
Priority Programme 1962

Constrained Structured Optimization and
Augmented Lagrangian Proximal Methods

Alberto De Marchi, Xiaoxi Jia, Christian Kanzow, Patrick Mehlitz

Non-smooth and Complementarity-based
Distributed Parameter Systems:
Simulation and Hierarchical Optimization

Preprint Number SPP1962-191

received on April 7, 2022

Edited by
SPP1962 at Weierstrass Institute for Applied Analysis and Stochastics (WIAS)

Leibniz Institute in the Forschungsverbund Berlin e.V.
Mohrenstraße 39, 10117 Berlin, Germany

E-Mail: spp1962@wias-berlin.de

World Wide Web: http://spp1962.wias-berlin.de/

http://spp1962.wias-berlin.de/

Constrained Structured Optimization and
Augmented Lagrangian Proximal Methods

Alberto De Marchi∗ Xiaoxi Jia† Christian Kanzow†

Patrick Mehlitz‡

Abstract

We investigate and develop numerical methods for finite-dimensional constrained
structured optimization problems. Offering a comprehensive yet simple and expressive
language, this problem class provides a modeling framework for a variety of applica-
tions. A general and flexible algorithm is proposed that interlaces proximal methods
and safeguarded augmented Lagrangian schemes. We provide a theoretical character-
ization of the algorithm and its asymptotic properties, deriving convergence results
for fully nonconvex problems. Adopting a proximal gradient method with an oracle
as a formal tool, it is demonstrated how the inner subproblems can be solved by off-
the-shelf methods for composite optimization, without introducing slack variables and
despite the appearance of set-valued projections. Finally, we describe our open-source
matrix-free implementation of the proposed algorithm and test it numerically. Illustra-
tive examples show the versatility of constrained structured programs as a modeling
tool, expose difficulties arising in this vast problem class and highlight benefits of the
implicit approach developed.

Keywords. Nonsmooth nonconvex optimization, nonlinear programming, augmented La-
grangian methods, proximal algorithms
AMS subject classifications. 49J53, 65K05, 90C30

1 Introduction
In this paper we investigate and develop numerical methods for constrained structured pro-
gramming, namely finite-dimensional optimization problems of the form

minimize
x

q(x) B f (x) + g(x) subject to c(x) ∈ D, (P)

∗Universität der Bundeswehr München, Department of Aerospace Engineering, 85577 Neu-
biberg/Munich, Germany. email alberto.demarchi@unibw.de, orcid 0000-0002-3545-6898

†University of Würzburg, Institute of Mathematics, 97074 Würzburg, Germany
‡Brandenburgische Technische Universität Cottbus-Senftenberg, Institute of Mathematics, 03046 Cot-

tbus, Germany. Universität Mannheim, School of Business Informatics and Mathematics, 68159 Mannheim,
Germany. orcid 0000-0002-9355-850X

1

http://www.ams.org/mathscinet/msc/msc2020.html?t=49J53
http://www.ams.org/mathscinet/msc/msc2020.html?t=65K05
http://www.ams.org/mathscinet/msc/msc2020.html?t=90C30
mailto:alberto.demarchi@unibw.de
https://orcid.org/0000-0002-3545-6898
https://orcid.org/0000-0002-9355-850X

where x is the decision variable, f and c are smooth functions, g is proper and lower semi-
continuous, and D is a nonempty closed set. We call (P) a constrained structured opti-
mization problem because it contains set-membership constraints and a structured (or com-
posite) objective function q B f + g. Notice that the problem data, namely f , g, c and
D, can be nonconvex, the nonsmooth cost term g can be discontinuous and the constraint
set D disconnected. Thanks to their rich structure and flexibility, constrained structured
problems are of interest for modeling in a variety of applications, ranging from optimal
and model predictive control [19, 48], to signal processing [15], low-rank and sparse ap-
proximation, compressed sensing, cardinality-constrained optimization [6], and disjunctive
programming [5], such as problems with complementarity, vanishing and switching con-
straints [32, 38].

Augmented Lagrangian and proximal methods have recently attracted revived and grown
interest. Tracing back to the classical work of Hestenes [31] and Powell [43], the aug-
mented Lagrangian framework can tackle large-scale constrained problems, whereas non-
smooth and extended-real valued cost functions are easily treated by proximal algorithms,
inaugurated by Moreau [40]. Recent accounts on these topics can be found in [8, 11, 16]
and [15, 41, 52], among others. Our approach is inspired by the fact that “augmented La-
grangian ideas are independent of the degree of smoothness of the functions that define the
problem” [11, §4.1] and lead to a sequence of unconstrained or simply constrained sub-
problems. Moreover, this framework can handle nonconvex constraints, is often superior
to pure penalty methods, enjoys good warm-starting capabilities and allows to avoid ill-
conditioning due to a pure penalty approach and to deal with constraints without softening
them; cf. [48, 50]. In the context of constrained structured programming, proximal meth-
ods play a key role, since the augmented Lagrangian subproblems for (P) are in the form
of structured optimization problems.

The close relationship between augmented Lagrangian and proximal methods is well
known and traces back to Rockafellar [44]. These approaches have been combined in [23]
to deal with structured optimization problems whose nonsmooth term is convex and pos-
sibly composed with a linear operator. Following this strategy, the proximal augmented
Lagrangian method has been considered for constrained structured programs in [20, Chap-
ter 1], however lacking of sound theoretical support and convergence analysis.

A first step for resolving these shortcomings is constituted by proximal gradient meth-
ods that can cope with local Lipschitz continuity of the smooth cost gradient, only recently
investigated in the Euclidean setting, see [22, 33]. By relying on an adaptive stepsize selec-
tion rule for the proximal gradient oracle, these algorithms can be adopted as inner solver
for augmented Lagrangian subproblems arising from general nonlinear constraints.

Another issue originates from the following observation. One can reformulate the orig-
inal problem, by introducing slack variables, in order to have a convex constraint set; con-
sider this problem equipped with slack variables and the associated augmented Lagrangian
function. The proximal augmented Lagrangian function characterizes the latter one on the
manifold corresponding to the explicit minimization over the slack variables [23, 44]. This
procedure is employed to eliminate the slack variables and, in the convex setting, obtain
a continuously differentiable function. Although the same ideas apply to (P), the result-
ing proximal augmented Lagrangian does not exhibit this favorable property in the fully
nonconvex setting. In particular, this lack of regularity is due to the set-valued projection

2

onto the constraint set D. Hence, careful handling is required to avoid ruining the prob-
lem structure, or rather to exploit it, when solving the (proximal) augmented Lagrangian
subproblems, as we will show.

Introducing slack variables corresponds to making explicit some traits implicit in the
original problem formulation; see [7] for an investigation on the role of implicit variables in
optimization. Therein the authors state that “the implicit formulation avoids the appearance
of artificial local minimizers [. . .]. It is, thus, always desirable to explore the inherent prob-
lem structure of the original problem instead of making its implicit variables explicit” [7,
§6]. Not only implicit formulations yield stronger theoretical results, but also subproblems
with fewer decision variables. Thus, being able to harness the proximal augmented La-
grangian approach in the fully nonconvex setting might be beneficial from both theoretical
and numerical perspectives.

The contribution of this work touches several aspects. We investigate the abstract class
of constrained structured optimization problems in the fully nonconvex setting and discuss
relevant stationarity concepts. Then, we present an algorithm for the numerical solution of
these problems and, considering a classical (safeguarded) augmented Lagrangian scheme,
we provide a comprehensive yet compact convergence analysis. Patterning this methodol-
ogy, analogous algorithms and theoretical results can be derived based on other augmented
Lagrangian schemes. Further, we demonstrate there is no need for slack variables, nor for
special choices of possibly set-valued projections and proximal mappings. Finally, we show
that it is possible to adopt off-the-shelf, yet adaptive, proximal gradient methods for solving
the augmented Lagrangian subproblems.

The following blanket assumptions are considered throughout, without further mention.
Technical definitions are given in Section 2.1.

Assumption I. The following hold in (P):

(i) f : �n → � and c : �n → �m are continuously differentiable with locally Lipschitz
continuous derivatives;

(ii) g : �n → � is proper, lower semicontinuous, and prox-bounded;

(iii) D ⊂ �m is a nonempty and closed set.

Notice that the consequential theory remains valid whenever �n and �m are replaced
by finite-dimensional Hilbert spaces X and Y. Moreover, the local Lipschitz continuity
in Assumption I(i) is actually superfluous for the augmented Lagrangian framework, but
sufficient to solve the arising inner problems via proximal gradient methods [22, 33].

By Assumptions I(i) and I(ii), the cost function q B f +g has nonempty domain, that is,
dom q , ∅. Similarly, Assumption I(iii) guarantees it is always possible to project onto the
constraint set D. Nevertheless, these conditions do not imply the existence of feasible points
for (P). As it is the case in nonlinear programming [11], we will study the minimization
properties of the augmented Lagrangian scheme with respect to some infeasibility measure.
Owing to Assumption I(ii), the constraint set D could be assumed convex without loss
of generality with respect to (P): one can obtain an equivalent problem by introducing
slack variables and including an indicator function in the objective. However, since this
reformulation enlarges the problem size, we are going to consider it only as a theoretical

3

tool to derive formal results, while focusing on the fully nonconvex setting. Moreover, we
work under the practical assumption that (only) the following computational oracles are
available or simple to evaluate:

• cost function value f (x) and gradient ∇f (x), given x ∈ dom q;

• (arbitrary) proximal point z ∈ proxγg(x) and function value g(z) therein, given x ∈ �n

and γ ∈ (0, γg), γg being the prox-boundedness threshold of g;

• constraint function value c(x) and Jacobian-vector product ∇c(x)>v, given x ∈ dom q
and v ∈ �m;

• (arbitrary) projected point z ∈ ΠD(v), given v ∈ �m.

Relying only on these oracles, the method presented in the following is first-order and
matrix-free by construction; as such, it involves only simple operations and has low mem-
ory footprint.

1.1 Related Work
Augmented Lagrangian schemes have been extensively investigated [8, 11, 16, 48], also in
the infinite-dimensional setting [3, 34].

Merely lower semicontinuous cost functions have been considered in [24]. Inspired by
[28, Alg. 1] and leveraging the idea behind [11, Ex. 4.12], the convergence properties of
[24, Alg. 1] hinge on the upper boundedness of the augmented Lagrangian along the iterates
ensured by the initialization at a feasible point. Although possible in some cases, in general
finding a feasible starting point can be as hard as the original problem. We deviate in this
respect, seeking instead a method able to start from any x0 ∈ �n. Nonetheless, if a feasible
point is readily available for (P), one can adopt [24, Alg. 1] in its original form, replacing
the augmented Lagrangian function and inner solver accordingly. In this case, and possibly
assuming lower boundedness of the cost function q, stronger convergence guarantees can
be obtained.

Programs with geometric constraints have been studied in [12, 32] and, for the special
case of so-called complementarity constraints, in [29]. These have a continuously differen-
tiable cost function f and set-membership constraints of the form c(x) ∈ C, x ∈ D, with
D as in Assumption I(iii) and C nonempty, closed and convex. A similar structure can be
obtained from (P) by introducing slack variables. Moreover, as pointed out in [32, §5.4],
considering a lower semicontinuous functional q B f + g does not enlarge the problem
class, since there is an equivalent, yet smooth, reformulation in terms of the epigraph of
q. These observations imply that constrained structured programs do not generalize the
problem class considered in [32]. Nevertheless, the necessary reformulations come at a
price: increased problem size due to slack variables and the need for projections onto the
epigraph of q. The proximal augmented Lagrangian method we are about to present is de-
signed around (P) in the fully nonconvex setting. Hence, it natively handles nonsmooth
cost functions, nonlinear constraints and nonconvex sets, with no need for slack variables
nor for oracles other than those mentioned above. Analogous considerations hold for [14],

4

dedicated to an augmented Lagrangian method for non-Lipschitz nonlinear programs, and
[35, Section 6.2], where the solution of the augmented Lagrangian subproblems is not dis-
cussed.

The work presented in this paper collects and builds upon the ideas put forward in [20].
However, we consider different stationarity concepts and necessary optimality conditions,
not based on the proximal operator as in [20, §1.2], but rather exploiting tools from varia-
tional analysis; see [30, 32, 35, 37]. Furthermore, patterning [22] and thanks to a detailed
analysis of the subproblems, we offer a rigorous convergence analysis, as well as theoretical
justifications for adopting accelerated proximal gradient methods; cf. [20, §1.5.4].

2 Setting and Fundamentals
In this section, we comment on notation, preliminary definitions and useful results.

2.1 Preliminaries
With � and � B � ∪ {∞} we denote the real and extended-real line, respectively. The
vectors in�n with all elements equal to 0 or 1 are denoted as 0n and 1n; whenever n is clear
from context we simply write 0 and 1, respectively. The effective domain of an extended-
real-valued function h : �n → � is denoted by dom h B {x ∈ �n

∣∣∣ h(x) < ∞}. We say that
h is proper if dom h , ∅ and lower semicontinuous (lsc) if h(x̄) ≤ lim infx→x̄ h(x) for all
x̄ ∈ �n. For some constant τ ∈ �, lev≤τ h B {x ∈ �n

∣∣∣ h(x) ≤ τ} denotes the τ-sublevel set
associated with h.

