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ON THE STRUCTURE OF REGULARIZATION PATHS FOR
PIECEWISE DIFFERENTIABLE REGULARIZATION TERMS∗

BENNET GEBKEN† , KATHARINA BIEKER† , AND SEBASTIAN PEITZ‡

Abstract. Regularization is used in many different areas of optimization when solutions are
sought which not only minimize a given function, but also possess a certain degree of regularity.
Popular applications are image denoising, sparse regression and machine learning. Since the choice
of the regularization parameter is crucial but often difficult, path-following methods are used to
approximate the entire regularization path, i.e., the set of all possible solutions for all regularization
parameters. Due to their nature, the development of these methods requires structural results about
the regularization path. The goal of this article is to derive these results for the case of a smooth
objective function which is penalized by a piecewise differentiable regularization term. We do this
by treating regularization as a multiobjective optimization problem. Our results suggest that even
in this general case, the regularization path is piecewise smooth. Moreover, our theory allows for a
classification of the nonsmooth features that occur in between smooth parts. This is demonstrated
in two applications, namely support-vector machines and exact penalty methods.

Key words. Regularization, nonsmooth analysis, multiobjective optimization

AMS subject classifications. 65F22, 62J07, 90C29, 49J52

1. Introduction. In optimization, regularization is one of the basic tools for
dealing with irregular solutions. For an objective function f : Rn → R, the idea is to
add a regularization term g : Rn → R to f which enforces regularity, and to weight
g with a regularization parameter λ ≥ 0 to control to which extent this regularity is
enforced. So instead of optimizing f , the regularized problem

min
x∈Rn

f(x) + λg(x)

with λ ≥ 0 is solved. For λ = 0 the original problem is recovered. Increasing λ leads
to successively more regular solutions, at the cost of an increased objective value of
f .

Depending on the application, the term “regularity” above can have many differ-
ent meanings: In sparse regression, regularity of the solution means sparsity, and a
prominent example for the regularization term is the `1-norm [36, 18]. In hyperplane
separation for data classification (also known as support-vector machines), regularity
is related to robustness of the derived classifier, and a possible regularization term
can be derived from the scalar product of the data points with the hyperplane (known
as the hinge loss) [4, 18]. In image denoising, regularity means the absence of noise
in the reconstructed image, which can be measured using the total variation [6]. In
(exact) penalty methods for constrained optimization problems, regularity refers to
feasibility, and the sum of the individual constraint violations can be used as a reg-
ularization term [27, 2]. Finally, in deep learning, regularization is used to avoid
overfitting, which is related to the `2- or `1-norm of the weights [4, 16].
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Clearly, the choice of the regularization parameter λ has a large impact on the
solution of the regularized problem. If λ is chosen too small, then solutions are
almost optimal for f but irregular. If it is chosen too large, then solutions are highly
regular but have an unacceptably large objective value with respect to f . One way
of dealing with this issue is to not only compute a regularized solution for a single
λ, but to compute the entire so-called regularization path R, which is the set of
all regularized solutions for all λ ≥ 0. Obviously, simply solving the regularized
problem for many λ ≥ 0 to obtain a discretization of R is inefficient. Instead, so-called
path-following methods (also known as continuation methods, homotopy methods or
predictor-corrector methods) can be used, which iteratively compute new points on the
regularization path close to already known points until the complete path is explored.
For the development of such methods, it is crucial to have a good understanding of
the structure of the regularization path. In [29, 10] it was shown that for sparse
regression, the regularization path R is piecewise linear and a path-following method
was proposed for its computation. Similar results were shown in [17] for support-
vector machines. In a more general setting in [33], it was shown that if f is piecewise
quadratic and g is piecewise linear, then R is always piecewise linear. In case of the
exact penalty method in constrained optimization, it was shown in [40] that if the
constrained problem is convex (and the equality constraints are affinely linear), then
R is piecewise smooth. Recently, in [3], the structure of the regularization path was
analyzed for the case where f is twice continuously differentiable and g is the `1-norm,
with the results suggesting that R is piecewise smooth.

The goal of this article is to analyze the structure of the regularization path in a
more general setting. Note that in the applications above, we have the pattern that f
is always smooth while g is always nonsmooth. Thus, in this article, we will also as-
sume that f is smooth. For g, we will assume that it is merely piecewise differentiable
(as defined in [34]). Compared to weaker assumptions in nonsmooth analysis like local
Lipschitz continuity, this has the advantage that the Clarke subdifferential of g is easy
to compute and that the set of nonsmooth points of g can essentially be described as
a level set of certain smooth functions. Since all of the regularization terms in the
above applications (except for the `2-norm) are in fact piecewise differentiable, our
setting generalizes many of the existing approaches. We will analyze the structure
of R by approximating it with the critical regularization path Rc, which is based on
the first-order optimality conditions of the regularized problem, and then identifying
sufficient conditions for Rc to be smooth around a given point. More precisely, our
main result will be that if these conditions are met, then Rc is locally the projection
of a higher-dimensional smooth manifold onto Rn (cf. Theorem 3.13). In particular,
all points violating these conditions are potential “kinks” (or “nonsmooth points”) of
Rc. Depending on which condition is violated, this allows for a classification of non-
smooth features of the regularization path. Furthermore, the nature of our sufficient
conditions suggests that Rc (and R) is still piecewise smooth.

The remainder of this article is structured as follows. In Section 2, we begin by
introducing the basic concepts that we use in our theoretical results. Besides piecewise
differentiability, these are multiobjective optimization and affine geometry. The former
can be used to obtain an (almost) equivalent formulation of the regularization problem
as a multiobjective optimization problem, while the latter is required for working with
the subdifferential of g. In Section 3, we will analyze the structure of the regularization
path R. We will do this by expressing Rc as the union of the intersection of certain
sets, whose structure we can analyze by applying standard results from differential
geometry. In Section 4, we will apply our results to two problem classes, which are



ON THE STRUCTURE OF REG. PATHS FOR PIECEWISE DIFF. REG. TERMS 3

support-vector machines and the exact penalty method. Finally, we draw a conclusion
and discuss possible future work in Section 5.

2. Basic concepts.

2.1. Piecewise differentiable functions. In the following, we will define piece-
wise differentiability and state the main results that we use throughout this article.
For a more detailed introduction into the topic, we refer to [34]. Let U ⊆ Rn be open.

Definition 2.1. Let g : U → R be continuous and gi : U → R, i ∈ {1, . . . , k},
be a set of r-times continuously differentiable (or Cr) functions for r ∈ N ∪ {∞}. If
g(x) ∈ {g1(x), . . . , gk(x)} for all x ∈ U , then g is piecewise r-times differentiable (or
a PCr-function). In this case, {g1, . . . , gk} is called a set of selection functions of g.

When working with PCr-functions in a local sense, it is useful to only consider the
selection functions that have an impact on the local behavior around a given point.

Definition 2.2. Let g : U → R be a PCr-function and let {g1, . . . , gk} be a set
of selection functions of g. Then

I(x) := {i ∈ {1, . . . , k} : g(x) = gi(x)}

is the active set at x ∈ U . A selection function gi is called active at x if i ∈ I(x).

From the continuity of selection functions it follows that for any x0 ∈ Rn, there
is an open neighborhood U ′ ⊆ U of x0 such that

g(x) ∈ {gi(x) : i ∈ I(x0)} ∀x ∈ U ′.(2.1)

But note that not all active selection functions are necessarily required for the local
representation of g around x0. For example, if a selection function is only active in x0

and nowhere else, then it can be neglected. Hence, there is also the following, stricter
definition of activity. To this end, for a set A ⊆ Rn, we denote by cl(A) the closure
and by int(A) the interior of A with respect to the natural topology on Rn.

Definition 2.3. Let g : U → R be a PCr-function and let {g1, . . . , gk} be a set
of selection functions of g. Then

Ie(x) := {i ∈ {1, . . . , k} : x ∈ cl(int({y ∈ U : g(y) = gi(y)}))}

is the essentially active set at x ∈ U . A selection function gi is called essentially
active at x if i ∈ Ie(x).

Due to continuity we have Ie(x) ⊆ I(x) for all x ∈ Rn. By definition, if a selection
function gi is essentially active at some point, then int({y ∈ U : g(y) = gi(y)}) is non-
empty. In other words, there is an open subset of U on which g behaves like gi. The
following lemma shows that locally, a given set of selection functions can always be
reduced to those that are essentially active.

Lemma 2.4. Let g : U → R be a PCr-function and let {g1, . . . , gk} be a set of
selection functions of g. Then for any x0 ∈ U , there is an open neighborhood U ′ ⊆ U
of x0 such that {gi : i ∈ Ie(x0)} is a set of selection functions of the restriction g|U ′

of g to U ′.

Proof. Proposition 2.22 in [37].

Although we only assumed continuity in the definition of PCr-functions, it is
possible to show the following, stronger result. To this end, let ‖ · ‖ be any norm on
Rn.
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Lemma 2.5. Let g : U → R be a PCr-function. Then g is locally Lipschitz
continuous, i.e., for every x ∈ U , there is an open neighborhood U ′ ⊆ U of x and
some L > 0 such that

|g(y)− g(z)| ≤ L‖y − z‖ ∀y, z ∈ U ′.

Proof. Corollary 4.1.1 in [34].

While PCr-functions are generally nonsmooth, the previous lemma allows us to
use the so-called Clarke subdifferential from nonsmooth analysis to obtain first-order
approximations. To this end, for A ⊆ Rn let conv(A) be the convex hull of A. For
a general locally Lipschitz continuous function g : U → R, let Ω ⊆ U be the set of
points in which g is not differentiable. Then the (Clarke) subdifferential of g at x ∈ U
can be defined as

∂g(x) := conv

({
ξ ∈ Rn : ∃(xj)j ∈ Rn \ Ω with lim

j→∞
xj = x and lim

j→∞
∇g(xj) = ξ

})
.

(2.2)

If g is continuously differentiable in x, then ∂g(x) = {∇g(x)}. Although the subdiffer-
ential is a set, it behaves similarly to the standard derivative. For example, there are
generalized versions of the chain rule and the mean-value theorem. Furthermore, as
we will see later, it can be used to obtain optimality conditions. For a more detailed
introduction into nonsmooth analysis, we refer to [7, 2].

