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Abstract
We present a method to solve a special class of parameter identification problems

for an elliptic optimal control problem to global optimality. The bilevel problem
is reformulated via the optimal-value function of the lower-level problem. The
reformulated problem is nonconvex and standard regularity conditions like Robinson’s
CQ are violated. Via a relaxation of the constraints, the problem can be decomposed
into a family of convex problems and this is the basis for a solution algorithm. The
convergence properties are analyzed. It is shown that a penalty method can be
employed to solve this family of problems while maintaining convergence speed. For
an example problem, the use of the identity as penalty function allows for the solution
by a semismooth Newton method. Numerical results are presented. Difficulties and
limitations of our approach to solve a nonconvex problem to global optimality are
discussed.
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1 Introduction

In this paper we study an inverse problem in which we aim to identify finitely many
parameters of an optimal control problem with a linear partial differential equation. This
results in an infinite-dimensional bilevel optimal control problem. The concept of bilevel
optimization is discussed in [Shimizu, Ishizuka, Bard, 1997; Bard, 1998; Dempe, 2002;
Dempe, Kalashnikov, et al., 2015], while [Troutman, 1996; Hinze et al., 2009; Tröltzsch,
2009; Lewis, Vrabie, Syrmos, 2012] present a comprehensive introduction to optimal
control. Bilevel optimal control problems are also studied in [Knauer, Büskens, 2010;
Fisch et al., 2012; Hatz, 2014; Kalashnikov, Benita, Mehlitz, 2015], for example. To be
more precise, we consider the parametric optimization problem

min
y∈Y, u∈U

f(β, y, u)

s.t. Ay −Bu = 0,
u ∈ Uad,

(LL(β))

where β ∈ Q ⊂ Rn is a parameter, and the sets Q, Uad, the linear operators A, B, the
spaces U , Y , and the function f are such that Assumption 2.1 is satisfied. Here u ∈ Uad
is the control, y ∈ Y is the state, and Ay = Bu describes an elliptic PDE. Assumption 2.1
guarantees that the solution of (LL(β)) is unique for each β ∈ Q, see Lemma 2.2.

The problem (LL(β)) is also called the lower-level problem. The upper-level problem
under investigation is

min
β∈Rn

F (β, y, u)

s.t β ∈ Q,
(y, u) = Ψ(β),

(UL)

where Ψ(β) describes the unique solution of (LL(β)). Our main motivation for studying
(UL) is the purpose of identifying an unknown parameter β from some (possibly perturbed)
measurements of Ψ(β), see also Section 5.

Together, the problems (LL(β)) and (UL) constitute the bilevel optimization problem.
Necessary optimality conditions of bilevel optimal control problems, i.e. hierarchical
optimization problems with two decision layers, where at least one decision maker has to
solve an optimal control problem, are derived in [Ye, 1995; 1997; Benita, Mehlitz, 2016;
Mehlitz, Wachsmuth, 2016; Mehlitz, 2017; Harder, 2021]. Recently, solution theory for
inverse optimal control problems of partial differential equation was developed in [Harder,
Wachsmuth, 2018b; Holler, Kunisch, Barnard, 2018]. We also note that optimal control
problems with variational inequality constraints such as optimal control of the obstacle
problem (see [Harder, Wachsmuth, 2018a]) can be viewed as a bilevel optimal control
problem. Regarding the numerical solution of the presented problem type, there mainly
exist (to the best of our knowledge) methods for inverse optimal control problems with
ordinary differential equations, see [Albrecht, Leibold, Ulbrich, 2012; Hatz, Schlöder,
Bock, 2012; Hatz, 2014; Albrecht, Ulbrich, 2017]. The corresponding algorithms tend to
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replace the lower-level problem with their optimality conditions. A different approach was
introduced in [Dempe, Harder, et al., 2019], where the authors solved a special class of
inverse problems of partial differential equations by exploiting the optimal-value function
of the parametric optimal control problem. The optimal-value function ϕ : Q → R of
(LL(β)) is defined by

ϕ(β) := inf
{
f(β, y, u)

∣∣ (y, u) ∈ Y × Uad, Ay = Bu
}

= f(β,Ψ(β)). (1.1)

The idea of using the optimal-value function in bilevel optimization problems can be traced
back to [Outrata, 1990]. With the help of the optimal-value function, the hierarchical
problem (UL) can be transformed into the single-level problem

min
β,y,u

F (β, y, u)

s.t. β ∈ Q,
f(β, y, u) ≤ ϕ(β),
Ay −Bu = 0,
u ∈ Uad.

(OVR)

We call this optimization problem the optimal-value reformulation of (UL). This resulting
nonconvex surrogate problem does not satisfy standard constraint qualifications such as
Robinson’s CQ. However, in [Dempe, Harder, et al., 2019, Theorem 5.12] the authors
were able to prove prove necessary optimality conditions of Clarke-stationary type via a
relaxation approach. Furthermore, [Dempe, Harder, et al., 2019, Algorithm 1] introduces
a solution algorithm using a piecewise affine approximation ξ of the optimal-value function
ϕ with ξ ≥ ϕ, which leads to the relaxed optimization problem

min
β,y,u

F (β, y, u)

s.t. β ∈ Q,
f(β, y, u) ≤ ξ(β),
Ay −Bu = 0,
u ∈ Uad.

(OVR(ξ))

If f and F are convex, this problem can be split into finitely many convex subproblems
for which a global solution can be obtained. The original problem can then be solved
by iteratively improving the approximation ξ of the optimal-value function, see [Dempe,
Harder, et al., 2019, Theorem 6.5]. In this paper we start with the same approach to derive
a global solution scheme. We slightly deviate in the construction of the piecewise affine
approximation by starting with a triangulation of the admissible set for the upper-level
control variable and subsequently enforce some regularity on further divisions. In addition
to proving convergence of the global solution scheme in Theorem 3.1, this will allow us
to link convergence speed to the size of the elements of the partition (see Theorem 3.5).
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In order to solve (OVR(ξ)), we also consider the penalty problem

min
β,y,u

F (β, y, u) + γP (f(β, y, u)− ξ(β))

s.t. β ∈ Q,
Ay −Bu = 0,
u ∈ Uad.

(OVRP(ξ))

Here, P : R→ R is a penalty function and γ > 0. Interestingly, we will see that it possible
to choose the identity P (x) = x as a penalty function. This has several benefits. On the
one hand, we show in Lemma 4.7 that a finite penalty parameter can be chosen such
that one obtains the solution of (OVR(ξ)). On the other hand, the choice of the identity
results in much simpler derivatives of the objective of (OVRP(ξ)) and this enables us to
use a semismooth Newton method to solve the subproblems efficiently, see Section 5.3.

Solving nonconvex problems to global optimality is an intricate issue, and, hence, we
expect difficulties. Indeed, our approach has some limitations concerning the obtained
convergence speed, see Remark 3.6. Especially in a practical setting convergence speed
deteriorates with an increasing dimension of the upper-level variable (curse of dimension-
ality).

Let us describe the structure of this paper. In Section 2 we present the used notation as
well as the main governing assumption in addition to some preliminary theory related
to optimal control problems. We proceed by introducing a global solution algorithm
(Algorithm 1) in Section 3 and prove its convergence in Theorem 3.1. Further we present
some convergence speed estimates in Theorem 3.5 related to the size and regularity of the
elements in the partition. To ensure this property, we derive a simple method for refining
the partition in arbitrary finite dimensions while keeping some regularity properties of the
elements, see Lemma 3.2. On top of this foundation we introduce our penalty approach
(Algorithm 2) in Section 4. We show that there exists a choice of the penalty parameter
(see Lemma 4.7), for which one can expect to find the solution to the subproblems from
Algorithm 1. A method for solving the penalty subproblems by means of a semismooth
Newton method is presented in Section 5. We show its superlinear convergence in
Theorem 5.8. The corresponding implementation of our algorithm for solving the inverse
optimal control problem and a numerical example is covered in Section 6.

2 Preliminaries

2.1 Notation

The norm in a (real) Banach space X is denoted by ‖ · ‖X . Let Bε
X(x) denote the closed

ε-ball centered at x ∈ X with respect to ‖ · ‖X . Furthermore, X? is the topological dual
of X and 〈·, ·〉X : X? ×X → R denotes the corresponding dual pairing. For a set A ⊂ X
we denote by convA, coneA, clA, intA and ∂A the convex hull, the conical hull, the
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closure, interior and the boundary of A, respectively. For a Banach space Y , the space of
all bounded linear operators from X to Y is denoted by L[X,Y ] and for some operator
F ∈ L[X,Y ] the adjoint is called F ? ∈ L[Y ?, X?]. For a convex set C ⊂ X and a point
x ∈ C we denote by

RC(x) := cone(C − x),
NC(x) := {x? ∈ X? | 〈x?, y − x〉X ≤ 0, ∀y ∈ C}

the radial cone and the normal cone to the set C at the point x ∈ C, respectively. For
x 6∈ C, we set NC(x) := ∅.

The set Rn denotes the usual n-dimensional real vector space, equipped with the Euclidean
norm ‖ · ‖Rn . The sets R+,R− represent the nonnegative and nonpositive numbers
respectively. For an arbitrary bounded and open set Ω ⊂ Rd, the space of equivalence
classes of measurable, q-integrable functions is given by Lp(Ω), q ∈ [1,∞). Similarly,
L∞(Ω) denote the space of essentially bounded (equivalence classes of) measurable
functions. The space of functions on the set Ω for which the m-th derivatives exist in
the Sobolev sense in Lp(Ω) is denoted by Wm,p(Ω). Furthermore, we use the notations
H1

0 (Ω) = clW 1,2(Ω)(C∞c (Ω)) and H−1(Ω) := H1
0 (Ω)? for the Sobolev space with first order

derivatives and homogeneous boundary conditions and its dual space.

A mapping J : X → Y is called Fréchet differentiable at x ∈ X if there exists an operator
J ′(x) ∈ L[X,Y ] such that

lim
‖d‖X→0

‖J(x+ d)− J(x)− J ′(x)d‖Y
‖d‖X

= 0. (2.1)

In this case, J ′(x) is called the Fréchet derivative of J at x. If X 3 x 7→ J ′(x) ∈ L[X,Y ]
is well defined and continuous in a neighborhood of x then J is said to be continuously
Fréchet differentiable at x.

2.2 Assumptions

Throughout this work we utilize the following standing assumption.

Assumption 2.1 (Standing assumption).

(a) The spaces Y and U are (real) Hilbert spaces.

(b) The set Q ⊂ Rn is a nonempty bounded polyhedron, i.e., a nonempty and bounded
intersection of finitely many closed halfspaces. We assume that Q possesses a
nonempty interior.

(c) The set Uad ⊂ U is nonempty, closed and convex.

(d) The operator A ∈ L[Y, Y ?] is an isomorphism and B ∈ L[U, Y ?] is a linear bounded
operator. We denote by S := A−1B ∈ L[U, Y ] the control-to-state map.
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(e) The functionals F : Q × Y × U → R and f : Q × Y × U → R are assumed to be
bounded from below, convex and continuously Fréchet differentiable.

(f) The upper-level objective functional F and the partial derivative f ′β are assumed to
be Lipschitz continuous on bounded sets, whereas f ′u and f ′y are Lipschitz continuous
w.r.t. β on bounded sets, i.e., for every M ≥ 0 there exists a constant LM ≥ 0 such
that

‖f ′β(β1, y1, u1)− f ′β(β2, y2, u2)‖Rn ≤ LM (‖β1 − β2‖Rn + ‖y1 − y2‖Y + ‖u1 − u2‖U ),
|F (β, y1, u1)− F (β, y2, u2)| ≤ LM (‖y1 − y2‖Y + ‖u1 − u2‖U ),

‖f ′u(β1, S(u), u)− f ′u(β2, S(u), u)‖U? ≤ LM ‖β1 − β2‖Rn
‖f ′y(β1, S(u), u)− f ′y(β2, S(u), u)‖Y ? ≤ LM‖β1 − β2‖Rn

hold for all β, β1, β2 ∈ Q, y1, y2 ∈ BM
Y (0) and u, u1, u2 ∈ Uad ∩BM

U (0).

(g) The reduced lower-level objective u 7→ f(β, S(u), u) is assumed to be strongly
convex with respect to the control with constant µ > 0 independent of β ∈ Q, i.e.,

f(β, S(u2), u2) ≥ f(β, S(u1), u1)+〈f ′y(·), S(u2−u1)〉+〈f ′u(·), u2−u1〉+
µ

2 ‖u2−u1‖2U

holds for all β ∈ Q and u1, u2 ∈ Uad. Here, f ′y(·) and f ′u(·) denote the partial
derivatives of f w.r.t. y and u at the point (β, S(u1), u1).

2.3 Preliminary results

Let the optimization problem
min
x∈X

J(x)

s.t. g(x) ∈ C
(OP)

be given, with continuously Fréchet differentiable mappings J : X → R, g : X → Y
between Banach spaces X, Y and C ⊂ Y being nonempty, closed and convex. A feasible
point x ∈ X of (OP) satisfies the Karush-Kuhn-Tucker (KKT) conditions if

∃λ ∈ NC(g(x)) : J ′(x) + g′(x)?λ = 0. (2.2)

If x is a local solution of (OP) which satisfies Robinson’s constraint qualification

g′(x)X −RC(g(x)) = Y, (2.3)

then the KKT conditions hold, see [Zowe, Kurcyusz, 1979] and [Bonnans, Shapiro, 2000,
Theorem 3.9]. Due to Assumption 2.1, the lower-level problem fits into the setting of
(OP). The KKT system for the lower level for a parameter β̃ in a solution (ỹ, ũ) then
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reads
0 = f ′y(β̃, ỹ, ũ) +A?p̃,

0 = f ′u(β̃, ỹ, ũ)−B?p̃+ ν̃,

0 = Aỹ −Bũ,
ν̃ ∈ NUad(ũ),

(2.4)

where p̃ ∈ Y (we identify Y ?? with Y ), ν̃ ∈ U? are multipliers. Note that Robinson’s CQ
is satisfied due to the surjectivity of A. Thus, for a minimizer of the lower-level problem
there exist multipliers such that the KKT system (2.4) is satisfied.