Given a proper and lsc function h : �n → � and a point x̄ with h(x̄) finite, we may avoid
to assume h continuous and instead appeal to h-attentive convergence of a sequence {xk}:

xk h→ x̄ :⇔ xk → x̄ with h(xk)→ h(x̄). (2.1)

Following [45, Def. 8.3], we denote by ∂̂h : �n ⇒ �n the regular subdifferential of h,
where

v ∈ ∂̂h(x̄) :⇔ lim inf
x→x̄
x,x̄

h(x) − h(x̄) − 〈v, x − x̄〉
‖x − x̄‖ ≥ 0. (2.2)

The (limiting) subdifferential of h is ∂h : �n ⇒ �n, where v ∈ ∂h(x̄) if and only if there exist

sequences {xk} and {vk} such that xk h→ x̄ and vk ∈ ∂̂h(xk) with vk → v. The subdifferential of
h at x̄ satisfies ∂(h+h0)(x̄) = ∂h(x̄)+∇h0(x̄) for any h0 : �n → � continuously differentiable
around x̄ [45, Ex. 8.8]. With respect to the minimization of h, we say that x∗ ∈ dom h is
stationary if 0 ∈ ∂h(x∗), which constitutes a necessary condition for the optimality of x∗

[45, Thm 10.1].
A mapping S : �n ⇒ �m is locally bounded at a point x̄ ∈ �n if for some neighborhood

V of x̄ the set S (V) ⊂ �m is bounded [45, Def. 5.14]; it is called locally bounded (on �n)
if this holds at every x̄ ∈ �n. If S (x̄) is nonempty, we define the outer limit of S at x̄ by
means of

lim sup
x→x̄

S (x) B {y ∈ �m
∣∣∣∃xk → x̄, ∃yk → y, yk ∈ S (xk)∀k ∈ �}

5

and note that this is a closed superset of S (x̄) by definition.
Given a parameter value γ > 0, the proximal mapping proxγh is defined by

proxγh(x) B arg min
z

{
h(z) +

1
2γ
‖z − x‖2

}
,

and we say that h is prox-bounded if it is proper and h + ‖ · ‖2/(2γ) is bounded below on
�n for some γ > 0. The supremum of all such γ is the threshold γh of prox-boundedness
for h. In particular, if h is bounded below by an affine function, then γh = ∞. When h is
lsc, for any γ ∈ (0, γh) the proximal mapping proxγh is locally bounded, nonempty- and
compact-valued [45, Thm 1.25].

Some tools of variational analysis will be exploited in order to describe the geometry of
the nonempty, closed, but not necessarily convex, set D ⊂ �m, appearing in the formulation
of (P). The projection mapping ΠD and the distance function distD are defined by

ΠD(v) B arg min
z∈D

‖z − v‖ and distD(v) B inf
z∈D
‖z − v‖.

The former is a set-valued mapping whenever D is nonconvex, whereas the latter is always
single-valued. The indicator function of a set D ⊂ �m is the function δD : �m → � defined
as δD(v) = 0 if v ∈ D, and δD(v) = ∞ otherwise. If D is nonempty and closed, then δD

is proper and lsc. The proximal mapping of δD is the projection ΠD; thus, ΠD is locally
bounded. Given z ∈ D, the limiting normal cone to D at z is the closed cone

N lim
D (z) B lim sup

v→z
cone (v − ΠD(v)).

Observe that, for all v, z ∈ �m, we have the implication

z ∈ ΠD(v) ⇒ v − z ∈ N lim
D (z), (2.3)

whereas the converse does not hold in general. For any proper and lsc function h : �n → �
and a point x̄ with h(x̄) finite, we have

∂h(x̄) =
{
v ∈ �n

∣∣∣(v,−1) ∈ N lim
epi h(x̄, h(x̄))

}
where epi h B {(x, α) ∈ �n ×�

∣∣∣ h(x) ≤ α} denotes the epigraph of h.

Lemma 2.1. Let D ⊂ �m be nonempty and closed. Furthermore, let c : �n → �m

be continuously differentiable. We consider the function ϑ : �n → � given by ϑ(x) B
1
2 dist2

D(c(x)) for all x ∈ �n. Then, for each x∗ ∈ �n, we have

∂ϑ(x∗) ⊆ ∇c(x∗)>(c(x∗) − ΠD(c(x∗)).

Proof. We define ψ : �m → � by means of ψ(y) B 1
2 dist2

D(y) for all y ∈ �m and observe
that ϑ = ψ ◦ c. From [39, Thm 1.110] and [45, Ex. 8.53], we find ∂ψ(y∗) = y∗ − ΠD(y∗) for
all y∗ ∈ �m. Thus, the subdifferential chain rule from [39, Thm 3.41] yields the claim.

6

2.2 Stationarity Concepts and Qualification Conditions
We now define some basic concepts and discuss stationarity conditions for (P). As the cost
function q B f + g is possibly extended-real-valued, feasibility of a point must account for
the its domain.

Definition 2.2 (Feasibility). A point x∗ ∈ �n is called feasible for (P) if x∗ ∈ dom q and
c(x∗) ∈ D.

Working under the assumption that the constraint set D is nonconvex, a plausible sta-
tionarity concept for addressing (P) is that of Mordukhovich-stationarity, which exploits
limiting normals to D; cf. [37, §3] and [39, Thm 5.48].

Definition 2.3 (M-stationarity). Let x∗ ∈ �n be a feasible point for (P). Then x∗ is called
a Mordukhovich-stationary point of (P) if there exists a multiplier y∗ ∈ �m such that

0 ∈ ∂q(x∗) + ∇c(x∗)>y∗ (2.4a)

y∗ ∈ N lim
D (c(x∗)). (2.4b)

Notice that these conditions implicitly require the feasibility of x∗, for otherwise the
subdifferential and limiting normal cone would be empty. Note that this definition coincides
with the usual KKT conditions of (P) if g is smooth and D is a convex set.

Subsequently, we study an asymptotic counterpart of this definition. In case where q is
locally Lipschitz continuous, one could apply the notions from [32, §2.2] and [37, §5.1]
for that purpose. However, since g is assumed to be merely lsc, we need to adjust these
concepts at least slightly.

Definition 2.4 (AM-stationarity). Let x∗ ∈ �n be a feasible point for (P). Then x∗ is
called an asymptotically M-stationary point of (P) if there exist sequences {xk}, {ηk} ⊂ �n

and {yk}, {ζk} ⊂ �m such that xk q→ x∗, ηk → 0, ζk → 0 and

ηk ∈ ∂q(xk) + ∇c(xk)>yk (2.5a)

yk ∈ N lim
D (c(xk) + ζk) (2.5b)

for all k ∈ �.

The definition of an AM-stationary point is similar to the notion of an asymptotic KKT
(AKKT) point [11], as well as the meaning of the iterates xk and the Lagrange multipliers
yk. Notice that Definition 2.4 does not require the sequence {yk} to converge. The vector ηk

measures the dual infeasibility, namely the inexactness in the stationarity condition (2.5a)
at xk and yk. The vector ζk is introduced to account for the fact that the condition c(xk) ∈
D can be violated along the iterates, though it (hopefully) holds asymptotically. As the
corresponding (limiting) normal cone N lim

D (c(xk)) would be empty in this case, it would
not be possible to satisfy the inclusion yk ∈ N lim

D (c(xk)). The sequence {ζk} remedies this
issue and gives a measure of primal infeasibility, as we will attest. Finally, the convergence
xk q→ x∗, which is not restrictive in situations where g is continuous, will be important later
on when taking the limit in (2.5a) since we aim to recover the limiting subdifferential of the

7

objective function as stated in (2.3). Let us note that a slightly different notion of asymptotic
stationarity has been introduced for rather general optimization problems in Banach spaces
in [35, Definition 6.4, Remark 6.5]. Therein, different primal sequences are used for the
objective function and the constraints.

A local minimizer for (P) is M-stationary only under validity of a suitable qualification
condition, which, by non-Lipschitzness of g, will depend on the latter function as well, see
[30] for a discussion. However, we can show that each local minimizer of (P) is always
AM-stationary. Related results can be found in [35, Thm 6.2] and [37, §5.1].

Proposition 2.5. Let x∗ ∈ �n be a local minimizer for (P). Then, x∗ is an AM-stationary
point for (P).

Proof. By local optimality of x∗ for (P), we find some ε > 0 such that q(x) ≥ q(x∗) is valid
for all x ∈ Bε(x∗) B

{
x ∈ �n

∣∣∣ ‖x − x∗‖ ≤ ε
}

which are feasible for (P). Consequently, x∗ is
the uniquely determined global minimizer of

minimize
x

q(x) +
1
2
‖x − x∗‖2

subject to c(x) ∈ D, x ∈ Bε(x∗).
(2.6)

Let us now consider the penalized surrogate problem

minimize
x,s

q(x) +
k
2
‖c(x) − s‖2 +

1
2
‖x − x∗‖2

subject to x ∈ Bε(x∗), s ∈ D ∩ B1(c(x∗))
(P(k))

where k ∈ � is arbitrary. Noting that the objective function of this optimization problem is
lower semicontinuous while its feasible set is nonempty and compact, it possesses a global
minimizer (xk, sk) ∈ �n×�m for each k ∈ �. Without loss of generality, we assume xk → x̃
and sk → s̃ for some x̃ ∈ Bε(x∗) and s̃ ∈ D ∩ B1(c(x∗)).

We claim that x̃ = x∗ and s̃ = c(x∗). To this end, we note that (x∗, c(x∗)) is feasible to
(P(k)) which yields the estimate

q(xk) +
k
2
‖c(xk) − sk‖2 +

1
2
‖xk − x∗‖2 ≤ q(x∗) (2.7)

for each k ∈ �. Using lower semicontinuity of q as well as the convergences c(xk) → c(x̃)
and sk → s̃, taking the limit k → ∞ in (2.7) gives c(x̃) = s̃ ∈ D. Particularly, x̃ is feasible
for (2.6). Therefore, the local optimality of x∗ implies q(x∗) ≤ q(x̃). Furthermore, we find

q(x̃) +
1
2
‖x̃ − x∗‖2 ≤ lim inf

k→∞

(
q(xk) +

k
2
‖c(xk) − sk‖2 +

1
2
‖xk − x∗‖2

)
≤ q(x∗) ≤ q(x̃).

Hence, x̃ = x∗, and noting that (2.7) gives q(xk) ≤ q(x∗) for each k ∈ �,

q(x∗) ≤ lim inf
k→∞

q(xk) ≤ lim sup
k→∞

q(xk) ≤ q(x∗),

8

i.e., xk q→ x∗ follows.
Due to xk → x∗ and sk → c(x∗), we may assume without loss of generality that {xk} and

{sk} are taken from the interior of Bε(x∗) and B1(c(x∗)), respectively. Thus, for each k ∈ �,
(xk, sk) is an unconstrained local minimizer of

(x, s) 7→ q(x) +
k
2
‖c(x) − s‖2 +

1
2
‖x − x∗‖2 + δD(s).

Let us introduce ϑ : �n × �m → � by means of ϑ(x, s) B g(x) + δD(s) for each pair
(x, s) ∈ �n ×�m. Applying [39, Prop. 1.107, 1.114], we find

(0, 0) ∈ (∇f (xk) + k∇c(xk)>(c(xk) − sk) + xk − x∗, k(sk − c(xk)
)

+ ∂ϑ(xk, sk)

for each k ∈ �. The decoupled structure of ϑ and [39, Thm 3.36] yield the inclusion
∂ϑ(xk, sk) ⊂ ∂g(xk)×N lim

D (sk) for each k ∈ �. Thus, setting ηk B x∗− xk, yk B k(c(xk)− sk),
and ζk B sk − c(xk) for each k ∈ � while observing that ∂q(xk) = ∇f (xk) + ∂g(xk) holds,
we have shown that x∗ is AM-stationary for (P).

In order to guarantee that local minimizers for (P) are not only AM- but already M-
stationary, the presence of a qualification condition is necessary. The subsequent definition
generalizes the constraint qualification from [37, §3.2] to the non-Lipschitzian setting and
is closely related to the so-called uniform qualification condition introduced in [35, Defini-
tion 6.8].

Definition 2.6 (AM-regularity). Let x∗ ∈ �n be a feasible point for (P). Define the set-
valued mappingM : �n ×�m ⇒ �n by

M(x, z) B ∂g(x) + ∇c(x)>N lim
D (c(x) − z).

Then x∗ is called asymptotically M-regular for (P) if

lim sup
x

g→x∗
z→0

M(x, z) ⊂ M(x∗, 0).