In practice, computing the Clarke subdifferential of an arbitrary locally Lipschitz
function can be difficult (cf. Section 3.3 in [22]). But fortunately, for the special case
of PCr-functions, there is a simpler expression for the Clarke subdifferential in terms
of the gradients of the selection functions. More precisely, we can use the following
result.

Lemma 2.6. Let g : U → R be a PCr-function and let {g1, . . . , gk} be a set of
selection functions of g. Then

∂g(x) = conv({∇gi(x) : i ∈ Ie(x)}) ∀x ∈ Rn.(2.3)

Proof. Proposition 4.3.1 in [34].

By the previous result, knowing the classical gradients of all essentially active
selection functions is sufficient to obtain the exact Clarke subdifferential. In partic-
ular, since the number of selection functions is finite by definition, it follows that
subdifferentials of PCr-functions are always convex polytopes.

We conclude the introduction to PCr-functions with some simple examples.

Example 2.7. a) Consider the `1-norm on Rn, i.e.,

g : Rn → R, x 7→ ‖x‖1 := |x1|+ · · ·+ |xn|.

Then

g(x) ∈

{
n∑
i=1

σixi : σ ∈ {−1, 1}n
}
,

so g is PC∞ with selection functions

gσ : Rn → R, x 7→
n∑
i=1

σixi for σ ∈ {−1, 1}n.
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For x0 ∈ Rn, the corresponding set of essentially active selection functions in
x0 is given by{

gσ : σi

{
= sign(x0i ), if x0i 6= 0

∈ {−1, 1}, if x0i = 0
, i ∈ {1, . . . , n}

}
.

Therefore, the Clarke subdifferential of g at x0 ∈ Rn is given by

∂g(x0) =

{
ξ ∈ Rn : ξi

{
= sign(x0i ), if x0i 6= 0

∈ [−1, 1], if x0i = 0
, i ∈ {1, . . . , n}

}
.

b) As an example for a function that is differentiable almost everywhere but not
PCr (for r > 1), consider

g : R→ R, x 7→
√
|x|.

Although g is continuous everywhere and differentiable outside of 0, it is not
PCr (since it is not locally Lipschitz continuous in 0).

2.2. Multiobjective optimization. In the following, we will give a brief intro-
duction to (nonsmooth) multiobjective optimization. Due to the context of our paper,
we only consider problems with two objectives here. For a more detailed introduction
in the general case, we refer to [26, 11, 24].

Let f : Rn → R and g : Rn → R. The task of simultaneously minimizing f and g
is denoted as

min
x∈Rn

(
f(x)
g(x)

)
and is called a multiobjective optimization problem (MOP). The goal of multiobjective
optimization is to find the so-called Pareto set, which is defined as follows:

Definition 2.8. A point x ∈ Rn is called Pareto optimal if there is no y ∈ Rn
with

f(y) < f(x) and g(y) ≤ g(x) or f(y) ≤ f(x) and g(y) < g(x).

The set of all Pareto optimal points is the Pareto set. Its image under the objective
vector (f, g), i.e., the set {(f(x), g(x))> : x is Pareto optimal} ⊆ R2, is the Pareto
front.

There are various different methods for solving nonsmooth MOPs, see, e.g., [25,
14, 9]. If both f and g are locally Lipschitz continuous, then the following theorem
yields a necessary condition for Pareto optimality based on the Clarke subdifferentials
(cf. (2.2)).

Theorem 2.9. Let x ∈ Rn be Pareto optimal. Then

0 ∈ conv(∂f(x) ∪ ∂g(x)).(2.4)

Proof. Theorem 12 in [24].

Since (2.4) is only a necessary condition, we make the following definition:

Definition 2.10. A point x ∈ Rn is called Pareto critical if it satisfies (2.4).
The set of all Pareto critical points is the Pareto critical set, denoted by Pc.
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The Pareto critical set is a superset of the actual Pareto set. If f and g are convex,
then (2.4) is also sufficient, so the Pareto critical set coincides with the set of Pareto
optimal points in that case (cf. Theorem 3.2.11 in [26]).

Using a result about the convex hull of the union of convex sets (cf. Lemma 5.29
in [1]), (2.4) is equivalent to

∃α1, α2 ≥ 0, ξ1 ∈ ∂f(x), ξ2 ∈ ∂g(x) : α1ξ
1 + α2ξ

2 = 0, α1 + α2 = 1.(2.5)

In accordance with the smooth case, we will refer to such α1 and α2 as KKT multipliers
of f and g in x, respectively. Note that (2.5) implies

0 ∈ {λ1ξ1 + λ2ξ
2 : λ1, λ2 ∈ R, λ1 + λ2 = 1},

where the right-hand side is a so-called affine space. The properties of such spaces
are analyzed in the area of affine geometry.

2.3. Affine geometry. In the following, we will introduce the basic concepts of
affine geometry and affine spaces which we will use in this article. For further details
on this topic, we refer to [32, 13, 20].

Definition 2.11. a) Let k ∈ N and ai ∈ Rn, i ∈ {1, . . . , k}. Let λ ∈ Rk

with
∑k
i=1 λi = 1. Then

∑k
i=1 λia

i is an affine combination of {a1, . . . , ak}.
b) Let E ⊆ Rn. Then aff(E) is the set of all affine combinations of elements of

E, called the affine hull of E. Formally,

aff(E) :=

{
k∑
i=1

λia
i : k ∈ N, ai ∈ E, λi ∈ R, i ∈ {1, . . . , k},

k∑
i=1

λi = 1

}
.

c) Let E ⊆ Rn. If aff(E) = E, then E is called an affine space.

Affine spaces can be thought of as linear spaces that were translated away from
the origin. More precisely, if E is an affine space and a′ ∈ E, then the set

E − a′ = {a− a′ : a ∈ E} =: V(2.6)

is a linear subspace of Rn. (Note that V does not depend on the choice of a′). This
allows for the definition of affine independence.

Definition 2.12. Let E be an affine space and let ai ∈ E, i ∈ {1, . . . , k}. Then
the set {a1, . . . , ak} is called affinely independent if {ai − aj : i ∈ {1, . . . , k} \ {j}} is
linearly independent for some j ∈ {1, . . . , k}.

If the condition in the previous definition holds for some j ∈ {1, . . . , k}, then
it automatically holds for all j ∈ {1, . . . , k} (cf. Lemma 2.4 in [13]). As for linear
independence, affine independence is related to uniqueness of the coefficients of affine
combinations.

Lemma 2.13. Let E be an affine space and let ai ∈ E, i ∈ {1, . . . , k}. Let

a ∈ aff({a1, . . . , ak}) and λ ∈ Rk such that a =
∑k
i=1 λia

i and
∑k
i=1 λi = 1. Then

{a1, . . . , ak} is affinely independent if and only if λ is unique.

Proof. Lemma 2.5 in [13].

Furthermore, it is possible to assign a dimension to an affine space and define
affine bases (also known as affine frames).
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Definition 2.14. Let k ∈ N and let E be an affine space with corresponding
linear subspace V (cf. (2.6)).

a) Let ai ∈ E, i ∈ {1, . . . , k}. Then {a1, . . . , ak} is called an affine basis of E if
{ai − aj : i ∈ {1, . . . , k} \ {j}} is a basis of V for some j ∈ {1, . . . , k}.

b) The (affine) dimension of E is the dimension of V , denoted by affdim(E).

The previous definition implies that an affine basis consists of affdim(E) + 1
elements. It is easy to show that if {a1, . . . , ak} forms an affine basis of E, then
aff({a1, . . . , ak}) = E and combined with Lemma 2.13, we obtain that every element
in E has a unique representation as an affine combination of {a1, . . . , ak}.

The main reason why we need affine geometry in this article is Carathéodory’s
theorem, which gives us an upper bound for the number of elements we have to
consider when computing convex hulls:

Theorem 2.15. Let A be a finite subset of Rn. Then every element in conv(A)
can be written as a convex combination of affdim(aff(A)) + 1 elements of A.

Proof. Theorem 3.1 in [13].

Carathéodory’s theorem will later be used to lower the number of selection func-
tions we have to consider for the computation of the Clarke subdifferential ∂g(x) of
g.

Finally, the concept of affine spaces enables us to introduce a useful definition of
the interior and the boundary of “low-dimensional” subsets of Rn.

Definition 2.16. Let A ⊆ Rn and let aff(A) be endowed with the subspace topol-
ogy of Rn. Then the relative interior of A, denoted by ri(A), is the interior of A in
aff(A), i.e.,

ri(A) := {x ∈ A : ∃U ⊆ Rn open with x ∈ U and U ∩ aff(A) ⊆ A}.

The relative boundary of A is the set rb(A) := cl(A)\ri(A), where cl(A) is the closure
of A in Rn.

In the case of convex polytopes, i.e., convex hulls of a finite number of points, the
relative interior and boundary can be expressed in terms of the coefficients of convex
combinations:

Lemma 2.17. Let A = conv({a1, . . . , ak}) ⊆ Rn with k ∈ N. Then

ri(A) =

{
k∑
i=1

λia
i : λ ∈ (R>0)k,

k∑
i=1

λi = 1

}
,

rb(A) =

{
a ∈ A : @λ ∈ (R>0)k with

k∑
i=1

λi = 1 and a =

k∑
i=1

λia
i

}
.

Proof. Exercise 3.1 in [5].

For example, for a line connecting two points a1, a2 ∈ Rn, a1 6= a2, the relative
boundary is the set containing a1 and a2 and the relative interior is the line without
the end points, i.e., the set {λa1 + (1− λ)a2 : λ ∈ (0, 1)}.

3. The structure of the regularization path. Let f : Rn → R be continu-
ously differentiable and g : Rn → R be PC1. For a regularization parameter λ ≥ 0,
consider the parameter-dependent problem

min
x∈Rn

f(x) + λg(x).(3.1)
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The set

R :=

{
x̄ ∈ Rn : ∃λ ≥ 0 with x̄ ∈ arg min

x∈Rn

f(x) + λg(x)

}
(3.2)

is known as the regularization path of (3.1) [17, 30, 23] and the goal of this article is
to analyze its structure.

