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The Proximal Map of the Weighted Mean Absolute
Error∗
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We investigate the proximal map for the weighted mean absolute error function. An

algorithm for its efficient and vectorized evaluation is presented. As a demonstration, this

algorithm is applied as part of a checkerboard algorithm to solve a total-variation image

denoising (ROF) problem.
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1 Introduction

The proximity operator or proximal map plays a fundamental role in non-smooth optimization; see

for instance Chambolle, Pock, 2011; Combettes, Pesquet, 2011; Parikh, Boyd, 2014. Given a function

𝑓 : R𝑛 → R ∪ {∞}, the proximal map prox𝑓 : R
𝑛 → R𝑛 is defined as the solution of the problem

Minimize 𝑓 (𝑦) + 1

2

∥𝑦 − 𝑥 ∥2
2
, where 𝑦 ∈ R𝑛 . (1.1)

Under the mild condition that 𝑓 is proper, lower semicontinuous and convex, prox𝑓 is well-defined.

We refer the reader to Bauschke, Combettes, 2011, Ch. 12.4 for details and further properties.

In this paper we present theory and an efficient algorithm for the evaluation of prox 𝑓 , where 𝑓 : R→ R
is defined as

𝑓 (𝑥) B
𝑁∑︁
𝑖=1

𝑤𝑖 |𝑥 − 𝑑𝑖 |. (1.2)
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Here 𝑤𝑖 > 0 are given, positive weights and 𝑑𝑖 ∈ R are given data, 𝑖 = 1, . . . , 𝑁 for some 𝑁 ∈ N.
We refer to (1.2) as the weighted mean absolute error. Any of its minimizers is known as a weighted

median of the data {𝑑𝑖}. Clearly, 𝑓 is proper, continuous and convex, and so is 𝛾 𝑓 for any 𝛾 > 0.

By definition, the proximal map prox𝛾 𝑓 : R→ R for 𝑓 as in (1.2) is given by

prox𝛾 𝑓 (𝑥) B argmin

𝑦∈R
𝛾

𝑁∑︁
𝑖=1

𝑤𝑖 |𝑦 − 𝑑𝑖 | +
1

2

(𝑦 − 𝑥)2. (1.3)

In case 𝑁 = 1, problem (1.3) reduces to the well-known problem

argmin

𝑦∈R
𝛾 𝑤 |𝑦 − 𝑑 | + 1

2

(𝑦 − 𝑥)2 (1.4)

with 𝑤 > 0 and 𝑑 ∈ R, whose unique solution is explicitly given in terms of the soft-thresholding

operator 𝑆𝑟 (𝑥) B max{0, |𝑥 | − 𝑟 } sgn(𝑥). In this case, we have

prox𝛾 𝑓 (𝑥) = 𝑑 + 𝑆𝛾𝑤 (𝑥 − 𝑑) = 𝑑 +max{0, |𝑥 − 𝑑 | − 𝛾 𝑤} sgn(𝑥 − 𝑑) . (1.5)

This map, often with 𝑑 = 0, arises in many iterative schemes for the solution of problems involving

the 1-norm; see for instance Daubechies, Defrise, De Mol, 2004; Goldstein, Osher, 2009. We therefore

refer to (1.3) as a multi-thresholding operation.

We wish to point out that our problem of interest (1.3) is different from the LASSO problem

Minimize ∥𝐴𝑦 − 𝑑 ∥2
2
+ 𝜆 ∥𝑦 ∥1 where 𝑦 ∈ R𝑛, (1.6)

see Tibshirani, 1996; Chen, Donoho, Saunders, 1998. In the latter, 𝑦 is multi-dimensional and the

deviation of its image under a linear map 𝐴 from a data vector 𝑑 is measured. By contrast, in (1.3) we

measure the deviation of a scalar 𝑦 from multiple data points 𝑑𝑖 . Moreover, the roles of the 1-norm and

the 2-norm are reversed in (1.3) and (1.6).

We point out that Li, Osher, 2009 have considered the slightly more general problem

argmin

𝑦∈R

𝑁∑︁
𝑖=1

𝑤𝑖 |𝑦 − 𝑑𝑖 | + 𝐹 (𝑦) (1.7)

with 𝐹 strictly convex, differentiable and 𝐹 ′ bijective. The prototypical examples are functions 𝐹 (𝑦) =
𝜆 |𝑦 − 𝑥 |𝛼 with 𝛼 > 1.

