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SEMISMOOTHNESS FOR SOLUTION OPERATORS OF
OBSTACLE-TYPE VARIATIONAL INEQUALITIES WITH

APPLICATIONS IN OPTIMAL CONTROL∗

CONSTANTIN CHRISTOF† AND GERD WACHSMUTH‡

Abstract. We prove that solution operators of elliptic obstacle-type variational inequalities
(or, more generally, locally Lipschitz continuous functions possessing certain pointwise-a.e. convexity
properties) are Newton differentiable when considered as maps between suitable Lebesgue spaces
and equipped with the strong-weak Bouligand differential as a generalized set-valued derivative. It
is shown that this Newton differentiability allows to solve optimal control problems with H1-cost
terms and one-sided pointwise control constraints by means of a semismooth Newton method. The
superlinear convergence of the resulting algorithm is proved in the infinite-dimensional setting and
its mesh independence is demonstrated in numerical experiments. We expect that the findings of this
paper are also helpful for the design of numerical solution procedures for quasi-variational inequalities
and the optimal control of obstacle-type variational problems.

Key words. obstacle problem, variational inequality, Newton differentiability, semismoothness,
optimal control, pointwise convexity, Bouligand differential, control constraints, nonsmoothness

AMS subject classifications. 35J86, 35J87, 49J52, 49K20, 46G05, 49M15

1. Introduction and summary of results. Due to its importance for the
analysis of generalized Newton methods and the study of solution algorithms for non-
smooth optimization and optimal control problems, the concept of Newton differen-
tiability (a.k.a. semismoothness) has received considerable attention in the literature.
We refer to, e.g., [9, 16, 22, 24, 26, 35, 41, 45], which discuss semismooth Newton meth-
ods for equations in finite- and infinite-dimensional spaces, and to [4, 30, 31, 42], which
are concerned with the minimization of semismooth functions. Despite this prominent
role that the notion of Newton differentiability plays in the field of nonsmooth analysis
and optimization, contributions which establish Newton differentiability properties for
functions between infinite-dimensional spaces that arise as control-to-state mappings
or as parts of stationarity systems in optimal control applications are comparatively
scarce. The result that is most commonly used in this field is the well-known fact
that Nemytskii operators which are induced by a Lipschitz continuous, semismooth
function f : R → R are Newton differentiable as mappings between Lebesgue spaces
in the presence of a norm gap. See, for example, [14, 23, 40, 41, 45], where this New-
ton differentiability property is exploited to set up semismooth Newton methods for
control- and state-constrained optimal control problems, and [21, 27], where a similar
approach is used for the analysis of regularized variational inequalities. For operators
that are not of Nemytskii type (and in which superposition operators are not the
sole source of nonsmoothness, see, e.g., the solution map of the partial differential
equation considered in [11]) much less is known. One of the few contributions that
accomplishes to prove Newton differentiability properties for a nontrivial example of
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such a function is [6], which establishes the Newton differentiability of the scalar play
and stop operator (and thus of the solution map of a prototypical rate-independent
evolution variational inequality) by means of an explicit solution formula involving
the accumulated maximum. In [7], the findings of [6] are extended to a parabolic PDE
system involving the scalar play. The nonexistence of further results and of a compre-
hensive theory on the Newton differentiability of nonsmooth operators arising in the
field of optimal control is rather unsatisfactory—in particular in view of the multitude
of contributions on the semismoothness of functions in the finite-dimensional setting,
see, e.g., [5, 34, 35] and the references therein.

The aim of this paper is to demonstrate that, beside superposition operators and
the scalar play and stop considered in [6, 7], there is a further large class of operators
arising in optimal control applications that are Newton differentiable when endowed
with a suitable (and computable) set-valued derivative, namely, solution mappings of
obstacle-type variational inequalities (VIs) with unilateral constraints. Such functions
arise, for instance, when optimal control problems governed by partial differential
equations (PDEs) with H1-controls are studied, see sections 5 and 6, or in the field
of optimal control of contact problems, see [19, 27]. The main idea of our analysis
is to exploit that solution maps of obstacle-type VIs possess pointwise-a.e. convexity
properties which, in combination with certain compact embeddings, immediately yield
Newton differentiability results when the strong-weak Bouligand differential is used as
a generalized set-valued derivative, see Definition 2.4 and Theorem 2.12 below. Along
these lines, one obtains that Newton differentiability is readily available for solution
operators of VIs like the classical obstacle problem or the scalar Signorini problem
when these functions are considered as maps between suitable Lebesgue spaces. The
content of this paper can be summarized as follows:

In section 2, we discuss Newton differentiability properties of pointwise-a.e. convex
operators on a general abstract level. Here, we prove that such functions are indeed
Newton differentiable when endowed with the strong-weak Bouligand differential and
considered as functions between suitable Lebesgue spaces. For the main result of this
section, we refer the reader to Theorem 2.12.

In section 3, we illustrate that the abstract results of section 2 can be applied
to the solution operators of obstacle-type VIs. During the course of the analysis of
this section, we also generalize well-known truncation arguments of Stampacchia, see
Lemma 3.4 and Corollary 3.9 for the main results on this topic.

Section 4 contains two tangible examples of obstacle-type VIs that are covered by
our analysis: the scalar Signorini problem and the classical obstacle problem. Here, we
also recall a recent characterization result for the strong-weak Bouligand differential
of the solution map of the classical obstacle problem which, in combination with the
analysis of section 3, provides a framework that can be readily used for the design of
semismooth Newton methods or comparable algorithms in practical applications.

In section 5, we consider an example of such an application, namely, the numerical
solution of an optimal control problem with unilateral control constraints. For this
problem, we design a semismooth Newton method in function space and establish its
local superlinear convergence in infinite dimensions, see Theorem 5.6.

Section 6 concludes the paper with numerical experiments which illustrate that
the algorithm developed in section 5 indeed converges superlinearly and, due to the
established convergence in the function space setting, mesh-independently. This sec-
tion also contains some comments on further applications of our results, e.g., in the
context of optimal control problems governed by obstacle-type VIs and the field of
quasi-variational inequalities.
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Before we begin with our analysis, we would like to point out that techniques
very similar to those used in section 2 of this paper have recently also been employed
in [8] for the study of parametric semismooth functions, see [8, sections 3 and 4].
The main difference between our approach and that of [8] is that our analysis is
tailored to applications in the field of optimal control and the area of obstacle-type
VIs. This is in particular emphasized by the nested Banach space structure that we
consider (see Assumptions 2.1 and 3.1) and the generalized differential that we work
with—the already mentioned strong-weak Bouligand differential, see Definition 2.4.
This differential arises on the operator-theoretic level as an immediate consequence of
Rademacher’s theorem when locally Lipschitz continuous control-to-state mappings
are considered, see Theorem 2.3, and possesses several advantageous properties (e.g.,
regarding chain rules and adjoint-based approaches) that make it the appropriate
choice for many optimal control applications, see sections 5 and 6. Moreover, for sev-
eral solution operators (e.g., those of nonsmooth semilinear PDEs, the classical obsta-
cle problem, and the bilateral obstacle problem), formulas for certain elements of the
strong-weak Bouligand differential or even full characterization results have recently
been obtained in the literature, see [11, 36, 37, 38]. Generalized derivatives of strong-
weak Bouligand type are thus readily available and can, in combination with the
semismoothness results established in Theorem 2.12 and Corollary 3.9 of the present
paper, immediately be used for setting up numerical solution algorithms for optimal
control problems, cf. the semismooth Newton method developed in section 5. The
generalized differential studied in [8, section 4, Equation 4.12], which relies on point-
wise measurable selections, is less tangible in this regard—in particular in the context
of obstacle-type variational problems. We remark that, by restricting the attention to
Bouligand generalized derivatives, we are also able to completely avoid working with
measurable selectors and the assumptions that they require, cf. [8, sections 4 and 5]
and the proof of Theorem 2.12. This allows us in particular to also prove the Newton
differentiability of, for instance, the solution operator S : L2(Ω) → L2(Ω), u 7→ y, of
the classical obstacle problem in situations in which the functions S(u) ∈ L2(Ω) do not
possess continuous representatives and in which, as a consequence, the Carathéodory
conditions or local pointwise Lipschitz estimates cannot be satisfied by the function
L2(Ω) × Ω 3 (u, ω) 7→ S(u)(ω) ∈ R, see [8, Equations 4.6, 4.7, 4.22], subsection 4.2,
and Theorem 2.12. The downside of our approach in comparison with that of [8] is,
of course, that it only applies to pointwise-a.e. convex operators, cf. [8, section 4].

1.1. Remarks on the notation. We use the symbols ‖ · ‖, (·, ·), and 〈·, ·〉
to denote norms, scalar products, and dual pairings, respectively, with a subscript
indicating which spaces this notation is referring to. Strong and weak convergence
are denoted by the arrows→ and ⇀, respectively. Given two normed spaces X and Y
satisfying X ⊂ Y , we write X ↪→ Y if X is continuously embedded into Y , i.e., if the
inclusion map ι : X → Y , x 7→ x, is a linear and continuous function. If the inclusion
map is even compact, then we say that X is compactly embedded into Y and write
X

c
↪→ Y . With L (X,Y ), we denote the space of all linear and continuous functions

on a normed space X with values in Y . In the special case Y = R, X∗ := L (X,R)
denotes the topological dual of X. Given a sequence {Gn} ⊂ L (X,Y ), we say that
Gn converges in the weak operator topology (WOT) to G ∈ L (X,Y ), in symbols
Gn

wot→G, if Gnz ⇀ Gz holds in Y for all z ∈ X. For an exponent q ∈ [1,∞], we denote
by q′ ∈ [1,∞] the conjugate exponent satisfying 1 = 1/q + 1/q′ (with 1/∞ := 0). In
addition to these conventions, new notation is introduced in the following sections
wherever necessary. These symbols are explained upon their first appearance.
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2. Newton differentiability of pointwise-a.e. convex operators. In this
section, we prove general Newton differentiability results for maps that are (in an
appropriately defined sense) locally Lipschitz continuous and pointwise-a.e. convex.
The setting that we consider for our analysis is as follows.