We will do this by not analyzing R directly, but by analyzing the (potentially
larger) set that is defined by the first-order optimality condition of (3.1): If x̄ is a
solution of (3.1) for some λ ≥ 0, then it is a critical point of f+λg, i.e., 0 ∈ ∂(f+λg)(x̄)
(cf. Theorem 4.1 in [2]). This is the motivation for defining the critical regularization
path

Rc := {x̄ ∈ Rn : ∃λ ≥ 0 with 0 ∈ ∂(f + λg)(x̄)} .(3.3)

In general we have R ⊆ Rc. If f+λg is convex (e.g., if both f and g are convex), then
criticality is sufficient for optimality (cf. Theorem 4.2 in [2]), so R = Rc. For example,
this is the case for the Lasso problem [36] (where f contains some least squares error
and g is the `1-norm) and total variation denoising [6] (where f contains some least
squares error and g is the total variation).

Our main result in this section will be that Rc has a piecewise smooth structure.
More precisely, we will derive five conditions (Assumptions A1 to A5) for a point
x0 ∈ Rc which, when combined, assure that locally around x0, Rc is the projection of a
smooth manifold from a higher-dimensional space onto Rn. In turn, these assumptions
allow for a classification of kinks of Rc by checking which assumption is violated.
Throughout this article, we will use the term kinks to loosely refer to points in Rc
around which Rc is not a smooth manifold.

In order to analyze the structure of Rc, we first show that Rc is related to the
Pareto critical set Pc of the MOP

min
x∈Rn

(
f(x)
g(x)

)
.(3.4)

More precisely, we have the following lemma.

Lemma 3.1. It holds:
a) Rc = {x̄ ∈ Rn : ∃ξ ∈ ∂g(x̄), α1 > 0, α2 ≥ 0 with α1∇f(x̄) +α2ξ = 0 and α1 +

α2 = 1} ⊆ Pc.
b) Rc ∪ {x ∈ Rn : 0 ∈ ∂g(x)} = Pc.

Proof. (a) Since f is continuously differentiable we have ∂f(x) = {∇f(x)} for all
x ∈ Rn. Furthermore, from basic calculus for subdifferentials (cf. Corollary 1 in [7],
Section 2.3) it follows that x̄ ∈ Rc is equivalent to

(3.5)

∃λ ≥ 0 : 0 ∈ ∂(f + λg)(x̄) = ∂f(x̄) + λ∂g(x̄) = ∇f(x̄) + λ∂g(x̄)

⇔ ∃λ ≥ 0 : 0 ∈ 1

1 + λ
∇f(x̄) +

λ

1 + λ
∂g(x̄)

⇔ ∃ξ ∈ ∂g(x̄), λ ≥ 0 :
1

1 + λ
∇f(x̄) +

λ

1 + λ
ξ = 0

⇔ ∃ξ ∈ ∂g(x̄), α1 > 0, α2 ≥ 0 : α1∇f(x̄) + α2ξ = 0 and α1 + α2 = 1.

By (2.5) this implies x̄ ∈ Pc.
(b) Due to (a) we only have to show the implication “⊇”, so let x̄ ∈ Pc. By (2.5)
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there are ξ ∈ ∂g(x̄) and α1, α2 ≥ 0 with α1 + α2 = 1 and α1∇f(x̄) + α2ξ = 0. If
α1 = 0 then α2 = 1, so 0 = ξ ∈ ∂g(x̄). Otherwise, α1 > 0 and from (3.5) it follows
that x̄ ∈ Rc (with λ = α2

α1
).

By the previous lemma, Rc and Pc coincide up to critical points of g in which
all KKT multipliers corresponding to f are zero. Roughly speaking, these points
correspond to “λ =∞” in (3.1).

Remark 3.2. It is important to note that Lemma 3.1 does not imply that critical
points of g are not contained in Rc, i.e., that Rc ∩ {x ∈ Rn : 0 ∈ ∂g(x)} = ∅. For
example, if 0 ∈ int(∂g(x)), then it is possible to show that there is some λ̄ with
0 ∈ ∂(f + λg)(x) for all λ ≥ λ̄.

By Lemma 3.1, structural results about Pareto critical sets can be used to analyze
the structure of the critical regularization path Rc. For example, under some mild
regularity assumptions on f and g, Theorem 5.1 in [19] shows that in areas where g is
(twice continuously) differentiable, the set of Pareto critical points with non-vanishing
KKT multipliers is the projection of a 1-dimensional manifold from Rn+2 onto Rn.
To derive our main result, we will extend the ideas in [19] to the whole Pareto critical
set up to certain kinks.

We begin by taking a closer look at the Pareto critical set Pc of (3.4). By defi-
nition, Pc is characterized by the optimality condition (2.4). Since f is continuously
differentiable and g is PC1, the subdifferential of f is simply its gradient, and the
subdifferential of g is the convex hull of all essentially active selection functions (cf.
Lemma 2.6). Thus, for a fixed x ∈ Rn, (2.4) is equivalent to the existence of a van-
ishing convex combination of a finite number of elements. This is the same type of
condition as in the smooth case, except that there is now no continuous dependency of
these elements on x. Furthermore, the number of elements is not constant. Nonethe-
less, by iterating over all possible essentially active sets, Pc can at least be written as
the union of sets that behave similarly to Pareto critical sets in the smooth case. Let
{g1, . . . , gk} be a set of selection functions of g. Then formally, these considerations
lead to the following decomposition of Pc:

Pc = {x ∈ Rn : 0 ∈ conv({∇f(x)} ∪ ∂g(x))}
= {x ∈ Rn : 0 ∈ conv({∇f(x)} ∪ {∇gi(x) : i ∈ Ie(x)})}

=
⋃

I⊆{1,...,k}

P Ic ∩ ΩI ,(3.6)

where

(3.7)
P Ic := {x ∈ Rn : 0 ∈ conv({∇f(x)} ∪ {∇gi(x) : i ∈ I})},
ΩI := {x ∈ Rn : Ie(x) = I}.

In words, P Ic is the Pareto critical set of the (smooth) MOP with objective vector
(f, gi1 , . . . gi|I|)

> (for I = {i1, ..., i|I|}) and ΩI is the set of points in Rn in which
precisely the selection functions with an index in I are essentially active. Thus, (3.6)
expresses Pc as the union of Pareto critical sets of smooth MOPs that are intersected
with the sets of points with constant essentially active sets. A visualization of this
decomposition is shown in the following example.

Example 3.3. Consider problem (3.4) for f : R2 → R, x 7→ (x1−2)2 +(x2−1)2,
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Fig. 1. Decomposition of Pc into the sets P I
c ∩ ΩI as in (3.6).

and

g1 : R2 → R, x 7→ x1 + x2,

g2 : R2 → R, x 7→ x1 − x2,
g3 : R2 → R, x 7→ −x1 + x2,

g4 : R2 → R, x 7→ −x1 − x2,
g : R2 → R, x 7→ max({g1(x), g2(x), g3(x), g4(x)}) = ‖x‖1.

It is possible to show that the Pareto critical (and in this case Pareto optimal) set is
given by

Pc = {(0, 0)>} ∪ ((0, 1]× {0}) ∪ {x ∈ R2 : x1 ∈ (1, 2], x2 = x1 − 1}
= (P {1,2,3,4}c ∩ Ω{1,2,3,4}) ∪ (P {1,2}c ∩ Ω{1,2}) ∪ (P {1}c ∩ Ω{1}).

Figure 1 shows the decomposition of Pc into the sets P Ic ∩ ΩI as in (3.6).

We will analyze the piecewise smooth structure of Pc via (3.6) by first analyzing
ΩI , then the intersection P Ic ∩ΩI and finally the union over all P Ic ∩ΩI . Furthermore,
as we expect Pc to possess kinks, we will only consider its local structure around a
given point. In other words, for x0 ∈ Pc, we will only consider the structure of Pc ∩U
for open neighborhoods U ⊆ Rn of x0.

The strategy for our analysis in this section is to derive assumptions for x0 which
are sufficient for Pc to have a smooth structure locally around x0. These assumptions
represent different sources and types of nonsmoothness of Pc and will allow for a
classification of nonsmooth points.

3.1. The structure of ΩI . By definition, the set ΩI only depends on g. For
I = {i} ⊆ {1, ..., k}, Ω{i} is the set of points where only the selection function gi is
essentially active. From Lemma 2.4 it follows that Ω{i} is an open subset of Rn in
this case. For I ⊆ {1, ..., k} with |I| > 1, ΩI is the set of points where precisely the
selection functions corresponding to the elements of I are essentially active. Typically
(but not necessarily), these are points where g is nonsmooth, which by Rademacher’s
Theorem ([12], Theorem 3.2) form a null set. In the following, we will analyze its
structure.
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(a) (b)

Fig. 2. (a) The graph of the PC1-function g in Example 3.4 a). (b) The level sets of g.

Since we are only interested in the structure of ΩI in a local sense, we also only
have to consider restrictions g|U of g to open neighborhoods of a point x0 ∈ Rn. In
terms of the open neighborhood U of x0 and the set of selection functions of g|U , we
introduce the following assumption:

Assumption A1. For x0 ∈ Rn there is an open neighborhood U ⊆ Rn of x0 and
a set of selection functions {g1, . . . , gk} of g|U such that

(i) I(x0) = {1, . . . , k},
(ii) Ie(x) = I(x) ∀x ∈ U ,

(iii) affdim(aff({∇gi(x) : i ∈ {1, . . . , k}}))
= affdim(aff({∇gi(x0) : i ∈ {1, . . . , k}})) ∀x ∈ U .

Assumption A1 can be interpreted as follows: A1(i) ensures that all selection
functions we consider are actually relevant for the representation of g in U . The
condition A1(ii) ensures that it does not matter if we consider the active or the
essentially active set in U , which allows for an easier representation of ΩI . Finally,
A1(iii) makes sure that the representation of ∂g(x0) via the gradients of our selection
functions is “stable” on U with respect to its affine dimension.

