more efficient than the other methods in
terms of function evaluations, we have to emphasize that it requires Hessian matrices, which may
be costly to evaluate in practical applications. Furthermore, the MATLAB implementation we used
here is worse in terms of the actual runtime. For example, for test problem 4, our implementation
took 71 seconds while HANSO only took 0.2 seconds despite having more than twice the number
of subgradient evaluations. The reason for the worse runtime is the fact that function evaluations
take almost no time in our examples and the subproblem (18) has to be solved many times in our
algorithm. In contrast to the subproblems of other methods, (18) can not be solved as a (convex)

19

quadratic problem. Thus, for the numerical experiments for this article, we simply treated it as
a general nonlinear optimization problem, which makes its solution relatively time-consuming. To
improve the runtime of our method (for examples where the evaluation of the objective function
and its derivatives is cheap), future work in this area should include the construction of a dedicated
and efficient solver for this subproblem that exploits its structure.

6 Conclusion and outlook

In this article, we have constructed a descent method for nonsmooth optimization problems based
on a model of the objective function involving second-order derivative information. We started
by defining and analyzing our concept of second-order information, the second-order ε-jet, which
is essentially the set of all coefficients of second-order Taylor expansions of the objective in an
ε-ball. Taking the maximum over all these Taylor expansions yields a model of the objective. We
then showed that iterative minimization of this model (constrained to the ε-ball) can be used for
the minimization of the original function, and we proved convergence of the resulting algorithm to
minimal points for the convex case. Since this first algorithm unrealistically assumed full knowledge
of the ε-jet, we then constructed an approximation scheme for the ε-jet (based on sampling finitely
many elements) that can be incorporated into the algorithm to obtain an implementable method
(Algorithm 3). Using a set of test problems, we compared the performance of Algorithm 3 to the
performance of five other available solvers. While the results can not directly be compared due to
the reliance of our method on the availability of Hessian matrices, they suggest that the proposed
method is more efficient in terms of function evaluations than standard gradient sampling, and (at
least) competitive compared to other methods.

There are several open questions in this work for future research:

• As mentioned in the numerical experiments, the subproblem (18) resulting from minimizing
our model is more difficult to solve than the subproblems of other methods, since it can
not be solved as a convex quadratic problem. While it can be treated as a general nonlinear
problem, it clearly possesses structure that can potentially be exploited in a specialized solver.
Alternatively, it could be worth it to analyze the behavior of Algorithms 1 and 3 when only
approximated solutions of the subproblem are used.

• Although we only proved convergence of the (theoretical) Algorithm 1 for the convex case, our
numerical experiments suggest that it also works for (a reasonably large class of) nonconvex
functions, giving us hope that convergence can be proven in the nonconvex case as well.
A theoretical approach that could be useful for this is the consideration of the first-order
optimality conditions of the subproblem (9), for which the subdifferential of the model Tx,ε
may be derived as in [17].

• For Algorithm 2, we only showed that it generates a sequence of approximations of the ε-jet
with a new (previously unknown) element in every iteration, but we did not prove that it
actually terminates. Furthermore, we did not prove that the approximation obtained from
Algorithm 2 is good enough for Algorithm 1 to work, i.e., we did not prove convergence of
Algorithm 3.

20

• A theoretical analysis of the convergence rate of Algorithm 1 (and Algorithm 3) should be
carried out to verify the observation of improved performance in the numerical experiments.

Additionally, there are possible modifications to our approach that could lead to other interesting
variants of our method:

• Clearly, the reliance of our method on the availability of Hessian matrices is a strong as-
sumption which rules out many applications. It seems natural to think about Quasi-Newton
strategies to avoid exact Hessians, but the generalization of these strategies to our nonsmooth
case is not trivial. First of all, in our setting, the “Hessian” pr4(J 2

ε f(x)) is actually a set of
matrices instead of a single matrix, so the common update formulas can not directly be used.
Furthermore, our method uses 4-tuples (y, f(y), ξ,H) ∈ J 2

ε f(x), so every matrix H has an
associated point y and subgradient ξ. Nonetheless, it is worth noting that in our convergence
theory, the actual properties of H of being a Hessian matrix (or a limit of a sequence of
Hessian matrices) of f was never used, so we expect our method to be relatively robust when
using approximated Hessians instead of exact Hessians.