Assumption 2.1 (Standing assumptions for the analysis of section 2). Through-
out this section, we assume the following:

(i) (Ω,Σ, µ) is a complete measure space with associated real Lebesgue spaces
(Lp(Ω), ‖ · ‖Lp(Ω)), p ∈ [1,∞].

(ii) (Y, ‖ · ‖Y ) is a real separable reflexive Banach space such that Y ⊂ Lq(Ω) and
Y

c
↪→ Lq(Ω) hold for a fixed q ∈ [1,∞].

(iii) (X, ‖ · ‖X) is a real separable Banach space.
(iv) (U, ‖ · ‖U ) is a real reflexive Banach space satisfying U ⊂ X and U

c
↪→ X.

(v) The map S : X → Y satisfies

(2.1) S(λx1 + (1− λ)x2) ≤ λS(x1) + (1− λ)S(x2) µ-a.e. in Ω

for all x1, x2 ∈ X and all λ ∈ [0, 1]. Further, S is locally Lipschitz continuous
in the following sense: There exists an exponent r ∈ [1,∞] such that, for all
x ∈ X, there exist constants C, ε > 0 satisfying

(2.2) ‖S(x1)− S(x2)‖Y ≤ C‖x1 − x2‖X

for all x1, x2 ∈ X with ‖xi − x‖X ≤ ε, i = 1, 2, and

(2.3) ‖S(x1 + z)− S(x1)‖Lr(Ω) ≤ C‖z‖U

for all x1 ∈ X and all z ∈ U with ‖x1 − x‖X ≤ ε and ‖z‖U ≤ ε.
Note that condition (2.3) in Assumption 2.1(v) is always satisfied for r = q by the

local Lipschitz continuity of S as a function from X to Y in (2.2) and the continuity of
the embeddings Y ↪→ Lq(Ω) and U ↪→ X. The modified stability estimate (2.3) allows
to establish the Newton differentiability of S in stronger spaces if a better Lipschitz
estimate for perturbations z from the space U is available for S, see Theorem 2.12
below and the tangible examples in section 4. If this is not the case, then with the
trivial choice r = q Assumption 2.1(v) boils down to the condition that S should be
locally Lipschitz as a function from X to Y and pointwise-a.e. convex in the sense
of (2.1). Regarding the separability of Y in (ii), we would like to point out that this
assumption can be made without any loss of generality. Indeed, if Y is not separable,
then one can simply replace this space by the (necessarily separable) closure of the
linear hull of the image S(X) in Y and thus resort to the separable situation. Next,
we recall the definition of Gâteaux differentiability.

Definition 2.2 (Gâteaux differentiability). The function S : X → Y is called
Gâteaux differentiable at a point x ∈ X if the directional derivative

S′(x; z) := lim
t→0+

S(x+ tz)− S(x)

t
∈ Y

exists for all z ∈ X and if the map X 3 z 7→ S′(x; z) ∈ Y is linear and continuous.
In this case, we call S′(x) := S′(x; ·) ∈ L (X,Y ) the Gâteaux derivative of S at x.

The properties of S, X, and Y yield the next result.

Theorem 2.3. The set of points in X at which the function S : X → Y possesses
a Gâteaux derivative is dense in X. Henceforth, this set is denoted by DS.
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Proof. See [44, Proposition 1.3, Remark 1.3] and the references therein.

To establish the Newton differentiability of S, we use a generalized differential.

Definition 2.4 (Strong-weak Bouligand differential). For all x ∈ X, we define
the strong-weak Bouligand differential ∂swB S(x) ⊂ L (X,Y ) by

∂swB S(x) :=
{
G
∣∣ ∃{xn} ⊂ DS : xn → x in X, S′(xn)

wot→G in L (X,Y )
}
.

Note that the notation ∂swB S(x) emphasizes the modes of convergence appearing
in the definition of the strong-weak Bouligand differential (strong convergence for the
base points xn and WOT-convergence for the derivatives), cf. [11, Definition 3.1]. Due
to the separability of X and the reflexivity of Y , we have the following variant of the
Banach–Alaoglu theorem.

Theorem 2.5. Every bounded sequence {Gn} ⊂ L (X,Y ) possesses a subse-
quence that converges w.r.t. the WOT in L (X,Y ) to an operator G ∈ L (X,Y ).

Proof. We set C := supn∈N‖Gn‖L (X,Y ) <∞. Let {xk}∞k=1 ⊂ X be dense. Since
Y is reflexive, the sequence {Gnxk}∞n=1 possesses a weak accumulation point for every
k ∈ N. By a standard diagonal argument, we can pick a subsequence {Ĝn} of {Gn}
such that Ĝnxk ⇀ gk holds in Y for n→∞ for all k ∈ N with some gk ∈ Y . For an
arbitrary x ∈ X, there further exists a sequence {xkm} with xkm → x. From

‖gkm − gkl‖Y ≤ lim inf
n→∞

‖Ĝnxkm − Ĝnxkl‖Y ≤ C‖xkm − xkl‖X ,

we obtain that {gkm} is Cauchy and thus convergent. It is easy to check that the limit
only depends on x (and not on {xkm}). This allows us to define Gx := limm→∞ gkm .
The linearity of x 7→ Gx is evident and the boundedness of G follows from

‖Gx‖Y = lim
m→∞

‖gkm‖Y ≤ lim
m→∞

lim inf
n→∞

‖Ĝnxkm‖Y ≤ C‖x‖X ∀x ∈ X.

It remains to show that Ĝn
wot→G holds. For arbitrary x ∈ X and y∗ ∈ Y ∗, we have

|〈y∗, (Ĝn −G)x〉Y | ≤ |〈y∗, (Ĝn −G)xk〉Y |+ 2C‖y∗‖Y ∗‖x− xk‖X ∀k ∈ N.

Since {xk} ⊂ X is dense in X and since Ĝnxk ⇀ gk = Gxk holds for n → ∞ for all
fixed k, this implies Ĝn

wot→G as claimed.

As a consequence, we obtain the following result (see [44, Proposition 2.1]).

Corollary 2.6. The generalized differential ∂swB S(x) is nonempty for all x ∈ X.

Proof. Given x ∈ X, we can find a sequence {xn} ⊂ DS with xn → x by
Theorem 2.3. Due to the local Lipschitz continuity of S : X → Y , the sequence
of Gâteaux derivatives S′(xn) is bounded in L (X,Y ). There thus exists a subse-
quence of {S′(xn)} (still denoted the same) such that S′(xn)

wot→G holds in L (X,Y )
for some G ∈ L (X,Y ). By Definition 2.4, this G satisfies G ∈ ∂swB S(x).

Using standard techniques, we can also prove the following upper semicontinuity
result for the set function ∂swB S : X ⇒ L (X,Y ).

Lemma 2.7. Let {xn} ⊂ X and {Gn} ⊂ L (X,Y ) be sequences satisfying xn → x
in X for some x ∈ X, Gn ∈ ∂swB S(xn) for all n ∈ N, and Gn → G w.r.t. the WOT in
L (X,Y ) for some G ∈ L (X,Y ). Then it holds G ∈ ∂swB S(x).
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Proof. The proof of this result is completely analogous to that of [38, Proposi-
tion 2.11(iii)], see also [11, Proposition 3.6]. Note that in [38], S is assumed to be
globally Lipschitz continuous, but local Lipschitz continuity suffices for the proof.

We prepare our Newton differentiability result for S with three lemmas.

Lemma 2.8. For all x ∈ X and all G ∈ ∂swB S(x), we have

S(x+ z)− S(x) ≥ Gz µ-a.e. in Ω ∀z ∈ X.

Proof. Let {xn} ⊂ DS be an approximating sequence for G ∈ ∂swB S(x) as in the
definition of the generalized differential ∂swB S(x). Then, for each n, we obtain from
the pointwise-a.e. convexity of S, the Gâteaux differentiability of S : X → Y in xn,
and the embedding Y ↪→ Lq(Ω) that

S(xn+ z)−S(xn) ≥ lim
N3k→∞

S(xn + (1/k)z)− S(xn)

1/k
= S′(xn)z µ-a.e. in Ω ∀z ∈ X.

Passing to the limit n→∞ in this inequality by using the local Lipschitz continuity
of S and again the embedding Y ↪→ Lq(Ω) yields the claim.

Lemma 2.9. For every R ≥ 0, the set
{
w ∈ Lq(Ω)∩Lr(Ω)

∣∣ ‖w‖Lr(Ω) ≤ R
}

(with
the exponents q and r from Assumption 2.1) is sequentially weakly closed in Lq(Ω).

Proof. One can check that Lq(Ω) 3 w 7→ ‖w‖Lr(Ω) ∈ [0,∞] is convex and lower
semicontinuous. Thus it is weakly lower semicontinuous and the claim follows.

Lemma 2.10. For every x ∈ X, there exist constants C, δ > 0 such that

sup
v∈X,‖v−x‖X≤δ

sup
G∈∂sw

B S(v)

‖Gz‖Lr(Ω) ≤ C‖z‖U ∀z ∈ U.

Here, r ∈ [1,∞] denotes the exponent from Assumption 2.1(v).