In the following, we will discuss the restrictiveness of Assumption A1. By (2.1),
A1(i) can always be satisfied by choosing U sufficiently small. For A1(ii) and (iii), we
consider the following example.

Example 3.4. a) Let

g1 : R2 → R, x 7→ x22 − x1,

g2 : R2 → R, x 7→

{
x21 − x1, x1 ≤ 0,

−x1, x1 > 0,

g : R2 → R, x 7→ max({g1(x), g2(x)}).

Then g is PC1 with selection functions g1 and g2. The graph and the level
sets of g are shown in Figure 2. For the activity of g2 we have

2 ∈ I(x) ⇔ g(x) = g2(x) ⇔

{
x2 ∈ [x1,−x1], x1 ≤ 0,

x2 = 0, x1 > 0,
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and

2 ∈ Ie(x) ⇔ x ∈ cl(int({y ∈ R2 : g(y) = g2(y)}))
⇔ x1 ≤ 0, x2 ∈ [x1,−x1].

Thus, for any open neighborhood U ⊆ R2 of x0 = (0, 0)>, there is some x ∈ U
with Ie(x) 6= I(x). In other words, A1(ii) does not hold in x0 for this set of
selection functions. But note that in this case, this can easily be fixed by
modifying the behavior of g2 for x1 > 0. For example, replacing g2 by

g̃2 : R2 → R, x 7→

{
x21 − x1, x1 ≤ 0,

−x21 − x1, x1 > 0.

solves the issue.
b) For the selection functions g1 and g̃2 of g as in a), we have

∇g1(x) =

(
−1
2x2

)
and ∇g̃2(x) =

{
(2x1 − 1, 0)>, x1 ≤ 0,

(−2x1 − 1, 0)>, x1 > 0.

In particular, in x0 = (0, 0)> we have ∇g1(x0) = ∇g̃2(x0) = (−1, 0)>, so

affdim(aff({∇g1(x0),∇g̃2(x0)})) = 0.

But it is easy to see that

affdim(aff({∇g1(x),∇g̃2(x)})) = 1 ∀x ∈ R2 \ {0}.

In particular, A1(iii) does not hold in x0 (for this set of selection functions).

By Lemma 2.4, for a given x0 ∈ Rn, we can always choose the open neighborhood
U of x0 such that all selection functions of the local restriction g|U of g are essentially
active in x0. In particular, we can assume that Ie(x0) = I(x0). While this does
not imply that (ii) holds in Assumption A1, the previous example shows how A1(ii)
may be satisfied through modifications of the selection functions in areas where they
are active, but not essentially active. Although we will not prove that this is always
possible, it motivates us to believe that A1(ii) is not a strong assumption in practice.

In contrast to A1(ii), modifying the selection functions will have less impact on
A1(iii). The reason for this is the fact that if A1(i) and A1(ii) hold, then the right-
hand side of A1(iii) is the dimension of the affine hull of the subdifferential of g in x0

(cf. Lemma 2.6). In particular, the right-hand side does not depend on the choice of
selection functions. In light of this, A1(iii) implies that the dimension of the affine
hull of the subdifferential of g is constant in all x ∈ U with Ie(x) = Ie(x0), i.e., in

all x ∈ ΩI
e(x0) (cf. (3.7)). Thus, A1(iii) is more related to the function g and less

related to the choice of selection functions. In Example 3.4 a), we see that the set
Ω{1,2} (in blue) has a kink in x0 = (0, 0)>. The following lemma suggests that this
is caused by A1(iii) being violated. Thus, by assuming A1(iii), we limit ourselves to

local restrictions g|U for which ΩI
e(x0) has a smooth structure.

Lemma 3.5. Let x0 ∈ Rn. Let U ⊆ Rn be an open neighborhood of x0 and
let {g1, . . . , gk} be a set of selection functions of g|U as in Assumption A1. Let
d = affdim(aff(∂g(x0))) and let {i1, . . . , id+1} ⊆ {1, . . . , k} such that {∇gi(x0) : i ∈
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{i1, . . . , id+1}} is an affine basis of aff({∇gi(x0) : i ∈ {1, . . . , k}}). Then there is an
open neighborhood U ′ ⊆ U of x0 such that

gi(x)− g1(x) = 0 ∀i ∈ {2, . . . , k} ⇔ gi(x)− gi1(x) = 0 ∀i ∈ {i2, . . . , id+1}

for all x ∈ U ′ and Ω{1,...,k} ∩ U ′ is an embedded (n − d)-dimensional submanifold of
U ′. In particular,

Ω{1,...,k} ∩ U ′ = {x ∈ U ′ : gi(x)− gi1(x) = 0 ∀i ∈ {i2, . . . , id+1}}.

Proof. The direction ”⇒” is obvious, so consider the converse. By A1(iii) and
since the gradients ∇gi, i ∈ {i1, . . . , id+1}, are continuous, there is an open neigh-
borhood U ′ ⊆ U of x0 such that {∇gi(x) : i ∈ {i1, . . . , id+1}} is an affine basis of
{∇gi(x) : i ∈ {1, . . . , k}} for all x ∈ U ′. Let

ϕ : U ′ → Rk−1, x 7→

g2(x)− g1(x)
...

gk(x)− g1(x)

 .

By A1(iii) the Jacobian Dϕ(x) has constant rank d for all x ∈ U ′. By A1(i) we
have ϕ(x0) = 0, so the level set L := ϕ−1(0) = Ω{1,...,k} ∩ U ′ is nonempty. Thus,
by Theorem 5.12 in [21], L is an embedded (n − d)-dimensional submanifold of U ′.
Additionally, let

ϕ′ : U ′ → Rd, x 7→

 gi2(x)− gi1(x)
...

gid+1
(x)− gi1(x)

 .

By construction, Dϕ′(x) has constant rank d for all x ∈ U ′. With the same argument
as above, it follows that L′ := ϕ′−1(0) is an embedded (n−d)-dimensional submanifold
of U ′ as well. Since L ⊆ L′, L is also an embedded (n− d)-dimensional submanifold
of L′ (cf. [21], Proposition 4.22). By Proposition 5.1 in [21], this implies that L is
an open subset of L′. As L′ is endowed with the subspace topology of U ′ ⊆ Rn,
this means that we can assume w.l.o.g. that U ′ is an open neighborhood of x0 with
U ′ ∩ L′ = L, completing the proof.

By the previous lemma, Assumption A1 allows us to assume w.l.o.g. that for
the restriction g|U , the set of points with a constant active set ΩI

e(x0) is a smooth
manifold around x0 ∈ U of dimension n− affdim(aff(∂g(x0))). Furthermore, it shows

that for the representation of ΩI
e(x0) as a level set, it is sufficient to only consider a

subset of the set of selection functions whose gradients form an affine basis of ∂g(x0).

3.2. The structure of P Ic ∩ΩI . After analyzing the structure of ΩI , we will now
turn towards the structure of the intersection P Ic ∩ΩI in (3.6). First of all, as for ΩI ,
we will show that not all selection functions of g are required for the representation of
P Ic ∩ ΩI . More precisely, a simple application of Carathéodory’s theorem (Theorem
2.15) to the definition of P Ic yields the following result.

Lemma 3.6. Let x0 ∈ Pc and let {g1, . . . , gk} be a set of selection functions of g.
If x0 is not a critical point of g, then there is an index set {i1, . . . , ir} ⊆ {1, . . . , k}
with r = affdim(aff({∇f(x0)} ∪ ∂g(x0))) such that

a) 0 ∈ conv({∇f(x0)} ∪ {∇gi(x0) : i ∈ {i1, . . . , ir}}),
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b) {∇f(x0)} ∪ {∇gi(x0) : i ∈ {i1, . . . , ir}} is affinely independent.

Proof. By Theorem 2.15, there is an affinely independent subset of

{∇f(x0)} ∪ {∇gi(x0) : i ∈ {1, . . . , k}}

of size r + 1 with zero in its convex hull. Since x0 is not a critical point of g, ∇f(x0)
must be contained in that subset.

With Lemma 3.5 and Lemma 3.6, we have ways to simplify ΩI and P Ic , respec-
tively, by only considering certain selection functions of g. But note that we can
not necessarily choose the same selection functions for both results: Although the
set {∇gi(x0) : i ∈ {i1, . . . , ir}} in Lemma 3.6 is affinely independent, the index set
{i1, . . . , ir} can not necessarily be used in Lemma 3.5 since we might have r < d+ 1,
i.e.,

(3.8)

affdim(aff({∇f(x0)} ∪ ∂g(x0))) < affdim(aff(∂g(x0))) + 1

⇔ aff({∇f(x0)} ∪ ∂g(x0)) = aff(∂g(x0))

⇔ ∇f(x0) ∈ aff(∂g(x0)).

In particular, since x0 is Pareto critical, this would imply that 0 ∈ aff(∂g(x0)) (even
though x0 is not critical for g, i.e., 0 /∈ conv(∂g(x0))). The following lemma shows
that this scenario is related to the uniqueness of the KKT multiplier corresponding
to f in x0.

Lemma 3.7. Let x0 ∈ Pc such that x0 is not a critical point of g.
a) If the KKT multiplier α1 of f in x0 (cf. (2.5)) is not unique, then ∇f(x0) ∈

aff(∂g(x0)).
b) If ∇f(x0) ∈ aff(∂g(x0)) and 0 is contained in the relative interior (cf. Def-

inition 2.16) of conv({∇f(x0)} ∪ ∂g(x0)), then the KKT multiplier α1 of f
in x0 is not unique.

Proof. See SM1 in the supplementary material.

Remark 3.8. In [19], Section 4.3, it was shown that in the smooth case and under
certain regularity assumptions on f and g, the coefficient vector of the vanishing
convex combination in the KKT condition in a point x ∈ Pc, i.e., the vector (α1, α2)>

in (2.5), is orthogonal to the tangent space of the image of the Pareto critical set
at (f(x), g(x))>. Thus, roughly speaking, non-uniqueness of (α1, α2)> suggests that
this tangent space is “degenarate”, i.e., that the Pareto front possesses a kink at
(f(x), g(x))>.

The following example shows what behavior may occur if the KKT multiplier of
f is not unique.