We concentrate on the case 𝐹 (𝑦) = 1

2𝛾
(𝑦 − 𝑥)2, which agrees with (1.3). In contrast to Li, Osher, 2009,

we provide a vectorized, open-source implementation of (1.3). We also demonstrate the utility of

our implementation of (1.3) by solving, similarly as in Li, Osher, 2009, an image denoising problem

using a block coordinate descent (checkerboard) algorithm. In order to overcome the generic failure

of convergence of such a method to the unique minimizer, we combine it with restarts based on the

steepest descent direction. The emphasis in this paper, however, is on the efficient solution of (1.3).

This paper is structured as follows: We establish an algorithm for the evaluation of the proximal map

of the weighted mean absolute error (1.3) in Section 2 and prove its correctness in Theorem 2.1. In
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Section 3 we briefly discuss the structural properties of the proximal map. We conclude this paper

by showing an application of the proposed algorithm to an image denoising problem, using the ROF

model Rudin, Osher, Fatemi, 1992.

2 Algorithm for the Evaluation of the Proximal Map

In this section, we derive an efficient algorithm for the evaluation of the proximal map prox𝛾 𝑓 (𝑥) (1.3)
and prove its correctness in Theorem 2.1. To this end, we assume that the points 𝑑𝑖 have been sorted and

duplicates have been removed and their weights added. As a result, we can assume 𝑑1 < 𝑑2 < . . . < 𝑑𝑁 .

Moreover, we assume 𝛾 > 0, 𝑁 ≥ 1 and 𝑤𝑖 > 0 for all 𝑖 = 1, . . . , 𝑁 . Summands with 𝑤𝑖 = 0 can

obviously be dropped from the sum in (1.3).

We divide the real line into the intervals

𝐼1 B (−∞, 𝑑1], 𝐼𝑖 B [𝑑𝑖−1, 𝑑𝑖] for 𝑖 = 2, . . . , 𝑁 and 𝐼𝑁+1 B [𝑑𝑁 ,∞), (2.1)

which overlap in the given data points. It is also useful to set 𝑑0 B −∞ and 𝑑𝑁+1 B ∞. We further

introduce the forward and reverse cumulative weights as

𝜇𝑖 B
𝑖∑︁
ℓ=1

𝑤ℓ , 𝜈𝑖 B
𝑁∑︁
ℓ=𝑖

𝑤ℓ , 𝑖 = 1, . . . , 𝑁 . (2.2)

We extend these definitions by setting 𝜇0 B 0, 𝜇𝑁+1 B 𝜇𝑁 and 𝜈𝑁+1 B 𝜈𝑁+2 B 0. We therefore have

𝜈𝑖 = 𝜇𝑁 − 𝜇𝑖−1 for all 𝑖 = 1, . . . , 𝑁 + 2. Using this notation, we can rewrite the derivative of 𝑓 as

𝑓 ′(𝑦) = 𝜇𝑖−1 − 𝜈𝑖 for 𝑦 ∈ int 𝐼𝑖 = (𝑑𝑖−1, 𝑑𝑖), 𝑖 = 1, . . . , 𝑁 + 1. (2.3)

This formula reflects the fact that 𝑓 is piecewise linear and convex since 𝜇𝑖−1−𝜈𝑖 is monotone increasing

with 𝑖 . Moreover, 𝑓 ′(𝑦) = 𝜇0 − 𝜈1 = −∑𝑁
ℓ=1𝑤ℓ < 0 holds for all 𝑦 ∈ int 𝐼1 (points to the left of smallest

data point 𝑑1), and 𝑓 ′(𝑦) = 𝜇𝑁 − 𝜈𝑁+1 =
∑𝑁

ℓ=1𝑤ℓ > 0 holds for all 𝑦 ∈ int 𝐼𝑁+1 (points to the right

of the largest data point 𝑑𝑁 ). At 𝑦 = 𝑑𝑖 , 𝑖 = 1, . . . , 𝑁 , 𝑓 is non-differentiable but we can specify its

subdifferential, which is

𝜕𝑓 (𝑑𝑖) = [𝜇𝑖−1 − 𝜈𝑖 , 𝜇𝑖 − 𝜈𝑖+1], 𝑖 = 1, . . . , 𝑁 . (2.4)