Proof. Suppose that x ∈ X is given and let C, ε > 0 be the constants from
Assumption 2.1(v) for this x. We set δ := ε/2. Let v ∈ X with ‖v − x‖X ≤ δ
and G ∈ ∂swB S(v) be arbitrary, and let {vn} ⊂ X be an approximating sequence of
Gâteaux points for G as in Definition 2.4. We assume w.l.o.g. that ‖vn − x‖X ≤ ε
holds for all n ∈ N. Due to (2.3), this yields

(2.4)

∥∥∥∥S(vn + tz)− S(vn)

t

∥∥∥∥
Lr(Ω)

≤ C‖z‖U ∀n ∈ N, t ∈
(

0,
ε

‖z‖U

)
, z ∈ U.

Because of the Gâteaux differentiability of S : X → Y at vn and since Y ↪→ Lq(Ω),
we can use Lemma 2.9 to pass to the limit t→ 0+ in (2.4) and obtain

‖S′(vn)z‖Lr(Ω) ≤ C‖z‖U ∀n ∈ N, z ∈ U.

By S′(vn)
wot→G in L (X,Y ) and Y ↪→ Lq(Ω), we have S′(vn)z ⇀ Gz in Lq(Ω). Using

Lemma 2.9 again gives ‖Gz‖Lr(Ω) ≤ C‖z‖U for all z ∈ U and the claim follows.

With Lemmas 2.8 and 2.10 at hand, we are in the position to prove our first
main result. Before we do so, we clarify what we mean with the term “Newton
differentiable” in the situation of the nested Banach space structure in Assumption 2.1.

Definition 2.11 (Newton differentiability). Suppose that G : X ⇒ L (X,Y ) is
a set-valued map and that p ∈ [1,∞] is an exponent. We say that S : X → Y with
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G is Newton differentiable (with Newton derivative G) w.r.t. perturbations in U with
values in Lp(Ω) if every x ∈ X satisfies

sup
G∈G(x+z)

‖S(x+ z)− S(x)−Gz‖Lp(Ω)

‖z‖U
→ 0 for ‖z‖U → 0.

Note that Definition 2.11 allows to distinguish between different regularities of
the points x and the perturbations z, cf. [45, Definition 3.1].

Theorem 2.12 (Newton differentiability of S). Let r, q ∈ [1,∞] be the exponents
from Assumption 2.1 and let p ∈ {q}∪ (min(q, r),max(q, r)) be given. Then the func-
tion S : X → Y with the differential ∂swB S : X ⇒ L (X,Y ) is Newton differentiable
w.r.t. perturbations in U with values in Lp(Ω).

Proof. Let x ∈ X be fixed. Due to Corollary 2.6, it suffices to show that, for all
{zn} ⊂ U \ {0}, {Gn} ⊂ L (X,Y ) with ‖zn‖U → 0, Gn ∈ ∂swB S(x+ zn), we have

(2.5) lim sup
n→∞

‖S(x+ zn)− S(x)−Gnzn‖Lp(Ω)

‖zn‖U
= 0.

Let such sequences {zn} and {Gn} be given. To prove (2.5), we pass over to sub-
sequences of {zn} and {Gn} (still denoted the same) along which the limit superior
in (2.5) is attained as a limit. Since (2.2) and the embedding U ↪→ X imply that
{Gn} is bounded in L (X,Y ), we may assume w.l.o.g. that the sequence {Gn} sat-
isfies Gn

wot→G in L (X,Y ) for some G ∈ ∂swB S(x), see Theorem 2.5 and Lemma 2.7.
Due to the reflexivity of U and U

c
↪→ X, we further assume w.l.o.g. that the sequence

en := zn/‖zn‖U converges weakly in U and strongly in X to some e ∈ U . From
Lemma 2.8, G ∈ ∂swB S(x), and Gn ∈ ∂swB S(x+ zn), we now get

S(x)− S(x+ zn) ≥ −Gnzn and S(x+ zn)− S(x) ≥ Gzn µ-a.e. in Ω,

and, as a consequence,

(2.6) 0 ≥ S(x+ zn)− S(x)−Gnzn
‖zn‖U

≥ Gzn −Gnzn
‖zn‖U

= (G−Gn)en µ-a.e. in Ω.

Integrating (or taking the essential supremum in the case p =∞) in (2.6) gives

(2.7)
‖S(x+ zn)− S(x)−Gnzn‖Lp(Ω)

‖zn‖U
≤ ‖(G−Gn)en‖Lp(Ω).

Note that the choice of p and Hölder’s inequality imply the existence of α ∈ (0, 1]

with ‖v‖Lp(Ω) ≤ ‖v‖
α
Lq(Ω)‖v‖

1−α
Lr(Ω) for all v ∈ Lq(Ω) ∩ Lr(Ω). In combination with

Y
c
↪→ Lq(Ω), Lemma 2.10, and (G−Gn)e ⇀ 0 in Y , this yields

(2.8)

‖(G−Gn)en‖Lp(Ω) ≤ ‖(G−Gn)en‖αLq(Ω)‖(G−Gn)en‖1−αLr(Ω)

≤ C
(
‖(G−Gn)e‖Lq(Ω) + ‖(G−Gn)(e− en)‖Lq(Ω)

)α
≤ C ′

(
‖(G−Gn)e‖Lq(Ω) + ‖e− en‖X

)α
→ 0

for n→∞, where C,C ′ > 0 are constants and the inequalities hold for all sufficiently
large n. From (2.7) and (2.8), we obtain (2.5). This completes the proof.

Note that the last result remains valid when the differential ∂swB S(x) is replaced by
the WOT-closure in L (X,Y ) of the convex hull of ∂swB S(x) (as one may easily check).
In applications, in which a convex Newton derivative is desirable, this can thus always
be achieved by enlarging the strong-weak Bouligand differential in Theorem 2.12.
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3. Application to obstacle-type VIs. In this section, we show that the results
of section 2 can be applied to solution maps of obstacle-type VIs with suitable right-
hand sides. The setting that we consider is as follows.

Assumption 3.1 (Standing assumptions for the analysis of section 3). Through-
out this section, we assume the following (unless explicitly stated otherwise):

(i) (Ω,Σ, µ) is a complete and finite measure space with associated real Lebesgue
spaces (Lp(Ω), ‖ · ‖Lp(Ω)), 1 ≤ p ≤ ∞.

(ii) (V, ‖ · ‖V ) is a real separable Hilbert space such that V
c
↪→ Lq(Ω) is dense for

a fixed q ∈ [2,∞]. Further the truncations

[v]
a2
a1

:= min(a2,max(a1, v))

satisfy [v]
a2
a1
∈ V for all a1, a2 ∈ [−∞,∞] with a1 ≤ 0 ≤ a2 and all v ∈ V .

Here, min(a2, ·) and max(a1, ·) act by superposition, i.e., µ-a.e. in Ω.
(iii) We have U := Ls(Ω) with a fixed exponent s ∈ (1,∞) satisfying s ≥ q′.

The space U is identified with a subset of V ∗ via the (injective) embeddings
U ∼= Ls

′
(Ω)∗ ↪→ Lq(Ω)∗ ↪→ V ∗.

(iv) A : V → V ∗ is a linear and continuous operator which satisfies

(3.1) 〈Av, v〉V ≥ c‖v‖
2
V ∀v ∈ V

for some constant c > 0 and

(3.2) min
(〈
Av, [v]a2a1

〉
V
,
〈
A[v]a2a1 , v

〉
V

)
≥
〈
A[v]a2a1 , [v]a2a1

〉
V

for all v ∈ V and all a1, a2 ∈ [−∞,∞] with a1 ≤ 0 ≤ a2.
(v) f : R→ R is a nondecreasing, globally Lipschitz continuous, concave function.

We identify f with its induced Nemytskii operator f : V → V ∗, i.e.,

〈f(v), w〉V := (f(v), w)L2(Ω) ∀v, w ∈ V.

(vi) K ⊂ V is a nonempty, closed, convex set satisfying

(3.3)
v ∈ K, z ∈ V ⇒ v + max(0, z) ∈ K,
v1, v2 ∈ K ⇒ min(v1, v2) ∈ K.

Note that, due to the assumption q ≥ 2, the global Lipschitz continuity of f , the
embedding V ↪→ Lq(Ω), and the fact that (Ω,Σ, µ) is finite, we have

|〈f(v), w〉V | =
∣∣∣∣∫

Ω

(f(v)− f(0) + f(0))w dµ

∣∣∣∣
≤
(
C1‖v‖L2(Ω) + |f(0)|µ(Ω)1/2

)
‖w‖L2(Ω) ≤ C2(‖v‖V + 1)‖w‖V

for all v, w ∈ V with some constants C1, C2 ∈ R. The dual pairing in point (v) is thus
sensible. The VI that we are interested in is

(VI) y ∈ K, 〈Ay + f(y)− u, v − y〉V ≥ 0 ∀v ∈ K.

Here, u is assumed to be an arbitrary element of V ∗ (or U , respectively). First, we
check that the solution map S : u 7→ y of (VI) fits into the setting of Assumption 2.1.
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Proposition 3.2 (Solvability). For all u ∈ V ∗, the variational inequality (VI)
possesses a unique solution S(u) := y ∈ V . The solution map S : V ∗ → V , u 7→ y, of
(VI) is globally Lipschitz continuous, i.e., there exists a constant C > 0 such that

(3.4) ‖S(u1)− S(u2)‖V ≤ C‖u1 − u2‖V ∗ ∀u1, u2 ∈ V ∗.

Proof. This follows immediately from [39, Theorem 4-3.1].