We can now prove that the assumption of strong convexity for the lower level implies a
quadratic growth condition in the solution.

Lemma 2.2. For every β ∈ Q, the lower-level problem (LL(β)) has a unique solution
(yβ, uβ). Moreover, the quadratic growth condition

f(β, S(u), u) ≥ f(β, yβ, uβ) + µ

2 ‖u− uβ‖
2
U ∀u ∈ Uad (2.5)

is satisfied with the parameter µ > 0 from Assumption 2.1(g).

Proof. Existence of a solution follows from the direct method of calculus of variations.
Note that the boundedness of the minimizing sequence follows from the strong convexity.

Let (yβ, uβ) denote a solution of (LL(β)). Utilizing the strong convexity in the solution
(β, yβ, uβ) yields

f(β, S(u), u) ≥ f(β, yβ, uβ) + 〈f ′u(·), u− uβ〉+ 〈f ′y(·), S(u− uβ)〉+ µ

2 ‖u− uβ‖
2
U

for all u ∈ U , where f ′u(·) and f ′y(·) denote the partial derivatives of f in (β, yβ, uβ). By
using the KKT conditions with multipliers p, ν we obtain

〈f ′u(·), u− uβ〉+ 〈f ′y(·), S(u− uβ)〉 = 〈f ′u(·) + S?f ′y(·), u− uβ〉
= 〈f ′u(·)− S?A?p, u− uβ〉
= 〈f ′u(·)−B?p, u− uβ〉
= 〈−ν, u− uβ〉 ≥ 0 ∀u ∈ Uad.

The last inequality holds since ν ∈ NUad(uβ) and u ∈ Uad. Hence, one gets the quadratic
growth condition (2.5). This also yields uniqueness of the solution.

Next, we introduce the solution operator for (LL(β)).

Definition 2.3. We denote by Ψ : Q→ Y × U the solution mapping of the lower-level
problem which maps β ∈ Q to the corresponding unique solution (yβ, uβ) given in
Lemma 2.2. We further denote by ψy(β) ∈ Y and ψu(β) ∈ U the components of Ψ(β).
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As an abbreviated notation we introduce yβ := ψy(β) and uβ := ψu(β).

We will now prove that the function Ψ is globally Lipschitz continuous. Local Lipschitz
continuity follows already by [Harder, 2021, Lemma 3.1.6]. However, by Assumption 2.1(f)
we have a stronger assumption on the derivative of f . Thus, we can adopt the arguments
from [Harder, 2021, Lemma 3.1.6] to obtain global Lipschitz continuity.

Lemma 2.4. Let X,V be Banach spaces, and let C ⊂ X, Q̂ ⊂ V be nonempty, closed
and convex sets. Further, let J : X × V → R and µ > 0 be given such that for all p ∈ Q̂,
the function J(·, p) is strongly convex with parameter µ on the feasible set C and Fréchet
differentiable. Then, the solution operator ψ : Q̂→ X for the parametrized optimization
problem

min
x

J(x, p)

s.t. x ∈ C

exists and we have the estimate

‖ψ(p2)− ψ(p1)‖X ≤ µ−1‖J ′x(ψ(p2), p1)− J ′x(ψ(p2), p2)‖X? ∀p1, p2 ∈ Q̂.

Proof. The existence of ψ follows by standard arguments for convex optimization problems
with strongly convex objectives.

We now consider fixed elements p1, p2 ∈ Q̂ and their corresponding unique minimizers
ψ(pi) = xi ∈ C, i ∈ {1, 2}. The associated optimality conditions are

〈J ′x(xi, pi), x̂− xi〉 ≥ 0 ∀x̂ ∈ C. (2.6)

If we now add these inequalities with the special choices x̂ = x3−i, we obtain the estimate

0 ≤ 〈J ′x(x1, p1)− J ′x(x2, p2), x2 − x1〉
≤ 〈J ′x(x1, p1)− J ′x(x2, p1) + J ′x(x2, p1)− J ′x(x2, p2), x2 − x1〉
≤ −µ‖x2 − x1‖2X + ‖J ′x(x2, p1)− J ′x(x2, p2)‖X?‖x2 − x1‖X .

In the last step, we have used the strong convexity of J(·, p1). Dividing the last inequality
by µ‖x2 − x1‖X yields the claim.

Corollary 2.5. The function Ψ from Definition 2.3 is Lipschitz continuous on Q. More-
over, there exists a constant MΨ ≥ 0 such that

‖β‖Rn , ‖ψy(β)‖Y , ‖ψu(β)‖U ≤MΨ ∀β ∈ Q.

Proof. We start by proving the boundedness. From Lemma 2.2, we get

f(β, yβ, uβ) + µ

2 ‖û− uβ‖
2
U ≤ f(β, S(û), û) ∀β ∈ Q
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for a fixed û ∈ Uad. Further, f(·, S(û), û) : Rn → R is continuous, thus it is bounded on
the compact set Q. Hence, one has

f(β, yβ, uβ) + µ

2 ‖û− uβ‖
2
U ≤ C ∀β ∈ Q

for some constant C ∈ R. Together with the assumption that f is bounded from below
(see Assumption 2.1(e)) we get an upper bound for ‖ψu(β)‖U = ‖uβ‖U . This also allows
us to bound ‖ψy(β)‖Y = ‖S(ψu(β))‖Y ≤ ‖S‖‖ψu(β)‖U , since S is a linear bounded
operator by assumption. Since Q is bounded, β ∈ Q is bounded as well. We choose MΨ
to be the largest of the previously discussed bounds for ‖β‖Rn , ‖ψy(β)‖Y and ‖ψu(β)‖U .

In order to prove the Lipschitzness of Ψ, we want to apply Lemma 2.4 to the state-reduced
lower-level problem, i.e., with the setting

x = u, C = Uad, p = β, Q̂ = Q, J(x, p) = J(u, β) := f(β, S(u), u).

Assumption 2.1 yields that the assumptions of Lemma 2.4 are satisfied. From the chain
rule, we get

Jx(u, β) = f ′u(β, S(u), u) + S?f ′y(β, S(u), u).

Now, Lemma 2.4 yields

‖ψu(β1)− ψu(β2)‖ ≤ µ−1(‖f ′u(β1, ψ
y(β1), ψu(β1)− f ′u(β2, ψ

y(β1), ψu(β1)‖U?
+ ‖S?‖‖f ′y(β1, ψ

y(β1), ψu(β1)− f ′y(β2, ψ
y(β1), ψu(β1)‖Y ?

)
.

By owing to Assumption 2.1(f) with M = MΨ, this yields the desired Lipschitz continuity
of ψu. Consequently, the Lipschitz continuity of ψy follows due to the continuity of S.

We can use this property to prove the existence of solutions for (OVR).

Theorem 2.6. There exists a solution for (OVR).

Proof. The lower-level problem admits to a unique solution. Therefore the solution
operator Ψ of the lower-level optimization problem can be used to reduce (UL) to an
optimization problem in Rn:

min
β

F (β, ψy(β), ψu(β))

s.t. β ∈ Q.

By Assumption 2.1(e) F is continuous. Thus with the Lipschitz continuity of Ψ it
follows that β 7→ F (β, ψy(β), ψu(β)) is continuous. Moreover, Q ⊂ Rn is compact by
Assumption 2.1(b). The existence of a solution follows from the celebrated Weierstraß
theorem.

We finally mention that more general results on the existence of solutions for bilevel
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optimal control problems are given in [Mehlitz, Wachsmuth, 2020]. In particular, our
result is covered by the second part of [Mehlitz, Wachsmuth, 2020, Theorem 16.3.5].

In order to use interpolation error estimates, we prove regularity of the optimal-value
function ϕ.

Corollary 2.7. The optimal-value function is Fréchet differentiable on the interior of Q
and the derivative is Lipschitz continuous. In particular, we have ϕ ∈W 2,∞(Q).

Proof. The differentiability of ϕ can be shown as in [Harder, 2021, Theorem 3.2.6]. This
also yields the expression ϕ′(β) = f ′β(β, ψy(β), ψu(β)), for the derivative. By combining
this with the Lipschitz continuity of Ψ (see Corollary 2.5) and Assumption 2.1(f), we
get the Lipschitz continuity of ϕ′ on the interior of Q. This yields ϕ′ ∈ W 1,∞(Q), see
[Brenner, Scott, 2008, Exercise 1.x.14], and, consequently, ϕ ∈W 2,∞(Q).

3 Algorithm

In this section, we present an algorithm to solve (OVR) under the given Assumption 2.1.
The algorithm is similar to [Dempe, Harder, et al., 2019, Algorithm 1], with the main
difference being the choice of the function ξ which approximates the value function ϕ. In
that reference, the functions ξk were defined via

ξk(x) := min
{

m∑
i=1

µiϕ(xi)
∣∣∣∣∣ 0 ≤ µ,

m∑
i=1

µi = 1,
m∑
i=1

µix
i = x

}
,

where Xk = {x1, . . . , xm} ⊂ Rn is a finite set. The sets Xk are assumed to be increasing
w.r.t. k and in order to achieve a uniform Lipschitz bound of ξk on Q, one has to require
Q ⊂ int convX1, see [Dempe, Harder, et al., 2019, Lemma 6.1, Example 6.1]. The reason
for this extra assumption is that it is not possible to a priori control the shape of the
simplices on which ξk is affine.

We use a different method to obtain a bounded aspect ratio of all the simplices. We
choose a subdivision Tk of Q (recall that Q is a bounded polyhedron) into simplices. On
each simplex T ∈ Tk, we define ξT : T → R as the affine interpolant of ϕ in the vertices
of T . The function ξTk is obtained by combining ξT for all T ∈ Tk, see (3.1) below. The
advantage of this approach is that the approximation quality of ξk can be controlled by
the quality of the subdivision, which is measured by the aspect ratio

ρ(T ) := diam(BT )
diam(T ) ∀T ∈ Tk,

where BT is the largest ball contained in T ∈ Tk, see [Brenner, Scott, 2008, Def. (4.2.16)
and Eq. (4.4.16)].
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Algorithm 1 Computation of global solutions to (UL)

(S1) Let T1 be a subdivision of Q and select parameters q, ρ ∈ (0, 1) with ρ ≤
minT∈T1 ρ(T ). Further, set k := 1.

(S2) For each T ∈ Tk \ Tk−1 compute a global solution (βT , yT , uT ) of the convex
optimization problem

min
β,y,u

F (β, y, u)

s.t. β ∈ T,

0 ≥ f(β, y, u)− ξT (β),
0 = Ay −Bu,
u ∈ Uad.

(OVR(ξ, T ))

Select T̄k ∈ arg minT∈Tk{F (βT , yT , uT )} and define (βk, yk, uk) := (βT̄k , yT̄k , uT̄k).

(S3) Compute ϕ(βk). If f(βk, yk, uk) = ϕ(βk), then (βk, yk, uk) is a global solution of
(OVR) (and, thus, of (UL)) and the algorithm terminates. Otherwise, we construct
Tk+1 from Tk by a refinement of T̄k such that vol(T ) ≤ q · vol(T̄k) and ρ(T ) ≥ ρ for
all T ∈ Tk+1 \ Tk . Set k := k + 1 and go to (S2).

We mention that our approach does not require continuity of ξTk . Therefore, we do not
need any special assumptions on the subdivision, in particular, we allow for hanging
nodes. In fact, it is enough to require ⋃

T∈Tk

T = Q.

Therefore, if we have two elements T, S ∈ Tk with T ∩ S 6= ∅, the values of ξT and ξS
may not agree on T ∩ S. For the definition of ξTk : Q→ R, we choose

ξTk(β) := max
T∈Tk

ξT (β). (3.1)

This definition of ξTk ensures upper semicontinuity.

The main idea in Algorithm 1 is to solve (OVR(ξ)) with ξ = ξTk and to successively refine
a simplex on which a solution is found. In order for Algorithm 1 to be well-defined, we
need to guarantee the existence of global minimizers of (OVR(ξ, T )). This can be shown
by the direct method of calculus of variations. The boundedness of β follows from β ∈ T
and the boundedness of (y, u) follows from f(β, y, u) ≤ ξT (β), cf. Assumption 2.1(g).

Under very mild assumptions we can show the convergence towards global minimiz-
ers.

11
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Theorem 3.1. Algorithm 1 either stops at a global solution of (OVR) or the computed
sequence (βk, yk, uk) contains a subsequence converging strongly in Rn × Y × U to a
global solution of (OVR). If (OVR) has a unique global solution (β̄, ȳ, ū), then the entire
sequence (βk, yk, uk) converges strongly to (β̄, ȳ, ū).