The objective

Φ(𝑦) B 𝛾 𝑓 (𝑦) + 1

2

(𝑦 − 𝑥)2 = 𝛾

𝑁∑︁
𝑖=1

𝑤𝑖 |𝑦 − 𝑑𝑖 | +
1

2

(𝑦 − 𝑥)2 (2.5)

of (1.3) is piecewise quadratic and strongly convex. Its derivative is thus strongly monotone and it

satisfies

Φ′(𝑦) < 0 for all 𝑦 < min{𝑑1, 𝑥} and Φ′(𝑦) > 0 for all 𝑦 > max{𝑑𝑁 , 𝑥}. (2.6)

Consequently, the unique minimizer of Φ lies between these bounds.
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𝑑1 = 𝑦∗
1

𝑦∗
2

𝑑2 𝑑3

𝑦

𝜕Φ(𝑦)

𝜕Φ1(𝑦)
𝜕Φ2(𝑦)

Figure 2.1: Visualization of the subdifferential 𝜕Φ of the objective Φ. In the first (upper) case, 𝑦∗
1
= 𝑑1

holds. In the second (lower) case, we have 𝑦∗
2
∈ int 𝐼3.

The idea to finding the unique minimizer 𝑦∗ of (2.5) is to locate the smallest index 1 ≤ 𝑘 ≤ 𝑁 + 1 such

that 𝑦∗ ≤ 𝑑𝑘 holds, i. e., the nearest data point to the right of 𝑦∗. In other words, we need to find

1 ≤ 𝑘 ≤ 𝑁 + 1 such that

lim

𝑦↘𝑑𝑘−1
Φ′(𝑦) = 𝛾 (𝜇𝑘−1 − 𝜈𝑘 ) + 𝑑𝑘−1 − 𝑥 < 0 (2.7a)

and lim

𝑦↘𝑑𝑘

Φ′(𝑦) = 𝛾 (𝜇𝑘 − 𝜈𝑘+1) + 𝑑𝑘 − 𝑥 ≥ 0 (2.7b)

holds. Now we can distinguish two cases: 𝑦∗ = 𝑑𝑘 and 𝑦∗ < 𝑑𝑘 . The first case applies if and only if

𝛾 (𝜇𝑘−1 − 𝜈𝑘 ) + 𝑑𝑘 − 𝑥 ≤ 0. (2.8)

Otherwise, 𝑦∗ lies in int 𝐼𝑘 and thus it is the unique minimizer 𝑥 −𝛾 (𝜇𝑘−1 −𝜈𝑘 ) of the locally quadratic

objective Φ. In either case, once the index 1 ≤ 𝑘 ≤ 𝑁 + 1 has been identified, 𝑦∗ is given by

𝑦∗ = min{𝑑𝑘 , 𝑥 − 𝛾 (𝜇𝑘−1 − 𝜈𝑘 )}. (2.9)

Both cases are also depicted in Figure 2.1.

The considerations above lead to Algorithm 1. In our implementation, we evaluate (2.10) for all 𝑘

simultaneously and benefit from the quantities being monotone increasing with 𝑘 when finding the

first non-negative entry.

Let us prove the correctness of Algorithm 1.

Theorem 2.1. Under the assumptions stated in Algorithm 1, this algorithm returns 𝑦∗ = prox𝛾 𝑓 (𝑥), the
unique solution of (1.3).

Proof. Let 1 ≤ 𝑘 ≤ 𝑁 + 1 be the index found in Line 1. First suppose 2 ≤ 𝑘 ≤ 𝑁 . Then 𝑑𝑘−1 and 𝑑𝑘 are

both finite, and (2.7), (2.10) imply

max 𝜕Φ(𝑑𝑘−1) = lim

𝑦↘𝑑𝑘−1
Φ′(𝑦) < 0 and max 𝜕Φ(𝑑𝑘 ) = lim

𝑦↘𝑑𝑘

Φ′(𝑦) ≥ 0.
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Algorithm 1 Evaluation of (1.3), the proximal map of the weighted mean absolute error.