Let us now define X := V ∗ and Y := V and let U = Ls(Ω), s, and q be as
in Assumption 3.1. Then it follows from our assumptions on V and s that X is a
separable Banach space, that Y is a separable and reflexive Banach space that is
continuously and compactly embedded into Lq(Ω), and that U is a reflexive Banach
space, cf. [29, Theorems 5.2.11, 5.2.15]. From Schauder’s theorem, the compactness,
continuity, and density of the embedding V ↪→ Lq(Ω), the finiteness of (Ω,Σ, µ),
and again our assumptions on s, we further obtain that U embeds continuously and
compactly into X = V ∗. In summary, this shows that the measure space (Ω,Σ, µ) and
the spacesX = V ∗, Y = V , and U associated with (VI) satisfy Assumption 2.1(i)–(iv).
Note that, from (3.4), we also obtain that the solution operator S : V ∗ = X → Y = V
of (VI) satisfies a local Lipschitz estimate of the form (2.2). To see that S fulfills the
remaining conditions in Assumption 2.1(v) too, we note the following.

Lemma 3.3 (Pointwise-a.e. convexity). The solution operator S : V ∗ → V , u 7→ y,
of (VI) is pointwise-a.e. convex, i.e., for all u1, u2 ∈ V ∗ and all λ ∈ [0, 1], it holds

S(λu1 + (1− λ)u2) ≤ λS(u1) + (1− λ)S(u2) µ-a.e. in Ω.

Proof. The proof follows standard lines, see, e.g., [13, Lemma 6.3(iii)]. We include
it for the convenience of the reader and since the setting in Assumption 3.1 is slightly
more general than what is typically considered in the literature. Suppose that u1, u2 ∈
V ∗ and λ ∈ [0, 1] are given and set y1 := S(u1), y2 := S(u2), y12 := S(λu1+(1−λ)u2),
and w := y12−λy1−(1−λ)y2. To prove the lemma, we have to show that w ≤ 0 holds
µ-a.e. in Ω or, equivalently, that max(0, w) = 0 µ-a.e. in Ω. To this end, we note that
our assumptions on V and K imply that y1 + max(0, w) ∈ K and y2 + max(0, w) ∈ K
holds and that

y12−max(0, w) = y12−max(0, y12−λy1− (1−λ)y2) = min(y12, λy1 +(1−λ)y2) ∈ K.

The above allows us to use y1 + max(0, w), y2 + max(0, w), and y12 − max(0, w) as
test functions in the VIs for y1, y2, and y12, respectively. This yields

〈Ay1 + f(y1)− u1,max(0, w)〉V ≥ 0,

〈Ay2 + f(y2)− u2,max(0, w)〉V ≥ 0,

〈Ay12 + f(y12)− λu1 − (1− λ)u2,−max(0, w)〉V ≥ 0.

By multiplying the first of these inequalities with λ and the second one with (1− λ),
by adding the three estimates, and by subsequently exploiting the monotonicity and
concavity of f as well as the properties (3.1) and (3.2), we obtain that

0 ≤ 〈Aw + f(y12)− λf(y1)− (1− λ)f(y2),−max(0, w)〉V
≤ 〈Aw + f(y12)− f(λy1 + (1− λ)y2),−max(0, w)〉V
≤ −〈Aw,max(0, w)〉V ≤ −〈Amax(0, w),max(0, w)〉V ≤ −c‖max(0, w)‖2V .

Thus, max(0, w) = 0 µ-a.e. and the proof is complete.
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In combination with our previous observations, Lemma 3.3 shows that the solution
mapping S : u 7→ y of (VI) satisfies all of the conditions in Assumption 2.1 with r = q,
see the comments before Definition 2.2. To see that we can also consider exponents
r greater than q in the situation of (VI) (and thus obtain Newton differentiability in
stronger Lp(Ω)-spaces by Theorem 2.12), we employ a generalized version of a well-
known truncation argument of Stampacchia, see [43, Théorème 1], [25, Lemma II.B2].
For the sake of reusability, we state this result in a format that makes it completely
independent of Assumption 3.1.

Lemma 3.4. Suppose that (Ω,Σ, µ) is a finite measure space with associated real
Lebesgue spaces (Lp(Ω), ‖·‖Lp(Ω)), 1 ≤ p ≤ ∞. Let q ∈ (1,∞), s ∈ (1,∞] be exponents
satisfying 1

s + 1
q < 1 and 1

s + 2
q − 1 6= 0, and assume that u ∈ Ls(Ω), v ∈ Lq(Ω) are

given such that the shrinkages vk := v −min(k,max(−k, v)), k ≥ 0, satisfy

(3.5) ‖vk‖2Lq(Ω) ≤ α
∫

Ω

|uvk|dµ <∞ ∀k ≥ k0

for some k0, α ≥ 0. Define σ := ( 1
s + 2

q − 1)−1. Then the following is true:
(i) In the case σ < 0, there exists a constant C = C(s, q, µ(Ω)) > 0 satisfying

(3.6) ‖v‖L∞(Ω) ≤ k0 + Cα‖u‖Ls(Ω).

(ii) In the case σ > 0, there exists a constant C = C(s, q, µ(Ω)) > 0 satisfying

(3.7) µ({ω ∈ Ω | |v(ω)| ≥ k}) ≤ C
ασ‖u‖σLs(Ω) + kσ0

kσ
∀k > k0

and

(3.8) ‖v‖Lr(Ω) ≤ C
(

r

σ − r

)1/r

(k0 + α‖u‖Ls(Ω)) ∀r ∈ [1, σ).

Note that, in the case 1
s + 2

q − 1 = 0, one can simply decrease s slightly and then
invoke point (ii) above. This then yields v ∈ Lr(Ω) for all r ∈ [1,∞).

Proof. By rescaling u, it is enough to consider the case α = 1. We define (up to
sets of measure zero) L(k) := {ω ∈ Ω | |v(ω)| ≥ k} for all k ≥ 0. From the definition
of vk, it follows

(3.9) ‖vk‖Lq(Ω) ≥
(∫

L(m)

(|v| − k)q dµ

)1/q

≥ (m− k)µ(L(m))1/q ∀m ≥ k ≥ 0,

and, from Hölder’s inequality and 1
q + 1

s < 1, we obtain

(3.10)

∫
Ω

|uvk|dµ =

∫
L(k)

|uvk|dµ ≤ ‖u‖Ls(Ω)µ(L(k))1−1/q−1/s‖vk‖Lq(Ω).

In combination with (3.5), the estimates (3.9) and (3.10) yield

(m− k)µ(L(m))1/q ≤ ‖u‖Ls(Ω)µ(L(k))1−1/q−1/s ∀m ≥ k ≥ k0.

This can be written as

µ(L(m)) ≤ ‖u‖qLs(Ω)(m− k)−qµ(L(k))τ ∀m > k ≥ k0
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with

τ := q
(

1− 1

q
− 1

s

)
= q

(
1− 2

q
− 1

s

)
+ 1 = − q

σ
+ 1.

We now distinguish between the cases (i) and (ii). In case (i), we have τ > 1 and may
invoke [43, Lemme Préliminaire], see also [25, Lemma II.B1], to deduce that

(3.11) µ(L(m)) = 0 holds for m = k + 2τ/(τ−1)µ(L(k))(τ−1)/q‖u‖Ls(Ω)

whenever k ≥ k0. Choosing k = k0 in (3.11) yields (3.6). It remains to prove (ii). For
this case, we have τ ∈ (0, 1) and it follows from [43, Lemme Préliminaire] that

(3.12) µ(L(k)) ≤ Ĉk−σ
(
‖u‖σLs(Ω) + kσ0µ(L(k0))

)
∀k > k0

holds with some constant Ĉ = Ĉ(q, s) ≥ 0. Note that the “+” on the right-hand side
of (3.12) is (erroneously) missing in the statement of [43, Lemme Préliminaire]. By
definition of L(k), this yields (3.7). To prove (3.8), we suppose that r ∈ [1, σ) is given
and define Tσ := Ĉ

(
‖u‖σLs(Ω) +kσ0µ(Ω)

)
and k1 := max{k0, T}. Due to r−σ−1 < −1

and r − 1 ≥ 0, we may employ a layer cake representation and (3.12) to get

‖v‖rLr(Ω) =

∫ ∞
0

rµ(L(k))kr−1 dk =

(∫ k1

0

+

∫ ∞
k1

)
rµ(L(k))kr−1 dk

≤ rµ(Ω)

∫ k1

0

kr−1 dk + rTσ
∫ ∞
k1

kr−σ−1 dk

= µ(Ω)kr1 −
rTσ

r − σ
kr−σ1 ≤

(
µ(Ω) +

r

σ − r

)
kr1.

Plugging in the definition of k1 and using trivial estimates now yields (3.8).

Remark 3.5. Note that the estimate (3.12) implies that v belongs to the weak
Lebesgue space Lσ,∞(Ω), cf. [15]. The remaining part of the proof of (3.8) above is a
standard interpolation argument that ensures v ∈ Lr(Ω).

Remark 3.6. An estimate similar to inequality (3.6) can also be obtained for an
infinite µ. However, for such a measure, the missing finiteness has to be compensated
with some regularity of v, namely, v ∈ Lp(Ω) for some p ∈ [1,∞). Indeed, under this
Lp-assumption, we obtain in the situation of Lemma 3.4 from Chebyshev’s inequality
that the number k1 := max{k0, ‖v‖Lp(Ω)} satisfies µ(L(k1)) ≤ k−p1 ‖v‖

p
Lp(Ω) ≤ 1.