Example 3.9. Consider problem (3.4) for f : R2 → R, x 7→ x21 + x22, and

g1 : R2 → R, x 7→ x21 + (x2 − 1)2,

g2 : R2 → R, x 7→ x21 + (x2 − 1)2 −
(
x2 −

1

2

)
,

g : R2 → R, x 7→ max({g1(x), g2(x)}).

Then g is PC1 with selection functions g1 and g2. It is easy to see that

Ω{1,2} = {x ∈ Rn : Ie(x) = {1, 2}} = R×
{

1

2

}
,
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(a) (b)

Fig. 3. (a) Pareto critical set Pc and ΩI , I ⊆ {1, 2}, in Example 3.9. (b) Pointwise discretiza-
tion of the image {(f(x), g(x))> : x ∈ R2} of the objective vector (f, g) and the image of the Pareto
critical set under (f, g).

as depicted in Figure 3(a). The Pareto critical (and in this case Pareto optimal) set
is given by Pc = {0} × [0, 1]. In particular, x0 = (0, 12 )> is the only Pareto critical

point where more than one selection function is active, i.e., P
{1,2}
c ∩ Ω{1,2} = {x0}.

By computing the gradients in x0, we obtain

∇f(x0) = (0, 1)>, ∇g1(x0) = (0,−1)>, ∇g2(x0) = (0,−2)>.

We see that

1

2
∇f(x0) +

1

2
∇g1(x0) = 0 and

2

3
∇f(x0) +

1

3
∇g2(x0) = 0,

so the KKT multiplier of f is not unique. By Lemma 3.7 this implies ∇f(x0) ∈
aff({∂g(x0)}). More explicitly, for this example, it is easy to check that

∇f(x0) = 3∇g1(x0)− 2∇g2(x0).

Figure 3(b) shows an approximation of the image of (f, g) and the image of the Pareto
critical set. As discussed in Remark 3.8, we see that the image of Pc has a kink at
(f(x0), g(x0))> = ( 1

4 ,
1
4 )>.

As the previous example suggests, a scenario where the KKT multiplier of f is
not unique may occur if the Pareto critical set goes transversally through the set of
nonsmooth points instead of moving tangentially along it. In other words, it may
occur if arbitrarily close to x0 ∈ Pc, there are Pareto critical points with essentially
active sets I1 and I2 such that I1 6= I2 and I1 6= Ie(x0) 6= I2. Due to continuity of
the gradients, the KKT multipliers for both sets I1 and I2 have accumulation points
that are KKT multipliers of x0. Since I1 6= I2, these accumulation points may not
coincide, such that the KKT multipliers in x0 are not unique. In terms of the structure
of P Ic ∩ ΩI , we see that it is a 0-dimensional set in Example 3.9 (for I = {1, 2}) as it
is just a single point.
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Fig. 4. The gradients of f , g1 and g2 in x0 = (1, 0)> in Example 3.10. The dashed line shows
the (relative) boundary of the convex hull conv({∇f(x0)} ∪ ∂g(x0)).

Although Pareto critical points x0 with ∇f(x0) ∈ aff(∂g(x0)) may not necessarily
cause nonsmoothness of Pc, we will still exclude them from our consideration of the
local structure of Pc around x0 to avoid the irregularities discussed above. So formally,
we introduce the following assumption:

Assumption A2. For x0 ∈ Pc we have

∇f(x0) /∈ aff(∂g(x0)).

Roughly speaking, since affdim(aff(∂g(x0))) < n in most cases, we expect that the
set of points that violate Assumption A2 is small compared to Pc (or even empty). By
(3.8), Assumption A2 implies that there is an index set as in Lemma 3.6 that satisfies
the requirements of Lemma 3.5. In particular, P Ic ∩ ΩI can then be expressed using
only a subset of the selection functions of g.

The discussion of P Ic ∩ΩI so far was mainly focused on the removal of redundant
information in the subdifferential of g to simplify our analysis. We will now turn
towards its actual geometrical structure. To this end, we again consider Example 3.3.

Example 3.10. Let f and g be as in Example 3.3. (The corresponding Pareto
critical set is shown in Figure 1.) Let x0 = (1, 0)> and U ⊆ R2 be the open ball with
radius one around x0. Then a set of selection functions of g|U is given by {g1, g2}
and we have P

{1,2}
c ∩ Ω{1,2} = (0, 1] × {0}. In particular, x0 is a boundary point of

P
{1,2}
c ∩ Ω{1,2}, such that P

{1,2}
c ∩ Ω{1,2} is not smooth around x0 (in the sense of

smooth manifolds). The gradients of f , g1 and g2 are shown in Figure 4. We see that
there is a unique convex combination

1

3
∇f(x0) +

2

3
∇g1(x0) + 0∇g2(x0) = 0(3.9)

where the coefficient of ∇g2(x0) is zero.

Note that in the previous example, there is still a vanishing affine combination of
the gradients of f , g1 and g2 for x = (x1, 0)>, x1 > 1. But it is not a convex combi-
nation, as the coefficient corresponding to ∇g2(x) is negative. Due to the continuity
of the gradients, this can only happen if one of the coefficients in x0 is already zero
(as in (3.9)). To exclude the type of nonsmoothness caused by this, we introduce the
following assumption.
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Assumption A3. For x0 ∈ Pc and a set of selection functions {g1, . . . , gk} of g,
there is an index set {i1, . . . , ir} ⊆ {1, . . . , k} as in Lemma 3.6 and positive coefficients
α0 > 0, β0 ∈ (R>0)r with α0 +

∑r
j=1 β

0
j = 1 and α0∇f(x0) +

∑r
j=1 β

0
j∇gij (x0) = 0.

The following lemma yields a necessary condition for Assumption A3 to hold,
which is related to the relative interior (cf. Definition 2.16) of conv({∇f(x0)}∪∂g(x0)).
In particular, it is independent of the choice of selection functions.

Lemma 3.11. Let x0 ∈ Pc. If there is a set of selection functions such that As-
sumption A3 holds, then

0 ∈ ri(conv({∇f(x0)} ∪ ∂g(x0))).

Proof. See SM2 in the supplementary material.

After introducing the Assumptions A1, A2 and A3, we are now able to show the
first structural result about P Ic ∩ΩI . The following lemma shows that P Ic ∩ΩI is the
projection of a level set from a higher-dimensional space onto the variable space Rn.

Lemma 3.12. Let x0 ∈ Pc. Let U ⊆ Rn be an open neighborhood of x0 and let
{g1, . . . , gk} be a set of selection functions of g|U satisfying Assumptions A1 and A3.
Assume that Assumption A2 holds. Then there is an index set {i1, . . . , ir} ⊆ {1, . . . , k}
and an open neighborhood U ′ ⊆ U of x0 such that

P {1,...,k}c ∩ Ω{1,...,k} ∩ U ′ = prx(h−1(0)) ∩ U ′,(3.10)

where prx : Rn × R× Rr → Rn is the projection onto the first n components and

h : Rn×R>0×(R>0)r → Rn×R×Rr−1, (x, α, β) 7→

α∇f(x) +
∑r
j=1 βj∇gij (x)

α+
∑r
j=1 βj − 1

(gij (x)− gi1(x))j∈{2,...,r}

 .

Proof. Let {i1, . . . , ir} ⊆ {1, . . . , k} be an index set as in A3. Since the gradi-
ents ∇f and ∇gij , j ∈ {1, . . . , r}, are continuous and {∇f(x0)} ∪ {∇gij (x0) : j ∈
{1, . . . , r}} is affinely independent, there is an open neighborhood U ′ ⊆ U of x0 such
that {∇f(x)} ∪ {∇gij (x) : j ∈ {1, . . . , r}} is affinely independent for all x ∈ U ′. In
particular,

(3.11)
r ≤ affdim(aff({∇f(x)} ∪ {∇gi(x) : i ∈ {1, . . . , k}))
≤ affdim(aff({∇gi(x) : i ∈ {1, . . . , k})) + 1 ∀x ∈ U ′.

By A1, A2 and A3, we have

(3.12)

r
A3
= affdim(aff({∇f(x0)} ∪ ∂g(x0)))

A2
= affdim(aff(∂g(x0))) + 1

A1(i),(ii)
= affdim(aff({∇gi(x0) : i ∈ {1, . . . , k})) + 1

A1(iii)
= affdim(aff({∇gi(x) : i ∈ {1, . . . , k})) + 1 ∀x ∈ U ′.

Combining (3.11) and (3.12), we obtain

affdim(aff({∇f(x)} ∪ {∇gi(x) : i ∈ {1, . . . , k})) = r ∀x ∈ U ′,

so {∇f(x)} ∪ {∇gij (x) : j ∈ {1, . . . , r}} is an affine basis of {∇f(x)} ∪ {∇gi(x) : i ∈
{1, . . . , k}} for all x ∈ U ′.
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Let x ∈ P {1,...,k}c ∩ Ω{1,...,k} ∩ U ′. By Lemma 2.13, every element of aff({∇f(x)} ∪
{∇gi(x) : i ∈ {1, . . . , k}}) can be uniquely written as an affine combination of elements
of {∇f(x)} ∪ {∇gij (x) : j ∈ {1, . . . , r}}. Let α0 and β0 as in A3. Since α0 > 0,
β0 ∈ (R>0)r and the gradients ∇f , ∇gij , j ∈ {1, . . . , r}, are continuous, we can
assume w.l.o.g. that U ′ is small enough such that there are α > 0, β ∈ (R>0)r with
α+

∑r
j=1 βj = 1 and

α∇f(x) +

r∑
j=1

βj∇gij (x) = 0.

Furthermore, gij (x)− gi1(x) = 0 holds for all j ∈ {2, . . . , r} since x ∈ Ω{1,...,k}. Thus,
h(x, α, β) = 0, i.e., x ∈ prx(h−1(0)) ∩ U ′.
Now let x ∈ prx(h−1(0)) ∩ U ′. Then x ∈ P {1,...,k}c trivially holds since {i1, . . . , ir} ⊆
{1, . . . , k}. By A1 and Lemma 3.5, we can assume w.l.o.g. that U ′ is small enough
such that gij (x) − gi1(x) = 0 for all j ∈ {2, . . . , r} implies x ∈ Ω{1,...,k}, completing
the proof.