Input: data points 𝑑1 < 𝑑2 < . . . < 𝑑𝑁 ∈ R, 𝑁 ≥ 1, and 𝑑0 B −∞, 𝑑𝑁+1 B ∞
Input: weight vector𝑤 ∈ R𝑁 with entries𝑤𝑖 > 0

Input: prox parameter 𝛾 > 0 and point of evaluation 𝑥 ∈ R
Output: 𝑦 = prox𝛾 𝑓 (𝑥), the unique solution of (1.3)

1: Find the smallest index 1 ≤ 𝑘 ≤ 𝑁 + 1 that satisfies

𝛾 (𝜇𝑘 − 𝜈𝑘+1) + 𝑑𝑘 − 𝑥 ≥ 0 (2.10)

2: return 𝑦 B min{𝑑𝑘 , 𝑥 − 𝛾 (𝜇𝑘−1 − 𝜈𝑘 )}

Owing to the properties of the subdifferential of strongly convex functions, there exists a unique point

𝑦∗ ∈ (𝑑𝑘−1, 𝑑𝑘 ] such that 0 ∈ 𝜕Φ(𝑦∗), i. e., 𝑦∗ is the unique minimizer of (1.3). This point either belongs

to int 𝐼𝑘 , or else 𝑦
∗ = 𝑑𝑘 holds. In the first case, Φ is differentiable, so that Φ′(𝑦∗) = 0 holds, yielding

𝑥 − 𝛾 (𝜇𝑘−1 − 𝜈𝑘 ) = 𝑦∗ < 𝑑𝑘 .

Otherwise, we have 𝑦∗ = 𝑑𝑘 , and 0 ∈ 𝜕Φ(𝑑𝑘 ) implies

𝑑𝑘 ≤ 𝑥 − 𝛾 (𝜇𝑘−1 − 𝜈𝑘 ) . (2.11)

In either case, the unique solution 𝑦∗ of (1.3) is determined by

𝑦∗ = min{𝑑𝑘 , 𝑥 − 𝛾 (𝜇𝑘−1 − 𝜈𝑘 )} ,

which is the quantity returned in Line 2.

It remains to verify themarginal cases𝑘 = 1 and𝑘 = 𝑁 +1. In case𝑘 = 𝑁 +1, we have lim𝑦↘𝑑𝑁 Φ′(𝑦) < 0

due to the minimality of 𝑘 . Hence,

𝑑𝑁 < 𝑦∗ = 𝑥 − 𝛾 (𝜇𝑁 − 𝜈𝑁+1) < 𝑑𝑁+1 = ∞.

A similar reasoning applies in the case 𝑘 = 1. □

We provide an efficient and vectorized Python implementation of Algorithm 1 in . . . .
1
It allows the

simultaneous evaluation of (1.3) for multiple values of 𝑥 , provided that each instance of (1.3) has the

same number 𝑁 of data points. The weights 𝑤𝑖 and data points 𝑑𝑖 as well as the prox parameter 𝛾

may vary between instances. The discussion so far assumed positive weights for simplicity, but the

case𝑤𝑖 = 0 is a simple extension and it is allowed in our implementation. This is convenient in order

to solve problem instances simultaneously which differ with respect to the number of data points 𝑁 .

Using zero weights, we can easily pad all instances to the same number of data points. In addition,

data points are allowed to be duplicate, i. e., we only require 𝑑1 ≤ 𝑑2 ≤ . . . ≤ 𝑑𝑁 ∈ R, 𝑁 ≥ 1. Notice

that since the data points are sorted, finding the index in Line 1 is of complexity log(𝑁 ).

1
The repository will be made public upon a first successful round of reviews.
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𝑑2 − 𝛾 (𝜇1 − 𝜈3)

𝑑1

𝑑2

𝑑3

2𝛾𝑤2

𝑑3 − 𝑑2

𝑑3 − 𝑑2

𝑥

prox𝛾 𝑓 (𝑥)

Figure 3.1: Example of the proximal map prox𝛾 𝑓 in case 𝑁 = 3.

3 Structure of prox𝛾 𝑓

In this section, we briefly discuss the structure of the map 𝑥 ↦→ prox𝛾 𝑓 (𝑥). Since it generalizes the
soft-thresholding operation (1.5), it is not surprising that we obtain a graph which features a staircase

pattern. An illustrative plot for certain choices of weights𝑤𝑖 , data points 𝑑𝑖 , and the parameter 𝛾 > 0

is shown in Figure 3.1. Each of the 𝑁 distinct data points provides one plateau in the graph.