Using this estimate in equation (3.11) with k = k1 yields that µ(L(m)) = 0 holds for
m = k1 + 2τ/(τ−1)µ(L(k1))(τ−1)/q‖u‖Ls(Ω) ≤ max{k0, ‖v‖Lp(Ω)} + 2τ/(τ−1)‖u‖Ls(Ω).
By the definition of L(m), this gives ‖v‖L∞(Ω) ≤ max{k0, ‖v‖Lp(Ω)}+C(s, q)‖u‖Ls(Ω).

As a straightforward consequence of Lemma 3.4, we obtain the next result.

Lemma 3.7 (Improved Lipschitz estimate). Let q ∈ [2,∞] and s ∈ (1,∞) be the
exponents from Assumption 3.1. Define κ := 1

s + 2
q − 1 and

(3.13) R :=


[1,∞] if q 6=∞, 1

s + 1
q < 1, and κ < 0,

[1,∞) if q 6=∞, 1
s + 1

q < 1, and κ = 0,[
1, 1

κ

)
if q 6=∞, 1

s + 1
q < 1, and κ > 0,

[1, q] else.

Then, for every r ∈ R, there exists a constant C > 0 satisfying

(3.14) ‖S(u+ z)− S(u)‖Lr(Ω) ≤ C‖z‖Ls(Ω) ∀u ∈ V ∗, z ∈ U.
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Proof. The “else”-case follows from (3.4), the finiteness of µ, and the embeddings
V ↪→ Lq(Ω) and U ↪→ V ∗. To prove (3.14) in the remaining cases, we suppose that
u ∈ V ∗ and z ∈ U are given, define y1 := S(u) and y2 := S(u+ z), and set

(y1 − y2)k := y1 − y2 − [y1 − y2]k−k ∀k ≥ 0.

From

y1 − (y1 − y2)k = y2 + [y1 − y2]k−k =


y2 + k if y1 ≥ k + y2,

y2 − k if y1 ≤ y2 − k,
y1 if |y1 − y2| < k,

it follows that y1− (y1−y2)k ≥ min(y1, y2) holds µ-a.e. in Ω. Due to our assumptions
on K, this implies y1− (y1− y2)k ∈ K. Analogously, we also get y2 + (y1− y2)k ∈ K.
By using these functions as test functions in the VIs for y1 and y2, respectively, and
by exploiting the monotonicity of f , we obtain

0 ≤ 〈Ay1 + f(y1)− u,−(y1 − y2)k〉V + 〈Ay2 + f(y2)− u− z, (y1 − y2)k〉V
≤ 〈A(y1 − y2),−(y1 − y2)k〉V + 〈−z, (y1 − y2)k〉V ,

which can also be written as

(3.15) 〈A(y1 − y2), (y1 − y2)k〉V ≤ −
∫

Ω

z(y1 − y2)k dµ.

Since〈
Av, v − [v]k−k

〉
V

=
〈
A(v − [v]k−k), v − [v]k−k

〉
V

+
〈
A[v]k−k, v

〉
V
−
〈
A[v]k−k, [v]k−k

〉
V

≥ c‖v − [v]k−k‖2V + 0 ∀v ∈ V, k ≥ 0

holds for a constant c > 0 by Assumption 3.1(iv), (3.15), the embedding V ↪→ Lq(Ω),
and the definition of (y1 − y2)k imply that there exists a constant C > 0 with

‖(y1 − y2)k‖2Lq(Ω) ≤ C
∫

Ω

|z(y1 − y2)k|dµ ∀k ≥ 0.

To complete the proof, it now suffices to invoke Lemma 3.4.

Remark 3.8. In his seminal work [43], Stampacchia used the celebrated Marcin-
kiewicz interpolation theorem [48] to get a similar result for linear equations (even
including the critical exponent 1/κ in the third case of (3.13)). It is not clear whether
this interpolation theorem applies to S in the situation of Assumption 3.1.

With Lemmas 3.3 and 3.7 in place, we are in the position to state the consequences
of the analysis in section 2 for the solution map S of (VI). Note that, in the situation
of (VI), the strong-weak Bouligand differential of S at a point u ∈ V ∗ is the subset
of L (V ∗, V ) given by

(3.16) ∂swB S(u) =
{
G
∣∣ ∃{un} ⊂ DS : un → u in V ∗, S′(un)

wot→G in L (V ∗, V )
}
.

Corollary 3.9 (Semismoothness of the solution map of (VI)). Let q ∈ [2,∞]
and s ∈ (1,∞) be the exponents from Assumption 3.1. Define κ := 1

s + 2
q − 1 and

P :=


[1,∞) if q 6=∞, 1

s + 1
q < 1, and κ ≤ 0,[

1, 1
κ

)
if q 6=∞, 1

s + 1
q < 1, and κ > 0,

[1, q] else.
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Then the solution map S : V ∗ → V of the variational inequality (VI) with the strong-
weak Bouligand differential ∂swB S : V ∗ ⇒ L (V ∗, V ) in (3.16) is Newton differentiable
w.r.t. perturbations in U = Ls(Ω) with values in Lp(Ω) for all p ∈ P.

Proof. Since (Ω,Σ, µ) and the spacesX := V ∗, Y := V , and U := Ls(Ω) satisfy all
of the conditions in points (i), (ii), (iii), and (iv) of Assumption 2.1 (cf. the comments
after Proposition 3.2 and Lemma 3.3) and since S : V ∗ = X → Y = V satisfies the
conditions in Assumption 2.1(v) for all exponents r in the set R defined in (3.13)
by Proposition 3.2 and Lemmas 3.3 and 3.7, the assertion of the corollary follows
immediately from Theorem 2.12 and the finiteness of the measure space (Ω,Σ, µ).

4. Tangible examples of variational inequalities covered by our analysis.
To make the results of sections 2 and 3 more accessible, we collect some examples of
VIs that are covered by Corollary 3.9.

4.1. The scalar Signorini problem. As a first example, we consider the scalar
Signorini problem: Assume that Ω ⊂ Rd, 2 ≤ d ∈ N, is a bounded Lipschitz domain
that is endowed with the Lebesgue measure and whose boundary ∂Ω is decomposed
disjointly into three (possibly empty) measurable parts ΓD, ΓN , and ΓS . Define

V :=
{
v ∈ H1(Ω)

∣∣ tr(v) = 0 a.e. on ΓD
}

and ‖ · ‖V := ‖ · ‖H1(Ω),

where (H1(Ω), ‖ · ‖H1(Ω)) is defined as usual and where tr : H1(Ω)→ L2(∂Ω) denotes
the trace operator, see [2, 33]. Suppose further that a measurable function ψ : ∂Ω→ R
is given such that

K := {v ∈ V | tr(v) ≥ ψ a.e. on ΓS}

is nonempty. For right-hand sides u ∈ V ∗, we consider the Signorini-type VI

(4.1) y ∈ K, (y, v − y)H1(Ω) − 〈u, v − y〉V ≥ 0 ∀v ∈ K.

Note that (V, ‖·‖V ) is a separable Hilbert space that embeds continuously, compactly,
and densely into Lq(Ω) for all 2 ≤ q < 2d/(d− 2) due to the properties of H1(Ω), see
[33, Theorem 6.1]. Here, the right-hand side of the inequality 2 ≤ q < 2d/(d − 2) is
understood as ∞ for d = 2. From [2, Theorem 5.8.2], we also obtain that

[v]
a2
a1

= min(a2,max(a1, v)) ∈ V

and (
[v]

a2
a1
, v
)
H1(Ω)

=
(
v, [v]

a2
a1

)
H1(Ω)

≥
(
[v]

a2
a1
, [v]

a2
a1

)
H1(Ω)

holds for all v ∈ V and all a1, a2 ∈ [−∞,∞] with a1 ≤ 0 ≤ a2, and that K satisfies
(3.3). Since the bilinear form in (4.1) is trivially elliptic, this shows that (4.1) satisfies
all of the conditions in Assumption 3.1 (with f ≡ 0) provided q and s are chosen such
that 2 ≤ q < 2d/(d− 2), 1 < s <∞, and s ≥ (1− 1/q)−1 holds. In combination with
the analysis of section 3, this allows us to obtain the following result.

Corollary 4.1 (Semismoothness of the solution map of the Signorini problem).
The problem (4.1) possesses a well-defined solution operator S : V ∗ → V , u 7→ y. If
s ∈ (1,∞) is a fixed exponent satisfying s > 2d/(d+ 2) and if P is defined by

(4.2) P :=

{
[1,∞) if s ≥ d

2 ,[
1,
(

1
s −

2
d

)−1
)

if s < d
2 ,
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then this solution operator S : V ∗ → V is Newton differentiable w.r.t. perturbations
in Ls(Ω) with values in Lp(Ω) for all p ∈ P when endowed with the strong-weak
Bouligand differential ∂swB S : V ∗ ⇒ L (V ∗, V ) defined in (3.16).

Proof. As all of the conditions in Assumption 3.1 are satisfied in the situation of
(4.1) (with q := 2d/(d−2)− ε, ε > 0 arbitrarily small), the assertions of the corollary
follow immediately from Proposition 3.2 and Corollary 3.9.