Note that AM-regularity of some feasible point x∗ ∈ �n for (P) reduces to

lim sup
x→x∗
z→0

∇c(x)>N lim
D (c(x) − z) ⊂ ∇c(x∗)>N lim

D (c(x∗)) (2.8)

whenever g is locally Lipschitz continuous around x∗ since x ⇒ ∂g(x) is locally bounded
at x∗ in this case, see [39, Corollary 1.81]. We also observe that (2.8) corresponds to the
concept of AM-regularity which has been used in [32, 37] where q is assumed to be at least
locally Lipschitz continuous, and this condition has been shown to serve as a comparatively
weak constraint qualification. Sufficient conditions for the validity of the more general
qualification condition from Definition 2.6 can be distilled in a similar way as in [35].

As a corollary of Proposition 2.5, we find the following result, along the lines of [35,
Proposition 6.9].

9

Corollary 2.7. Let x∗ ∈ �n be an AM-regular AM-stationary point for (P). Then, x∗ is
an M-stationary point for (P). Particularly, each AM-regular local minimizer for (P) is
M-stationary.

3 Augmented Lagrangian Method
Constrained minimization problems such as (P) are amenable to be addressed by means
of augmented Lagrangian methods. Introducing the slack variable s ∈ �m, (P) can be
equivalently rewritten as

minimize
x, s

q(x) subject to c(x) − s = 0, s ∈ D. (PS)

Notice that (PS) is a particular problem in the form of (P). Moreover, if g is smooth, and
thus so is q, then (PS) falls into the problem class analyzed in [32]. We use the lifted refor-
mulation (PS) as a theoretical tool to develop our approach for solving (P) and investigate
its properties. For some penalty parameter µ > 0, let us define the µ-augmented Lagrangian
function LS

µ : �n ×�m ×�m → � associated to (PS) as

LS
µ(x, s, y) B q(x) + δD(s) + 〈y, c(x) − s〉 + 1

2µ
‖c(x) − s‖2

= q(x) + δD(s) +
1

2µ
‖c(x) + µy − s‖2 − µ

2
‖y‖2. (3.1)

Observe that, by adopting the indicator δD, the constraint s ∈ D is considered hard, in the
sense that it must be satisfied exactly. These simple, nonrelaxable lower-level constraints
have been discussed, e.g., in [1, 11, 16, 32].

We now exploit the structure arising from the original problem (P) in order to eliminate
the slack variable s, on the vein of the proximal augmented Lagrangian approach [20, 23].
Given some µ > 0 and y ∈ �m, the explicit minimization of LS

µ(x, ·, y) yields the set-valued
mapping Sµ(·, y) : �n ⇒ �m,

Sµ(x, y) B arg min
s
LS
µ(x, s, y) = ΠD (c(x) + µy). (3.2)

Injecting back into LS
µ(x, ·, y) any arbitrary element of Sµ(x, y), namely evaluating the aug-

mented Lagrangian on the set corresponding to the explicit minimization over the slack
variable s, we obtain the (single-valued) augmented Lagrangian functionLµ : �n×�m → �
associated to (P):

Lµ(x, y) B min
s
LS
µ(x, s, y) = q(x) +

1
2µ

dist2
D(c(x) + µy) − µ

2
‖y‖2. (3.3)

We highlight that the term dist2
D : �m → � is not continuously differentiable in general, as

the projection onto D is a set-valued mapping.
The algorithm we are about to present requires, at each (outer) iteration, the minimiza-

tion of Lµ(·, y), given some µ > 0 and y ∈ �m. This nested-loops structure naturally arises

10

in the augmented Lagrangian framework, as it does more generally in nonlinear program-
ming. A similar method can be obtained by considering the joint minimization ofLS

µ(·, ·, y),
with respect to both, primal and slack variables. One can easily check that the problems
minLµ(·, y) and minLS

µ(·, ·, y) are equivalent in the sense that x∗ is a local (global) mini-
mizer of minLµ(·, y) if and only if (x∗, s∗), for arbitrary s∗ ∈ Sµ(x∗, y), is a local (global)
minimizer of (PS); cf. (3.2).

The subproblems are usually solved only approximately, in some sense, for the sake
of computational efficiency. Given some tolerance ε ≥ 0, we say that x∗ ∈ �n is an ε-
approximate stationary (or ε-stationary) point for Lµ(·, y) if

∃η ∈ �n, ‖η‖ ≤ ε : η ∈ ∂xLµ(x∗, y). (3.4)

By the local Lipschitzness of the squared distance function, [39, Thm 3.36] and Lemma
2.1, we have the inclusion

∂xLµ(x∗, y) ⊂ ∂q(x∗) +
1
µ
∇c(x∗)>[c(x∗) + µy − ΠD(c(x∗) + µy)]. (3.5)

Furthermore, x∗ is ε-stationary for Lµ(·, y) if (and only if) there exists s∗ ∈ Sµ(x∗, y) such
that x∗ is ε-stationary for LS

µ(·, s∗, y), since it is

∂xLS
µ(x∗, s∗, y) = ∂q(x∗) +

1
µ
∇c(x∗)>[c(x∗) + µy − s∗]. (3.6)

This shows that the two subproblem formulations are intimately connected and, in par-
ticular, that a slack variable s∗ is needed in that it provides a certificate of (approximate)
stationarity for some primal variable x∗.

The following Section 3.1 contains a detailed statement of our algorithmic framework,
whose convergence analysis is presented in Section 3.2. Then, suitable termination crite-
ria are discussed in Section 3.3. In Section 4 we consider the numerical solution of the
subproblems and propose a method to solve minLµ(·, y) directly, that is, without slack
variables.

3.1 Algorithm
This section presents an augmented Lagrangian method for the solution of constrained
structured programs of the form (P), under Assumption I. As the augmented Lagrangian
constitutes a framework, rather than a single algorithm, several methods have been pre-
sented in the past decades, expressing the foundational ideas in different flavors. Some
prominent contributions are those in [8, 11, 16, 28, 34, 48], and for primal-dual methods
[27]. In the following, we focus on a safeguarded augmented Lagrangian scheme inspired
by [11, Alg. 4.1] and investigate its convergence properties. Compared to the classical aug-
mented Lagrangian or multiplier penalty approach for the solution of nonlinear programs
[8], this variant uses a safeguarded update rule for the Lagrange multipliers and has stronger
global convergence properties. Although we restrict our analysis to this specific algorithm,
analogous results can be obtained for others with minor changes.

11

Algorithm 1 Augmented Lagrangian method for (P)
Initialize Select µ0 > 0, θ, κ ∈ (0, 1) and Y ⊂ �m nonempty bounded
For k = 0, 1, 2 . . .
1.1: Select ŷk ∈ Y and εk ≥ 0
1.2: Compute an εk-approximate stationary point xk of Lµk(·, ŷk)
1.3: Select sk ∈ Sµk(xk, ŷk) such that xk is εk-stationary for LS

µk
(·, sk, ŷk)

1.4: Set yk ← ŷk + [c(xk) − sk]/µk

1.5: if k = 0 or ‖c(xk) − sk‖ ≤ θ ‖c(xk−1) − sk−1‖ then
1.6: Set µk+1 ← µk

1.7: else

1.8: Select µk+1 ∈ (0, κµk]

The overall method is stated in Algorithm 1. First of all, a primal-dual starting point is
not explicitly required. In practice, however, the subproblems at step 1.2 should be solved
starting from the current primal estimate xk−1, thus exploiting initial guesses. The safe-
guarded dual estimate ŷk is drawn from a bounded set Y ⊂ �m at step 1.1. Although not
necessary, the choice of ŷk should also depend on the current dual estimate yk−1. Moreover,
the choice of Y can take advantage of a priori knowledge of D and its structure, in or-
der to generate better dual estimates. For instance, if D ⊂ �m is compact and convex, we
may select Y = [−ymin, ymax]m for some ymin, ymax > 0, whereas if D = �m

+ , we may more
accurately choose Y = [−ymin, 0]m; cf. [32, 48]. In practice, it is advisable to choose the
safeguarded multiplier estimate ŷk as the projection of the Lagrange multiplier yk−1 onto Y ,
thus effectively adopting the classical approach as long as yk−1 remains within Y .

The augmented Lagrangian functions and subproblems discussed above appear at steps
1.2 and 1.3. Considering the proximal augmented Lagrangian function Lµ instead of the
lifted LS

µ not only results in smaller subproblems, but also guarantees the exact, global
optimality of the slack variable, since the inclusion s ∈ Sµ(x, y) is satisfied by construction.
Although a suitable sk can be obtained at step 1.2, as it is implicitly employed to verify
approximate stationarity, we prefer to display xk and sk as computed at different steps, thus
highlighting that the subproblems at step 1.2 involve the primal variable x only. Conversely,
step 1.3 requires no additional effort in practice. Section 4 is devoted to the numerical
solution of the subproblems, discussing several approaches. Note that step 1.3 simplifies
significantly if D is convex. In this case, one simply needs to find the (uniquely determined)
element in Sµ(xk, ŷk) by evaluating the projection operator.

Step 1.4 entails the classical first-order Lagrange multiplier estimate. The update rule is
designed around (3.6) and leads to the inclusion (2.5a) for the primal-dual estimate (xk, yk).
The monotonicity test at step 1.5 is adopted to monitor primal infeasibility along the iter-
ates. The penalty parameter is reduced at step 1.8 in case of insufficient decrease, effectively
implementing a simple feedback strategy to drive ‖c(xk) − sk‖ to zero.

Before proceeding to the convergence analysis, we highlight a different interpretation
of the method. As first observed in [44], the augmented Lagrangian method on the primal
problem has an associated proximal point method on the dual problem. Introducing the

12

auxiliary variable r ∈ �m, we rewrite the augmented Lagrangian subproblem minLS
µ(·, ·, y)

as
minimize

x, s, r
q(x) + δD(s) +

1
2µ
‖r − µy‖2 subject to c(x) − s + r = 0

and then, by eliminating the slack variable s, as

minimize
x, r

q(x) +
1

2µ
‖r − µy‖2 subject to c(x) + r ∈ D.

The latter reformulation amounts to a proximal dual regularization of (P) and corresponds
to a lifted representation of minLµ(·, y), thus showing that the approach effectively consists
in solving a sequence of subproblems, each one being a proximally regularized version of
(P). Yielding feasible and more regular subproblems, this (proximal) regularization strategy
has been explored and exploited in different contexts; some recent works are, e.g., [21, 36,
42].

3.2 Convergence Analysis
Throughout our convergence analysis, we assume that Algorithm 1 is well-defined, thus
requiring that each subproblem at step 1.2 admits an approximate stationary point. More-
over, the following statements assume the existence of some accumulation point x∗ for a
sequence {xk} generated by Algorithm 1. In general, coercivity or (level) boundedness ar-
guments should be adopted to verify this precondition.

Due to their practical importance, we focus on affordable, or local, solvers, which return
merely stationary points, for the subproblems at step 1.2. Instead, we do not present results
on the case where the subproblems are solved to global optimality. The analysis would fol-
low the classical results in [11, Chapter 5] and [34], see [35, §6.2] as well. In summary,
feasible problems would lead to feasible accumulation points that are global minima, in
case of existence. For infeasible problems, infeasibility would be minimized and the objec-
tive cost minimum for the minimal infeasibility.

Proposition 3.1 shows that the Lagrange multiplier vanishes for constraints that are
inactive in the limit, independently of the feasibility of the limit point. Notice that the
assertion can be easily refined by exploiting the separable structure of D, if available. For
instance, considering a hyperbox, every step in the proof can be applied componentwise,
recovering the classical result [11, Thm 4.1].

Proposition 3.1. Let Assumption I hold and consider a sequence {xk} of iterates gener-
ated by Algorithm 1. Let x∗ be an accumulation point of {xk} and {xk}K a subsequence
such that xk →K x∗. If c(x∗) ∈ int D, then yk = 0 for all k ∈ K large enough.

Proof. Let c(x∗) ∈ int D , ∅ and consider the two cases:

(i) If µk → 0, by boundedness of {ŷk} and continuity of c, there exists k0 ∈ K such that
c(xk) + µkŷk ∈ int D for all k ∈ K, k ≥ k0.

13

(ii) If {µk} is bounded away from zero, it follows from steps 1.5 and 1.8 that ‖c(xk) −
sk‖ →K 0. Then, by continuity of c and xk →K x∗, sk →K c(x∗) ∈ int D follows.
Hence, there exists k1 ∈ K such that sk ∈ int D for all k ∈ K, k ≥ k1.

In both cases, since sk ∈ ΠD(c(xk) + µkŷk) by definition, we obtain sk = c(xk) + µkŷk for all
k ∈ K large enough. Consequently, by step 1.4, it is yk = 0.

Like all penalty-type methods in the nonconvex setting, Algorithm 1 may generate ac-
cumulation points that are infeasible for (P). Patterning standard arguments, the following
result gives conditions that guarantee feasibility of limit points, cf. [10, Ex. 4.12], [32, Prop.
4.1]. A proof is included in the Additional Material (p. 34).