Two alternating regimes occur for 𝑦∗ = prox𝛾 𝑓 (𝑥), as 𝑥 ranges over R. First, when 𝑦∗ ∈ int 𝐼𝑘 holds,

then (2.9) implies that 𝑦∗ is an affine function of 𝑥 with slope 1. This is the case for 𝑥 whose associated

index 𝑘 is constant, i. e.,

𝑥 ∈ 𝛾 (𝜇𝑘 − 𝜈𝑘+1) + [𝑑𝑘 , 𝑑𝑘+1] .

As 𝑥 increases beyond the upper bound, 𝑦∗ enters a constant regime which applies to

𝑥 ∈ 𝛾 (𝜇𝑘−1 − 𝜈𝑘+1) + 𝑑𝑘 + [−𝛾𝑤𝑘 , 𝛾𝑤𝑘 ] .

Notice that the case 𝑁 = 1 reduces to the soft-thresholding map (1.5) with only one plateau.

4 Application To Image Denoising

In this section, we present the application of Algorithm 1 to a classical (ROF) total-variation image

denoising problem going back to Rudin, Osher, Fatemi, 1992. Given noisy image data 𝑓𝑖, 𝑗 of size 𝐷1×𝐷2,
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we seek 𝑢𝑖, 𝑗 of the same dimension which solves

Minimize H(𝑢) B 1

2

𝐷1∑︁
𝑖=1

𝐷2∑︁
𝑗=1

(𝑢𝑖, 𝑗 − 𝑓𝑖, 𝑗 )2

+ 𝛽

𝐷1−1∑︁
𝑖=1

𝐷2∑︁
𝑗=1

|𝑢𝑖+1, 𝑗 − 𝑢𝑖, 𝑗 | + 𝛽

𝐷1∑︁
𝑖=1

𝐷2−1∑︁
𝑗=1

|𝑢𝑖, 𝑗+1 − 𝑢𝑖, 𝑗 |, 𝑢 ∈ R𝐷1×𝐷2 . (4.1)

Well-known solution approaches to (4.1) include the primal-dual hybrid gradient method Chambolle,

Pock, 2011 and the split Bregman iteration Goldstein, Osher, 2009. The latter requires the solution of a

Laplacian problem for 𝑢𝑖, 𝑗 in each iteration. A simpler approach, considered in Li, Osher, 2009, is to

partition the unknowns in (4.1) into two disjoint subsets, according to a checkerboard pattern. In this

case, problem (4.1) with only one subset of unknowns decouples into independent problems, each of

which is of type (1.3) with weights𝑤𝑖 = 1 and 𝛾 = 𝛽 and can be solved efficiently and in parallel using

Algorithm 1. We give further implementation details below.

Alternating over both subsets of unknowns, one obtains a block-coordinate descent method as proposed

in Li, Osher, 2009, Sec. 3. Unfortunately, such a method does not necessarily converge towards the

global minimizer for non-smooth objectives; see for instance Friedman et al., 2007, Sec. 2. Therefore, Li,

Osher, 2009 proposed to restart the block-coordinate descent algorithm using a random perturbation

of the final iterate upon stagnation.

We depart from this restarting strategy in the following way. Upon stagnation of the block-coordinate

descent method, we evaluate the steepest descent direction by orthogonally projecting (w.r.t. the

Euclidean norm ∥·∥) the zero vector onto the subdifferential of the objectiveH from (4.1):

𝑑 = − proj𝜕H(𝑢 ) (0) = − argmin

𝑠∈𝜕H(𝑢 )
∥𝑠 ∥2. (4.2)

Due to the structure of the subdifferential of the absolute value function |·|, this amounts to solving

a quadratic optimization problem with 𝐷1𝐷2 unknowns and sparse linear equality as well as bound

constraints, which describe the condition 𝑠 ∈ 𝜕H(𝑢). We employ the QP solver OSQP (Stellato et al.,

2020, https://github.com/osqp/osqp) for the purpose of solving (4.2).

The steepest descent direction (4.2) is used in the following way in Algorithm 2. First, it serves as a

perturbation direction upon stagnation, in contrast to the random perturbation proposed in Li, Osher,

2009; see Line 10. Second, the norm ∥𝑑 ∥ can serve as a stopping criterion; see Line 14.

In Lines 4 and 5, we use subvector indexing. That is, 𝑢𝑤 refers to the subvector of 𝑢 with “white”

indices copied and “black” indices zeroed. The roles are reversed for 𝑢𝑏 . Consequently, 𝑢 = 𝑢𝑏 + 𝑢𝑤
holds. Subvector indexing can be conveniently done in Python using logical indexing.