4.2. The classical obstacle problem. As a second example, we consider the
classical obstacle problem: Suppose that Ω ⊂ Rd, 2 ≤ d ∈ N, is a bounded, nonempty,
open set that is endowed with the Lebesgue measure. We assume that a measurable
function ψ : Ω→ R is given such that the set

K :=
{
v ∈ H1

0 (Ω)
∣∣ v ≥ ψ a.e. in Ω

}
is nonempty. Here, H1

0 (Ω) is (as usual) defined to be the Hilbert space that is obtained
by taking the closure of C∞c (Ω) in (H1(Ω), ‖ · ‖H1(Ω)), see [2, section 5.1]. For given
u ∈ H−1(Ω) := H1

0 (Ω)∗, we are interested in the classical obstacle problem

(4.3) y ∈ K, 〈−∆y − u, v − y〉H1
0 (Ω) ≥ 0 ∀v ∈ K,

where ∆ ∈ L (H1
0 (Ω), H−1(Ω)) denotes the distributional Laplacian. Analogously to

subsection 4.1, we obtain that the space V := H1
0 (Ω) associated with (4.3) is separable

and Hilbert and that H1
0 (Ω) ↪→ Lq(Ω) holds continuously, compactly, and densely for

all 2 ≤ q < 2d/(d−2). (Note that no regularity of Ω is needed for the embedding here
due to the zero boundary conditions.) From [2, Theorems 5.3.1, 5.8.2], it also again
follows that the space V = H1

0 (Ω), the operator A := −∆, and the set K satisfy all of
the remaining conditions in points (ii), (iv), and (vi) of Assumption 3.1. This shows
that the standing assumptions of section 3 are all satisfied by (4.3) (with f ≡ 0 and
for all q and s with 2 ≤ q < 2d/(d − 2), 1 < s < ∞, and s ≥ (1 − 1/q)−1). Invoking
Corollary 3.9 now yields the following counterpart of Corollary 4.1.

Corollary 4.2 (Semismoothness of the solution map of the obstacle problem).
The problem (4.3) possesses a well-defined solution operator S : H−1(Ω) → H1

0 (Ω),
u 7→ y. If s ∈ (1,∞) is a fixed exponent satisfying s > 2d/(d + 2) and if P is
defined as in (4.2), then this solution map S : H−1(Ω)→ H1

0 (Ω) with the strong-weak
Bouligand differential ∂swB S : H−1(Ω) ⇒ L (H−1(Ω), H1

0 (Ω)) is Newton differentiable
w.r.t. perturbations in Ls(Ω) with values in Lp(Ω) for all p ∈ P.

Proof. This follows immediately from Proposition 3.2 and Corollary 3.9 and the
same arguments as in subsection 4.1.

Note that, in the special case s ∈ [3/2,∞) and d = 3, Corollary 4.2 yields that
the solution operator S : H−1(Ω) → H1

0 (Ω) of (4.3) is Newton differentiable in the
sense that, for all u ∈ H−1(Ω) and all p ∈ [1,∞), we have

sup
G∈∂sw

B S(u+z)

‖S(u+ z)− S(u)−Gz‖Lp(Ω)

‖z‖Ls(Ω)
→ 0 for ‖z‖Ls(Ω) → 0.

What is remarkable here is that this result holds for all p ∈ [1,∞) even in those cases
where the obstacle ψ in (4.3) satisfies 0 ≤ ψ ∈ H1

0 (Ω) \ L6+ε(Ω) for some ε > 0
and where, as a consequence, K ∩L6+ε(Ω) = ∅ and S(H−1(Ω))∩L6+ε(Ω) = ∅ holds.
Even if there are no states S(u) satisfying S(u) ∈ Lp(Ω) for all p ∈ [1,∞), the solution
mapping S : H−1(Ω) → H1

0 (Ω) of (4.3) can thus still be Newton differentiable with
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values in Lp(Ω) for all p ∈ [1,∞). Capturing these effects is the main motivation for
considering different regularities for x and z in Definition 2.11.

We remark that, for sufficiently regular obstacles ψ and states y, the strong-
weak Bouligand differential of the solution map S : H−1(Ω) → H1

0 (Ω) of (4.3) has
been characterized completely in [38, Theorem 5.6]. We recall this result for the
convenience of the reader and since we will use it in section 6.

Theorem 4.3 ([38, Theorem 5.6]). Suppose that ψ ∈ C(Ω) ∩ H1(Ω) holds and
that ψ < 0 on ∂Ω. Assume further that u ∈ H−1(Ω) is given such that the solution
of (4.3) satisfies y := S(u) ∈ C(Ω). Then the strong-weak Bouligand differential
∂swB S(u) of S : H−1(Ω)→ H1

0 (Ω) at u, i.e., the subset of L (H−1(Ω), H1
0 (Ω)) defined

by (3.16) with V := H1
0 (Ω), is given by

(4.4) ∂swB S(u) := {Gν | ν ∈M0(Ω), ν(I(u)) = 0, ν = +∞ on As(u)}.

Here,M0(Ω) denotes the set of all capacitary measures on Ω, see [38, Definition 3.1],
I(u) := {ω ∈ Ω | y(ω) > ψ(ω)} denotes the inactive set of u, As(u) denotes the
strictly active set of u as defined in [38, section 2.2], and Gν ∈ L (H−1(Ω), H1

0 (Ω)),
ν ∈ M0(Ω), denotes the solution map H−1(Ω) 3 z 7→ w ∈ H1

0 (Ω) of the relaxed
Dirichlet problem

w ∈ H1
0 (Ω), −∆w + νw = z,

defined as in [38, Equation (10)].

Together, Corollary 4.2 and Theorem 4.3 provide a readily applicable framework
for the development of numerical solution algorithms based on the semismoothness
properties of the solution operator of the obstacle problem, see sections 5 and 6. In
particular, the description of ∂swB S(u) in (4.4) is also amenable to classical adjoint-
based approaches as used, for instance, in [11, section 4]. We would like to point
out that the assumption y := S(u) ∈ C(Ω) in Theorem 4.3 is not very restrictive
as the continuity of the solutions of (4.3) can often be ensured easily by invoking
W 2,p-regularity results, see [25, section IV-2]. If, for example, Ω ⊂ Rd is a bounded
convex domain with d ≤ 3 and ψ satisfies ψ ∈ H2(Ω) ⊂ C(Ω) and ψ < 0 on ∂Ω,
then it follows from the approach in [25, section IV-2] and [18, Theorem 3.2.1.2]
that S(u) ∈ H2(Ω) ⊂ C(Ω) holds for all u ∈ L2(Ω), and we may deduce from
Corollary 4.2 that the solution map S of (4.3) is Newton differentiable as a function
S : L2(Ω)→ Lp(Ω) for all 1 ≤ p <∞ in the sense that

sup
G∈∂sw

B S(u+z)

‖S(u+ z)− S(u)−Gz‖Lp(Ω)

‖z‖L2(Ω)
→ 0 for ‖z‖L2(Ω) → 0

holds for all u ∈ L2(Ω) and all 1 ≤ p < ∞ with the differential ∂swB S(u) given by
(4.4) for all u ∈ L2(Ω). Note that, although the operator S is considered purely on
L2(Ω) here, the generalized differential in the semismoothness result is still the whole
strong-weak Bouligand differential in L (H−1(Ω), H1

0 (Ω)) as defined in (3.16). This
shows that, although the control space is typically chosen as a Lebesgue space in
applications, it is very natural to study generalized differentials of solution operators
of obstacle-type VIs in the dual of the underlying Hilbert space.

4.3. Comments on further examples. Before we demonstrate that the results
of sections 2 and 3 can indeed be used to design solution algorithms for optimal control
problems, we would like to emphasize that Theorem 2.12 and Corollary 3.9 are not
only applicable to the Signorini problem (4.1) and the obstacle problem (4.3), but also
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to various other VIs. It is, for instance, straightforward to check that the thin obstacle
problem as discussed in [39, section 8:7] and obstacle-type VIs formulated in Hs

0(Ω),
0 < s < 1, are covered by our analysis, cf. [32, Exemple 3] and [12, Corollary 3.3].
Since we may also choose K = V in Assumption 3.1, Corollary 3.9 also immediately
yields semismoothness results for certain semilinear PDEs. (For those, however, the
Newton differentiability of the solution map can also be established easily in a direct
manner.) We omit discussing these examples in more detail here.

5. An application in optimal control. In this section, we are concerned with
the following setting.

Assumption 5.1 (Standing assumptions for the analysis of section 5). Through-
out this section, we assume the following:

(i) (Ω,Σ, µ) is as in Assumption 3.1(i).
(ii) (V, ‖ · ‖V ) is a real Hilbert space that satisfies the conditions in Assump-

tion 3.1(ii) with q = 2. We interpret the spaces V , L2(Ω), and V ∗ as a
Gelfand triple, i.e., V ↪→ L2(Ω) ∼= L2(Ω)∗ ↪→ V ∗.

(iii) A ∈ L (V, V ∗) satisfies Assumption 3.1(iv) and is symmetric, i.e.,

〈Av,w〉V = 〈Aw, v〉V ∀v, w ∈ V.

(iv) (W, ‖ · ‖W ) is a real Hilbert space that satisfies W ⊂ L2(Ω) and W ↪→ L2(Ω)
continuously and densely. We interpret the spaces W , L2(Ω), and W ∗ as a
Gelfand triple, i.e., W ↪→ L2(Ω) ∼= L2(Ω)∗ ↪→W ∗.

(v) L : W →W ∗ is a linear and continuous operator with inverse P := L−1.
(vi) K ⊂ V is a set that satisfies the conditions in Assumption 3.1(vi).

(vii) yD ∈ L2(Ω) is a given desired state and α > 0 is a given Tikhonov parameter.

In the above situation, we consider the optimization problem

(OC)


Minimize J(y, u) :=

1

2
‖y − yD‖2L2(Ω) +

α

2
〈Au, u〉V

w.r.t. u ∈ V, y ∈W,
s.t. Ly = u in W ∗

and u ∈ K.

Note that this problem can be interpreted as an abstract optimal control problem
with unilateral control constraints posed in the space V , see the tangible example in
section 6. The next result is standard.