Proof. The value function ϕ is convex and therefore ξTk(β) ≥ ϕ(β). Thus, the feasible
set of (OVR(ξTk)) contains the feasible set of (OVR). If the solution (βk, yk, uk) of
(OVR(ξTk)) is feasible for (OVR), it is globally optimal for (OVR). Hence, the stopping
criteria of the algorithm ensures that (βk, yk, uk) is globally optimal for (OVR). It remains
to discuss the case where Algorithm 1 does not terminate. We denote by (β̄, ȳ, ū) a global
solution of (OVR). Then

F (βk, yk, uk) ≤ F (β̄, ȳ, ū) (3.2)

by the same argument. The feasible set Q is compact by Assumption 2.1(b). This implies
the existence of N ∈ R with ϕ(β) ≤ N for all β ∈ Q. Therefore, the estimate

N ≥ ξTk(βk) ≥ f(βk, yk, uk) ≥ f(βk, yβk , uβk) + µ

2 ‖uβk − uk‖
2
U

(where we used (2.5) in the last step) together with the boundedness of uβk shows the
boundedness of uk in U . The boundedness of yk in Y follows from the properties of
the linear operators A and B. Therefore the sequence (βk, yk, uk) is bounded by a
constant M ≥ 0 and contains a weakly convergent subsequence (without relabeling)
(βk, yk, uk) ⇀ (β̂, ŷ, û) in Rn × Y × U . In particular, one has strong the convergence
βk → β̄, since Rn is finite dimensional.

In order to estimate the distance between ϕ and its interpolant ξTk , we use the inter-
polation error estimate [Brenner, Scott, 2008, Theorem 4.4.20] (the required condition
[Brenner, Scott, 2008, (4.4.16)] is satisfied due to (S3) in Algorithm 1). We apply this
result (for polynomial degree one with m = 2, s = 0, p = ∞) on each simplex T ∈ Tk
and obtain

‖ξT − ϕ‖L∞(T ) ≤ Cρ diam(T )2‖ϕ‖W 2,∞(T ) ∀T ∈ Tk, (3.3)

where Cρ > 0 is a constant that depends on the regularization parameter ρ. Corollary 2.7
provides the upper bound ‖ϕ‖W 2,∞(T ) ≤ ‖ϕ‖W 2,∞(Q) =: Cϕ. We want to apply (3.3) for
T̄k ∈ Tk, where T̄k is chosen as in the algorithm, and also intend to show diam(T̄k)→ 0.
We will use the relation between diameter and volume given by the aspect ratio of the
simplices and argue by contradiction. We assume that v := lim supk→∞ vol(T̄k) > 0.
Thus the set T̄0 := {T̄k | k ∈ N, vol(T̄k) ≥ v} is infinite. Now there has to be at
least one simplex T0 ∈ T1 that contains infinitely many simplices from T̄0, i.e., the set
T̄1 := {T ∈ T̄0 | T ( T0} is infinite. These simplices are refined at least once and thus we
have vol(T ) ≤ q vol(T0) for all T ∈ T̄1. Again, one simplex in T̄1 has to contain infinitely
many of the simplices from T̄1 and we can repeat the above argument. This leads to a
contradiction as the volume of the simplices is bounded from above by q−l vol(T0) and
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this contradicts the lower bound v > 0. Hence, we have shown vol(T̄k)→ 0. Using the
bound on the aspect ratio, this implies diam(T̄k)→ 0. Indeed,

diam(T̄k) ≤
diam(BT̄k)

ρ
= 2
ρ

(
Γ(n2 + 1) vol(BT̄k)

π
n
2

)1/n

≤ 2
ρ

(
Γ(n2 + 1) vol(T̄k)

π
n
2

)1/n

→ 0.

Now we are in position to apply (3.3) on T̄k. This yields

ϕ(β̂) ≤ f(β̂, ŷ, û) ≤ lim inf
k→∞

f(βk, yk, uk) ≤ lim sup
k→∞

f(βk, yk, uk) ≤ lim sup
k→∞

ξT̄k(βk)

≤ lim sup
k→∞

(
ϕ(βk) + CρCϕ diam(T̄k)2

)
= ϕ(β̂).

(3.4)

Note that we have used the sequential weak lower semicontinuity of f which follows from
convexity and continuity in Assumption 2.1(e). Thus, (3.4) yields feasibility of (β̂, ŷ, û)
for (OVR). Similarly, F is sequentially weakly lower semicontinuous. Therefore, we can
pass to the limit k →∞ in (3.2) and obtain

F (β̂, ŷ, û) ≤ lim inf
k→∞

F (βk, yk, uk) ≤ F (β̄, ȳ, ū). (3.5)

This shows that (β̂, ŷ, û) is a global solution for (OVR).

Next, we prove the strong convergence of yk and uk. Strong convergence of the control
uk can be obtained by exploiting the quadratic growth condition from Lemma 2.2: Note
that yk = S(uk) by feasibility of (βk, yk, uk) for (OVR(ξ, T̄k)). Thus, Lemma 2.2 and the
Lipschitz continuity of f ′β(β̂, ·, ·) from Assumption 2.1(f) yield

f(βk, yk, uk) ≥ f(β̂, yk, uk) + 〈f ′β(β̂, yk, uk), βk − β̂〉
≥ f(β̂, yk, uk)− ‖f ′β(β̂, yk, uk)‖Rn‖βk − β̂‖Rn

≥ f(β̂, yk, uk)

−
(
‖f ′β(β̂, ŷ, û)‖Rn + LM‖yk − ŷ‖Y + LM‖uk − û‖U

)
‖βk − β̂‖Rn

≥ f(β̂, ŷ, û) + µ

2 ‖uk − û‖
2
U − C‖βk − β̂‖Rn . (3.6)

Since (3.4) implies f(βk, yk, uk)→ f(β̂, ŷ, û) and since βk → β̂, this inequality yields the
strong convergence uk → û in U . The continuity of the solution operator S now implies
strong convergence of the states.

If the solution to (OVR) is unique, the convergence of the entire sequence follows from a
usual subsequence-subsequence argument.

An important ingredient of Algorithm 1 is the refinement of the simplices in (S3) such
that the properties involving the constants q and ρ are obtained. In the two-dimensional
case Q ⊂ R2 this can be done by splitting the triangle T̄k into 4 similar triangles by
using the midpoints of the edges. However, already in three dimensions this is not
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straightforward since a general tetrahedron cannot be divided into similar tetrahedrons.
In particular, a regular tetrahedron cannot be split into smaller regular tetrahedra. One,
however, can use hypercubes to construct a method of refinement that maintains a
bounded aspect ratio.

Lemma 3.2. For every (finite) subdivision T1, there exist constants q, ρ ∈ (0, 1) such
that the refinement in (S3) of Algorithm 1 is always possible.

Proof. Let Sn denote the permutations of {1, 2, . . . , n}. We consider the hypercube [0, 1]n
and a permutation π ∈ Sn. Then Tπ := {x ∈ Rn | 0 ≤ xπ(1) ≤ · · · ≤ xπ(n) ≤ 1} describes
a simplex. For each point x in the hypercube there exists at least one permutation π for
which the definition of Tπ is consistent with the “≤”-ordering of the components of x, i.e.,
x ∈ Tπ. Therefore

⋃
π∈Sn Tπ = [0, 1]n. If we consider a point x ∈ [0, 1]n with xi 6= xj for

all i 6= j, then there exists only one permutation π such that x ∈ Tπ since the components
of x have a uniquely determined order. Furthermore, those points are dense in [0, 1]n
and this implies that two simplices constructed with two different permutations cannot
have a n-dimensional intersection. Moreover, different simplices Tπ can be matched by a
permutation of the coordinates and this implies that the volume of each Tπ is equal to
1/n! and the aspect ratio ρ(Tπ) is independent of π.

The hypercube can be split into 2n smaller cubes. By dividing these smaller cubes again
into simplices, we arrive at

T tπ := {x ∈ Rn | 0 ≤ xπ(1) − tπ(1) ≤ · · · ≤ xπ(n) − tπ(n) ≤ 0.5}, (3.7)

where we consider all possible t ∈ {0, 0.5}n and π ∈ Sn. We observe that these simplices
are the translated and scaled versions of Tπ. In particular, we have T tπ = 1

2Tπ + t and
this implies vol(T tπ) = 2−n vol(Tπ) = 2−n/n! and ρ(T tπ) = ρ(Tπ).

We argue that for all π ∈ Sn and t ∈ {0, 0.5}n, there exists π̂ ∈ Sn with T tπ ⊂ Tπ̂. Indeed,
for x ∈ T tπ, the coordinates xi with ti = 0 are smaller (or equal) than the coordinates xj
with tj = 0.5. Further, we have xπ(i1) ≤ xπ(i2) if tπ(i1) = tπ(i2) and i1 ≤ i2. Thus, we can
construct π̂ by first taking the indices π(i) with tπ(i) = 0 and afterwards the indices π(j)
with tπ(j) = 0.5. Due to vol(T tπ) = 2−n vol(Tπ) this implies that every Tπ can be divided
into 2n smaller simplices T t(i)

π(i) with i = 1, . . . , 2n. Again, these smaller simplices have the
same aspect ratio as Tπ.

Repeating this subdivision proves the assertion in the case that T1 ⊂ {Tπ | π ∈ Sn} with
the constants q = 2−n, ρ = ρ(Tπ) for some fixed π ∈ Sn.

In the general case, we map each simplex T ∈ T1 to Tπ for some fixed π ∈ Sn by an
(invertible) affine transformation a : T → Tπ. The first part of the proof showed that Tπ
can be divided repeatedly into smaller simplices. In each subdivision step, the volume
is scaled down by 2−n whereas the aspect ratio is constant. By applying the inverse
transformation a−1, we get a subdivision of T . The ratio of volumes is invariant w.r.t.
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the affine transformation a−1, thus we can take q = 2−n. It remains to study the effect
of the affine transformation a−1 on the aspect ratio. Every simplex that is the result
of repeated refinement of T has the form a−1(T̂ ), where T̂ ⊂ Tπ is a simplex which has
the same aspect ratio as Tπ. We denote the largest balls in T̂ and a−1(T̂ ) by BT̂ and
Ba−1(T̂ ). The ellipsoid a−1(BT̂ ) is contained in a−1(T̂ ) and it contains a ball of diameter
θmin diam(BT̂ ), where θmin is the smallest spectral value of the matrix a′(0)−1. Thus,

diam(Ba−1(T̂ )) ≥ θmin diam(BT̂ ).

Similarly, we get
diam(a−1(T̂ )) ≤ θmax diam(T̂ ),

where θmax is the largest singular value of the matrix a′(0)−1. This yields the estimate

ρ(a−1(T̂ )) =
diam(Ba−1(T̂ ))

diam(a−1(T̂ ))
≥ θmin
θmax

·
diam(BT̂ )
diam(T̂ )

= θmin
θmax

ρ(T̂ ) = θmin
θmax

ρ(Tπ) =: ρT > 0.

Thus, the aspect ratio of every simplex that is the result of repeated refinement of T can
be bounded from below by ρT . Since T1 is finite, we can choose ρ = min{ρT | T ∈ T1} > 0.

Remark 3.3. The refinement technique of Lemma 3.2 always generates hanging nodes.
The presented method is consistent with splitting a triangle into 4 similar parts using the
midpoints of the edges. In higher dimensions there might exist more advanced methods.
Since Algorithm 1 only requires a bound on the aspect ratio, we can use the simple
strategy from Lemma 3.2.

After we have proven the convergence of Algorithm 1, we want to get an estimate on
the convergence speed. We establish a preliminary result on the error in the upper-level
objective induced by the approximation ξT of ϕ.

Lemma 3.4. Let T be a subdivision of Q. For T ∈ T and any feasible point (β, y, u) of
(OVR(ξ, T )) we have

|F (β, y, u)− F (β, yβ, uβ)| ≤ LM (1 + ‖S‖)
√

2CρCϕ
µ

diam(T ), (3.8)

where (yβ, uβ) is the solution of the lower-level problem associated with the parameter β,
see Definition 2.3. Here, Cρ is as in (3.3) and Cϕ := ‖ϕ‖W 2,∞(Q). The constant M does
not depend directly on T but only on ρ(T ).

Proof. We use the quadratic growth condition from Lemma 2.2 to obtain

ξT (β) ≥ f(β, y, u) ≥ f(β, yβ, uβ) + µ

2 ‖u− uβ‖
2
U = ϕ(β) + µ

2 ‖u− uβ‖
2
U .
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Next, we apply the interpolation estimate (3.3) to get

‖u− uβ‖2U ≤
2CρCϕ diam(T )2

µ
. (3.9)

In order to apply the Lipschitz assumption from Assumption 2.1, we define M :=
MΨ + max{1, ‖S‖}

√
2CρCϕ/µ diam(Q), where MΨ is given in Corollary 2.5. Due to

(3.9), all quantities are bounded by M . Thus,

|F (β, y, u)− F (β, yβ, uβ)| ≤ LM (‖Su− Suβ‖Y + ‖u− uβ‖U )
≤ LM (1 + ‖S‖)‖u− uβ‖U

≤ LM (1 + ‖S‖)
√

2CρCϕ
µ

diam(T ).

Theorem 3.5. Let T be a subdivision of Q and suppose that the upper-level objective
functional satisfies a quadratic growth condition for a solution (β̄, ȳ, ū) of (OVR) in the
sense that

F (β, yβ, uβ) ≥ F (β̄, ȳ, ū) +G‖β − β̄‖2Rn ∀β ∈ Q (3.10)

holds for some constant G > 0. Let T ∈ T be an element satisfying the condition

diam(T ) < G

LM (1 + ‖S‖)
√

2CρCϕ
µ

dist(T, β̄)2. (3.11)

Then, for any feasible point (β, y, u) of the relaxed problem (OVR(ξ, T )) we have

F (β, y, u) > F (β̄, ȳ, ū).

The constants appearing in (3.11) have the same meaning as in Lemma 3.4.

Proof. Let T ∈ T satisfy (3.11) and let (β, y, u) be feasible to (OVR(ξ, T )). By using the
quadratic growth condition (3.10) and Lemma 3.4 we obtain

F (β, y, u)− F (β̄, ȳ, ū) = F (β, yβ, uβ)− F (β̄, ȳ, ū) + F (β, y, u)− F (β, yβ, uβ)

≥ G‖β − β̄‖2Rn − LM (1 + ‖S‖)
√

2CρCϕ
µ

diam(T )

> G‖β − β̄‖2Rn −G dist(T, β̄)2 ≥ 0.