• The idea of constraining Tx,ε to the ε-ball is similar to the well-known idea of trust-region
methods. But in contrast to classic trust-region methods, our approach does not contain a
mechanism for increasing the radius ε. While such a mechanism appears to be unnecessary
for the problems we considered in our numerical experiments, we expect that it could greatly
improve the performance for other types of objective functions.

Acknowledgements

This research has been funded by the DFG Priority Programme 1962 “Non-smooth and Complemen-
tarity-based Distributed Parameter Systems”.

References

[1] A. Bagirov, N. Karmitsa, and M. M. Mäkelä. Introduction to Nonsmooth Optimization.
Springer International Publishing, 2014.

[2] J. V. Burke, F. E. Curtis, A. S. Lewis, M. L. Overton, and L. E. A. Simões. Gradient Sampling
Methods for Nonsmooth Optimization. In Numerical Nonsmooth Optimization, pages 201–225.
Springer International Publishing, 2020.

[3] J. V. Burke, A. S. Lewis, and M. L. Overton. A Robust Gradient Sampling Algorithm for
Nonsmooth, Nonconvex Optimization. SIAM Journal on Optimization, 15(3):751–779, Jan.
2005.

[4] F. H. Clarke. Optimization and Nonsmooth Analysis. Society for Industrial and Applied
Mathematics, Jan. 1990.

[5] R. Cominetti and R. Correa. A generalized second-order derivative in nonsmooth optimization.
SIAM Journal on Control and Optimization, 28(4):789–809, May 1990.

21

[6] F. E. Curtis, T. Mitchell, and M. L. Overton. A BFGS-SQP method for nonsmooth, nonconvex,
constrained optimization and its evaluation using relative minimization profiles. Optimization
Methods and Software, 32(1):148–181, 2017.

[7] F. E. Curtis and M. L. Overton. A sequential quadratic programming algorithm for nonconvex,
nonsmooth constrained optimization. SIAM Journal on Optimization, 22(2):474–500, Jan.
2012.

[8] F. E. Curtis and X. Que. A quasi-newton algorithm for nonconvex, nonsmooth optimization
with global convergence guarantees. Mathematical Programming Computation, 7(4):399–428,
May 2015.

[9] L. Danzer, B. Grünbaum, and V. Klee. Helly’s Theorem and Its Relatives. Proceedings of
Symposia in Pure Mathematics: Convexity, 1963.

[10] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance profiles.
Math. Program., 91(2):201–213, Jan. 2002.

[11] L. C. Evans and R. F. Gariepy. Measure Theory and Fine Properties of Functions, Revised
Edition. Chapman and Hall/CRC, Apr. 2015.

[12] B. Gebken and S. Peitz. An Efficient Descent Method for Locally Lipschitz Multiobjective
Optimization Problems. Journal of Optimization Theory and Applications, 80:3–29, Mar. 2021.

[13] A. A. Goldstein. Optimization of lipschitz continuous functions. Mathematical Programming,
13(1):14–22, Dec. 1977.

[14] M. Golubitsky and V. Guillemin. Stable Mappings and Their Singularities. Springer US, 1973.

[15] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. http://www.

deeplearningbook.org.

[16] A. Grothey. A second order trust region bundle method for nonconvex nonsmooth optimiza-
tion. Technical report MS-02-005, University of Edinburgh, Edinburgh, 2002.

[17] N. X. Ha and D. Van Luu. Invexity of supremum and infimum functions. Bull. Aust. Math.
Soc., 65(2):289–306, 2002.