Proposition 3.2. Let Assumption I hold and consider a sequence {xk} of iterates gener-
ated by Algorithm 1. Then, each accumulation point x∗ of {xk} is feasible for (P) if one
of the following conditions holds:

(i) {µk} is bounded away from zero, or

(ii) there exists some B ∈ � such that Lµk(xk, ŷk) ≤ B for all k ∈ �.

The following convergence result provides fundamental theoretical support to Algo-
rithm 1. It shows that, under subsequential attentive convergence, any feasible accumula-
tion point is an AM-stationary point for (P).

Theorem 3.3. Let Assumption I hold and consider a sequence {xk} of iterates generated
by Algorithm 1 with εk → 0. Let x∗ be a feasible accumulation point of {xk} and {xk}K a
subsequence such that xk q→K x∗. Then, x∗ is an AM-stationary point for (P).

Proof. From steps 1.2 to 1.4 of Algorithm 1, we have that

ηk ∈ ∂q(xk) + ∇c(xk)>yk (3.7)

for some ηk ∈ �n, ‖ηk‖ ≤ εk. Define ζk B sk − c(xk) for all k ∈ �, where sk ∈ Sµk(xk, ŷk)
by step 1.3. We claim that the four subsequences {xk}K , {ηk}K , {yk}K and {ζk}K generated
by Algorithm 1 satisfy the properties in Definition 2.4 and therefore show that x∗ is an
AM-stationary point for (P).

By construction, we have xk q→K x∗ and ‖ηk‖ ≤ εk →K 0. Further, from steps 1.3 and
1.4 of Algorithm 1, we obtain that, for all k ∈ �,

yk =
c(xk) + µkŷk − sk

µk
∈ N lim

D (sk) = N lim
D (c(xk) + ζk), (3.8)

where the inclusion follows from sk ∈ Sµk(xk, ŷk), (2.3), and the cone property of N lim
D (sk).

It remains to show that ζk →K 0. To this end, we consider two cases.

(i) If {µk} is bounded away from zero, steps 1.5 and 1.8 of Algorithm 1 imply that ‖ζk‖ =

‖c(xk) − sk‖ → 0 for k → ∞.

14

g(x)

x

N lim
epi g(0, 0)

epi g
∂g(0) × {−1}

1

1

−1

0

(a) Computation of ∂g(0).

Lµk(x, 0)

x
k = 1

k = 2

k = 3

x1x2x3

0

1

(b) Iterates xk for k ∈ {1, 2, 3}.

Figure 1: Visualizations for Example 3.4.

(ii) Instead, if µk → 0, we exploit the continuity of the distance function and, using the
triangle inequality, we obtain that

‖ζk‖ = ‖c(xk) + µkŷk − µkŷk − sk‖
≤ ‖c(xk) + µkŷk − sk‖ + ‖µkŷk‖
= distD(c(xk) + µkŷk) + ‖µkŷk‖ →K 0,

where the limit follows from boundedness of {ŷk} and feasibility of x∗.

Overall, this proves that x∗ is an AM-stationary point for (P).

The additional assumption xk q→K x∗ in Theorem 3.3 is trivially satisfied if g is continu-
ous on its domain since all iterates of Algorithm 1 belong to dom g. However, the following
one-dimensional example illustrates that this additional requirement is indispensable in a
discontinuous setting.

Example 3.4. We consider n B m B 1 and set D B (−∞, 0],

∀x ∈ � : f (x) B 0, g(x) B
{

x if x ≤ 0,
1 − x otherwise, c(x) B x.

Note that g is merely lsc at x∗ B 0, and that ∂g(x∗) = [1,∞), cf. Figure 1a. Although x∗ is
the global maximizer of the associated problem (P), x∗ is not an M-stationary point; in fact,
x∗ is not even AM-stationary. Since ∇f (x∗) = 0, ∇c(x∗) = 1 and N lim

D (c(x∗)) = [0,∞), there
is no y∗ ∈ N lim

D (c(x∗)) such that 0 ∈ ∇f (x∗) + ∂g(x∗) + ∇c(x∗)>y∗.
We apply Algorithm 1 with Y B {0}, µ0 B 1, θ B 1/4, and κ B 1/2. This may yield

sequences {xk} and {µk} given by x0 B µ0 and xk B µk B 21−k for each k ∈ �, k ≥ 1, , cf.
Figure 1b. Hence, we have xk → x∗ and, crucially, not xk q→ x∗.

The next result readily follows from Corollary 2.7 and Theorem 3.3.

Corollary 3.5. Let Assumption I hold and consider a sequence {xk} of iterates generated
by Algorithm 1 with εk → 0. Let x∗ be a feasible and AM-regular accumulation point of
{xk} and {xk}K a subsequence such that xk q→K x∗. Then, x∗ is an M-stationary point for
(P).

15

We note that related results have been obtained in [14, Thm 3.1] and [35, Cor. 6.16]. In
[14], however, the authors in most cases overlooked the issue of attentive convergence in the
definition of the limiting subdifferential for discontinuous functions so that their findings
are not reliable.

Constrained optimization algorithms aim at finding feasible points and minimizing the
objective function subject to constraints. Employing affordable local optimization tech-
niques, one cannot expect to find global minimizers of any infeasibility measure. Never-
theless, the next result proves that Algorithm 1 with bounded {εk} finds stationary points
of an infeasibility measure. Notice that this property does not require εk → 0, but only
boundedness; cf. [11, Thm 6.3].

Proposition 3.6. Let Assumption I hold and consider a sequence {xk} of iterates gen-
erated by Algorithm 1 with {εk} bounded. Let x∗ be an accumulation point of {xk} and
{xk}K a subsequence such that xk q→K x∗. Then, (x∗, q(x∗)) is an M-stationary point of the
feasibility problem

minimize
(x,α)∈epi q

dist2
D(c(x)). (3.9)

If q is locally Lipschitz continuous at x∗, then x∗ is an M-stationary point of the constraint
violation

minimize
x

dist2
D(c(x)). (3.10)

Proof. By Proposition 3.2(i), if {µk} is bounded away from zero, then each accumulation
point x∗ is feasible for (P), namely it is a global minimizer of the problems (3.9) as well as
(3.10) and an M-stationary point thereof by Lipschitzianity of the objective function, see
[39, Prop 5.3]. Hence, it remains to consider the case µk → 0.

Owing to steps 1.2 and 1.3 of Algorithm 1, for all k ∈ K it is sk ∈ Sµk(xk, ŷk) =

ΠD(c(xk) + µkŷk) and

ηk ∈ ∂q(xk) + ∇c(xk)>
[
ŷk + (c(xk) − sk)/µk

]
for some ηk ∈ �n, ‖ηk‖ ≤ εk; cf. (3.6). This gives us

(ηk − ∇c(xk)>[ŷk + (c(xk) − sk)/µk],−1) ∈ N lim
epi q(xk, q(xk)).

Multiplying by µk > 0 and exploiting that N lim
epi q(xk, q(xk)) is a cone, we have

(µkη
k − ∇c(xk)>[c(xk) + µkŷk − sk],−µk) ∈ N lim

epi q(xk, q(xk)). (3.11)

We note that by boundedness of {c(xk) + µkŷk}K , {sk}K is also bounded by definition of the
projection. Hence, we may assume sk →K s∗ for some s∗ ∈ �m without loss of generality.
Taking the limit k →K ∞ in (3.11), the robustness of the limiting normal cone and xk q→K x∗

yield
(−∇c(x∗)>[c(x∗) − s∗], 0) ∈ N lim

epi q(x∗, q(x∗)).

Observing that the graph of the set-valued projection ΠD is closed, we also have s∗ ∈
ΠD(c(x∗)). Taking Lemma 2.1 into account, (x∗, q(x∗)) is an M-stationary point of (3.9).

16

Finally, assume that q is locally Lipschitz continuous at x∗. Then, due to [39, Cor. 1.81],
we have

(y∗, 0) ∈ N lim
epi q(x∗, q(x∗)) ⇒ y∗ = 0,

so that the above arguments already show M-stationarity of x∗ for (3.10).

3.3 Termination Criteria
Steps 1.2 and 1.3 involve the minimization of the augmented Lagrangian function defined
in (3.3). Then, the dual update at step 1.4 allows to draw conclusions with respect to the
original problem (P), as shown by Theorem 3.3.

Owing to (3.7)–(3.8) and recalling the AM-stationarity conditions (2.5), one may se-
lect a zero sequence {εk} ⊂ �++ at step 1.1. Then, given some user-defined tolerances
εdual, εprim > 0, it is reasonable to declare successful convergence when the conditions

εk ≤ εdual and ‖c(xk) − sk‖ ≤ εprim

are satisfied. Theorem 3.3 demonstrates that these termination criteria (the latter, in par-
ticular) are satisfied in finitely many iterations if any subsequence of {xk} accumulates at
a feasible point x∗. As this might not be the case, a mechanism for (local) infeasibility
detection is needed, and usually included in practical implementations; see [4, 13].

Given some tolerances, Algorithm 1 can be equipped with relaxed conditions on de-
crease requirements at step 1.5 and optimality at step 1.2. At step 1.1 the inner tolerance εk

can stay bounded away from zero, as long as εk ≤ εdual for large k ∈ �. Similarly, the condi-
tion at step 1.5 can be relaxed by adding the (inclusive) possibility that ‖c(xk)− sk‖ ≤ εprim.
Finally, at step 1.6 a nonmonotone update is allowed, namely the penalty parameter can be
increased, as long as some watchdog procedures are in place to avoid cycling [10].

4 Inner Problem and Solver
In this section we elaborate upon step 1.2 of Algorithm 1 that aims at minimizing the
augmented Lagrangian functionLµ(·, y) defined in (3.3). As mentioned in Section 3.1, steps
1.2 and 1.3 could be combined and performed by jointly minimizing LS

µ(·, ·, y), that is, with
respect to both primal and slack variables. Owing to the structure of LS

µ(·, ·, y), defined in
(3.1), any suitable method for composite optimization could be adopted for this task.

We take a different approach, in order to solve subproblems without slack variables,
and aim at solving minLµ(·, y) using any algorithm for two-terms composite optimization,
ruling out three-terms splitting methods. Moreover, to avoid ruining the problem structure,
we split terms in Lµ(·, y) by leaving the nonsmooth cost function g alone, and not paired
with dist2

D(·). Consequently, the proximal mapping oracle of g can be readily exploited.
However, this pairing yields a second term f + dist2

D(c(·) + µy)/µ that is not continuously
differentiable, since the projection onto D is possibly set-valued, thus hindering the direct
application of proximal gradient algorithms as presented in [22, 33]. In Section 4.1 we
show it is indeed possible to adopt any adaptive proximal gradient method to minimize
Lµ(·, y), in a remarkably transparent way.

17

4.1 Proximal Gradient with an Oracle
This section is dedicated to showing that the subproblems at step 1.2 of Algorithm 1 can be
solved by any suitable off-the-shelf method for two-terms composite optimization. Here, by
suitable solvers we mean those that can cope with a smooth cost term having only locally
Lipschitz continuous gradient, see [33] as well. The proposed algorithm heavily relies on
PANOC+ [22], retaining its lightweight iterations and convergence guarantees, although
the overall approach is more general and of interest in its own right. Accordingly, one may
replace PANOC+ in the following discussion with any suitable proximal gradient method.

Let µ > 0 and y ∈ �m be fixed and denote ψ : �n×�m → � the smooth part ofLS
µ(·, ·, y)

and h : �m → � the indicator onto the constraint set, namely according to (3.1)

ψ(x, s) B f (x) +
1

2µ
‖c(x) + µy − s‖2 − µ

2
‖y‖2, h(s) B δD(s). (4.1)

Then, the joint minimization of LS
µ(·, ·, y) can be written as

minimize
x, s

ϕ(x, s), where ϕ(x, s) B ψ(x, s) + g(x) + h(s). (4.2)

Concurrently, one can consider the cost function as effectively dependent on x only. Pat-
terning the transition from LS

µ(·, ·, y) to Lµ(·, y) in Section 3, we suppose that an oracle
O is available that performs the explicit (exact, global) minimization of ϕ with respect to
s ∈ �m, apparently alluding to (3.2). Let O : �n ⇒ �m be the set-valued mapping defined
by

O(x) B arg min
s

ϕ(x, s) = arg min
s

ψ(x, s) + h(s) = Sµ(x, y). (4.3)

Accordingly, and owing to the separable problem structure, the reduced cost functions
ϕred : �n → � and ψred : �n → � can be defined by

ϕred(x) B inf
s
ϕ(x, s) and ψred(x) B inf

s
ψ(x, s) + h(s). (4.4)

Notice that ϕred = ψred + g = Lµ(·, y), in light of (3.3), and, for all x ∈ dom g, it is O(x) ⊆
dom h and thus ϕred(x) < ∞.