(3.12)

This shows the claim.

Remark 3.6. We give some interpretation of Theorem 3.5. Let (β̄, ȳ, ū) be a solution to
(OVR) satisfying the growth condition (3.10). Let T ∈ T satisfy (3.11) and let (β, y, u)
be a feasible point of (OVR(ξ, T )). Further, let T̄ ∈ T be a simplex with β̄ ∈ T̄ . Then, a
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solution (βT̄ , yT̄ , uT̄ ) of (OVR(ξ, T̄ )) satisfies

F (β, y, u) > F (β̄, ȳ, ū) ≥ F (βT̄ , yT̄ , uT̄ ).

Hence, Algorithm 1 will never refine the simplex T and, consequently, this simplex will
be ignored in the subsequent iterations of the algorithm.

Theorem 3.5 also has a quantitative implication. We consider a subdivision of Q into
simplices of diameter h. According to (3.11), the minimizer β̄ cannot occur in simplices
T with h < C dist(T, β̄)2, with some constant C > 0. That is, we only have to consider
simplices with dist(T, β̄) ≤

√
h/C. The number of simplices satisfying this condition is

roughly of the order hn/2−n = h−n/2.

If we are able to improve (3.11) to diam(T ) < C dist(T, β̄)α for some α ∈ [1, 2), see the
discussion below, this number of simplices improves to h−n(1−1/α). In particular, in the
case α = 1, we expect a constant number of simplices.

Remark 3.7. There are two possibilities to improve condition (3.11). First, if one has a
stronger growth condition for the upper-level objective functional, i.e.,

F (β, yβ, uβ) ≥ F (β̄, ȳ, ū) +G‖β − β̄‖αRn ∀β ∈ Q (3.13)

for some α ∈ [1, 2), then we can use dist(T, β̄)α instead of dist(T, β̄)2 in (3.11), cf. (3.12).
In particular, α = 1 might be possible if β̄ is located on the boundary of Q or if the
reduced objective is non-smooth at β̄.

Second, we can improve Theorem 3.5 if F ′(β̄, ȳ, ū) = 0. For simplicity, we discuss the
case that F is quadratic, i.e.,

F (β, y, u) = F (β, yβ, uβ) + F ′(β, yβ, uβ)((β, y, u)− (β, yβ, uβ))

+ 1
2F
′′(β, yβ, uβ)[(β, y, u)− (β, yβ, uβ)]2.

(3.14)

In particular, the second derivative is constant. Together with the Lipschitz continuity of
F ′ and Ψ (see Corollary 2.5), we readily obtain

‖F ′(β, yβ, uβ)‖Rn×Y ?×U? = ‖F ′(β, yβ, uβ)− F ′(β̄, ȳ, ū)‖Rn×Y ?×U? ≤ C‖β − β̄‖Rn .

Using this estimate and (3.9) in (3.14), we find

|F (β, y, u)− F (β, yβ, uβ)| ≤ C‖β − β̄‖Rn diam(T ) + C diam(T )2

≤ C dist(T, β̄) diam(T ) + C diam(T )2.

By using this estimate in (3.12), we see that (3.11) can be replaced by diam(T ) <
cdist(T, β̄) for some c > 0. Note that F ′(β̄, ȳ, ū) = 0 is highly restrictive. However, the
positive influence on the convergence speed can already be expected if the first derivative
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of F is close to zero in the solution. The approach can be applied to non-quadratic
objective functionals F by replacing (3.14) by a Taylor expansion and requiring that
‖F ′′‖ is bounded on bounded subsets.

Algorithm 1 can still be sped up substantially without additional restrictions. In (S3),
we have to evaluate ϕ(βk), and for this purpose we calculate the lower-level solutions
(yβk , uβk). Therefore (βk, yβk , uβk) is a feasible point of (OVR) and, thus, F (βk, yβk , uβk)
is an upper bound for the minimal objective value of (OVR). On the other hand, the
computed values F (βT , yT , uT ) for T ∈ T are lower bounds for the possible objective value
of (OVR) restricted to T . Hence, all elements T ∈ T with F (βT , yT , uT ) > F (βk, yβk , uβk)
cannot contain a solution of (OVR) and can be ignored in later iterations. Furthermore,
the simplices can be sorted by F (βT , yT , uT ) and multiple simplices may be refined in
each iteration. This results in a larger number of auxiliary problems which have to be
solved in the next iteration (recall that (OVR(ξ, T )) has to be solved on refined elements
only). These problems are independent of each other and can be solved in parallel.

Finally, we demonstrate that in most cases, the value-function constraint in (OVR(ξ, T ))
will be satisfied with equality. To study the issue we introduce the problem

min
β,y,u

F (β, y, u)

s.t. Ay −Bu = 0,
β ∈ Q, u ∈ Uad.

(3.15)

This problem is a relaxation of (OVR), since we neglected the optimality of (y, u)
for the lower level. We expect that this problem has a smaller optimal value than
(OVR).

Lemma 3.8. Suppose that the infimal value of (3.15) is smaller than the infimal value
of (OVR). Let (βk, yk, uk) be defined as in Algorithm 1(S2). Then, the constraint
f(βk, yk, uk) ≤ ξT̄k(βk) is satisfied with equality for all k large enough and for which ξTk
is continuous at βk.

Proof. Let (β̃, ỹ, ũ) be a global solution for (3.15). Note that global solutions (β̄, ȳ, ū) to
(OVR) are not globally optimal for (3.15). The construction of the sequence (βk, yk, uk)
according to Algorithm 1 yields a monotonically increasing sequence F (βk, yk, uk). By
Theorem 3.1 one gets F (βk, yk, uk) → F (β̂, ŷ, û) = F (β̄, ȳ, ū). Due to F (β̃, ỹ, ũ) <
F (β̄, ȳ, ū), we have F (β̃, ỹ, ũ) < F (βk, yk, uk) for sufficiently large k.

We argue by contradiction and assume that f(βk, yk, uk) < ξT̄k(βk) for some large k for
which ξTk is continuous at βk. We consider a convex combination (1 − s)(βk, yk, uk) +
s(β̃, ỹ, ũ), s ∈ (0, 1), and check that it is a feasible point of (OVR(ξTk)) for s small
enough. The constraint Ay = Bu is linear and the admissible sets Q and Uad are convex.
Moreover, since f is continuous (see Assumption 2.1) and since ξTk is continuous by
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assumption, we have

f((1− s)(βk, yk, uk) + s(β̃, ỹ, ũ)) < ξTk((1− s)βk + sβ̃) ∀s ∈ (0, ε].

for some ε > 0. Now the convexity of the upper-level objective functional F (see
Assumption 2.1(e)) implies

F ((1− s)(βk, yk, uk) + s(β̃, ỹ, ũ)) ≤ (1− s)F (βk, yk, uk) + sF (β̃, ỹ, ũ) < F (βk, yk, uk)

for all s ∈ (0, ε]. This contradicts the optimality of (βk, yk, uk) from Algorithm 1(S2).

Note that the piecewise linear function ξTk is continuous if the triangulation Tk does not
possess hanging nodes. Otherwise, it might be discontinuous at all facets containing
hanging nodes.

4 Penalty approach

The subproblems (OVR(ξ, T )) presented in Algorithm 1 are already subject to convex
constraints, however, the nonlinear inequality constraint f(β, y, u) ≤ ξ(β) still may
introduce difficulties when implementing the solution algorithm. In particular, this
constraint is of a rather unusual form in an optimal control context, see Section 5. Using
a penalty method for this complicated constraint the treatment of the subproblems
(OVR(ξ, T )) can be simplified since this inequality constraint is incorporated into the
objective functional. Any additional error that is introduced by the penalty approach
has to be compared to the error induced by the relaxation of the problem with the affine
interpolation of the optimal-value function.

By replacing the subproblems in Algorithm 1 with a penalty approach, we arrive at
Algorithm 2 for which we now provide some further comments. In a classical penalty
method the penalty parameter depends only on the iteration counter k. In Algorithm 2,
we allow an additional dependence on the simplex T . Indeed, if γk,T is independent of
k, it is sufficient to solve the auxiliary problems (OVRP(T, γk,T )) only on the new cells
T ∈ Tk+1 \ Tk. Otherwise, we would need to solve these problems on all cells in each
iteration. The stopping criterion in (S3) is justified in the first part of the proof of the
upcoming Theorem 4.2.

Lemma 4.1. Let the penalty function P : R→ R be non-constant, non-decreasing and
convex. Then, for every simplex T ⊂ Q and γk,T > 0, the problem (OVRP(T, γk,T ))
possesses a solution.

Proof. From the monotonicity and convexity of P , we get P (s) → ∞ for s → ∞.
For a minimizing sequence (βk, yk, uk), the boundedness of βk follows from βk ∈ T .
Since F is bounded from below by Assumption 2.1(e) and since γk,T > 0, the expression
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Algorithm 2 Computation of global solutions to (UL) with penalty approach

(S1) Let T1 be a subdivision of Q and select parameters q, ρ ∈ (0, 1) and a non-decreasing
function P : R→ R with P (0) = 0. Further, set k := 1.

(S2) For every simplex T ∈ Tk, choose γk,T > 0 and compute a global solution
(βk,T , yk,T , uk,T ) of the optimization problem

min
β,y,u

F (β, y, u) + γk,TP (f(β, y, u)− ξT (β))

s.t. β ∈ T,

0 = Ay −Bu,
u ∈ Uad.

(OVRP(T, γk,T ))

Select

T̄k ∈ arg min
T∈Tk

{
F (βk,T , yk,T , uk,T ) + γk,TP

(
f(βk,T , yk,T , uk,T )− ξT (βk,T )

)}
and set (βk, yk, uk) = (βk,T̄k , yk,T̄k , uk,T̄k).

(S3) Compute ϕ(βk). If f(βk, yk, uk) = ϕ(βk), then (βk, yk, uk) is a global solution of
(OVR) (and, thus, of (UL)) and the algorithm terminates. Otherwise, we construct
Tk+1 from Tk by a refinement of T̄k such that vol(T ) ≤ q · vol(T̄k) and ρ(T ) ≥ ρ for
all T ∈ Tk+1 \ Tk . Set k := k + 1 and go to (S2).

P (f(βk, yk, uk)−ξT (βk)) is bounded from above. Due to the properties of P , the sequence
f(βk, yk, uk) is bounded from above. Thus, the boundedness of (yk, uk) follows from
Assumption 2.1(g). Now, the remaining part of the proof is clear since the objective is
continuous and convex, hence, weakly sequentially lower semicontinuous.

4.1 Standard penalization

We first prove the convergence of Algorithm 2 for a typical penalty function P .

Theorem 4.2. Let the penalty function P : R→ R be monotone and convex, such that
P (s) = 0 for all s ≤ 0 and P (s) > 0 for all s > 0. If γk,T̄k → ∞, Algorithm 2 either
stops at a global solution of (OVR) or the computed sequence (βk, yk, uk) contains a
subsequence converging strongly in Rm× Y ×U to a global solution of (OVR). If (OVR)
has a unique global solution (β̄, ȳ, ū), then the entire sequence (βk, yk, uk) converges
strongly to (β̄, ȳ, ū).
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Proof. A global solution (β̄, ȳ, ū) to (OVR) is feasible for (OVRP(T, γk,T )) if β̄ ∈ T .
By definition of (βk, yk, uk) and the assumed properties for the penalty function P one
obtains the estimate

F (βk, yk, uk) ≤ F (βk, yk, uk) + γk,T̄kP
(
f(βk, yk, uk)− ξT̄k(βk)

)
≤ F (βk,T , yk,T , uk,T ) + γk,TP

(
f(βk,T , yk,T , uk,T )− ξT (βk,T )

)
≤ F (β̄, ȳ, ū).

(4.1)

If Algorithm 2 terminates in (S3), then the condition f(βk, yk, uk) = ϕ(βk) implies
feasibility of (βk, yk, uk) for (OVR) while (4.1) ensures global optimality.

It remains to check the case that Algorithm 2 does not terminate. From (4.1) and
Assumption 2.1(e) we get a constant C ≥ 0 such that

P
(
f(βk, yk, uk)− ξT̄k(βk)

)
≤ F (β̄, ȳ, ū)− F (βk, yk, uk)

γk,T̄k
≤ C

γk,T̄k
→ 0. (4.2)

Using that P is non-decreasing and that ξT̄k(βk) is bounded from below (since ϕ is
bounded from below on Q), we get that f(βk, yk, uk) is bounded from above. From
Lemma 2.2 we get

f(βk, yk, uk) ≥ f(βk, yβk , uβk) + µ

2 ‖uk − uβk‖
2
U .

Since f is bounded from below and since uβk is bounded by Corollary 2.5, we obtain
the boundedness of uk in U . The boundedness of the solution operator S then implies
boundedness of the state yk = Suk in Y . Thus, the sequence (βk, yk, uk) is bounded and
contains a weakly convergent subsequence (without relabeling), (βk, yk, uk) ⇀ (β̂, ŷ, û).
The parameter βk converges strongly because β ∈ Q ⊂ Rn is finite dimensional. It
remains to check optimality of the weak limit (β̂, ŷ, û) and the strong convergence.

From (4.2) we obtain lim supk→∞ f(βk, yk, uk)− ξT̄k(βk) ≤ 0. Arguing as in Theorem 3.1,
we obtain diam(T̄k)→ 0. Together with the interpolation error estimate (3.3) we get

0 ≤ lim inf
k→∞

(
f(βk, yk, uk)− ϕ(βk)

)
≤ lim sup

k→∞

(
f(βk, yk, uk)− ϕ(βk)

)
≤ lim sup

k→∞

(
f(βk, yk, uk)− ξT̄k(βk) + CρCϕ diam(T̄k)2) = 0.