Up to this point, we assumed f to be continuously differentiable and g to be
PC1. This means that the map h in the previous lemma is at least continuous. If h is
actually continuously differentiable, then standard results from differential geometry
can be used to analyze the structure of its level sets on the right-hand side of (3.10). To
this end, we will assume for the remainder of this section that f is twice continuously
differentiable and g is PC2.

Theorem 3.13. In the setting of Lemma 3.12 it holds:
a) If Dh(x, α, β) has full rank for all (x, α, β) ∈ h−1(0), then h−1(0) is a 1-

dimensional submanifold of Rn × R>0 × (R>0)r.
b) If Dh(x, α, β) has constant rank m ∈ N for all (x, α, β) ∈ Rn×R>0× (R>0)r,

then h−1(0) is an (n + r + 1 −m)-dimensional submanifold of Rn × R>0 ×
(R>0)r.

In both cases, the tangent space of h−1(0) is given by

T(x,α,β)(h
−1(0)) = ker(Dh(x, α, β)).(3.13)

Proof. Part a) follows from Corollary 5.14 and part b) follows from Theorem 5.12
in [21]. The formula for the tangent space follows from Proposition 5.38 in [21].

Remark 3.14. Equation (3.13) in the previous theorem can be used to compute
tangent vectors of the regularization path in practice by computing elements of
prx(ker(Dh(x, α, β))). Thus, it is an essential result for the construction of path-
following methods.

The previous theorem is the main result in this section. It shows that the structure
of h−1(0) (and thus the structure of P Ic ∩ ΩI due to (3.10)) is related to the rank of
the Jacobian Dh, given by
α∇2f(x) +

∑r
j=1 βj∇2gij (x) ∇f(x) ∇gi1(x) . . . ∇gir (x)

0 1 1 . . . 1
(∇gi2(x)−∇gi1(x))> 0 0 . . . 0

...
...

...
...

(∇gir (x)−∇gi1(x))> 0 0 . . . 0

 ∈ R(n+r)×(n+r+1)
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for (x, α, β) ∈ Rn ×R>0 × (R>0)r. Note that in Theorem 3.13 b), the assumption on
the rank has to hold for all (x, α, β) ∈ Rn × R>0 × (R>0)r whereas in a), it only has
to hold for all (x, α, β) ∈ h−1(0). The following remark shows how the structure of
Dh can be used to analyze its rank.

Remark 3.15. In the setting of Lemma 3.12, let (vx, vα, vβ) ∈ ker(Dh(x, α, β)) ⊆
Rn × R>0 × (R>0)r, i.e.,

(3.14)

α∇2f(x) +

r∑
j=1

βj∇2gij (x)

 vx + vα∇f(x) +

r∑
j=1

vβj∇gij (x) = 0,

vα +

r∑
j=1

vβj = 0,

(∇gij (x)−∇gi1(x))>vx = 0 ∀j ∈ {2, . . . , r}.

Since {∇f(x),∇gi1(x), . . . ,∇gir (x)} is affinely independent by construction (cf. proof
of Lemma 3.12), the set

W :=

vα∇f(x) +

r∑
j=1

vβj∇gij (x) : vα ∈ R, vβ ∈ Rr, vα +

r∑
j=1

vβj = 0


is an r-dimensional linear subspace of Rn. Similar to Lemma 2.13, it is possible
to show that for each element of W , the corresponding coefficients vα and vβ are
unique. If α∇2f(x) +

∑r
j=1 βj∇2gij (x) is regular, then the first two lines of (3.14)

are equivalent to

vx ∈ −

α∇2f(x) +

r∑
j=1

βj∇2gij (x)

−1W =: V1,

where V1 is an r-dimensional linear subspace of Rn. In particular, vα and vβ are
uniquely determined by vx. Furthermore, if we denote by V ⊥ the orthogonal comple-
ment of a subspace V , then the last line of (3.14) is equivalent to

vx ∈ span({∇gij (x)−∇gi1(x) : j ∈ {2, . . . , r}})⊥ =: V2,

where V2 is an (n−(r−1))-dimensional subspace of Rn since {∇gi1(x), . . . ,∇gir (x)} is
affinely independent. Thus, the dimension of ker(Dh(x, α, β)) is given by the dimen-
sion of the intersection V1 ∩ V2. If we assume that V1 and V2 are generic subspaces,
then we can apply a basic result from linear algebra to see that

dim(ker(Dh(x, α, β))) = dim(V1 ∩ V2) = dim(V1) + dim(V2)− dim(V1 + V2)

= r + (n− (r − 1))− n = 1,

i.e., the rank of Dh(x, α, β) is full and Theorem 3.13 a) can be applied.

The previous remark suggests that h−1(0) is typically a 1-dimensional manifold
such that we expect P Ic ∩ ΩI to be “1-dimensional” as well by (3.10). Nonetheless,
we will see later that there are applications where h−1(0) is a higher-dimensional
manifold. Furthermore, there are cases where h−1(0) is not a manifold at all. (Note
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that this is not necessarily caused by the nonsmoothness of g and can also happen
for smooth objective functions (cf. Example 1 in [15]).) Thus, for P Ic ∩ ΩI to have a
smooth structure around a (corresponding) x0 ∈ Pc, we have to make the following
assumption:

Assumption A4. In the setting of Lemma 3.12, Theorem 3.13 can be applied,
i.e.,

(a) rk(Dh(x, α, β)) = n+ r ∀(x, α, β) ∈ h−1(0) or
(b) rk(Dh(x, α, β)) is constant ∀(x, α, β) ∈ Rn × R>0 × (R>0)r.

We conclude the discussion of the structure of P Ic ∩ΩI by considering the special
case where f is quadratic and g is piecewise (affinely) linear. Remark SM3 in the
supplementary material shows that in this case, P Ic ∩ΩI is (locally) an affinely linear
set around points that satisfy the assumptions of Lemma 3.12. This coincides with
the results in [33].

3.3. The structure of Pc. After analyzing the structure of P Ic ∩ ΩI , we are
now in the position to analyze the structure of the Pareto critical set Pc of (3.4). By
(3.6), Pc can be written as the union of P Ic ∩ ΩI for all possible combinations I of
selection functions. Since we already discussed the structure of the individual P Ic ∩ΩI ,
the only additional nonsmooth points in Pc may arise by taking their union. More
precisely, nonsmooth points may arise where the different P Ic ∩ ΩI touch, i.e., where
the set of (essentially) active selection functions changes. The following lemma yields
a necessary condition for identifying such points.

Lemma 3.16. Let x0 ∈ Pc and let {g1, . . . , gk} be a set of selection functions of g
with Ie(x0) = {i1, . . . , il}, l ∈ N. If for all open neighborhoods U ⊆ Rn of x0, there is
some x ∈ Pc ∩ U with Ie(x) 6= Ie(x0), then there are α ≥ 0 and β ∈ (R≥0)l such that

α+
∑l
j=1 βj = 1,

α∇f(x0) +

l∑
j=1

βj∇gij (x0) = 0

and βj = 0 for some j ∈ {1, . . . , l}.
Proof. See SM4 in the supplementary material.

A visualization of the previous lemma can be seen in Example 3.3: In x0 = (1, 0)>,

the sets P
{1,2}
c ∩Ω{1,2} and P

{1}
c ∩Ω{1} touch and there is a convex combination with

a zero component (cf. (3.9)). In this case, this causes a kink in Pc.
Note that in general, the existence of a coefficient vector with a zero component as

in Lemma 3.16 is not a useful criterion to find points in Pc where the active set changes.
For example, by Lemma 3.6, if the number of essentially active selection functions in
x0 is larger than affdim(aff({∇f(x0)} ∪ ∂g(x0))), then there is always a coefficient
vector with a zero component. A stricter condition would be that every coefficient
vector has a zero component, i.e., that zero is located on the relative boundary of
conv({∇f(x0)} ∪ ∂g(x0)) (cf. Definition 2.16). By Lemma 3.11, this would imply
that Assumption A3 cannot hold, such that P Ic ∩ ΩI may be nonsmooth around x0.
Although the theory suggests (and we will later explicitly see this in Example 4.3)
that this must not necessarily be the case in points where the active set changes, we
believe it may be a useful criterion in practice.

Nonetheless, from a theoretical point of view, the only reliable assumption we can
make to exclude points where the essentially active set changes is the following:
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Table 1
An overview of the five assumptions required to have a smooth structure of Pc around x0 ∈ Pc.

Let x0 ∈ Pc.
A1 There is an open nbd. U 3 x0 and a set of sel. fct. {g1, . . . , gk} of g|U with

(i) I(x0) = {1, . . . , k},
(ii) Ie(x) = I(x) ∀x ∈ U ,

(iii) affdim(aff({∇gi(x) : i ∈ {1, . . . , k}}))
= affdim(aff({∇gi(x0) : i ∈ {1, . . . , k}})) ∀x ∈ U .

A2 It holds ∇f(x0) /∈ aff(∂g(x0)).

A3 Let {g1, . . . , gk} be a set of selection functions of g.
It exists {i1, . . . , ir} ⊆ {1, . . . , k} and α0 ∈ R, β0 ∈ Rr
with α0 +

∑r
j=1 β

0
j = 1 such that

(i) r = affdim(aff({∇f(x0)} ∪ ∂g(x0))),
(ii) {∇f(x0)} ∪ {∇gi(x0) : i ∈ {i1, . . . , ir}} aff. ind.,

}
(cf. Lemma 3.6)

(iii) α0∇f(x0) +
∑r
j=1 β

0
j∇gij (x0) = 0,

(iv) α0 > 0, (β0)j > 0.

A4 Assume that A1, A2 and A3 hold and let h be defined as in Lemma 3.12.
(a) rk(Dh(x, α, β)) = n+ r ∀(x, α, β) ∈ h−1(0) or
(b) rk(Dh(x, α, β)) is constant ∀(x, α, β) ∈ Rn × R>0 × (R>0)r.

A5 Let {g1, . . . , gk} be a set of selection functions of g.
There is an open neighborhood U 3 x0 with Ie(x) = Ie(x0) ∀x ∈ Pc ∩ U .