Proposition 5.2 (Unique solvability of (OC)). The optimization problem (OC)
possesses a unique solution ū ∈ V with associated state ȳ := Pū ∈ W . This solution
is uniquely characterized by the following stationarity system:

(5.1)
ȳ, z̄ ∈W, z̄ = P ∗(ȳ − yD), ȳ = Pū,

ū ∈ K,
〈
Aū+ α−1z̄, v − ū

〉
V
≥ 0 ∀v ∈ K.

Here and in what follows, P ∗ ∈ L (W ∗,W ) is the adjoint of P , i.e.,

〈w∗1 , Pw∗2〉W = 〈w∗2 , P ∗w∗1〉W ∀w∗1 , w∗2 ∈W ∗.

Proof. The unique solvability of (OC) follows from the direct method of the
calculus of variations and the strict convexity of J . That ū is uniquely characterized
by (5.1) is a consequence of standard calculus rules for the convex subdifferential.
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Note that the VI in (5.1) has precisely the form (VI) with f ≡ 0 and right-
hand side −z̄/α. Henceforth, we will denote the solution operator of this inequality,
i.e., the function that maps a right-hand side z ∈ V ∗ (or z ∈ L2(Ω) ↪→ V ∗ or
z ∈W ↪→ L2(Ω) ↪→ V ∗, respectively) to the solution w ∈ V of the problem

(5.2) w ∈ K, 〈Aw − z, v − w〉V ≥ 0 ∀v ∈ K,

with S. With this notation, the system (5.1) can be recast as

(5.3) ū ∈ V, ȳ, z̄ ∈W, z̄ = P ∗(ȳ − yD), ȳ = Pū, ū = S
(
−α−1z̄

)
,

or, equivalently, after eliminating all variables except ȳ, as

(5.4) ȳ − PS
(
α−1P ∗(yD − ȳ)

)
= 0.

This reformulation of the necessary and sufficient optimality condition (5.1) can be
used as a point of departure for setting up a semismooth Newton method for the
numerical solution of (OC) based on Corollary 3.9.

Algorithm 5.3 (Semismooth Newton method for the solution of (OC)).

1: Choose an initial guess y0 ∈ L2(Ω) and a tolerance tol ≥ 0.
2: for i = 0, 1, 2, 3, ... do
3: Calculate ζi := P ∗(yD − yi)/α, ui := S(ζi), and ỹi := Pui.
4: if ‖yi − ỹi‖L2(Ω) ≤ tol then
5: STOP the iteration (convergence reached).
6: else
7: Choose an element Gi of the differential ∂swB S(ζi) defined in (3.16).
8: Determine yi+1 ∈ L2(Ω) by solving the linear equation

yi+1 + α−1PGiP
∗yi+1 = ỹi + α−1PGiP

∗yi.

9: end if
10: end for

To see that Algorithm 5.3 is sensible, we note the following.

Lemma 5.4. Suppose that u ∈ V ∗ and G ∈ ∂swB S(u) are given. Then it holds

〈z,Gz〉V ≥ 0 ∀z ∈ V ∗.

Proof. We first assume that u ∈ V ∗ is a point of Gâteaux differentiability of
S : V ∗ → V . From the definition of S via (5.2), we get

〈AS(u+ tz)− (u+ tz), S(u)− S(u+ tz)〉V ≥ 0

and 〈AS(u)− u, S(u+ tz)− S(u)〉V ≥ 0

for all z ∈ V ∗ and t > 0. Adding these inequalities leads to

〈tz, S(u+ tz)− S(u)〉V ≥ 〈A(S(u+ tz)− S(u)), S(u+ tz)− S(u)〉V ≥ 0.

Now, we can divide by t2 and pass to the limit t → 0+ to arrive at the claim of the
lemma for the special case that G = S′(u) is a Gâteaux derivative.

In the general case let u ∈ V ∗, G ∈ ∂swB S(u), and z ∈ V ∗ be given. Suppose that
{un} ⊂ V ∗ is an approximating sequence of Gâteaux points for G as in (3.16). Then
S′(un)z ⇀ Gz in V as n→∞ and the inequality 〈z, S′(un)z〉V ≥ 0 for all n yield

0 ≤ 〈z, S′(un)z〉V → 〈z,Gz〉V .
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Using Lemma 5.4, we can prove that the linear equation that has to be solved in
Step 8 of Algorithm 5.3 always possesses a unique solution.

Proposition 5.5 (Feasibility of the semismooth Newton step). For every ζ ∈ V ∗
and G ∈ ∂swB S(ζ), the operator

Id +α−1PGP ∗ : L2(Ω)→ L2(Ω)

is an isomorphism and the norm of its inverse is bounded by 1.

Proof. This follows from Lemma 5.4 and the lemma of Lax–Milgram.

The local convergence of Algorithm 5.3 now follows from standard arguments.

Theorem 5.6 (Local superlinear convergence of Algorithm 5.3). Let ū ∈ V be
the optimal control of (OC) and ȳ = Pū ∈ W the associated optimal state. There
exists ε > 0 such that, for every y0 ∈ L2(Ω) with ‖y0 − ȳ‖L2(Ω) < ε, Algorithm 5.3
with tol = 0 either terminates after finitely many steps with the solution of (OC) or
produces sequences {yi} ⊂ L2(Ω), {ui} ⊂ V , and {ỹi} ⊂W that satisfy

yi → ȳ q-superlinearly in L2(Ω),

ui → ū r-superlinearly in V, and

ỹi → ȳ r-superlinearly in W.

Proof. The operator L2(Ω) 3 z 7→ z − PS(P ∗(yD − z)/α) ∈ L2(Ω) on the left-
hand side of (5.4) is semismooth since S with ∂swB S is semismooth as a function from
L2(Ω) to L2(Ω) (in the classical sense of [45, Definition 3.1]) by Corollary 3.9 and
since P, P ∗ ∈ L (W ∗,W ). By using this semismoothness and the uniformly bounded
invertibility in Proposition 5.5, the local q-superlinear convergence of {yi} in L2(Ω)
follows from standard arguments, see, e.g., [9, Proof of Theorem 3.4], [45, Proof of
Theorem 3.13]. The claims for {ui} and {ỹi} are obtained from the definitions of
these sequences, the convergence of {yi}, (5.3), (3.4), and the continuity of P .

6. Numerical experiments for a special instance of problem (OC). To
demonstrate that the superlinear convergence predicted by Theorem 5.6 can also be
observed in practice, we present some numerical experiments. As a model problem,
we consider a special instance of (OC), namely,

(M)


Minimize

1

2
‖y − yD‖2L2(Ω) +

α

2

∫
Ω

|∇u|2 dx

w.r.t. u ∈ H1
0 (Ω), y ∈ H1(Ω),

s.t. −∆y + y = u in Ω, ∂ny = 0 on ∂Ω,

and u ≥ ψ a.e. in Ω.

Here and in what follows, Ω is assumed to be the unit square, i.e., Ω := (0, 1)2,
equipped with the Lebesgue measure, yD ∈ C(Ω) is a given desired state, α > 0 is a
given Tikhonov parameter, | · | denotes the Euclidean norm, ∇ is the weak gradient, ∆
is the distributional Laplacian, ∂n denotes the normal derivative, H1

0 (Ω) and H1(Ω)
are defined as usual, see [2], the governing PDE is understood in the weak sense, i.e.,
in the sense that (y, v)H1(Ω) = (u, v)L2(Ω) holds for all v ∈ H1(Ω), and ψ is a given

function satisfying ψ ∈ H2(Ω) ⊂ C(Ω) and ψ < 0 on ∂Ω.
It is easy to check that the problem (M) indeed fits into the general framework of

section 5 with µ as the two-dimensional Lebesgue measure, V := H1
0 (Ω), W := H1(Ω),
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A := −∆ ∈ L (H1
0 (Ω), H−1(Ω)), Lw := (w, ·)H1(Ω) ∈ H1(Ω)∗ for all w ∈ W , and

K := {v ∈ V | v ≥ ψ a.e. in Ω}, cf. section 4. In particular, the map P : W ∗ → W is
nothing else than the Riesz isomorphism in H1(Ω) in the situation of (M), i.e.,

(6.1) (Pz, v)H1(Ω) = 〈z, v〉H1(Ω) ∀v ∈ H1(Ω), z ∈ H1(Ω)∗

and the solution operator S : H−1(Ω) → H1
0 (Ω) of the VI (5.2) is nothing else than

the solution mapping z 7→ w of the classical obstacle problem

(6.2) w ∈ K, 〈−∆w − z, v − w〉H1
0 (Ω) ≥ 0 ∀v ∈ K

that we have already considered in subsection 4.2. Note that the latter implies, in
combination with the convexity of Ω, the fact that the spatial dimension in (M) is
two, our assumptions on ψ, and the comments at the end of subsection 4.2, that
S(z) ∈ C(Ω) holds for all z ∈ L2(Ω) and that the explicit formula for the strong-weak
Bouligand differential ∂swB S(z) from Theorem 4.3 is applicable at all points z ∈ L2(Ω).
This representation formula allows us to replace Steps 7 and 8 in Algorithm 5.3 with
the following, more explicit steps when we apply this algorithm to solve (M) (with the
solution operators P = P ∗ and S of (6.1) and (6.2), respectively, and M0(Ω), I(·),
As(·), and Gν as in Theorem 4.3):

7: Choose νi ∈M0(Ω) satisfying νi(I(ζi)) = 0 and νi = +∞ on As(ζi).
8: Determine yi+1 ∈ L2(Ω) by solving the linear equation

yi+1 + α−1PGνiPyi+1 = ỹi + α−1PGνiPyi.