In particular, we have f(βk, yk, uk)− ϕ(βk)→ 0. This implies

0 ≤ f(β̂, ŷ, û)− ϕ(β̂) ≤ lim
k→∞

(
f(βk, yk, uk)− ϕ(βk)

)
= 0.

Therefore, (β̂, ŷ, û) is feasible for (OVR) and f(βk, yk, uk) → f(β̂, ŷ, û) holds. Then
we can argue as in (3.6) and obtain strong convergence for the control u. Since the
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solution operator S is continuous, this proves the strong convergence of the subsequence
(βk, yk, uk)→ (β̂, ŷ, û). Finally, due to

F (β̂, ŷ, û) = lim
k→∞

F (βk, yk, uk) ≤ F (β̄, ȳ, ū)

we know that (β̂, ŷ, û) is a global minimizer of (OVR).

Analogous to Theorem 3.1, the usual subsequence-subsequence argument can be used to
obtain strong convergence of the entire sequence if the solution to (OVR) is unique.

Remark 4.3. We observe from Theorem 4.2 that it is sufficient to have the penalty
parameter γk,T being solely dependent on the simplex T . A possibility is the choice
γk,T = υ(diam(T )) with a function υ satisfying υ(t)→∞ for t→ 0. A direct benefit is
that the solution of the subproblem on a fixed simplex is now independent of the iteration
and only needs to be carried out once, as in Algorithm 1.

4.2 Direct penalization

The problem (OVRP(T, γk,T )) can be further simplified if instead of a penalty function
as described in Theorem 4.2 a direct penalization P = Id is considered. It is clear that we
cannot use P = Id as a penalty function for a general optimization problem. The reason
is that this function would reward overachieving the penalized constraint. Our constraint
f(β, y, u) − ξT (β) cannot be arbitrarily negative and this renders the usage of P = Id
possible. This choice, however, has implications on the choice of the penalty parameter.
The difference between the lower-level objective functional and the interpolation of the
optimal-value function f(β, y, u)− ξT (β) can be negative. Thus, arbitrarily increasing γ
does not work. The penalty parameter γ needs to be set specifically for each simplex.

Corollary 4.4. We consider Algorithm 2 with P = Id and we assume that the penalty
parameters satisfy

γT̄k →∞, γT̄k diam(T̄k)2 → 0

as k → ∞. Then, (βk, yk, uk) contains a strongly convergent subsequence and all
accumulation points are globally optimal for (OVR). If (OVR) admits to a unique global
minimizer (β̄, ȳ, ū) then the entire sequence (βk, yk, uk) converges strongly towards this
minimizer.

Proof. The argumentation follows the lines of the proof of Theorem 4.2. Therefore, we
just comment on the differences. The interpolation error estimate (3.3) allows for a lower
bound for the violation of the constraint, i.e.

f(βk, yk, uk)− ξT̄k(βk) ≥ ϕ(βk)− ξT̄k(βk) ≥ −CρCϕ diam(T̄k)2. (4.3)
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When using P = Id, an upper bound follows as in (4.2) and we have

f(βk, yk, uk)− ξT̄k(βk) ≤
F (β̄, ȳ, ū)− F (βk, yk, uk)

γT̄k
≤ CF
γT̄k

. (4.4)

We can now argue as in Theorem 4.2 and obtain (βk, yk, uk)→ (β̂, ŷ, û) along a subse-
quence, where (β̂, ŷ, û) is a feasible point of (OVR). In order to achieve optimality of
(β̂, ŷ, û), we combine (4.3) and (4.4) and obtain

F (βk, yk, uk) ≤ F (β̄, ȳ, ū) + CρCϕγT̄k diam(T̄k)2 → F (β̄, ȳ, ū) + 0,

which implies F (β̂, ŷ, û) = limk→∞ F (βk, yk, uk) ≤ F (β̄, ȳ, ū). The remaining part of the
proof follows the proof of Theorem 4.2.

The next lemma addresses the continuous dependence of the solution on the penalty
parameter.

Lemma 4.5. We suppose that F (·, S(u), u) is strongly convex (w.r.t. β) with constant
µβ > 0, independent of the control u. Then, (OVRP(T, γ)) has a unique solution
(βγ , yγ , uγ) for all γ > 0. Further, let 0 < γa ≤ γT <∞ and γa ≤ γ̂. Then,

‖βγT − βγ̂‖Rn + ‖uγT − uγ̂‖U ≤ Cµβ ,γa,γT |γT − γ̂|.

Proof. The existence of a solution to (OVRP(T, γ)) follows from Lemma 4.1. For γa ≤ γ,
the strong convexity of f implies that the reduced objective of (OVRP(T, γ)) is strongly
convex w.r.t. u with constant γaµ on the feasible set. This gives uniqueness of the state
yγ = S(uγ) and of the control uγ . With the additional assumption on F , we get the
uniqueness of βγ .

Next, we want to apply Lemma 2.4 to the state reduced variant of (OVRP(T, γ)), i.e.,
we apply the setting

x = (β, u), C = T × Uad, p = γ, Q̂ = [γa,∞),
J(x, p) = J((β, u), γ) := F (β, S(u), u) + γ(f(β, S(u), u)− ξT (β)).

Assumption 2.1 ensures that the assumptions of Lemma 2.4 are satisfied. Thus, Lemma 2.4
implies

‖βγ̂ − βγT ‖Rn + ‖uγ̂ − uγT ‖U ≤ Cµβ ,γa‖J
′
x((βγT , uγT ), γ̂)− J ′x((βγT , uγT ), γT )‖Rn×U? .

Now, the derivative J ′x((β, u), γ) contains the two components

F ′β(β, S(u), u) + γ(f ′β(β, S(u), u)− ξ′T (β)),
F ′u(β, S(u), u) + S?F ′y(β, S(u), u) + γ(f ′u(β, S(u), u) + S?f ′y(β, S(u), u)).
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Thus, the above estimate implies

‖βγ̂ − βγT ‖Rn + ‖uγ̂ − uγT ‖U ≤ Cµβ ,γa |γ̂ − γT |(C1,γT + C2,γT ),

with

C1,γT = ‖f ′β(βγT , S(uγT ), uγT )− ξ′T (βγT )‖Rn ,
C2,γT = ‖f ′u(βγT , S(uγT ), uγT ) + S?f ′y(βγT , S(uγT ), uγT )‖U? .

This shows the claim.

The problem (OVRP(T, γT )) is a relaxation of (OVR(ξ, T )) and consequently the objective
functional attains a smaller minimal value and represents a lower bound to the minimal
objective value of (OVR(ξ, T )). Since this lower bound depends on the chosen penalty
parameter γT , we try to adjust this parameter to obtain the largest possible lower bound.
We will now show that it is reasonable to aim for a choice of the penalty parameter
such that the equality f(βγT , yγT , uγT ) = ξ(βγT ) holds for the solution (βγT , yγT , uγT ) of
(OVRP(T, γT )). In the expected case where no solution to (3.15) is feasible for (OVR),
this specific penalty parameter results in the largest possible minimal objective value for
(OVRP(T, γT )).

Lemma 4.6. Let the state reduced functional F be strongly convex with respect to β
with constant µβ independent of the control u. Let a simplex T be given and, again,
P = Id. Further, we assume the existence of β ∈ T with ϕ(β) < ξT (β). For γ ≥ 0, we
denote a solution to (OVRP(T, γ)) by (βγ , yγ , uγ).

(a) If f(β̃, ỹ, ũ) ≤ ξT (β̃) for one global solution (β̃, ỹ, ũ) to (OVRP(T, 0)) then the
choice γT = 0 yields the largest minimal objective value for (OVRP(T, γT )).

(b) If f(β̃, ỹ, ũ) > ξT (β̃) for all global solutions (β̃, ỹ, ũ) to (OVRP(T, 0)) then there
exists γT > 0 such that f(βγT , yγT , uγT ) = ξT (βγT ) and this choice of γT results in
the largest minimal objective value for (OVRP(T, γT )).

The existence of β ∈ T with ϕ(β) < ξT (β) is equivalent to ϕ being not affine on T . Thus,
this assumption is not very restrictive.

Proof.

(a) For any γ ≥ 0 we have

F (βγ , yγ , uγ) + γ(f(βγ , yγ , uγ)− ξT (βγ)) ≤ F (β̃, ỹ, ũ) + γ(f(β̃, ỹ, ũ)− ξT (β̃))
≤ F (β̃, ỹ, ũ).

Hence, the infimal value of (OVRP(T, γT )) is maximized for γT = 0.

(b) We prove the existence of γT > 0 with f(βγT , yγT , uγT ) − ξT (βγT ) = 0 by the
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intermediate value theorem. Therefore, we have to provide penalty parameters
γ
¯
T , γ̄T > 0 with f(βγ

¯
T , yγ

¯
T , uγ

¯
T )− ξT (βγ

¯
T ) ≥ 0 and f(βγ̄T , yγ̄T , uγ̄T )− ξT (βγ̄T ) ≤ 0.

The required continuous dependence w.r.t. γ > 0 follows from Lemma 4.5.

We first construct γ̄T . By assumption F is bounded from below by a constant
C ∈ R and there exists a β ∈ T , such that ϕ(β) = f(β, yβ, uβ) < ξT (β). Thus, we
can choose γ̄T > 0 such that

F (β, yβ, uβ) + γ̄T (f(β, yβ, uβ)− ξT (β)) ≤ C. (4.5)

It follows that f(βγ̄T , yγ̄T , uγ̄T )− ξT (βγ̄T ) ≤ 0.

The existence of γ
¯
T is proven by contradiction. Assume that there is no γ > 0 with

f(βγ , yγ , uγ) − ξT (βγ) ≥ 0. For γ ↘ 0, the bound f(βγ , yγ , uγ) < ξT (βγ) and the
quadratic growth condition from Lemma 2.2 implies boundedness of the control
uγ whereas the continuity of the solution operator yields boundedness of the state
yγ = Suγ . The parameter βγ ∈ T is bounded as well. Thus, one obtains the
existence of a weak accumulation point (β̄, ȳ, ū) for γ ↘ 0. It is clear that (β̄, ȳ, ū)
is feasible for (OVRP(T, 0)) and we show that it is even a solution. By optimality,
we get the inequality

F (βγ , yγ , uγ) + γ(f(βγ , yγ , uγ)− ξT (βγ)) ≤ F (β̃, ỹ, ũ) + γ(f(β̃, ỹ, ũ)− ξT (β̃))

and
lim
γ↘0

γ(f(βγ , yγ , uγ)− ξT (βγ)) = lim
γ↘0

γ(f(β̃, ỹ, ũ)− ξT (β̃)) = 0

follows by boundedness of f(βγ , yγ , uγ). Thus,

F (β̄, ȳ, ū) ≤ lim inf
γ↘0

F (βγ , yγ , uγ) ≤ F (β̃, ỹ, ũ),

where we take the limes inferior along the weakly convergent subsequence. Thus,
(β̄, ȳ, ū) is a solution to (OVRP(T, 0)). Similarly, passing to the limit inferior
in f(βγ , yγ , uγ) − ξT (βγ) < 0 yields f(β̄, ȳ, ū) − ξT (β̄) ≤ 0. This contradicts the
assumption and yields the existence of γ

¯
T .

By the intermediate value theorem, we conclude the existence of γT > 0 with
f(βγT , yγT , uγT )− ξT (βγT ) = 0.

It remains to prove that this choice of γT results in the largest infimal objective
value for (OVRP(T, γT )). It is clear that f(βγ , yγ , uγ)− ξT (βγ) is non-increasing
w.r.t. γ. Thus, it follows with Lemma 4.5 that{

γT ∈ [0,∞)
∣∣ f(βγT , yγT , uγT )− ξT (βγT ) = 0

}
= [γa, γb] ⊂ R+.
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For γb < γ1 < γ2, we have f(βγ1 , yγ1 , uγ1)− ξT (βγ1) < 0 and, thus, the optimality
of (βγ2 , yγ2 , uγ2) for (OVRP(T, γ2)) implies

F (βγ1 , yγ1 , uγ1) + γ1(f(βγ1 , yγ1 , uγ1)− ξT (βγ1))
> F (βγ1 , yγ1 , uγ1) + γ2(f(βγ1 , yγ1 , uγ1)− ξT (βγ1))
≥ F (βγ2 , yγ2 , uγ2) + γ2(f(βγ2 , yγ2 , uγ2)− ξT (βγ2)).

It follows that the objective value of (OVRP(T, γ)) is monotonically decreasing for
γ > γb and, similarly, one can show that it is monotonically increasing for γ < γa
and constant on [γa, γb]. Thus, all γT ∈ [γa, γb] maximize the minimal objective
value of (OVRP(T, γT )).

In general it is not possible to check which case of Lemma 4.6 applies. However, the
proof suggests that after solving (OVRP(T, γ)) the value f(βγ , yγ , uγ) − ξT (βγ) can
be checked to infer whether the choice of the penalty parameter γ was adequate, too
small or too large. Furthermore, when splitting the simplices in Algorithm 2, the
approximation ξT of the optimal-value function ϕ cannot increase in any point β ∈ Q.
Together with the feasibility of the solution to the refined problems for the problem on
the original simplex T , this yields that the minimal objective value may only remain
constant or increase if the same penalty parameter γT is used for a subproblem. We
therefore suggest starting with γ = 0 and then using a heuristic to find a γT . The
refined problems can inherit the parameter γT as a starting point instead of zero. This
approach covers both cases of Lemma 4.6 without the need to calculate all solutions of
(3.15). Once a γT is found such that f(βγ , yγ , uγ)− ξT (βγT ) > 0 one can be sure that all
subproblems are of case Lemma 4.6(b), because ξ is decreasing with further refinement
of the simplices.