[18] M. Haarala. Large-scale nonsmooth optimization: variable metric bundle method with limited
memory. PhD thesis, University of Jyväskylä, 2004.

[19] M. Haarala, K. Miettinen, and M. M. Mäkelä. New limited memory bundle method for large-
scale nonsmooth optimization. Optimization Methods and Software, 19(6):673–692, Dec. 2004.

[20] E. S. Helou, S. A. Santos, and L. E. A. Simões. On the local convergence analysis of the
gradient sampling method for finite max-functions. J. Optim. Theory Appl., 175(1):137–157,
Oct. 2017.

22

http://www.deeplearningbook.org
http://www.deeplearningbook.org

[21] C. Horvath. Measure of non-compactness and multivalued mappings in complete metric topo-
logical vector spaces. Journal of Mathematical Analysis and Applications, 108(2):403–408,
June 1985.

[22] A. Ioffe and J.-P. Penot. Limiting subhessians, limiting subjets and their calculus. Transactions
of the American Mathematical Society, 349(2):789–807, 1997.

[23] N. Karmitsa, A. Bagirov, and M. M. Mäkelä. Comparing different nonsmooth minimization
methods and software. Optimization Methods and Software, 27(1):131–153, 2012.

[24] K. C. Kiwiel. Methods of Descent for Nondifferentiable Optimization. Springer Berlin Heidel-
berg, 1985.

[25] K. C. Kiwiel. Convergence of the gradient sampling algorithm for nonsmooth nonconvex
optimization. SIAM Journal on Optimization, 18(2):379–388, Jan. 2007.

[26] A. S. Lewis and M. L. Overton. Nonsmooth optimization via quasi-newton methods. Mathe-
matical Programming, 141:135–163, 2013.

[27] L. Lukšan and J. Vlček. A bundle-newton method for nonsmooth unconstrained minimization.
Math. Program., 83(1-3):373–391, Jan. 1998.

[28] L. Lukšan, M. Tůma, and K. Šǐska. UFO 2002. Interactive System for Universal Functional
Optimization. Technical Report 883, Institute of Computer Science, Academy of Sciences of
the Czech Republic, Prague, 2002.

[29] N. Mahdavi-Amiri and R. Yousefpour. An Effective Nonsmooth Optimization Algorithm for
Locally Lipschitz Functions. Journal of Optimization Theory and Applications, 155(1):180–
195, Apr. 2012.

[30] R. Mifflin. Better than linear convergence and safeguarding in nonsmooth minimization. In
System Modelling and Optimization, pages 321–330. Springer-Verlag, 1984.

[31] E. S. Mistakidis and G. E. Stavroulakis. Nonconvex optimization in mechanics. Nonconvex
optimization and its applications. Springer, New York, NY, Nov. 1998.

[32] J. Nocedal and S. Wright. Numerical Optimization. Springer New York, 2006.

[33] S. Scheimberg and P. R. Oliveira. Descent algorithm for a class of convex nondifferentiable
functions. Journal of Optimization Theory and Applications, 72(2):269–297, Feb. 1992.

[34] A. Seeger. Limiting behavior of the approximate second-order subdifferential of a convex
function. Journal of Optimization Theory and Applications, 74(3):527–544, Sept. 1992.

[35] R. Tibshirani. Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statis-
tical Society: Series B (Methodological), 58(1):267–288, Jan. 1996.

[36] M. Ulbrich. Semismooth newton methods for operator equations in function spaces. SIAM
Journal on Optimization, 13(3):805–841, Jan. 2002.

23

[37] J. Zowe. Nondifferentiable optimization. In Computational Mathematical Programming, pages
323–356. Springer Berlin Heidelberg, 1985.

24

	Introduction
	Basic concepts
	Second-order information and the corresponding model for nonsmooth, nonconvex functions
	A descent method based on the second-order model
	Theoretical algorithm
	Approximating the second-order -jet

	Numerical experiments
	Conclusion and outlook