To discretize (M) and to obtain a finite-dimensional counterpart of Algorithm 5.3,
we consider standard piecewise affine finite element functions. Suppose that a family
of triangulations {Th}0<h≤h0

of the unit square Ω = (0, 1)2 is given (in the sense of
[17, section II-2.5]). We define

Wh := {v ∈ C(Ω) | v|T is affine for all T ∈ Th} and Vh := Wh ∩H1
0 (Ω)

and denote with {xhk} the set of nodes of Th and with Ih : C(Ω) → Wh the nodal
interpolation operator associated with Wh. By replacing the spaces V = H1

0 (Ω) and
W = H1(Ω) in (M) with Vh and Wh, respectively, by imposing the constraint u ≥ ψ
only at the mesh nodes {xhk}, by replacing yD with its interpolant Ih(yD) ∈Wh, and
by employing a standard discretization of the governing PDE, we obtain a family of
discrete optimal control problems of the form

(Mh)


Minimize

1

2
‖yh − Ih(yD)‖2L2(Ω) +

α

2

∫
Ω

|∇uh|2 dx

w.r.t. uh ∈ Vh, yh ∈Wh,

s.t. (yh, wh)H1(Ω) = (uh, wh)L2(Ω) ∀wh ∈Wh

and uh(xhk) ≥ ψ(xhk) for all nodes xhk .

Completely analogously to the continuous setting, it can be proved that (Mh) possesses
exactly one solution ūh ∈ Vh which is uniquely characterized by the system

(6.3) z̄h = Ph(ȳh − Ih(yD)), ȳh = Ph(ūh), ūh = Sh
(
−α−1z̄h

)
.
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Here, the operators Ph : L2(Ω)→Wh and Sh : L2(Ω)→ Vh are defined by

Ph(z) ∈Wh, (Ph(z), vh)H1(Ω) = (z, vh)L2(Ω) ∀vh ∈Wh

and

(6.4) Sh(z) ∈ Kh,

∫
Ω

∇Sh(z)·∇(vh−Sh(z))−z(vh−Sh(z)) dx ≥ 0 ∀vh ∈ Kh,

respectively, where Kh := {vh ∈ Vh | vh(xhk) ≥ ψ(xhk) for all nodes xhk} is the set of
admissible controls. Note that, analogously to (5.4), we can restate (6.3) as

(6.5) ȳh − PhSh
(
α−1Ph(Ih(yD)− ȳh)

)
= 0.

This again yields an equation that is amenable to a semismooth Newton method. Since
semismoothness properties of solution operators of finite-dimensional obstacle-type
VIs have already been studied in detail in various contributions, e.g., [34, chapters 5
and 6], [3, sections 4.3 and 5.3], and [10, section 5.1], we omit discussing the derivation
of Newton derivatives for the map Sh in this paper and simply state the algorithm
that is obtained by treating the equation (6.5) in exactly the same manner as its
continuous counterpart (5.4).

Algorithm 6.1 (Semismooth Newton method for the solution of (Mh)).

1: Choose an initial guess y0
h ∈Wh and a tolerance tol ≥ 0.

2: for i = 0, 1, 2, 3, ... do
3: Calculate ζih := (PhIh(yD)− Phyih)/α, uih := Sh(ζih), and ỹih := Phu

i
h.

4: if ‖yih − ỹih‖L2(Ω) ≤ tol then
5: STOP the iteration (convergence reached).
6: else
7: Choose a subset Ni of the set of nodes {xhk} of Th that contains all strictly

active nodes of Sh(ζih) and none of the inactive nodes of Sh(ζih).
8: Determine yi+1

h ∈Wh by solving the linear equation

(6.6) yi+1
h + α−1PhGNi

Phy
i+1
h = ỹih + α−1PhGNi

Phy
i
h,

where GNi
denotes the solution map L2(Ω) 3 z 7→ wh ∈ Vh of the problem

wh ∈ ZNi
,

∫
Ω

∇wh · ∇vh dx =

∫
Ω

zvh dx ∀vh ∈ ZNi

with
ZNi := {vh ∈ Vh | vh(xhk) = 0 for all xhk ∈ Ni}.

9: end if
10: end for

Here, the inactive nodes of Sh(ζih) are, as usual, defined to be those nodes xhk
which satisfy Sh(ζih)(xhk) > ψ(xhk) and the strictly active nodes of Sh(ζih) are those
nodes xhk at which the (scalar) Lagrange multiplier associated with the constraint
Sh(ζih)(xhk) ≥ ψ(xhk) in (6.4) is nonzero, cf. [34, page 93]. We remark that, in practice,
the Newton update in Algorithm 6.1 is, of course, not calculated by solving (6.6) as
is. Instead, one rewrites this equation as a linear system that involves the mass and
stiffness matrices associated with Vh and Wh and auxiliary variables that decompose
the composition PhGNi

Ph into three sparse linear equations.



SEMISMOOTHNESS FOR OBSTACLE-TYPE VIS 21

The results that we have obtained with Algorithm 6.1 in the situation of (M)
(or (Mh), respectively) for α = 10−5, yD(x1, x2) := −x1 − x2, ψ(x1, x2) := −5, and
Friedrichs–Keller triangulations {Th} with various widths h can be seen in Table 1
and Figure 1 below. In all of the depicted experiments, the initial guess y0

h was chosen
as Ih(yD), the tolerance for the semismooth Newton method was tol = 10−7, the set
Ni was chosen as the set of strictly active nodes for all i (with strictly active defined up
to the tolerance 10−10), and the linear systems of equations arising in Algorithm 6.1
and the discrete obstacle problem (6.4) were solved with Matlab2020b’s backslash
solver and quadprog-routine, respectively. For the calculation of the experimental
orders of convergence (EOCs) in Table 1, we used the formula

(6.7) EOCi := log

(
‖vih − v

i−1
h ‖

‖vi−1
h − vi−2

h ‖

)
/ log

(
‖vi−1
h − vi−2

h ‖
‖vi−2
h − vi−3

h ‖

)
for i = 6, i.e., for the largest i reached in all numerical experiments.

Table 1
Number of performed Newton iterations, final residue ‖yih − ỹ

i
h‖L2(Ω), and experimental orders

of convergence (EOCs) for the iterates {yih} in L2(Ω), {ỹih} in H1(Ω), and {uih} in H1
0 (Ω) obtained

from Algorithm 6.1 for α, yD, ψ, etc. as described above and various mesh widths h.

h iter. fin. res. L2-EOC yih H1-EOC ỹih H1
0 -EOC uih

1
16 6 7.3259 · 10−11 1.7560 2.0441 2.1076
1
32 6 3.1726 · 10−10 1.5567 1.8209 1.7154
1
64 6 1.0445 · 10−9 1.7783 2.0074 1.9553
1

128 7 2.7176 · 10−9 1.7344 2.0158 1.9445
1

256 6 4.1500 · 10−8 1.8745 2.1046 2.0719
1

512 6 3.7828 · 10−8 1.8744 2.1047 2.0760

As Table 1 shows, Algorithm 6.1 indeed converges mesh-independently, with the
number of iterations necessary for getting the residue below the tolerance tol = 10−7

being nearly constant at six. It can also be observed that the experimental orders
of convergence obtained from the approximation formula (6.7) for {yih} in L2(Ω),
{ỹih} in H1(Ω), and {uih} in H1

0 (Ω) seem to converge for h → 0. This behavior for
vanishing h is the main motivation for studying the convergence of Algorithm 6.1 in
the function space setting. Note that Table 1 indicates that the order of convergence
of the sequence {ỹih} in H1(Ω) is significantly higher than that of the sequence {yih} in
L2(Ω) (around two compared to approximately 1.8). Whether this effect has roots in
some analytical properties of (M) and whether the sequences {ỹih} and {uih} converge
not only r-superlinearly but even q-quadratically (as suggested by the last two columns
of Table 1) is currently unclear. We leave this question for further research.

We conclude this paper by pointing out two further possible applications of the
Newton differentiability results that we have established for solution operators of VIs
with unilateral constraints in section 3.

First, we expect that Corollary 3.9 is also helpful for the study of optimization
algorithms for optimal control problems that are governed by obstacle-type VIs. In
the finite-dimensional setting, bundle-type methods, for example, are often globalized
by means of a line-search that requires the objective function to be semismooth, see
[28, 42]. With Corollary 3.9 at hand, which immediately yields that the reduced
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(a) Desired state yD (b) Final state ỹih

(c) Final control uih (d) Final multiplier of uih

Fig. 1. Numerical results obtained with Algorithm 6.1 for α, yD, ψ, etc. as described above
and h = 1/64. The images show the desired state, the final iterate ỹih, the final iterate uih, and the

Lagrange multiplier of uih = Sh(ζih) in (6.4), respectively. Convergence was reached in this test case

in six iterations with the final residue ‖yih − ỹ
i
h‖L2(Ω) ≈ 10−9, see Table 1.

objective function of, for instance, a tracking-type optimal control problem for the
classical obstacle problem is semismooth, it may be possible to use similar techniques
in the infinite-dimensional setting, cf. [19, 20].

A second potential application area for Corollary 3.9 is the development of solu-
tion algorithms for obstacle-type quasi-VIs, i.e., problems of the form (4.3) in which
the obstacle ψ depends implicitly on the solution y, cf. [1, 13, 46] and the references
therein. For sufficiently regular functions y 7→ ψ(y), such problems can be written in
the form of a fixed-point equation that involves the solution map S of an obstacle-
type VI as studied in section 3. Using Corollary 3.9, it may be possible to set up
a semismooth Newton method for this fixed-point equation and to thus develop nu-
merical solution algorithms whose convergence can be established in function space.
We remark that, in the finite-dimensional setting, such techniques have already been
used, see [47]. We leave both of these topics for future research.
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