Lemma 4.7. Let the state reduced functional F be strongly convex with respect to β
with constant µβ independent of the control u. Let a simplex T be given and, again,
P = Id. Further, we assume the existence of β ∈ T with ϕ(β) < ξT (β). For γ ≥ 0, we
denote a solution of (OVRP(T, γ)) by (βγ , yγ , uγ). Let the penalty parameter γT be
chosen as described in Lemma 4.6, i.e., we have one of the following cases:

(a) γT = 0 and f(β̃, ỹ, ũ) ≤ ξT (β̃) for one global solution (β̃, ỹ, ũ) of (OVRP(T, 0)),

(b) γT > 0 and f(βγT , yγT , uγT ) = ξT (βγT ).

Then, the point (β̃, ỹ, ũ) or (βγT , yγT , uγT ), respectively, is a solution of (OVR(ξ, T )) and
γT is a multiplier corresponding to the constraint f(β, y, u) ≤ ξT (β) in the optimality
system for (OVR(ξ, T )).

Proof. First, we consider the case γT > 0. Note that (βγT , yγT , uγT ) is feasible for
(OVR(ξ, T )). We denote by (βT , yT , uT ) a solution of (OVR(ξ, T )). Then, the optimality
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of both points, f(βT , yT , uT ) ≤ ξ(βT ) and f(βγT , yγT , uγT ) = ξ(βγT ) yield

F (βγT , yγT , uγT ) ≥ F (βT , yT , uT ) ≥ F (βT , yT , uT ) + γT (f(βT , yT , uT )− ξ(βT ))
≥ F (βγT , yγT , uγT ) + γT (f(βγT , yγT , uγT )− ξ(βγT ))
= F (βγT , yγT , uγT ).

This shows f(βT , yT , uT ) = ξ(βT ) and F (βγT , yγT , uγT ) = F (βT , yT , uT ). Hence, the
triple (βT , yT , uT ) solves (OVRP(T, γT )) and, by the uniqueness of the solution, the
solution is (βT , yT , uT ) = (βγT , yγT , uγT ).

Thus, (βγT , yγT , uγT ) is globally optimal for (OVR(ξ, T )). The optimality system of
(OVRP(T, γT )) can be interpreted as the KKT system of (OVR(ξ, T )) and the parameter
γT in (OVRP(T, γT )) becomes a Lagrange multiplier in the KKT system of (OVR(ξ, T )).
Note that Lagrange multipliers for (OVRP(T, γT )) exist since the CQ by [Robinson, 1976;
Zowe, Kurcyusz, 1979] is satisfied.

Finally, we consider the case γT = 0. Due to f(β̃, ỹ, ũ) < ξT (β̃), the point (β̃, ỹ, ũ) is
feasible for (OVR(ξ, T )). Since (OVRP(T, 0)) is a relaxation of (OVR(ξ, T )), this shows
that (β̃, ỹ, ũ) is a solution of (OVR(ξ, T )). The interpretation of γT as a multiplier is
analogous to the case γT > 0.

This lemma shows that the problem (OVR(ξ, T )) is equivalent (in some sense) to
(OVRP(T, γT )) for the “optimal” value of γT , cf. Lemma 4.6. In the application we have
in mind, the structure of (OVRP(T, γT )) is much nicer, since the “complicated” function
f appears in the objective and not in the constraints.

5 Parameter identification in an optimal control problem

In the previous section we discussed how a global minimizer for (OVR) can be found using
Algorithm 2. However, so far we did not introduce a solution scheme for the subproblems
(OVRP(T, γk,T )). In this section we will show that one of the main advantages when
introducing the direct penalization (see Section 4.2) is that the semismooth Newton
method is applicable. This is demonstrated by means of a class of example problems.

5.1 Problem formulation and properties

We consider the bilevel optimization problem with the lower-level problem

min
y∈H1

0 (Ω), u∈L2(Ω)
f̂(α, y, u) :=

n∑
i=1

αi
2 ‖Ciy − yd,i‖

2
L2(Ω) + σl

2 ‖u‖
2
L2(Ω)

s.t. Ay −Bu = 0,
u ∈ Uad,

(LL(α))
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and upper-level problem

min
α∈Rn, y∈H1

0 (Ω), u∈L2(Ω)
F̂ (α, y, u) := 1

2‖y − ym‖
2
L2(Ω) + σu

2 ‖u− um‖
2
L2(Ω) + σα

2 ‖α‖
2
Rn

s.t. α ∈ Qα,
(y, u) solves (LL(α)).

(UL)
As an underlying assumption let σu, σl, σα > 0, ym, yd,i,∈ L2(Ω), where Ω ⊂ Rl is an
open and bounded set. Moreover, let Qα := [a1, b1] × · · · × [an, bn] constitute a box
constraint on α, where ai, bi ∈ R satisfies 0 < ai < bi for all i ∈ {1, . . . , n}. We also
require that the admissible set Uad has the structure Uad = {v ∈ L2(Ω) | ua ≤ v ≤
ub a.e. in Ω}, where ua, ub ∈ L2(Ω) are functions such that Uad is nonempty. Further, let
A : H1

0 (Ω) → H−1(Ω), B : L2(Ω) → H−1(Ω), Ci : H1
0 (Ω) → L2(Ω) be bounded linear

operators such that A is bijective.

We also assume that B can be extended to an operator B ∈ L[Lq(Ω), H−1(Ω)] for
some q ∈ (1, 2). Additionally, we require um, ua, ub ∈ Lq

′(Ω), where q′ > 2 satisfies
1/q + 1/q′ = 1.

We observe that the lower-level objective functional f̂ is not convex with respect to all
variables. In particular, Assumption 2.1(e) is not satisfied. Additionally, the corresponding
optimal-value function is usually not convex either. As Algorithm 1 depends on convexity
of the optimal-value function one has to first transform the problem in such a way that
the new lower-level objective functional is convex. For this purpose, we consider the
simple substitution βi = 1/αi . We also define σβ := σα. For the upper-level objective
this substitution results in

F (β, y, u) := 1
2‖y − ym‖

2
L2(Ω) + σu

2 ‖u− um‖
2
L2(Ω) + σβ

2

n∑
i=1

( 1
βi

)2
.

The constraint α ∈ Qα has to be transformed to β ∈ Q := [b−1
1 , a−1

1 ] × · · · × [b−1
n , a−1

n ].
Observe that Q is a compact subset of (0,∞)n because Qα is a compact subset of
(0,∞)n.

One can check that F is convex on Q ×H1
0 (Ω) × L2(Ω) due to β > 0 for β ∈ Q. The

transformed lower-level objective is

f(β, y, u) :=
n∑
i=1

1
2βi
‖Ciy − yd,i‖2L2(Ω) + σl

2 ‖u‖
2
L2(Ω). (5.1)

We check that this f is indeed convex on Q × H1
0 (Ω) × L2(Ω). Here we use that for

a Banach space Y , the function g : Y → R, y 7→ 1
2‖y‖

2
Y is convex and for λ > 0 the

so-called perspective of g is given by

Y × (0,∞) 3 (y, λ) 7→ λg(y/λ) = 1
2λ‖y‖

2
Y . (5.2)
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It is known that the perspective of a convex function is convex (e.g. one can simply
generalize the proof of [Dacorogna, Maréchal, 2008, Lemma 2] to Banach spaces). Now
convexity is preserved under composition with an affine function y 7→ Cy− yd. Thus, the
function (βi, y) 7→ 1

2βi ‖Ciy − yd,i‖
2
L2(Ω) is convex. The convexity of f follows.

With the above setting and observations, one can show that the transformed problem
satisfies Assumption 2.1.

5.2 Stationarity system for the direct penalization

Classic choices of the penalty function for (OVRP(T, γk,T )), e.g., P = max(0, ·)2, will
result in subproblems that are difficult to handle. In particular, the optimality system
cannot be reformulated as a simple projection formula. We will see that the direct penal-
ization P = Id results in an easy to implement solution algorithm for (OVRP(T, γk,T )).
Computing the solution of (OVRP(T, γk,T )) requires the construction of ξ and thereby
the evaluation of ϕ(β) at certain points. This equates to solving single-level optimal
control problems.

In order to state the stationarity conditions, we first reformulate the condition β ∈ T .
Recall that T is a (non-degenerate) simplex. Thus, T can be written as the intersection
of n + 1 half-spaces, T = {β ∈ Rn | KTβ ≤ bT }, where KT ∈ R(n+1)×n is a suitable
matrix. Clearly, at most n of these constraints may simultaneously hold with equality
and that all those constraints that are satisfied with equality are linearly independent.
Thus, (OVRP(T, γk,T )) with P = Id takes the form

min
β,y,u

F (β, y, u) + γk,T
(
f(β, y, u)− ξT (β)

)
s.t. KTβ − bT ≤ 0,

Ay −Bu = 0,
u ∈ Uad.

The KKT system for (OVRP(T, γk,T )) with direct penalization (P = Id) is given by

0 = F ′β(β, y, u) + γk,T (f ′β(β, y, u)− aTβ) +K>T z, (5.3a)
0 = F ′y(β, y, u) + γk,T f

′
y(β, y, u) +A?p, (5.3b)

0 = F ′u(β, y, u) + γk,T f
′
u(β, y, u)−B?p+ ν, (5.3c)

0 = Ay −Bu, (5.3d)
z ≥ 0 ∧KTβ − bT ≤ 0 ∧ z>(KTβ − bT ) = 0, (5.3e)
ν ∈ NUad(u), u ∈ Uad, (5.3f)

where p ∈ H1
0 (Ω), z ∈ Rn+1, and ν ∈ L2(Ω) are the Lagrange multipliers. The vector aT

refers to the derivative of the affine function ξT on the simplex T .
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Lemma 5.1. The feasible point (β, y, u) is a local/global solution to (OVRP(T, γk,T ))
if and only if there exist multipliers p ∈ H1

0 (Ω), z ∈ Rn+1, and ν ∈ L2(Ω) such that (5.3)
holds.

The solution and the corresponding multipliers are unique.

Proof. “⇒”: We check that the Robinson regularity condition for the reformulated
problem is satisfied. This condition reads

[
A −B 0
0 0 KT

] H1
0 (Ω)

RUad(u)
Rn

− ( {0}
cone(Rn+1

− − (KTβ − bT ))

)
=
(
H−1(Ω)
Rn+1

)
.

The two lines of the equation are independent of each other. By assumption, A is bijective,
i.e., A(H1

0 (Ω)) = H−1(Ω). For the second line we recall that the Robinson regularity
condition is equivalent to the Mangasarian–Fromovitz condition for standard nonlinear
optimization problems, see [Bonnans, Shapiro, 2000, p. 71]. Thus, the second line is
satisfied since we have assumed that the simplex T is non-degenerate, i.e., we even have
the linear-independence constraint qualification for the system KTβ ≤ bT . This shows
the existence of multipliers, see [Bonnans, Shapiro, 2000, Theorem 3.9].

“⇐”: This is clear since (OVRP(T, γk,T )) is a convex problem.

It remains to address the uniqueness. The uniqueness of the solution follows from the
strict convexity of the objective. The second line of the KKT system gives uniqueness
of the adjoint p, since A is an isomorphism. Similarly one gets uniqueness of ν from
the third line. Regarding uniqueness of z we observe that the matrix KT describing a
non-degenerate simplex has rank n, even after removing an arbitrary line. Additionally,
there exists at least one inactive constraint, such that z is equal zero in this component.
After removing the corresponding component from z and the respective column from K>T
in the first line of (5.3), z is obtained by inverting a square matrix of full rank. Thus, z
is unique.

We introduce two auxiliary functions h, ĥ : (0,∞)n ×H1
0 (Ω)→ R via

ĥ(β, y) := 1
2‖y − ym‖

2
L2(Ω) + γk,T

(
n∑
i=1

1
2βi
‖Ciy − yd,i‖2L2(Ω) − ξT (β)

)
,

h(β, y) := ĥ(β, y) + σβ
2

n∑
i=1

( 1
βi

)2
.

(5.4)

Note that h represents the part of the objective function of (OVRP(T, γk,T )) that does
not depend on u.

Recall that KT ∈ R(n+1)×n, A : H1
0 (Ω) → H−1(Ω), B : L2(Ω) → H−1(Ω) are bounded

linear operators and that A is invertible. We define the function
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W : (0,∞)n×H1
0 (Ω)×L2(Ω)×Rn+1×H1

0 (Ω)→ Rn×H−1(Ω)×L2(Ω)×Rn+1×H−1(Ω)
via

W (β, y, u, z, p) :=


h′β(β, y) +K>T z

h′y(β, y) +A?p

u−min
(
max((B?p+ σuum)/σ̂, ua), ub

)
max(KTβ − bT ,−z)

Ay −Bu

 . (5.5)

with σ̂ := σu + γk,Tσl. Now we discuss the relation between the roots of W and the
optimality system.

Lemma 5.2. Let β ∈ T , y ∈ H1
0 (Ω), u ∈ L2(Ω) be given. Then (β, y, u) is the

solution of (OVRP(T, γk,T )) if and only if there exist z ∈ Rn+1, p ∈ H1
0 (Ω) such that

W (β, y, u, z, p) = 0 with h as defined in (5.4).

Proof. In view of Lemma 5.1, we have to check that (5.3) is equivalent toW (β, y, u, z, p) =
0.