We proceed by detailing an algorithm for solving (4.2), namely minimizing the aug-
mented Lagrangian LS

µ(·, ·, y) including the slack variables. In order to exploit the under-
lying problem structure, an oracle O is introduced that performs the explicit minimiza-
tion over the slack variables, on the vein of “magic steps” [11, 17]. Then, we prove well-
definedness of the algorithm and investigate its convergence properties. Finally, we show
that the iterates generated by such an algorithm coincide with those of the original PANOC+

for minimizing Lµ(·, y), that is, for solving the augmented Lagrangian subproblem without
slack variables. In particular, it is demonstrated that one can invoke PANOC+ and, at all
x ∈ �n, employ the term ∇xLS

µ(x, s, y) with any s ∈ Sµ(x, y) as a proxy of the gradient
oracle.

It should be stressed that we use PANOC+ with an oracle only as a formal tool, a virtual
algorithm for solving (4.2), as it is in fact transparent to the user that could as well be using
PANOC+ for minimizing Lµ(·, y).

18

Algorithm 2 PANOC+ with an oracle

Require x0 ∈ �n, γ0 ∈ (0, γg), D ≥ 0, α, β ∈ (0, 1)
Initialize k ← 0, and start from step 2.4
2.1: γk ← γk−1

2.2: Select an update direction dk ∈ �n with ‖dk‖ ≤ D‖x̄k−1 − xk−1‖ and set τk = 1
2.3: Set xk = (1 − τk)x̄k−1 + τk(xk−1 + dk)
2.4: Select sk ∈ O(xk) and use it to evaluate ψred(xk) // oracle

2.5: Compute x̄k ∈ Tγk(xk, sk) and set Φk as in (4.5)
2.6: Select s̄k ∈ O(x̄k) and use it to evaluate ψred(x̄k) // oracle

2.7: if ψred(x̄k) > ψred(xk) +
〈
∇xψ(xk, sk), x̄k − xk

〉
+ α

2γk
‖x̄k − xk‖2 then

γk ← γk/2, and go back to step 2.2 if k > 0, or step 2.5 if k = 0

2.8: if k > 0 and Φk > Φk−1 − β 1−α
2γk−1
‖x̄k−1 − xk−1‖2 then

τk ← τk/2 and go back to step 2.3

2.9: k ← k + 1 and start the next iteration at step 2.1

Before discussing Algorithm 2, we define some tools and characterize the problem.
Given any γ > 0, let Tγ : �n ×�m ⇒ �n denote the proximal gradient mapping defined by

Tγ(x, s) B proxγg(x − γ∇xψ(x, s)).

Proposition 4.1. Consider Eqs. (4.1) to (4.4) and let Assumption I hold. Then,

(i) ψ : �n × �m → � is continuously differentiable with locally Lipschitz continuous
derivatives;

(ii) ϕ : �n ×�m → � is proper, lsc, and ϕ(x, s) is level-bounded in s locally uniformly
in x;

(iii) ψred : �n → � is continuous;

(iv) O : �n ⇒ �m is locally bounded, nonempty- and compact-valued.

Proof. Assertions 4.1(i)-4.1(ii) directly follow from the definitions in (4.1), (4.2) and As-
sumptions I(i) and I(ii). Then, owing to 4.1(ii) and continuity of ψ by 4.1(i), [45, Thm
1.17(c)] yields assertion 4.1(iii). Finally, by the properties of ΠD [45, Thm 1.25], assertion
4.1(iv) is a direct consequence of Assumption I(i).

Existence of a solution for (4.2) is guaranteed by Assumption I together with the fol-
lowing.

Assumption II. In (4.2), ϕ is bounded from below, i.e., inf ϕ > −∞.

19

The aforementioned proximal gradient method equipped with an oracle is stated in Al-
gorithm 2, that coincides with PANOC+ [22] when variable s is neglected. Some comments
are in order.

First, the method requires a starting point x0 for x only, not for s. Then, by invoking the
oracle at steps 2.4 and 2.6, it is sk ∈ O(xk) and s̄k ∈ O(x̄k) for all k ∈ �, so that the cost
function ψ is effectively evaluated only on the set described by the explicit minimization
over s.

The proximal gradient update at step 2.5 and the backtracking condition at step 2.7
for adapting the stepsize γk are concerned with variable x only. Analogously, the merit Φk

evaluated at step 2.5 is defined by

Φk = ψred(xk) +
〈
∇xψ(xk, sk), x̄k − xk

〉
+

1
2γk
‖x̄k − xk‖2 + g(x̄k). (4.5)

Invoked in the linesearch backtracking condition at step 2.8, Φk plays the role of a (partial)
forward-backward envelope (FBE) of ϕ at (xk, sk) with stepsize parameter γk [22, 53]. We
say it is partial because it relies on a quadratic model of ψ with respect to x only.

Overall, these observations show that Algorithm 2 is equivalent to PANOC+ applied
to the minimization problem minψred + g. The arbitrariness of the element chosen by the
oracle O allows to keep variable s implicit, making the virtual algorithm transparent to the
user and thus a formal tool only.

4.2 Convergence Analysis
In this section we investigate the convergence properties of Algorithm 2. The results and
proofs stated in the following closely pattern those presented in [22], with minor adjust-
ments to account for the differences with respect to the original PANOC+. To avoid trivial-
ities, it is assumed that x̄k , xk always holds. This is consistent with stopping criteria based
on the proximal gradient residual, as discussed in Section 4.3.

Furthermore, we will consider the case x0 ∈ dom g, possibly discarding the first iteration
but without affecting the convergence analysis. In fact, even if x0 < dom g, it is x1 ∈ dom g
by step 2.5, s1 ∈ dom h by step 2.6, accepted at the first attempt by step 2.7, by the local
boundedness of the proximal operator.

We are going to show first that Algorithm 2 is well defined, namely that each and every
iteration terminates in finite time. This is an essential theoretical and practical condition
that an implementable algorithm must satisfy. A detailed proof has been included in the
Additional Material (p. 34).

20

Lemma 4.2 (Well definedness). Let Assumptions I and II hold and consider the iterates
generated by Algorithm 2. The following hold:

(i) At every iteration, the number of backtrackings at steps 2.7 and 2.8 is finite.

(ii) At the end of the k-th iteration (k ≥ 1), one has

ϕ(x̄k, s̄k) + δk ≤ Φk ≤ Φk−1 − βδk−1 where δk B
1 − α
2γk
‖x̄k − xk‖2.

(iii) Every iterate (x̄k, s̄k) remains within lev≤Φ0 ϕ, where Φ0 < ∞.

Proof. Patterning the proof of [22, Lem. 4.2], the assertion is demonstrated by induction on
k and exploiting two more facts. First, the oracle O defined in (4.3) gives the upper bound
ψred(x̄k) ≤ ψ(x̄k, sk) + h(sk), adopted to show that the condition at step 2.7 is violated after
finitely many attempts. Then, local boundedness of O by Proposition 4.1(iv) is sufficient
for the linesearch backtracking at step 2.8 to successfully terminate.

We next consider an asymptotic analysis of the algorithm. The proof of the following
assertions adheres to that of [22, Thm 4.3] and uses Proposition 4.1(iv). A full proof is
provided in the Additional Material (p. 36).

Theorem 4.3 (Asymptotic analysis). Let Assumptions I and II hold and consider a se-
quence of iterates generated by Algorithm 2. The following hold:

(i) {Φk} converges to a finite value ϕ? ≥ inf ϕ from above.

(ii)
∑

k∈�
1
γk
‖x̄k − xk‖2 < ∞.

(iii) limk→∞ ‖xk − x̄k‖ = limk→∞ ‖xk − xk−1‖ = limk→∞ ‖x̄k − x̄k−1‖ = 0, and in particular
the set of accumulation points of {xk} is closed and connected, and coincides with
that of {x̄k}.

(iv)
∑

k∈� γk = ∞.

(v) lim infk→∞ 1
γk
‖x̄k − xk‖ = 0.

(vi) Consider the following assertions:

(1) ϕ is level bounded;

(2) {x̄k} and {s̄k} are bounded;

(3) {xk} and {sk} are bounded;

(4) {γk} is asymptotically constant, i.e., there exist κ ∈ � and γκ > 0 such that
γk = γκ for every k ≥ κ.

One has (1) ⇒ (2) ⇔ (3) ⇒ (4).

If the iterates {xk} remain bounded, as is the case when ϕ is level bounded, the proximal
stepsize γk is asymptotically constant, owing to Theorem 4.3(vi). The following global

21

convergence result is inspired by those in [22, 50, 53].

Theorem 4.4 (Subsequential convergence). Let Assumptions I and II hold and consider
a sequence {(xk, sk)} of iterates generated by Algorithm 2. Suppose that {xk} remains
bounded and that the set ω of accumulation points of {xk} is nonempty. Let x? ∈ ω and
s? ∈ O(x?). Then (x?, s?) is a stationary point of ϕ.

Proof. Up to possibly discarding early iterates, in light of the boundedness of the se-
quences, γk is asymptotically constant by Theorem 4.3(vi), and we may assume that γk ≡
γ > 0 holds for all k. Let x? ∈ ω and s? ∈ O(x?) be arbitrary but fixed, and {x̄k}K a sub-
sequence such that x̄k →K x?, so that xk →K x? too as it follows from Theorem 4.3(iii).
Letting ϕ? be as in Theorem 4.3(i) and invoking Lemma 4.2(ii), lower semicontinuity of ϕ
yields ϕ(x?, s?) ≤ ϕ?. Conversely, we have

ϕ? = lim
k∈K

Φk

= lim
k∈K

ψred(xk) +
〈
∇xψ(xk, sk), x̄k − xk

〉
+

1
2γ
‖x̄k − xk‖ + g(x̄k)

≤ lim sup
k∈K

ψred(xk) +
〈
∇xψ(xk, sk), x? − xk

〉
+

1
2γ
‖x? − xk‖ + g(x?)

= ψred(x?) + g(x?) = ϕ(x?, s?) ≤ ϕ?,

owing to continuity of ψred and ∇ψ by Proposition 4.1, and the fact that ‖xk − x̄k‖ vanishes.
By step 2.5, the minimizing property of x̄k and Fermat’s rule imply that

0 ∈ ∇xψ(xk, sk) + ∂g(x̄k) +
1
γ

(x̄k − xk)

for all k ∈ �. By lower semicontinuity of g and since x̄k →K x?, necessarily g(x̄k)→K g(x?)
and taking the limit for k →K ∞ leads to the inclusion 0 ∈ ∂xϕ(x?, s?), since sk ∈ O(xk) for
all k ∈ �. Furthermore, it is necessarily 0 ∈ ∂sϕ(x?, s?), whence the claimed stationarity of
(x?, s?). The arbitrarity of (x?, s?) proves the assertion.

4.3 Termination Criteria
Algorithm 2 runs indefinitely, generating an infinite sequence of iterates. Suitable termina-
tion criteria should be inserted for stopping and returning an iterate that, in some sense, sat-
isfactorily solves (4.2). Since s̄k ∈ O(x̄k) for all k ∈ �, it suffices to check the (approximate)
stationarity of x̄k. The ε-stationarity of a solution (x∗, s∗) requires some η ∈ �n, ‖η‖ ≤ ε,
such that η ∈ ∂xϕ(x∗, s∗); cf. (3.4). Equivalently, it must be that dist{0}(∂xϕ(x∗, s∗)) ≤ ε.
Following [22, §4.2], we retort to the necessary optimality condition in the minimization
problem defining the proximal mapping at step 2.5, that reads

0 ∈ ∂g(x̄k) + ∇xψ(xk, sk) +
1
γk

(x̄k − xk)

22

and, combined with ∂xϕ(x̄k, s̄k) = ∇xψ(x̄k, s̄k) + ∂g(x̄k), yields the upper bound

dist{0}(∂xϕ(x̄k, s̄k)) ≤
∥∥∥∥∥ 1
γk

(xk − x̄k) − ∇xψ(xk, sk) + ∇xψ(x̄k, s̄k)
∥∥∥∥∥.

Therefore, owing to the convergence guarantees presented in Section 4.2, it is reasonable
to equip Algorithm 2 with the termination condition∥∥∥∥∥ 1

γk
(xk − x̄k) − ∇xψ(xk, sk) + ∇xψ(x̄k, s̄k)

∥∥∥∥∥ ≤ ε, (4.6)

given some tolerance ε > 0.

5 Numerical Examples
This section presents a numerical implementation of Algorithm 1 and discusses its be-
haviour on some illustrative examples, showcasing the flexibility offered by the constrained
structured programming framework. In particular, we consider challenging problems where
the cost function is nonsmooth and nonconvex or where the constraints are inherently non-
convex by a disjunctive structure of the respective set D. In Section 5.2 we demonstrate the
benefit of accelerated proximal-gradient methods for solving the subproblems by means of
a simple two-dimensional problem where a nonsmooth variant of the Rosenbrock function
is minimized over a set of combinatorial structure. Next, Section 5.3 is dedicated to a bi-
nary optimal control problem with nonlinear dynamics, free final time and switching costs,
where we display and discuss weaknesses of our approach. Section 5.4 deals with a test
collection of portfolio optimization problems from [26] which are equipped with a noncon-
vex sparsity-promoting term in the objective function. Finally, in Section 5.5 we address
a class of matrix recovery problems discussed e.g. in [47] where the rank of the unknown
matrix has to be minimized.