Assumption A5. For x0 ∈ Pc and a set of selection functions {g1, . . . , gk} of g,
there is an open neighborhood U ⊆ Rn of x0 such that

Ie(x) = Ie(x0) ∀x ∈ Pc ∩ U.

From our considerations up to this point it follows that if x0 ∈ Pc is a point in
which Assumptions A1 to A5 hold (for the same set of selection functions), then Pc
is the projection of a smooth manifold around x0 as in Theorem 3.13. An overview of
all five assumptions is shown in Table 1. Unfortunately, in contrast to Assumptions
A1, A2, A3 and A4, A5 is only an a posteriori condition, i.e., we already have to know
Pc around x0 to be able to check if Assumption A5 holds.

Remark 3.17. If Assumption A5 is violated in x0 ∈ Pc, then there are Pareto
critical points arbitrarily close to x0 with a different (essentially) active set I ′ 6= Ie(x0).
In practice, it may be of interest to find I ′. For example, in path-following methods, I ′

could be used to compute the direction in which Pc continues once the nonsmoothness
in x0 was detected. To this end, let {g1, . . . , gk} be the set of selection functions which
are all essentially active at x0. While it is not possible to determine I ′ solely from the
set conv({∇f(x0)} ∪ ∂g(x0)) = conv({∇f(x0)} ∪ {∇g1(x0), . . . ,∇gk(x0)}), we can at
least determine all potential candidates for I ′ by finding all subsets {i1, . . . , im} ⊆
{1, . . . , k} with

0 ∈ conv({∇f(x0)} ∪ conv({∇gi1(x0), . . . ,∇gim(x0)})).

4. Examples. In this section, we will show how our results from Section 3 can
be used to analyze the structure of regularization paths in two common applications.
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These are support vector machines (SVMs) in data classification [18] and the exact
penalty method in constrained optimization [27, 31].

4.1. Support vector machine. Given a data set {(xi, yi) : xi ∈ Rl, yi ∈
{−1, 1}, i ∈ {1, . . . , N}}, the goal of the support vector machine (SVM) is to find
w ∈ Rl and b ∈ R such that

sign(w>xi + b) = yi ∀i ∈ {1, . . . , N}.

In other words, the goal is to find a hyperplane {x ∈ Rl : w>x + b = 0} such that
all xi with yi = 1 lie on one side and all xi with yi = −1 lie on the other side of the
hyperplane. Since such a hyperplane may not be unique, an additional goal is to find
the one where the minimal distance of the xi to the hyperplane, also known as the
margin, is as large as possible. One way of solving this problem is the penalization
approach

min
(w,b)∈Rl×R

f(w, b) + λg(w, b)(4.1)

for λ ≥ 0 and

f : Rl × R→ R, (w, b) 7→ 1

2
‖w‖22,

g : Rl × R→ R, (w, b) 7→
N∑
i=1

max{0, 1− yi(w>xi + b)}.

Roughly speaking, minimizing g ensures that the hyperplane separates the data,
while minimizing f maximizes the margin. In theory, the most favorable hyperplane
would be the one with g(w, b) = 0 (if existent) and f(w, b) as small as possible. But in
practice, when working with large and noisy data sets, an imperfect separation where
only few points violate the separation may be more desirable. The balance between
the margin and the quality of the separation can be controlled via the parameter λ
in (4.1), yielding a regularization path RSVM as in (3.2) (for n = l + 1).

Remark 4.1. In the literature, the roles of f and g in problem (4.1) are typically
reversed. The resulting problem is equivalent to our formulation with the regulariza-
tion parameter 1

λ (except for critical points of f and g) (cf. Section 12.3.2 in [18]).
Nonetheless, when the regularization path of the SVM is considered, λ in (4.1) is more
commonly used for its parametrization.

The structure of the regularization path of the SVM was already considered in
earlier works. In [17], it was shown that RSVM is 1-dimensional and piecewise linear
up to certain degenerate points, and a path-following method was proposed that
exploits this structure. It was conjectured (without proof) that the existence of these
degenerate points is related to certain properties of the data points (xi, yi), like having
duplicates of the same point or having multiple points with the same margin. In [28],
these degeneracies were analyzed further and a modified path-following method was
proposed, specifically taking degenerate data sets into account. Other methods for
degenerate data sets were proposed in [8, 35, 38]. In the following, we will analyze
how these degeneracies relate to the nonsmooth points we characterized in our results.

Obviously, f is twice continuously differentiable and g is PC2 with selection
functions {

(w, b) 7→
∑
i∈I

1− yi(w>xi + b) : I ⊆ {1, . . . , N}

}
.
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Furthermore, both f and g are convex, so RSVM coincides with the critical regular-
ization path (cf. (3.3)). Thus, we can apply our results from Section 3 to analyze the
structure of RSVM. Since f is quadratic and all selection functions are linear, Remark
SM3 shows that the regularization path is piecewise linear up to points violating the
Assumptions A1 to A5. Due to the properties of g, the Assumption A1 always holds
for the SVM, as shown in Remark SM5 in the supplementary material.

In the following, we will consider the remaining Assumptions A2 to A5 in the
context of the SVM and relate them to the degeneracies reported in [17]. We will do
this by considering Example 1 from [28], which was specifically constructed to have a
degenerate regularization path.

Example 4.2. Consider the data set{
((0.7, 0.3)>, 1), ((0.5, 0.5)>, 1), ((2, 2)>,−1),

((1, 3)>,−1), ((0.75, 0.75)>, 1), ((1.75, 1.75)>,−1)
}
.

The regularization path for this data set can be computed analytically and is shown in
Figure 5(a). In the following, we will analyze the points x1, x2, x3 and x4 highlighted

(a) (b)

Fig. 5. (a) Regularization path of the SVM in Example 4.2 and the points x1 =
1

372
(−35,−65, 137)>, x2 = 1

93
(−35,−65, 137)>, x3 = 1

3
(−2,−2, 5)> and x4 = 1

5
(−4,−4, 11)>.

(b) Image of the regularization path with yi = (f(xi), g(xi))>, i ∈ {1, . . . , 4}, and the same coloring
as in (a).

in Figure 5(a) with respect to the Assumptions A2 to A5.
The point x1 lies in one of the 2-dimensional parts of the regularization path

and it is possible to show that g is smooth around x1. It is easy to verify that As-
sumptions A2, A3 and A5 are satisfied. With regard to Assumption A4, it holds
r = affdim(aff({∇f(x1)} ∪ ∂g(x1))) = 1 (cf. Lemma 3.6) and

Dh(x, α, β) =


2α 0 0 − 35

372
14
5

0 2α 0 − 65
372

26
5

0 0 0 0 0
0 0 0 1 1


with rk(Dh(x, α, β)) = 3 for all (x, α, β) ∈ Rn × R>0 × R>0. Thus, A4(b) holds
which by Theorem 3.13 implies that the regularization path is the projection of an
n+ r + 1−m = 3 + 1 + 1− 3 = 2 dimensional manifold around x1, as expected.
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The point x2 lies in a kink in the regularization path. The subdifferential of g
in x2 can be computed analytically and is shown in Figure 6(a). In this case, we

(a) (b) (c)

Fig. 6. Gradient of f , subdifferential of g and the (relative) boundary of the convex hull (dashed)
in x2, x3 and x4 in Example 4.2.

have affdim(aff(∂g(x2))) = 2 and ∇f(x2) /∈ aff(∂g(x2)), so Assumption A2 holds.
We see that zero lies on the relative boundary of conv({∇f(x2) ∪ ∂g(x2)}) such that
Assumption A3 must be violated (by Lemma 3.11). Furthermore, it is possible to show
that the active set changes in x2, so Assumption A5 is violated as well.

The point x3 lies in another kink of the regularization path. The corresponding
subdifferential of g is shown in Figure 6(b). As for x2, Assumptions A3 and A5 are
violated in x3. But in contrast to x2 we have affdim(aff(∂g(x2))) = 3, so ∇f(x2) ∈
aff(∂g(x2)) = R3 trivially holds and Assumption A2 is violated. As discussed in
Remark 3.8, this results in a kink in the Pareto front in the image of x3 under the
objective vector (f, g), as can be seen in Figure 5(b).

Finally, x4 marks a corner of one of the 2-dimensional parts of the regularization
path and the corresponding subdifferential is shown in 6(c). As for x3, Assumptions
A2, A3 and A5 are violated in x4. But unlike x3, when we consider the image of
x4 in Figure 5(b), we see that the there is no kink in y4. This suggests that the
KKT multiplier of f is unique even though Assumption A2 is violated. Note that
this is not a contradiction to Lemma 3.7 b), as 0 lies on the relative boundary of
conv({∇f(x4)} ∪ ∂g(x4)).

4.2. Exact penalty method. Consider the constrained optimization problem

(4.2)

min
x∈Rn

f(x)

s.t. c1i (x) ≤ 0, i ∈ {1, . . . , p},
c2j (x) = 0, j ∈ {1, . . . , q},

where f : Rn → R, c1i : Rn → R, i ∈ {1, . . . , p}, and c2j : Rn → R, j ∈ {1, . . . , q}, are
continuously differentiable. In order to solve (4.2) the so-called exact penalty method
can be used, where the idea is to solve the (nonsmooth) problem

(4.3) min
x∈Rn

f(x) + λg(x)

with a penalty weight λ ≥ 0 and

g : Rn → R, x 7→

 p∑
i=1

max(c1i (x), 0) +

q∑
j=1

|c2j (x)|

 .
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It is easy to see that g is PC1 and that a set of selection functions is given by

(4.4)

gθ,σ : Rn → R, x 7→
p∑
i=1

θic
1
i (x) +

q∑
j=1

σic
2
j (x) : θ ∈ {0, 1}p, σ ∈ {−1, 1}q

 .