It is clear that (5.3a), (5.3b) and (5.3d) are equivalent to lines 1, 2 and 5 in (5.5). The
complementarity conditions (5.3e) on z and bT −KTβ can be reformulated via

z ≥ 0, bT −KTβ ≥ 0, z>(bT −KTβ) = 0
⇐⇒ 0 = min(z, bT −KTβ) ⇐⇒ 0 = max(−z,KTβ − bT ).

A similar reformulation is standard for treating the gradient equation (5.3c) in combination
with the inclusion (5.3f), see [Tröltzsch, 2009, Theorem 2.28]. These two equations are
equivalent to the projection formula

u = ProjUad

(
(B?p+ σuum)/σ̂

)
= min

(
max((B?p+ σuum)/σ̂, ua), ub

)
,

i.e., line 3 in (5.5). Note that ν does not appear in (5.5), but it is uniquely determined
by (5.3c). This shows that the KKT system is equivalent to W (β, y, u, z, p) = 0. This
finishes the proof.

5.3 Semismooth Newton method for the subproblems

We have shown in Lemma 5.2 that we can characterize the solution of the subproblem
(OVRP(T, γk,T )) with the nonlinear operator W . An established way to solve problems
with this structure is the semismooth Newton method, cf. [Hintermüller, Ito, Kunisch,
2002]. To this end, we verify the Newton differentiability of W and the invertibility of
the Newton matrix. In order to state the Newton derivative of W , we need to define
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some index sets and corresponding operators. We define

A1(β, z) := {i ∈ {1, . . . , n+ 1} | (KTβ − bT )i ≥ −zi},
A2(β, z) := {i ∈ {1, . . . , n+ 1} | (KTβ − bT )i < −zi},
A3(p) := {ua ≤ (B?p+ σuum)/σ̂ ≤ ub} ⊂ Ω.

and for i ∈ {1, 2} we write χAi(β,z) ∈ R(n+1)×(n+1) for the diagonal matrix that whose k-th
diagonal entry is 1 if k ∈ Ai(β, z) and 0 otherwise. Similarly, we write χA3(p) : L2(Ω)→
L2(Ω) for the multiplication operator corresponding to the characteristic function of
A3(p) on the space L2(Ω).

Lemma 5.3. The mapping W is Newton differentiable and a Newton derivative of W
at a point (β, y, u, z, p) is given by the block operator

W ′(β, y, u, z, p) =


h′′ββ(β, y) h′′βy(β, y) 0 K>T 0
h′′yβ(β, y) h′′yy(β, y) 0 0 A?

0 0 Id 0 −σ̂−1χA3(p)B
?

χA1(β,z)KT 0 0 −χA2(β,z) 0
0 A −B 0 0

 .

Proof. To show Newton differentiability of W , one has to pay attention only to the third
and fourth line as the others are Fréchet differentiable. For the fourth line one can use
that in finite dimensions the composition of Newton differentiable functions is Newton
differentiable cf. [Ulbrich, 2011, Proposition 2.9] and combine this with the fact that
max(·, ·) is Newton differentiable (see [Ulbrich, 2011, Proposition 2.26]). Furthermore,
[Ulbrich, 2011, Theorem 3.49] can be used to show the Newton differentiability of
the third line: If we use m = 3, ψ(s) = min(max(s1, s2), s3), r = ri = 2, G(p) =
((B?p+ σuum)/σ̂, ua, ub) in the setting of [Ulbrich, 2011, Section 3.3], then the required
[Ulbrich, 2011, Assumption 3.32] is satisfied with qi = q′ > 2, by the higher regularity
B? ∈ L[H1

0 (Ω), Lq′(Ω)].

Consequently, the function H1
0 (Ω) 3 p 7→ min(max((B?p+ σuum)/σ̂, ua), ub) is Newton

differentiable.

Now a Newton derivative can be obtained using direct calculations and utilizing the
index sets that are introduced above.

The proof required a norm gap, which was ensured by the higher regularity B? ∈
L[H1

0 (Ω), Lq′(Ω)] with q′ > 2, which is intrinsic to our problem setting. This allowed us
to prove the Newton differentiability of W in the spaces where W is defined. In particular
when adapting the Algorithm from [Ulbrich, 2011, Algorithm 3.10], see Algorithm 3, this
allows for the smoothing step to be skipped. This smoothing step is designed to treat
the more general case when Newton differentiability can only be shown by artificially
introducing a norm gap while the boundedness of the inverse of the derivative can only
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be shown in the original setting (cf. [Ulbrich, 2011, Introduction to section 3]). Note
that (S3) is well defined as long as βi is positive, since the function W is only defined for
positive β. This, however, does not influence the local convergence of Algorithm 3.

Algorithm 3 Semismooth Newton method for (OVRP(T, γk,T ))

(S1) Choose an initial point (β0, y0, u0, z0, p0) ∈ (0,∞)n×H1
0 (Ω)×L2(Ω)×Rn+1×H1

0 (Ω)
and set i = 0

(S2) If W (βi, yi, ui, zi, pi) = 0, then STOP

(S3) Compute si from

W ′(βi, yi, ui, zi, pi)si = −W (βi, yi, ui, zi, pi)

(S4) Set (βi+1, yi+1, ui+1, zi+1, pi+1) = (βi, yi, ui, zi, pi) + si, increment i by one, and go
to step (S2)

To prove fast convergence of the semismooth Newton method, the uniform invertibility of
the Newton derivativeW ′(β, y, u, z, p) is needed. For this purpose, we convert the Newton
derivative W ′(β, y, u, z, p) into a self-adjoint operator, since the latter type of operator is
easier to handle. For that purpose we fix a point (β, y, u, z, p). We use the notation I1 ∈
R(n+1)×l1 , I2 ∈ R(n+1)×(n+1−l1), I3 : L2(A3(p))→ L2(Ω), I4 : L2(Ω \ A3(p))→ L2(Ω), to
refer to the canonical embedding operators that correspond to the index sets A1(β, z),
A2(β, z), A3(p), Ω \ A3(p). Here l1 denotes the cardinality of A1(β, z). We mention that
I>1 , I

>
2 , I

?
3 , I

?
4 are the corresponding restriction operators and, consequently,

χA1(β,z) = I1I
>
1 , χA2(β,z) = I2I

>
2 , χA3(p) = I3I

?
3 ,

IdRn+1 = I1I
>
1 + I2I

>
2 , IdL2(Ω) = I3I

?
3 + I4I

?
4 .

We define the linear operator Ŵ ′ from Rn × H1
0 (Ω) × L2(A3(p)) × Rl1 × H1

0 (Ω) to
Rn ×H−1(Ω)× L2(A3(p))× Rl1 ×H−1(Ω) via

Ŵ ′ :=


h′′ββ(β, y) h′′βy(β, y) 0 K>T I1 0
h′′yβ(β, y) h′′yy(β, y) 0 0 A?

0 0 σ̂ Id 0 −(BI3)?
I>1 KT 0 0 0 0

0 A −BI3 0 0

 .

It can be seen that Ŵ ′ is self-adjoint. Note that the spaces on which Ŵ ′ operates depend
on β, z, p. The next lemma gives us a relation between Ŵ ′ and W ′(β, y, u, z, p).
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Lemma 5.4. Let (β, y, u, z, p) ∈ (0,∞)n × H1
0 (Ω) × L2(Ω) × Rn+1 × H1

0 (Ω) be fixed.
Furthermore, let two points (β1, y1, u1, z1, p1) ∈ Rn ×H1

0 (Ω) × L2(Ω) × Rn+1 ×H1
0 (Ω)

and (β2, y2, u2, z2, p2) ∈ Rn ×H−1(Ω)× L2(Ω)× Rn+1 ×H−1(Ω) be given. Then

W ′(β, y, u, z, p)


β1
y1
u1
z1
p1

 =


β2
y2
u2
z2
p2

 (5.6)

holds if and only if

Ŵ ′


β1
y1
I?3u1
I>1 z1
p1

 =


β2 +K>T I2I

>
2 z2

y2
σ̂I?3u2
I>2 z2

p2 +BI4I
?
4u2

 ,
I?4u1 = I?4u2,

−I>2 z1 = I>2 z2
(5.7)

hold.

Proof. The proof can be carried out by direct calculation. We first assume (5.6) to be
valid. Computing the application of Ŵ ′ yields

Ŵ ′


β1
y1
I?3u1
I>1 z1
p1

 =


h′′ββ(β, y)β1 + h′′βy(β, y)y1 +K>T I1I

>
1 z1

y2
I?3 (σ̂u1 −B?p1)

I>1 KTβ1
Ay1 −BI3I

?
3u1

 .

We use the definition of the index sets and receive the equivalent expression

Ŵ ′


β1
y1
I?3u1
I>1 z1
p1

 =


h′′ββ(β, y)β1 + h′′βy(β, y)y1 +K>T z1 −K>T I2I

>
2 z1

h′′yβ(β, y)β1 + h′′yy(β, y)y1 +A?p1
σ̂I?3 (u1 − σ̂−1χA3(p)B

?p1)
I>1 (χA1(β,z)KTβ1 − χA2(β,z)z1)

Ay1 −Bu1 +BI4I
?
4u1

 , (5.8)

where we used I1I
>
1 = IdRn+1 −I2I

>
2 , I?3 = I?3χA3(p), I?1 = I?1χA1(β,z), I>1 χA2(β,z) = 0, and
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I3I
>
3 = IdL2(Ω)−I4I

?
4 . Using the description of W ′(β, y, u, z, p) yields

Ŵ ′


β1
y1
I?3u1
I>1 z1
p1

 =


β2 −K>T I2I

>
2 z1

y2
I?3u2
I>1 z2

p2 +BI4I
?
4u1

 . (5.9)

Note that the claimed relations I?4u1 = I?4u2 and −I>2 z1 = I>2 z2 follow from the equations
Idu1 + σ̂−1χA3(p)BG

?p1 = u2 and χA1(β,z)KTβ1 − χA2z1 = z2 (which are part of (5.6)).
With these relations, we directly get (5.7) from (5.9).

For the other direction, we first get (5.9) directly from (5.7). Then, a comparison
with (5.8) yields the equations for β2, y2, p2, and I?3u1 + σ̂−1χA3(p)BG

?p1 = I?3u2,
I>1 (χA1(β,z)KTβ1 − χA2z1) = I>1 z2. The final expression (5.6) follows by utilizing I?4u1 =
I?4u2 and −I>2 z1 = I>2 z2 again.

In order to ensure the uniform invertibility of the operators Ŵ ′, we state an auxiliary
lemma.

Lemma 5.5. Let X,Y be Hilbert spaces and Â : X → X?, B̂ : X → Y ? be bounded
linear operators. Let the bounded linear operator D̂ : X × Y → X? × Y ? be defined via

D̂ =
[
Â B̂?

B̂ 0

]
.

Suppose that B̂ is surjective and that Â is coercive on ker B̂, i.e. there exists a constant
γ̂ > 0 such that 〈Âx, x〉 ≥ γ̂‖x‖2X for all x ∈ ker B̂.

Then D̂ is continuously invertible. Moreover, the estimate

‖D̂−1‖ ≤ 4c5

holds, where c := max(1, γ̂−1, α, ‖Â‖), α > 0 is a constant such that B1
Y ?(0) ⊂ B̂(Bα

X(0)),
and γ̂ > 0 is the coercivity constant from above.

Proof. This result follows from [Brezzi, Fortin, 1991, Proposition II.1.3]. Note that we
have B̂(X) = Y ? and ker B̂? = {0}.

Lemma 5.6. Let (β, y, u, z, p) ∈ (0,∞)n × H1
0 (Ω) × L2(Ω) × Rn+1 × H1

0 (Ω) be fixed.
Suppose that I>1 KT ∈ Rl1×n is surjective, i.e. that the rows of KT which correspond
to the index set A1(β, z) are linearly independent. Then, the operator W ′(β, y, u, z, p)
is continuously invertible. Moreover, we have ‖W ′(β, y, u, z, p)−1‖ ≤ C for a constant
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C > 0, which does not depend on β, y, u, z, p but can depend on an upper bound of ‖y‖,
on the upper and lower bounds of β, and on KT , A,B, h, σ̂, σr.

Proof. We start with showing that Ŵ ′ is continuously invertible, which we will do using
Lemma 5.5. We notice that the operator Ŵ ′ has the required block structure if we set

Â :=

h
′′
ββ(β, y) h′′βy(β, y) 0
h′′yβ(β, y) h′′yy(β, y) 0

0 0 σ̂I

 ,
Â : Rn ×H1

0 (Ω)× L2(A3(p))→ Rn ×H−1(Ω)× L2(A3(p)),

B̂ :=
[
I>1 KT 0 0

0 A −BI3

]
,

B̂ : Rn ×H1
0 (Ω)× L2(A3(p))→ Rl1 ×H−1(Ω).

Since A is invertible and I>1 KT is surjective by assumption, it follows that B̂ is surjective.
In order to show that Ŵ ′ is continuously invertible, it remains to show that Â is coercive
on ker B̂.