5.1 Implementation
We have implemented the proposed approach in the “Augmented Lagrangian Proximal
Solver” (ALPS), an open-source software package in the Julia language [9]. ALPS can
solve constrained structured problems of the form (P) and is available online at

https://github.com/aldma/Bazinga.jl,

together with the examples presented in the following sections. ALPS can be used to solve a
wide spectrum of optimization problems, requiring only first-order primitives, i.e., gradient,
proximal mapping and projections. The augmented Lagrangian subproblems at step 1.2 of
Algorithm 1 are solved by default using the implementation of PANOC+ [22] offered by
ProximalAlgorithms.jl [49]. The method is implemented matrix-free, that is, the constraint
Jacobian ∇c does not need to be explicitly formed as only Jacobian-vector products ∇c(x)>v
are required.

The solver requires the data functions f , g, c and constraint set D specified as objects
returning the oracles discussed at the end of Section 1. Further, the initialization requires

23

https://github.com/aldma/Bazinga.jl
https://github.com/JuliaFirstOrder/ProximalAlgorithms.jl

a primal-dual starting point (x0, y0) ∈ �n × �m. The default safeguarding set Y in �m is
Y = [−ymax, ymax]m, with ymax = 1020, and the safeguarded dual estimate ŷk at step 1.1 is
chosen as the projection of yk−1 onto Y . User override of this oracle allows for tailored
choices of Y , possibly exploiting the structure of D [48].

ALPS initializes Algorithm 1 by replacing x0 with an arbitrary element of proxγg(x0) ⊂
dom q, where γ = εM and εM denotes the machine epsilon of a given floating-point system.
The examples presented in the following are in double precision (Float64), so εM ≈ 2.22 ·
10−16. The inner tolerances εk at step 1.1 are constructed as a sequence of decreasing values,
defined by the recurrence

εk+1 = max{κεεk, ε
dual}, (5.1)

starting from ε0 B
√
εdual and given some κε ∈ (0, 1) [10]. The initial penalty parameter

µ0 is automatically chosen by default, similarly to [11, Eq. 12.1]. Given x0 ∈ dom q, we
evaluate the constraints c0 B c(x0), select an arbitrary element p0 ∈ ΠD(c0) and compute
the vector d0 B c0 − p0. Then, the vector µ0 ∈ �m of penalty parameters is selected
componentwise as follows:

(µ0)i B max
{

10−8,min
{

1
10

max{1, (d0
i)2/2}

max{1, q(x0)} , 108
}}
, (5.2)

effectively scaling the contribution of each constraint [16, 11]. Then, according to the over-
all feasibility-complementarity of the iterate, the penalty parameters are updated in uni-
son at step 1.8, since using a different penalty parameter for each constraint is theoreti-
cally worse than using a common parameter [2, §3.4]; we set µk+1 B κµk, for some fixed
κ ∈ (0, 1).

The default parameters in ALPS are θ = 0.8, κ = 0.5 and κε = 0.1, termination tol-
erances εprim = εdual = 10−6, and a maximum number of (outer) iterations, whose default
value is 100.

5.2 Nonsmooth Rosenbrock and Either-Or Constraints
Let us consider a two-dimensional optimization problem involving a nonsmooth Rosenbrock-
like objective function and either-or constraints, namely set-membership constraints entail-
ing an inclusive disjunction. It reads

minimize
x

10(x2 + 1 − (x1 + 1)2)2 + |x1| subject to x2 ≤ −x1 ∨ x2 ≥ x1 (5.3)

and admits a unique (global) minimizer x? = (0, 0). The feasible set is nonconvex and
connected; see Figure 2. We cast (5.3) into the form of (P) by defining the data functions
as

f (x) B 10(x2 + 1 − (x1 + 1)2)2, g(x) B |x1|, c(x) B
(−x1 − x2

−x1 + x2

)
,

and let the constraint set be D B DEO, where the (nonconvex) set

DEO B {(a, b)
∣∣∣ a ≥ 0 ∨ b ≥ 0} = {(a, b)

∣∣∣ a ≥ 0} ∪ {(a, b)
∣∣∣ b ≥ 0}

describes the either-or constraint.

24

−4 −2 0 2 4

−4

−2

0

2

4

x1

x 2

101 102 103

102

104

106

LBFGS

no
ac

ce
le

ra
tio

n

no iter. limit
max 104 iter.

Figure 2: Setup and results for the illustrative problem (5.3). Left: Feasible region (gray back-
ground), objective contour lines and grid of starting points. The global minimizer x? = (0, 0) is
found in all cases. Right: Comparison of inner iterations needed without acceleration against
LBFGS acceleration; each mark corresponds to a starting point and the gray line has unitary
slope.

We consider a uniform grid of 212 = 441 starting points x0 in [−5, 5]2 and let the
initial dual estimate be y0 = 0. Also, we compare the performance of ALPS by solving
the subproblems using PANOC+ without or with acceleration. In the latter case, we use the
default acceleration in ProximalAlgorithms.jl, namely LBFGS directions with memory 5.
Furthermore, we also observe the effect of setting a limit to the number of iterations the
inner solver is allowed to take.

ALPS solves all the problem instances, approximately (tolerance 10−3 in Euclidean dis-
tance) reaching x? = (0, 0) in all cases. Figure 2 depicts the feasible region of (5.3), some
contour lines of its objective function and the grid of starting points x0. Over all problems,
ALPS with no acceleration takes at most 4 548 892 (cumulative) inner iterations to find a
solution (median 7 864), whereas with LBFGS directions only 5 345 inner iterations are
needed at most (median 38). By limiting the subsolver to 104 iterations, ALPS still man-
ages to solve all problem instances; in this configuration it requires at most 72 762 inner
iterations (same median). A more detailed comparison in Figure 2 demonstrates that not
only the accelerated method usually requires far less iterations, but also that its behaviour
is more consistent, as the majority of cases spread over a narrow interval. These results sup-
port the claim that (quasi-Newton) acceleration techniques can give a mean to cope with
bad scaling and ill-conditioning [50, 52].

5.3 Sparse Switching Time Optimization
Constrained structured programming offers a flexible language for modeling a variety of
problems. In this section we consider the sparse binary optimal control of Lotka-Volterra

25

https://github.com/JuliaFirstOrder/ProximalAlgorithms.jl

dynamics. Known as the fishing problem [46, §6.4], it is typically stated as

minimize
x,u

∫ T

0
‖x(t) − 1‖2dt (5.4)

subject to ẋ1(t) = x1(t)[−c1u(t) − x2(t) + 1] for a.e. t ∈ [0,T],
ẋ2(t) = x2(t)[−c2u(t) + x1(t) − 1] for a.e. t ∈ [0,T],
x(0) = x0,

u(t) ∈ {0, 1} for t ∈ [0,T],

where final time T = 12, initial state x0 B (0.5, 0.7) and parameters c = (0.4, 0.2) are
given and fixed. In order to showcase the peculiar features of (P), we focus on a variant of
the fishing problem with switch costs and free, although constrained, final time. First, the
problem is reformulated as a finite-dimensional one by adopting the switching time opti-
mization approach, that consists in optimizing the times at which the control input changes,
given a fixed sequence of N admissible controls [46, §5.2]. We call switching intervals the
time between these switching times and collect them in a vector τ ∈ �N . Clearly, they must
take nonnegative values and sum up to the final time T . Furthermore, considering the chat-
tering solution exhibited by the fishing problem [46, §6.5], we introduce switch costs to
penalize solutions that show frequent switching of the binary control trajectory, yielding
more practical results. Following [19], [20, Chapter 2], switch costs can be interpreted as
a regularization term and modeled using the `0 quasi-norm of the switching intervals, ef-
fectively counting how many control inputs in the given control sequence are active. The
resulting problem formulation reads

minimize
τ

f (τ) + δ�+
(τ) + σ‖τ‖0 subject to 1>τ ∈ D. (5.5)

Here, the smooth cost function f returns the tracking cost, by integrating the dynamics,
starting from the initial state, for the given sequence of control inputs and switching inter-
vals. The nonnegativity constraint δ�+

and sparsity-promoting cost σ‖ · ‖0 form the nons-
mooth cost function g in (P); despite g being nonconvex and discontinuous, its proximal
mapping can be easily evaluated [19, §3.2]. The nonnegative parameter σ controls the im-
pact of the `0 regularization and can be interpreted as the switching cost. The only constraint
remained explicit is the one on the final time T B 1>τ. Hence, the constraint set D ⊆ �+ is
constituted by the admissible values for T .

We consider the binary control sequence {0, 1, 0, . . . , 1} with N B 24 intervals. A back-
ground time grid with n = 200 points is adopted to integrate dynamics and evaluate sensi-
tivities, following the linearization approach of [51]. We solve (5.5) for increasing values
of the switching cost parameter σ ∈ {10−6, 10−5, . . . , 10}. For the first problem, the ini-
tial guess τ0 corresponds to uniform switching intervals with the final time T = 12 usually
fixed in (5.4). Then, following a continuation approach, a solution is adopted as initial guess
for the subsequent problem, but always with dual estimate y0 = 0. Moreover, we consider
two cases for the constraint set D. First, we let D B [0, 12] and ALPS returns solutions
whose final time reaches values around T ≈ 8.5. Then, we consider a second case with the
disconnected constraint set D B [5, 7] ∪ [10, 12], so to impact on the solution.

ALPS is able to find reasonable solutions that satisfy the constraints, despite the non-
convexity of the switching time approach [46, Appendix B.4], the discrete nature of the

26

0.5

1

1.5

x 1

0 2 4 6 8 10

0.6

0.8

1

time t

x 2

1.3

1.4

tr
ac

ki
ng

co
st

10−6 10−4 10−2 100

10

15

20

switching cost parameter

ac
tiv

e
in

te
rv

al
s

Figure 3: Results for the illustrative problem (5.5) using switching time optimization with a se-
quence of 24 binary controls and several values for the switching cost parameter σ. Left: Pro-
hibited region for the final time (gray background) and state trajectories with (blue) or without
(red) constraint. Right: Comparison of the resulting tracking cost and number of nonzero vari-
ables, corresponding to active intervals (circle). Identical control trajectories can be obtained
with fewer active intervals (square), yielding lower switching cost.

sparse regularizer and the constraint set D being disconnected. It should be stressed, how-
ever, that there are no guarantees on the quality of these solutions and, in fact, the solutions
found by ALPS are poor in terms of objective value, as we are about to show.

The state trajectories are depicted in Figure 3, for both cases, along with a compari-
son of the tracking cost and number of active intervals against the switching cost parameter
σ. First, we observe that the trajectories are not strongly affected, despite the dramatic
increase of σ (relative to the tracking cost). Moreover, the solver performs only few iter-
ations, needed to adjust the dual estimate and verify the termination criteria. In practice,
the iterates remain trapped around a minimizer with high objective value, and a huge value
of σ is required for jumping to a lower objective value. This becomes apparent looking at
‖τ‖0, namely the number of active intervals. Given a sequence of control inputs, several
choices of switching intervals can give the same state trajectory, hence the same track-
ing cost. Among these, we would expect the solver to return one with minimum number
of nonzeros. For instance, vectors of switching intervals in the form (α + β, 0, 0, . . .) and
(0, 0, α+β, . . .) should be preferred over (α, 0, β, . . .), for they yield the same control trajec-
tory whilst having fewer nonzero elements. The solutions returned by ALPS are compared
against equivalent although sparser ones in Figure 3. Clearly, and not surprisingly, the so-
lutions obtained are far from being globally optimal.

27

5.4 Sparse Portfolio Optimization
Let us consider portfolio optimization problems in the form

minimize
x

1
2

x>Qx + α‖x‖0
subject to µ>x ≥ %, 1>n x = 1, 0 ≤ x ≤ u.

(5.6)

The problem data Q ∈ �n×n and µ ∈ �n denote the covariance matrix and the mean of
n ∈ � possible assets, respectively, while % ∈ � is a lower bound for the expected return.
Furthermore, u ∈ �n provides an upper bound for the individual assets within the portfolio.
Aiming at a sparse portfolio, and in contrast with cardinality-constrained formulations, see
e.g. [32], we use the `0 quasi-norm as a regularization term that penalizes the number of
chosen assets within the portfolio.

We reformulate the model in the form of (P) by letting f be the quadratic cost, g the
nonsmooth cost and indicator of the bounds, c : �n → �m, m B 2, defined by c(x) B
[µ, 1n]>x and D B [%,∞) × {1}.

Through a mixed-integer quadratic program formulation of (5.6), which can be obtained
via the theory provided in [25], we compute a solution using CPLEX [18], for comparison.
Based on our experiences from Section 5.3, we also solve (5.6) using a continuation proce-
dure: the `0 minimization is warm-started at a primal-dual point found replacing the discon-
tinuous `0 function with either the norm `1 B ‖ · ‖1 or the p-th power of the `p quasi-norm,
i.e., `p

p B ‖ · ‖p
p (p = 0.5) and solving the corresponding problem. Notice that (5.6) with the

`0- replaced by the `1-term boils down to a convex quadratic program; in fact, it is ‖x‖1 = 1
for each feasible point of (5.6) by the nonnegativity and equality constraints.