Notice that Lines 4 and 5 require the evaluation of a function of the (1.3) for many arguments in parallel,

where we benefit from our vectorized implementation of Algorithm 1. All norms in Theorem 2.1 are

Frobenius norms for matrices. Line 10 is implemented using a backtracking strategy starting with

initial step size 𝛼 = 0.5, which is then halved until the conditionH(𝑢𝑘 + 𝛼𝑑) < H(𝑢𝑘 ) is met.

We wish to emphasize that we do not propose Algorithm 2 as a novel solver for image denoising

problems. We rather consider it here as a source of problems of type (1.3), which can be solved efficiently
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Algorithm 2 Checkerboard scheme to approximately solve (4.1).

Input: tolerances TOLinner, TOLouter

Output: 𝑢𝑘 , an approximate solution of (4.1)

1: 𝑘 B 0

2: repeat
3: repeat
4: 𝑢𝑘+1𝑤 B argmin

𝑢𝑤

H
(
𝑢𝑘
𝑏
+ 𝑢𝑤

)
using Algorithm 1

5: 𝑢𝑘+1
𝑏
B argmin

𝑢𝑏

H
(
𝑢𝑏 + 𝑢𝑘+1𝑤

)
using Algorithm 1

6: Set 𝑘 B 𝑘 + 1

7: until ∥𝑢𝑘 − 𝑢𝑘−1∥ ≤ TOLinner

8: 𝑑 B − proj𝜕H(𝑢𝑘 ) (0)
9: if ∥𝑑 ∥ > TOLouter then
10: Choose 𝛼 > 0 withH(𝑢𝑘 + 𝛼𝑑) < H(𝑢𝑘 )
11: Set 𝑢𝑘+1 B 𝑢𝑘 + 𝛼𝑑

12: Set 𝑘 B 𝑘 + 1

13: end if
14: until ∥𝑑 ∥ ≤ TOLouter

by our proposed Algorithm 1. In practice, Algorithm 2 can also be used effectively as a preliminary

solver stage for (4.1), before one switches to, e. g., the split Bregman or Chambolle-Pock iteration.

For verification purposes, we show the outcome of Algorithm 2. As a test case, we choose the well-

known cameraman image of size 𝐷1 = 𝐷2 = 256. We add zero-mean Gaussian noise with standard

deviation 𝜎 = 50 independently pixel by pixel. We then truncate the values to the range [0, 255] to
obtain the noisy image shown in Figure 4.1a. We apply Algorithm 2 to the image denoising problem

(4.1) with parameter 𝛽 = 10. The inner tolerance is set to TOLinner = 10
−4
. We observe that even for

a coarse outer tolerance of TOLouter = 300, a good reconstruction is obtained; see Figure 4.1b. This

tolerance is reached after 𝑘 = 42 iterations, of which 37 are iterations of the loop in Line 4–Line 6

and 5 are executions of Line 8–Line 13. In particular, the subdifferential projection step in Line 8,

which amounts to solving a quadratic optimization problem, is carried out 5 times. For comparison,

we include an “exact” solution of (4.1) obtained by a split Bregman iteration with very tight tolerances

in Figure 4.1.

Each call to Algorithm 1 (Lines 4 and 5 in Algorithm 2) evaluates the proximity operator (1.3) in parallel

for half the number of pixels, i. e., 2
15 = 32 768 instances. Using padding with zero weights for instances

of (1.3) pertaining to points on the boundary, all instances have 𝑁 = 4 data points 𝑑𝑖 (the current values

for all neighbors north, south, east and west) and weights𝑤𝑖 ∈ {0, 1}. Timing results are reported in

Table 4.1. They were obtained on a laptop with an 8-core Intel Core i5 CPU with 1.6 GHz and 16 GiB

RAM, running Ubuntu 22.04 and Python 3.10.
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subroutine number of calls total time time per call

Algorithm 1

(32 768 solves of (1.3) in parallel) 74 10.7 s 0.14 s

solution of QP (Line 8) using OSQP 5 11.7 s 2.34 s

Table 4.1: Timing results.

(a) Noisy cameraman image. (b) Approximate solution ob-

tained with Algorithm 2.

(c) Exact solution of (4.1) obtained

by a split Bregman iteration.

Figure 4.1: Numerical results to obtain timings for Algorithm 1.
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