Let (β̂, ŷ, û) ∈ ker B̂ be given. Then

‖(ŷ, û)‖H1
0 (Ω)×L2(A3(p)) = ‖(A−1BI3û, û)‖H1

0 (Ω)×L2(A3(p)) ≤ (1 + ‖A−1B‖)‖û‖L2(A3(p))

holds. Recall from (5.4) that h(β, y) = ĥ(β, y) + σβ
2
∑n
i=1

(
1
βi

)2
and that ĥ is convex,

and that for σβ
2
∑n
i=1

(
1
βi

)2
we can directly calculate the second derivative, which is a

diagonal matrix with strictly positive entries, if βi > 0. Therefore, there exists a constant
σr > 0 for which (

h′′(β, y)(β̂, ŷ)
)

(β̂, ŷ) ≥ σrβ̂>β̂ (5.10)

holds, where σr depends on the upper bound of βi. This implies

〈Â(β̂, ŷ, û), (β̂, ŷ, û)〉 ≥ σr‖β̂‖2Rn + σ̂‖û‖2L2(A3(p))

≥ σr‖β̂‖2Rn + σ̂(1 + ‖A−1B‖)−2‖(ŷ, û)‖2H1
0 (Ω)×L2(A3(p))

≥ γ̂‖(β̂, ŷ, û)‖2Rn×H1
0 (Ω)×L2(A3(p)),

where γ̂ > 0 is a suitable constant. Thus Â is coercive on ker B̂. It follows from Lemma 5.5
that Ŵ ′ is continuously invertible. Because B̂ is surjective, there exists a constant α > 0
such that B1(0) ⊂ B̂(Bα(0)). Since there are only finitely many possibilities for I1 and
I3 is not needed for surjectivity, the constant α can be chosen such that it is independent
of I1 and I3. For ‖Â‖ we note that it can be bounded by a constant which can depend
on an upper bound on ‖y‖H1

0 (Ω) and a lower bound on βi.
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It follows from Lemma 5.5 that the estimate ‖Ŵ ′−1‖ ≤ 4c5 holds for a suitable constant
c > 0 which does not depend on β, y, u, z, p but can depend on an upper bound of
‖y‖H1

0 (Ω), the lower bound of βi and on KT , A,B, h, σ̂, σr.

Next, we combine this result with Lemma 5.4 to show the invertibility of W ′(β, y, u, z, p).
Let (β2, y2, u2, z2, p2) be a right-hand side as in (5.6). Since Ŵ ′ is invertible, by Lemma 5.4
there exists a unique solution (β1, y1, u1, z1, p1) of (5.6). Using the estimate ‖Ŵ ′−1‖ ≤ 4c5

and (5.7), one get an estimate of the form ‖(β1, y1, u1, z1, p1)‖ ≤ C‖(β2, y2, u2, z2, p2)‖,
where C > 0 is a suitable constant that can depend on c, σ̂,KT , B, the upper bound of
‖y‖H1

0 (Ω) and the bounds of β. The constant C however, does not depend on (β, y, u, z, p)
or any of the embedding operators I1, I2, I3, I4. . Since we can estimate the norm of the
unique solution in (5.6) by the norm of the right-hand side, the claimed invertibility and
estimate ‖W ′(β, y, u, z, p)−1‖ ≤ C follow.

Lemma 5.7. Let (β, y, u, z, p) ∈ Q×H1
0 (Ω)× L2(Ω)× Rn+1 ×H1

0 (Ω) be a point such
that W (β, y, u, z, p) = 0. Then the Newton derivative W ′ is uniformly continuously
invertible in a neighborhood of (β, y, u, z, p).

Proof. We want to apply Lemma 5.6. We need to verify that I>1 KT (which can depend
on β and z) is surjective in a neighborhood.

From the definition of W , we get z ≥ 0, KTβ − bT ≤ 0 and z>(KTβ − bT ) = 0. In
particular, β ∈ T . Recall that T is a non-degenerate simplex. Thus, at most n constraints
in the system KTβ ≤ bT are active, and these active constraints are linearly independent.
Furthermore, if i ∈ {1, . . . , n+ 1} is an index of an inactive constraint, we have zi = 0
due to the complementarity condition, and therefore i ∈ A2(β, z) and i 6∈ A1(β, z). Thus,
A1(β, z) contains at most n elements. Therefore, the rows of KT which correspond to
the index set A1(β, z) are linearly independent, which yields that I>1 KT is surjective for
this particular β, z.

If i ∈ A2(β, z), then i ∈ A2(β̂, ẑ) holds also for (β̂, ẑ) that are sufficiently close to (β, z).
Thus, A1(β, z) cannot get larger in a neighborhood of (β, z). Hence, the rows of KT

that correspond to A1(β, z) stay linearly independent in a neighborhood, i.e. I>1 KT is
surjective in a neighborhood of (β, z).

Now to apply Lemma 5.6 we restrict the neighborhood such that β > 1
2ai if necessary.

This guarantees the lower bound β > 1
2ai . The upper bound of ‖y‖H1

0 (Ω) is obtained from
the coercivity of f with constant γk,Tµ (cf. Assumption 2.1(g). Hence, with Lemma 5.6
there exists a constant C > 0, such that ‖W ′(β, y, u, z, p)−1‖ ≤ C in the considered
neighborhood of (β, y, u, z, p).

Now we are ready to give our final theorem, which states that Algorithm 3 converges
superlinearly.
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Theorem 5.8. Let the function W be given as in (5.5). Further, we denote by
(βk,T , yk,T , uk,T ) the unique global solution of (OVRP(T, γk,T )) and by zk,T , pk,T the
corresponding multipliers that satisfy (5.3). Then there exists a neighborhood of the point
(βk,T , yk,T , uk,T , zk,T , pk,T ) such that for all initial values (β0, y0, u0, p0, z0) from this neigh-
borhood, the semismooth Newton method from Algorithm 3 either terminates in the i-th
step with (βi, yi, ui, zi, pi) = (βk,T , yk,T , uk,T , zk,T , pk,T ) or generates a sequence that con-
verges q-superlinearly to (βk,T , yk,T , uk,T , zk,T , pk,T ) in Rn×H1

0 (Ω)×L2(Ω)×Rn+1×H1
0 (Ω).

Proof. We already established that the function W is semismooth in the solution to
(OVRP(T, γk,T )) (see Lemma 5.3). We have proven in Lemma 5.7 that the derivative
from Lemma 5.3 is invertible and the norm of the inverse is bounded on a neighborhood
of a solution. The result is now a direct application of [Ulbrich, 2011, Theorem 3.13].
In particular, we do not need a smoothing step, since the spaces in which W is Newton
differentiable coincide with the spaces in which the Newton derivative is uniformly
invertible, see Lemmas 5.3 and 5.6.

6 Numerical experiments

In this section we present an example for Algorithm 2 to illustrate the convergence
behavior towards a global minimizer. To this end, we consider the parameter identification
problem

min
β,y,u

1
2‖y − ym‖

2
L2(Ω) + σu

2 ‖u− um‖
2
L2(Ω) + σβ

2 ‖β − βm‖
2
Rn =: F1(β, y, u)

s.t. β ∈ Q,
(y, u) ∈ Ψ(β),

(6.1)

where Ψ : R2 → H1
0 (Ω)× L2(Ω) denotes the solution mapping of the parameter β to the

unique solution of the lower-level problem

min
y,u

1
2β1
‖y − yd,1‖2L2(Ω) + 1

2β2
‖y − yd,2‖2L2(Ω) + σl

2 ‖u‖
2
L2(Ω) =: f(β, y, u)

s.t. 0 = −∆y − u in Ω,
0 = y on ∂Ω,
u ∈ Uad.

(6.2)

Let us define the data present in this bilevel optimization problem. We use the sets
Q := [0.1, 1]2 and Ω = (−1, 1)2 and the two possible desired states

yd,1 : Ω→ R, yd,1(x) = sin(πx1) sin(πx2),
yd,2 : Ω→ R, yd,2(x) = (x1 + 1)(x1 − 1)(x2 + 1)(x2 − 1).
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The regularization parameter for the lower level is σl = 0.03. Additionally, we introduce
box constraints for the control via

u ∈ Uad := {u ∈ L2(Ω) | ua ≤ u ≤ ub a.e. on Ω},
ua(x) := 0, ub(x) := 3.

It turns out that these constraints are active on parts of the domain for the choice of
the parameter β = (0.6, 0.3)>. For the upper level we fix the parameters σu = 0.05 and
σβ = 10−5. We also choose βm := (0.6, 0.3)> and (ym, um) := Ψ((0.6, 0.3)>), i.e. the
objective value of F1 is zero for the solution to the lower-level problem with β = βm.
We call this setting “fully reachable target state”. We mention that when this setting is
implemented, the functions ym, um are not the analytical solutions, but are calculated
directly using the finite element solutions for the lower level.

For the setting of this section, Assumption 2.1 is valid. Additionally, for the chosen
functionals and parameters we can apply the semismooth Newton method from Section 5.3
to solve the subproblems (OVRP(T, γk,T )). In order to illustrate some fundamental
properties of the proposed solution algorithm, we consider two additional problems that
only differ in the choice of the objective functional, i.e. the functions

F2(β, y, u) := 1
2‖y − ym‖

2
L2(Ω) + σu

2 ‖u− um‖
2
L2(Ω) + σβ

2 ‖β‖
2
Rn ,

F3(β, y, u) := 1
2‖y − ŷm‖

2
L2(Ω) + σu

2 ‖u− ûm‖
2
L2(Ω) + σβ

2

2∑
i=1

1
β2
i

are used instead of F1. In the second objective functional F2, the β term is only introduced
as a regularization. This will be called “reachable target state”. The functional F3 is set
up with desired states ŷm and ûm that are given by

ŷm : Ω→ R, ŷm(x) = (x1 − 1)(x1 + 1) sin(πx2),
ûm : Ω→ R, ûm(x) = 0.

This state and control have the property that they do not arise as a solution of the lower-
level problem. This setting is named “unreachable target state”. We expect a noticeable
difference in the convergence speed for the introduced settings, see Remark 3.7.

The refinement of the subdivision will be implemented by splitting the triangles at the
midpoint of the edges. This refinement procedure is the application of Lemma 3.2 to
the two-dimensional case. However, in this special case we can even guarantee that the
diameter of the simplices is halved in each refinement. We initialize Algorithm 2 with
the domain Q split into two triangles.

We use an implementation with the suggested improvements mentioned at the end of
Section 3. In each iteration we get a lower bound on the optimal objective value from the
element with the lowest objective value for the solution to (OVRP(T, γk,T )). We obtain
an upper bound from the vertex with the lowest objective value. Hence every element
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whose relaxed optimal objective value is above the upper bound can be dismissed, since
the relaxed optimal objective value is smaller than or equal to the objective value of
the original subproblem. Further, in each iteration we refine the best 15% of the active
triangles with respect to the objective value for the solution to (OVRP(T, γk,T )). This
is done to effectively utilize parallelization. Additionally, we refine the worst 5% as a
measure to “clean up old triangles”. Otherwise, for some triangles that are quite far from
the actual solution but for which (by chance) the objective value comes really close, the
algorithm might take a long time to refine this element. Lastly, the algorithm runs until
a set amount of elements (3 · 105) is reached or the difference between lower and upper
bound is sufficiently mall. For the setting of F1 we chose a target bound difference of
10−13, for F2 we chose a target bound difference of 10−11. In the case of the “unreachable
target state” (F3) the element limit was reached.
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number of subproblems

bo
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d
va
lu
e

Bounds; F1

101 102 103 10410−7
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Bounds; F2
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Bounds; F3

Figure 6.1: Upper bound (blue) and lower bound (red) for the setting of F1, F2 and F3
w.r.t. the number of solved subproblems.
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Figure 6.2: Distance between the calculated solution β̄ and the best known vertex (blue)
and the furthest active vertex (red) respectively for each iteration.

We now visualize the convergence of Algorithm 2 in Figure 6.1–6.4. These graphics
indicate the convergence βk → β̄ as predicted in Theorem 4.2, see in particular Figure 6.2.
In Figure 6.1 we show the difference of lower and upper bound compared for all mentioned
settings. Note that these bounds are theoretically nondecreasing, but in the setting of F1
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Figure 6.3: Difference of upper and lower bound for the settings of F1, F2 and F3 w.r.t.
the number of solved subproblems. For the setting of F3 the results for two
different regularization terms are displayed

the lower bound in Figure 6.1 is close to zero with repsect to machine accuracy, which
explains the slightly perturbed behaviour.

We have a stark difference of convergence speed for the different settings introduced in
this section. Additionally there is a noticeable difference between looking at the vertex
that provides the upper bound and the furthest active vertex. Note that only for the
latter the distance to β̄ is guaranteed to be nonincreasing, while the vertex providing the
upper bound might be more interesting from a heuristic point of view if one considers a
depth-search. The splitting of the domain can be seen in Figure 6.4. For the purpose of
better visualization in the setting of F1 and F2, the algorithm was continued for Figure 6.4
until every element either had a vertex for which the corresponding upper level objective
was close (10−9) to the upper bound or was dismissed. We show the difference of lower
and upper bound for all the cases discussed in Figure 6.3.

Finally, we give some explanation for the difference in convergence speed. As discussed in
Remark 3.6 and Remark 3.7, a growth condition for the upper-level objective functional
for a solution w.r.t. β allows for an estimate of convergence speed. This is exactly what
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we have for the setting of F1. Thus, we get the estimate from Remark 3.6 and the number
of active subproblems does not substantially increase between iterations. For the case of
F2, we have the second case from Remark 3.7, where the derivative of F2 is close to zero
in the solution. This is, because the term ‖β‖2Rn only comes up as a regularization with
a small parameter for the upper-level objective functional. The solution of the parameter
estimation problem is still close to (ym, um). For the case of F3, we no longer have a
setting for which we obtain a nice bound on the number of required subproblems to
reach a certain accuracy. Especially, the number of of active subproblems might heavily
increase during the runtime of Algorithm 2. This can be seen well in Figure 6.4. Finally
Figure 6.3 indicates, that the important property in the setting of F3 is that the solution
is no longer close to (ŷm, ûm), i.e. that the target state is “unreachable” and that the
choice of regularization term σβ

2 ‖β‖
2
Rn or σβ

2
∑2
i=1

1
β2
i
is of minor importance regarding

convergence speed for this case.

Data availability

The datasets generated during and/or analysed during the current study are available
from the corresponding author on reasonable request.
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