The data Q, µ, % and u is taken from the test problem collection [26], which has been
created randomly and is available from the webpage https://commalab.di.unipi.it/
datasets/MV/. Here, we used all 30 test instances of dimension n B 200 and the two
different values α ∈ {10, 100} for each problem.

Let us mention that ALPS solved all problem instances. Below, we comment on some
median values for our experiments with parameters α = 10/100: a direct use of `0 min-
imization resulted in 15/10 outer and 138/257 inner iterations, while warm-starting with
the continuous `p

p function required 13/9 outer and 240/781 inner iterations. Let us point
the reader’s attention to the fact that the `p

p-warm-started `0 minimization did not affect the
solution sparsity, i.e., the numbers of nonzero components of the obtained solutions were
the same with and without an additional round of `0 minimization after the `p

p warm-start.
Although one cannot expect to find a global minimum in general, we recall that the stan-
dard `1 regularization does not work in this example, whereas the nonconvex `

p
p penalty

already leads to very sparse solutions.

5.5 Matrix Completion with Minimum Rank
For some ` ∈ �, ` ≥ 2, let us consider N ∈ � points x1, . . . , xN ∈ �` and define a block
matrix X ∈ �N×` by means of X B [x1, x2, . . . , xN]>. Let D ∈ �N×N denote the Euclidean
distance matrix associated with these points, given by Di j B ‖xi − x j‖2 = (xi − x j)>(xi − x j)
for all i, j ∈ I B {1, . . . ,N}. We aim at recovering X based on a partial knowledge of D. In

28

https://commalab.di.unipi.it/datasets/MV/
https://commalab.di.unipi.it/datasets/MV/

100 101 102100

101

102

nonzeros `0

#
no

nz
er

os
`1, `0

`
p
p, `0

CPLEX

Figure 4: Results for the portfolio problem (5.6): Comparison of the solutions found with `0,
CPLEX and `0 warm-started with `1 or `p

p. We depict the number of nonzero entries of the
solutions found, for α = 10 (dot) and α = 100 (circle). The gray line has unitary slope.

particular, we assume that Ω ⊂ I2 is a set of pairs such that only the entries Di j, (i, j) ∈ Ω,
of D are known.

Following [47], we lift the problem by introducing a symmetric matrix B B XX> whose
rank is, by construction, smaller than or equal to `. Hence, we seek a matrix B ∈ �N×N that
satisfies the symmetry constraint B = B> and the distance constraints associated with the
observations, i.e., Bii + B j j − Bi j − B ji = Di j has to hold for all (i, j) ∈ Ω. Among these
admissible matrices, those with minimum rank are preferred.

Let us consider problems of type

minimize
B

g(B)

subject to Bii + B j j − Bi j − B ji = Di j ∀(i, j) ∈ Ω,

Bi j = B ji ∀i, j ∈ I, j < i

(5.7)

where the function g : �N×N → � encodes a matrix regularization term. In the following,
we consider g B rank B ‖σ(·)‖0, the nuclear norm g B ‖ · ‖∗ B ∑

i σi(·) or the p-powered
Schatten p-quasi-norm g B ‖ · ‖p

p B
∑

i σi(·)p, p ∈ (0, 1), where σ(A) denotes the vector of
singular values of a matrix A.

Denoting mo B |Ω| and ms B N(N − 1)/2 the number of observation and symmetry
constraints, respectively, there are n B N2 variables and m B mo + ms constraints in (5.7).
We reformulate the model in the form of (P) by setting f B 0, D B {0m} and a constraint
function c : �N×N → �m returning the observation and symmetry constraints stacked in
vector form.

For our experiments, we chose N ∈ {10, 15, 20}, ` = 5, mo = b(n − ms)/3c, p = 0.5 and
consider 20 randomly generated instances for each value of N. We generate X ∈ �N×` by
sampling the standard normal distribution, i.e., Xi j ∼ N(0, 1), (i, j) ∈ I2, and then compute
D. Finally, we sample observations by selecting mo different entries of D with uniform
probability.

29

102 103 104 105
0

5

10

15

20

inner iters

ra
nk

nuclear norm
Schatten quasi-norm
rank

Figure 5: Results for the matrix recovery problem (5.7): Comparison of (accumulated) inner
iteration numbers and rank of the solutions found with different formulations, including warm-
started rank minimization (circle).

We run our solver ALPS with default options, and abstain from setting an iteration
limit for the subproblem solver. The initial guess B0 ∈ �N×N is chosen randomly based
on B0

i j ∼ N(0, 1), (i, j) ∈ I2, whereas the dual initial guess is fixed to y0 B 0m. We
invoke ALPS directly for solving (5.7) with the different cost functions mentioned above.
Additionally, the solutions obtained with nuclear norm and Schatten quasi-norm as cost
functions, which are at least continuous, are used as initial guesses for another round of
minimization exploiting the discontinuous rank functional.

We depict the results of our experiments in Figure 5. Minimization based on the (con-
vex) nuclear norm produces matrices with rank between 3 and 8, while the use of the
Schatten quasi-norm culminates in solutions having rank between 2 and 5. These findings
outperform the direct minimization of the rank which results in matrices of rank between
7 and 20. This behavior is not surprising since (5.7) possesses plenty of non-global min-
imizers in case where minimization of the discontinuous rank is considered, and ALPS
can terminate in such solutions. Let us mention that, out of 60 instances, the warm-started
rank minimization yields further reduction of the rank in one case after minimization of
the Schatten quasi-norm and 9 cases after minimization of the nuclear norm; in all other
cases, no deterioration has been observed. In summary, ALPS manages to find feasible so-
lutions of (5.7) in all cases, and with adequate objective value in cases where we minimize
the nuclear norm or the Schatten quasi-norm. These solutions can be used as initial guesses
for a warm-started minimization of the rank via ALPS or tailored mixed-integer numerical
methods.

6 Conclusions
We presented the class of constrained structured optimization problems and proposed a
general-purpose solver based on augmented Lagrangian and proximal methods. The outer
augmented Lagrangian loop generates a sequence of subproblems, each one being a dual

30

proximal regularization of the original, that can be solved by off-the-shelf proximal al-
gorithms for composite optimization. Requiring only first-order primitives, such as gradi-
ent and proximal mapping oracles, and projections onto the constraint set, the method is
matrix-free and allows the seamless integration of routines for special problem structures.
The proposed method is easily warm started to reduce the number of iterations and can take
advantage of accelerated methods.

We have implemented our algorithm in the open-source ALPS solver, disentangled from
modeling tools and subproblem solvers. Thanks to its low memory footprint and simple,
yet fast and robust iterations, ALPS can handle large-scale problems and is suitable for em-
bedded applications. We tested our approach numerically with problems arising in mixed-
integer optimal control, sparse portfolio optimization and minimum-rank matrix comple-
tion. Illustrative examples showed the flexibility and descriptive power of constrained struc-
tured programs, the benefits of implicit formulations and the impact of accelerated methods
for solving the inner problems.

Acknowledgements
Alberto De Marchi wishes to thank Prof. Andreas Themelis (Kyushu University), for shar-
ing his insight and rigour. The support and guidance of Prof. Matthias Gerdts (Universität
der Bundeswehr München) is also gratefully acknowledged.
Xiaoxi Jia and Christian Kanzow acknowledge support by the German Research Foun-
dation (DFG) within the priority program Non-smooth and Complementarity-based Dis-
tributed Parameter Systems: Simulation and Hierarchical Optimization (SPP 1962) under
grant numbers KA 1296/24-2.

References
[1] R. Andreani, E. G. Birgin, J. M. Martínez, and M. L. Schuverdt. On augmented Lagrangian methods

with general lower–level constraints. SIAM Journal on Optimization, 18(4):1286–1309, 2008.

[2] R. Andreani, G. Haeser, L. M. Mito, A. Ramos, and L. D. Secchin. On the best achievable quality of
limit points of augmented Lagrangian schemes. Numerical Algorithms, 2021.

[3] H. Antil, D. P. Kouri, and D. Ridzal. ALESQP: An augmented Lagrangian equality-constrained SQP
method for optimization with general constraints. URL http://www.optimization-online.org/
DB_HTML/2021/01/8232.html, 2020.

[4] P. Armand and N. N. Tran. Rapid infeasibility detection in a mixed logarithmic barrier-augmented
Lagrangian method for nonlinear optimization. Optimization Methods and Software, 34(5):991–1013,
2019.

[5] E. Balas. Disjunctive Programming. Springer, Cham, 2018.

[6] A. Beck and N. Hallak. Optimization problems involving group sparsity terms. Mathematical Pro-
gramming, 2018.

[7] M. Benko and P. Mehlitz. On implicit variables in optimization theory. Journal of Nonsmooth Analysis
and Optimization, 2:7215, 2021.

[8] D. P. Bertsekas. Constrained Optimization and Lagrange Multiplier Methods. Athena Scientific, 1996.

[9] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A fresh approach to numerical computing.
SIAM Review, 59(1):65–98, 2017.

31

http://www.optimization-online.org/DB_HTML/2021/01/8232.html
http://www.optimization-online.org/DB_HTML/2021/01/8232.html

[10] E. G. Birgin and J. M. Martínez. Augmented Lagrangian method with nonmonotone penalty parameters
for constrained optimization. Computational Optimization and Applications, 51(3):941–965, 2012.

[11] E. G. Birgin and J. M. Martínez. Practical Augmented Lagrangian Methods for Constrained Optimiza-
tion. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2014.

[12] E. Börgens, C. Kanzow, P. Mehlitz, and G. Wachsmuth. New constraint qualifications for optimization
problems in Banach spaces based on asymptotic KKT conditions. SIAM Journal on Optimization,
30(4):2956–2982, 2020.

[13] J. V. Burke, F. E. Curtis, and H. Wang. A sequential quadratic optimization algorithm with rapid
infeasibility detection. SIAM Journal on Optimization, 24(2):839–872, 2014.

[14] X. Chen, L. Guo, Z. Lu, and J. J. Ye. An augmented Lagrangian method for non-Lipschitz nonconvex
programming. SIAM Journal on Numerical Analysis, 55:168–193, 2017.

[15] P. L. Combettes and J.-C. Pesquet. Proximal splitting methods in signal processing, pages 185–212.
Springer, New York, 2011.

[16] A. R. Conn, N. I. M. Gould, and P. L. Toint. A globally convergent augmented Lagrangian algorithm
for optimization with general constraints and simple bounds. SIAM Journal on Numerical Analysis,
28(2):545–572, 1991.

[17] A. R. Conn, N. I. M. Gould, and P. L. Toint. Trust Region Methods. Society for Industrial and Applied
Mathematics, 2000.

[18] IBM ILOG Cplex. V12. 1: User’s Manual for CPLEX. International Business Machines Corporation,
46(53):157, 2009.

[19] A. De Marchi. Constrained and sparse switching times optimization via augmented Lagrangian proxi-
mal methods. In 2020 American Control Conference (ACC), pages 3633–3638, 2020.

[20] A. De Marchi. Augmented Lagrangian and Proximal Methods for Constrained Structured Optimization.
PhD thesis, Universität der Bundeswehr München, 2021.

[21] A. De Marchi. On a primal-dual Newton proximal method for convex quadratic programs. Computa-
tional Optimization and Applications, 2022.

[22] A. De Marchi and A. Themelis. Proximal gradient algorithms under local Lipschitz gradient continuity:
A convergence and robustness analysis of PANOC. URL https://arxiv.org/abs/2112.13000,
2021.

[23] N. K. Dhingra, S. Z. Khong, and M. R. Jovanović. The proximal augmented Lagrangian method for
nonsmooth composite optimization. IEEE Transactions on Automatic Control, 64(7):2861–2868, 2019.

[24] B. Evens, P. Latafat, A. Themelis, J. Suykens, and P. Patrinos. Neural network training as an optimal
control problem: An augmented Lagrangian approach. In 60th IEEE Conference on Decision and
Control (CDC), pages 5136–5143, 2021.

[25] M. Feng, J. E. Mitchell, J.-S. Pang, X. Shen, and A. Wächter. Complementarity formulations of `0-norm
optimization problems. Pacific Journal of Optimization, 14(2):273–305, 2018.

[26] A. Frangioni and C. Gentile. SDP diagonalizations and perspective cuts for a class of nonseparable
MIQP. Operations Research Letters, 35(2):181–185, 2007.

[27] P. E. Gill and D. P. Robinson. A primal-dual augmented Lagrangian. Computational Optimization and
Applications, 51(1):1–25, 2012.

[28] G. N. Grapiglia and Y. Yuan. On the complexity of an augmented Lagrangian method for nonconvex
optimization. IMA Journal of Numerical Analysis, 2020.

[29] L. Guo and Z. Deng. A new augmented Lagrangian method for MPCCs – Theoretical and numerical
comparison with existing augmented Lagrangian methods. Mathematics of Operations Research, 2021.

32

https://arxiv.org/abs/2112.13000

[30] L. Guo and J. J. Ye. Necessary optimality conditions and exact penalization for non-Lipschitz nonlinear
programs. Mathematical Programming, 168(1):571–598, 2018.

[31] M. R. Hestenes. Multiplier and gradient methods. Journal of Optimization Theory and Applications,
4(5):303–320, 1969.

[32] X. Jia, C. Kanzow, P. Mehlitz, and G. Wachsmuth. An augmented Lagrangian method for optimization
problems with structured geometric constraints. URL https://arxiv.org/abs/2105.08317, 2021.

[33] C. Kanzow and P. Mehlitz. Convergence properties of monotone and nonmonotone proximal gradient
methods revisited. URL https://arxiv.org/abs/2112.01798, 2021.

[34] C. Kanzow, D. Steck, and D. Wachsmuth. An augmented Lagrangian method for optimization problems
in Banach spaces. SIAM Journal on Control and Optimization, 56(1):272–291, 2018.

[35] A. Y. Kruger and P. Mehlitz. Optimality conditions, approximate stationarity, and applications – a story
beyond Lipschitzness. ESAIM: Control, Optimisation and Calculus of Variations, 2022. accepted for
publication.

[36] D. Ma, K. L. Judd, D. Orban, and M. A. Saunders. Stabilized optimization via an NCL algorithm.
In M. Al-Baali, L. Grandinetti, and A. Purnama, editors, Numerical Analysis and Optimization, pages
173–191. Springer, 2018.

[37] P. Mehlitz. Asymptotic stationarity and regularity for nonsmooth optimization problems. Journal of
Nonsmooth Analysis and Optimization, 1:6575, 2020.

[38] P. Mehlitz. A comparison of first-order methods for the numerical solution of or-constrained optimiza-
tion problems. Computational Optimization and Applications, 76:233–275, 2020.

[39] B. S. Mordukhovich. Variational Analysis and Generalized Differentiation, Part I: Basic Theory, Part
II: Applications. Springer, Berlin, 2006.

[40] J. J. Moreau. Proximité et dualité dans un espace hilbertien. Bulletin de la Société Mathématique de
France, 93:273–299, 1965.

[41] N. Parikh and S. Boyd. Proximal algorithms. Foundations and Trends in Optimization, 1(3):127–239,
2014.

[42] A. Potschka and H. G. Bock. A sequential homotopy method for mathematical programming problems.
Mathematical Programming, 187(1):459–486, 2021.

[43] M. J. D. Powell. A method for nonlinear constraints in minimization problems, pages 283–298. Aca-
demic Press, 1969.

[44] R. T. Rockafellar. Augmented Lagrangians and applications of the proximal point algorithm in convex
programming. Mathematics of operations research, 1(2):97–116, 1976.

[45] R. T. Rockafellar and R. J. B. Wets. Variational Analysis, volume 317. Springer, 1998.

[46] S. Sager. Numerical methods for mixed-integer optimal control problems. PhD thesis, University of
Heidelberg, 2005. Interdisciplinary Center for Scientific Computing.

[47] X. Shen and J. E. Mitchell. A penalty method for rank minimization problems in symmetric matrices.
Computational Optimization and Applications, 71(2):353–380, 2018.

[48] P. Sopasakis, E. Fresk, and P. Patrinos. OpEn: Code generation for embedded nonconvex optimization.
IFAC-PapersOnLine, 53(2):6548–6554, 2020. 21st IFAC World Congress.

[49] L. Stella and contributors. ProximalAlgorithms.jl: Proximal algorithms for nonsmooth optimization in
Julia. URL https://github.com/JuliaFirstOrder/ProximalAlgorithms.jl.

[50] L. Stella, A. Themelis, P. Sopasakis, and P. Patrinos. A simple and efficient algorithm for nonlinear
model predictive control. In 56th IEEE Conference on Decision and Control (CDC), pages 1939–1944,
2017.

33

https://arxiv.org/abs/2105.08317
https://arxiv.org/abs/2112.01798
https://github.com/JuliaFirstOrder/ProximalAlgorithms.jl

[51] B. Stellato, S. Ober-Blöbaum, and P. J. Goulart. Second-order switching time optimization for switched
dynamical systems. IEEE Transaction on Automatic Control, 62(10):5407–5414, 2017.

[52] A. Themelis. Proximal Algorithms for Structured Nonconvex Optimization. PhD thesis, KU Leuven,
Arenberg Doctoral School, 2018. Faculty of Engineering Science.

[53] A. Themelis, L. Stella, and P. Patrinos. Forward-backward envelope for the sum of two nonconvex
functions: Further properties and nonmonotone linesearch algorithms. SIAM Journal on Optimization,
28(3):2274–2303, 2018.

Additional Material

Proof of Proposition 3.2
Proof. Let x∗ ∈ �n be an arbitrary accumulation point of {xk} and {xk}K a subsequence such
that xk →K x∗. We have xk ∈ dom q for all k ∈ �, by step 1.2 of Algorithm 1, so that lower
semicontinuity of q yields x∗ ∈ dom q. It remains to consider the set-membership constraint
c(x) ∈ D.

(i) Since {µk} is bounded away from zero, the conditions at steps 1.5 and 1.8 of Algorithm
1 imply that ‖c(xk)−sk‖ → 0 for k → ∞. By the upper bound ‖c(xk)−sk‖ ≥ distD(c(xk))
for all k ∈ �, taking the limit k →K ∞ and continuity yield distD(c(x∗)) = 0, hence
c(x∗) ∈ D.

(ii) By assumption, we have

Lµk(xk, ŷk) = q(xk) +
1

2µk
dist2

D

(
c(xk) + µkŷk

)
− µk

2
‖ŷk‖2 ≤ B

for all k ∈ �. Rearranging terms yields the inequality

dist2
D

(
c(xk) + µkŷk

)
≤ 2µk[B − q(xk)] + ‖µkŷk‖2

for all k ∈ �. In view of Proposition 3.2(i), it suffices to consider the case µk → 0.
Taking the limit k →K ∞ and using the boundedness of {ŷk} ⊂ Y , we obtain

dist2
D (c(x∗)) = lim

k→K∞
dist2

D

(
c(xk) + µkŷk

)
= 0

by continuity, hence c(x∗) ∈ D.

Then, according to Definition 2.2, any accumulation point x∗ is feasible.

Proof of Lemma 4.2
Proof. Each iteration k defines or updates only variables indexed with a k sub- or super-
script, while those defined in previous iterations remain untouched. Let us index by k, j the
variables defined at the j-th attempt within iteration k.

34

• 4.2(i): We proceed by induction on k. If k = 0, the oracle is invoked only once to compute
s0 and there is no backtracking on τ. From [22, Lem. 4.1] we conclude that all the trials x̄0, j

remain confined in a bounded set Ω0, and therefore any stepsize γ0, j < min{1/Lψ,Ω0 , γg} is
accepted, since ψred(x̄k) ≤ ψ(x̄k, sk) + h(sk).

Suppose now that k > 0 and observe that, by the definition of Φk and the failure of the
condition at step 2.7, the inequality

ϕ(x̄k−1, s̄k−1) ≤ Φk−1 − 1 − α
2γk−1

‖x̄k−1 − xk−1‖2 (6.1)

holds. Since ‖dk, j‖ ≤ D‖x̄k−1 − xk−1‖ and τk, j ∈ [0, 1], any attempt xk, j defined at step 2.3
during the k-th iteration satisfies

‖xk, j − x̄k−1‖ = τk, j‖xk−1 − x̄k−1 + dk, j‖ ≤ (1 +D)‖x̄k−1 − xk−1‖
and thus remains in a bounded set, be it Ωk. To arrive to a contradiction, suppose that
γk, j ↘ 0 as j → ∞. Owing to the minimizing property of x̄k, j at step 2.5, after choosing
x = x̄k−1 and rearranging, we have that

g(x̄k, j) +
〈
∇xψ(xk, j, sk, j), x̄k, j − x̄k−1

〉
+

1
2γk, j
‖x̄k, j − xk, j‖2

≤ g(x̄k−1) +
1

2γk, j
‖x̄k−1 − xk, j‖2.

Since (xk, j) j∈� is bounded, an application of [22, Lem. 4.1] reveals that (x̄k, j)k∈� too is
bounded. Up to possibly enlarging the set, both sequences remain confined in the bounded
set Ωk, implying that the condition at step 2.7 should have terminated in finite time, whence
the sought contradiction.

Hence, γk, j is backtracked finitely many times within iteration k; up to discarding early
attempts, we may denote γk, j = γk. By the minimizing property of x̄k, j, we have

Φk, j ≤ ψred(xk, j) + g(x̄k−1) +
〈
∇xψ(xk, j, sk, j), x̄k−1 − xk, j

〉
+

1
2γk
‖x̄k−1 − xk, j‖2.

As τk, j ↘ 0, one has that xk, j → x̄k−1, by step 2.3. Proposition 4.1 guarantees continuity
of ψred and ∇ψ and local boundedness of O. Then, the right-hand side of the inequality
converges to ψred(x̄k−1) + g(x̄k−1) = ϕred(x̄k−1) = ϕ(x̄k−1, s̄k−1), overall resulting in

lim sup
j→∞

Φk, j ≤ ϕ(x̄k−1, s̄k−1)
(6.1)
≤ Φk−1 − 1 − α

2γk−1
‖x̄k−1 − xk−1‖2.

Since ‖x̄k−1 − xk−1‖ > 0 and β < 1, for j large enough the condition at step 2.8 will be
violated and therefore the k-th iteration successfully terminated.

• 4.2(ii): Follows by combining (6.1) with the failure of the condition at step 2.8 at the end
of the iteration.

• 4.2(iii): Direct consequence of assertion 4.2(ii).

35

Proof of Theorem 4.3
Proof. First, the sequence {(xk, sk)} of iterates is well-defined by Lemma 4.2.

• 4.3(i): It follows from Lemma 4.2(ii) that {Φk} is monotonically decreasing. Lower bound-
edness of ϕ gives convergence of the sequence to some finite value from above.

• 4.3(ii): A telescoping argument on the inequality in Lemma 4.2(ii) yields

β(1 − α)
∑
k∈�

1
2γk
‖x̄k − xk‖2 ≤ Φ0 − inf ϕ < ∞, (6.2)

whence the claimed finite sum.

• 4.3(iii): By assertion 4.3(ii) it follows that 1
γk
‖x̄k − xk‖2 → 0, and then it is ‖x̄k − xk‖ → 0

since γk is upper bounded. Next, by the conditions at steps 2.2 and 2.3, observe that

‖xk − xk−1‖ = ‖(1 − τk)(x̄k−1 − xk−1) + τkdk‖
≤ (1 +D)‖x̄k−1 − xk−1‖ (6.3)

and thus ‖xk − xk−1‖ vanishes, and in turn so does ‖x̄k − x̄k−1‖ since

‖x̄k − x̄k−1‖ ≤ ‖xk − x̄k‖ + ‖x̄k−1 − xk−1‖ + ‖xk − xk−1‖.

• 4.3(vi): The first implication follows from Lemma 4.2(iii), and the second one from as-
sertion 4.3(ii) and local boundedness of O by Proposition 4.1(iv). Finally, if {(xk, sk)} is
bounded, and thus so is {(x̄k, s̄k)}, the set Ωk in the proof of Lemma 4.2(i) can be taken in-
dependent of k, and asymptotic constancy of γk follows from the same arguments therein.

• 4.3(iv): By iteratively applying inequality (6.3), we obtain that

‖xk − x0‖ ≤ (1 +D)
k−1∑
j=0

‖x̄ j − x j‖ = (1 +D)
k−1∑
j=0

‖x̄ j − x j‖
γ1/2

j

γ1/2
j

≤ (1 +D)

√√√ k−1∑
j=0

‖x̄ j − x j‖2
γ j

√√√ k−1∑
j=0

γ j

(6.2)
≤ (1 +D)

√
2

Φ0 − inf ϕ
β(1 − α)

√√√ k−1∑
j=0

γ j.

Contrary to the claim, if
∑

k∈� γk < ∞ holds, then {xk} is bounded. From assertion 4.3(vi)
proven above we then infer that γk is asymptotically constant, thus contradicting the finite-
ness of

∑
k∈� γk.

• 4.3(v): Immediate consequence of assertions 4.3(ii) and 4.3(iv).

36

	Introduction
	Related Work

	Setting and Fundamentals
	Preliminaries
	Stationarity Concepts and Qualification Conditions

	Augmented Lagrangian Method
	Algorithm
	Convergence Analysis
	Termination Criteria

	Inner Problem and Solver
	Proximal Gradient with an Oracle
	Convergence Analysis
	Termination Criteria

	Numerical Examples
	Implementation
	Nonsmooth Rosenbrock and Either-Or Constraints
	Sparse Switching Time Optimization
	Sparse Portfolio Optimization
	Matrix Completion with Minimum Rank

	Conclusions
	References