The method is based on the theoretical result that there is some λ̄ > 0 such that
every strict local minimizer of (4.2) is a local minimizer of (4.3) for every λ > λ̄,
i.e., if λ is large enough, then the constrained problem (4.2) can be solved via the
unconstrained problem (4.3) (cf. [27], Theorem 17.3). In practice, problem (4.3)
will become ill-conditioned if λ is large compared to λ̄. Thus, it is instead solved
for multiple, increasing values of λ until a feasible solution is found. This results
in a regularization path R as in (3.2). Note that all feasible points of (4.2) are
critical points of g and the minimizer of (4.2) is typically the first intersection of the
regularization path with the feasible set (when starting in the minimizer of f). In
particular, the existence of λ̄ as above implies that the minimizer of (4.2) is contained
in R.

In [39], R is analyzed for the case where f is quadratic (and strictly convex) and
all c1i and c2j are affinely linear. In this case, R coincides with the critical regularization
path Rc (cf. (3.3)). It is shown that R is piecewise linear, which coincides with our
results in Remark SM3. In [40], the more general case where f and all c1i are convex
and all c2j are affinely linear is considered. There, it still holds R = Rc and it is
shown that R is piecewise smooth with kinks occurring where the constraints become
satisfied or violated.

Here, we want to use our theory to analyze the critical regularization path Rc in
the more general setting where f , c1i and c2j are merely continuously differentiable. By
our results in Section 3, we know that Rc is piecewise smooth up to points where the
Assumptions A1 to A5 are violated. In Remark SM6 in the supplementary material,
it is shown that if all x ∈ Rn satisfy the linear independence constraint qualification
(LICQ), i.e., if

{∇c1i (x) : c1i (x) = 0} ∪ {∇c2j (x) : c2j (x) = 0}(4.5)

is linearly independent for all x ∈ Rn, then Assumption A1 always holds and only
Assumptions A2 to A5 may cause nonsmoothness in Rc. For these remaining assump-
tions we consider the following example, where the feasible set is given by continuously
differentiable but nonconvex inequality constraints. It is inspired by problem (15) in
[40].

Example 4.3. Consider the constrained optimization problem (4.2) with

f(x) =
1

2
x21 + x22 − x1x2 +

1

2
x1 − 2x2,

c11(x) = −

((
x1 −

1

2

)2

+ x22 − 1

)
,

c12(x) =

(
x1 +

1

2

)2

+ x22 − 1,

c13(x) = −

(
x21 +

(
x2 −

1

2

)2

− 1

)
.
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The corresponding critical regularization path Rc of (4.3) can be computed analytically
and is shown in black in Figure 7(a), consisting of two disconnected paths. The feasible

(a) (b)

Fig. 7. (a) R (black, solid) and Rc (black) for the exact penalty method in Example 4.3 and the

points x1 ≈ (0.1614, 0.9409)>, x2 = (0,
√
3

2
)>, x3 ≈ (−0.8027, 0.9531)>, x4 ≈ (0.4631,−0.2691)>

with a zoom of the intersection of c13(x) = 0 and Rc. (b) Image of Rc with yi = (f(xi), g(xi)),
i ∈ {1, . . . , 4}, and the same coloring as in (a). Furthermore, a zoom of the image around y3.

set of the constrained problem coincides with the critical set of g, excluding the three
isolated critical points of g. Since c11 and c13 are nonconvex, g is nonconvex as well,
which is why Rc does not coincide with the actual regularization path R in this case.
More precisely, R is merely the union of the path from the minimal point of f to x2

and the intersection of Rc with the feasible set (cf. Figure 7).
In the following we will analyze the kinks of Rc, which are located in x1 to x4 and

between the minimal point of f and x1 (cf. Figure 7(a)). First of all, it is easy to
see that kinks occur precisely where constraints become satisfied or violated along Rc.
Due to the construction of the selection functions (cf. (4.4)), this causes Assumption
A5 to be violated in these points.

For x1, the gradient of f and the subdifferential of g are shown in Figure 8(a).
We see that Assumption A2 holds and that Assumption A3 is violated since zero lies
on the relative boundary of conv({∇f(x1)} ∪ ∂g(x1)) (cf. Lemma 3.11). The same
behavior occurs in all other kinks except x2. For x2, ∇f(x2) and ∂g(x2) are shown in
Figure 8(b). In contrast to the other points, Assumption A2 is clearly violated since
dim(aff(∂g(x2))) = 2 = n. As discussed in Remark 3.8, this causes a kink in the
image of Rc, which can be seen in Figure 7(b). Moreover, zero lies in the relative
interior of conv({∇f(x2)} ∪ ∂g(x2)) and it is easy to see that Assumption A3 holds.

In addition to the features described so far, the image of Rc possesses so-called
turning points. If we treat the image of Rc as an actual (continuous) path, then these
are points where the direction of the path abruptly turns around. For example, this
can be observed in y3 and y4 in Figure 7(b). These points were already discussed in
[3] and in Example 3.4 therein, it was highlighted that they are not necessarily caused
by any nonsmoothess of the objectives. Since we are mainly interested in the structure
of Rc in this article, we will leave their analysis for future work.

Note that all kinks in the previous examples were points where constraints become
satisfied or violated, which suggests that the structural results from [40] also hold
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(a) (b)

Fig. 8. Gradient of f , subdifferential of g and the corresponding (relative) boundary of the
convex hull (dashed) in x1 and x2 of Example 4.3.

in our more general nonconvex case, at least for the critical regularization path Rc.
Furthermore, Rc is still connecting the minimum of f to the solution of the constrained
problem (4.2) (which is the intersection of Rc with the feasible set). Thus, it might
be possible to apply a path-following method similar to the one in [40] to nonconvex
problems as well.

5. Conclusion. In this article, we have presented results about the structure of
regularization paths for piecewise differentiable regularization terms. We did this by
first showing that the critical regularization path is related to the Pareto critical set
Pc of the multiobjective optimization problem which contains the objective function
f and the regularization term g. Afterwards, we analyzed Pc by reformulating it as a
union of the intersection of certain sets, which allowed us to apply differential geometry
to obtain structural results. During this derivation, we identified five assumptions (A1
to A5) which (when combined) are sufficient for Pc to have a smooth structure locally
around a given x0 ∈ Pc. In turn, nonsmooth features of Pc (like “kinks”) can be
classified depending on which of these five assumptions is violated. We demonstrated
this by analyzing the regularization paths for the support-vector machine and the
exact penalty method.

Based on our results in this article, there are multiple possible directions for future
work:

• We believe that most of our theoretical results would still hold (with only
minor adjustments) if we would assume f to be merely piecewise differentiable
as well. (In this case, the regularization function f+λg would still be piecewise
differentiable.)

• Although the MOP (3.4) we considered in this article has only two objectives,
multiobjective optimization can handle any number of objectives. In partic-
ular, (3.4) could be formulated for arbitrarily many regularization terms. We
believe that results similar to ours (with a higher-dimensional regularization
path) could be obtained for this case. This would allow regularization meth-
ods such as the elastic net [41] to be incorporated into our framework.

• While we were focused on regularization in this article, our results can also
be used in the context of general multiobjective optimization to construct
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path-following methods for the solution of nonsmooth MOPs, extending [3,
40, 33, 19].

• Although we provided the main ingredients for the construction of path-
following methods, i.e., a way to compute the tangent space in smooth areas
and a characterization of nonsmooth points, their development and actual
implementation is still non-trivial. For example, other important ingredients
are the computation of new points on R after taking a step along the tan-
gent direction (also known as a corrector) and the computation of the correct
tangent direction after a kink was found. Treating these problems in our gen-
eral framework could greatly simplify the development of new path-following
methods.
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REGULARIZATION PATHS FOR PIECEWISE DIFFERENTIABLE
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BENNET GEBKEN† , KATHARINA BIEKER† , AND SEBASTIAN PEITZ‡

SM1. Proof of Lemma 3.7. Let {g1, . . . , gk} be a set of selection functions of
g and let Ie(x0) = {i1, . . . , il}.
a) By assumption, for s ∈ {1, 2}, there have to be αs1 > 0 and βs ∈ (R≥0)l such that

αs1 +
∑l
j=1 β

s
j = 1,

αs1∇f(x0) +

l∑
j=1

βsj∇gij (x0) = 0(SM1.1)

and α1
1 6= α2

1. This implies

α1
1∇f(x0) +

l∑
j=1

β1
j∇gij (x0) = α2

1∇f(x0) +

l∑
j=1

β2
j∇gij (x0)

⇔ ∇f(x0) =
1

α1
1 − α2

1

l∑
j=1

(β2
j − β1

j )∇gij (x0) =

l∑
j=1

β2
j − β1

j

α1
1 − α2

1

∇gij (x0)

with

l∑
j=1

β2
j − β1

j

α1
1 − α2

1

=
1− α2

1 − (1− α1
1)

α1
1 − α2

1

= 1,

showing that ∇f(x0) ∈ aff(∂g(x0)).

b) Since ∇f(x0) ∈ aff(∂g(x0)) there has to be some β′ ∈ Rl with
∑l
j=1 β

′
j = 1 and

∇f(x0) =

l∑
j=1

β′j∇gij (x0).(SM1.2)

Furthermore, by Lemma 2.17, zero being contained in ri(conv({∇f(x0)}∪ ∂g(x0))) is

equivalent to the existence of α1 > 0 and β ∈ (R>0)l with α1 +
∑l
j=1 βj = 1 and

α1∇f(x0) +

l∑
j=1

βj∇gij (x0) = 0.(SM1.3)
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Combination of (SM1.2) and (SM1.3) yields

(α1 − λ)∇f(x0) +

l∑
j=1

(βj + λβ′j)∇gij (x0) = 0 ∀λ ∈ R

and

(α1 − λ) +

l∑
j=1

(βj + λβ′j) = α1 +

l∑
j=1

βj + λ

−1 +

l∑
j=1

β′j

 = 1 ∀λ ∈ R.

Since α1 > 0 and β ∈ (R>0)l, there has to be some λ 6= 0 such that α1 − λ > 0 and
β+λβ′ ∈ (R>0)l. In particular, α1−λ 6= α1 is another KKT multiplier corresponding
to f in x0, completing the proof.

SM2. Proof of Lemma 3.11. Let {g1, . . . , gk} be a set of selection functions
that satisfies A3. Let L := {1, . . . , k} \ {i1, . . . , ir}. Since {∇f(x0)} ∪ {∇gi(x0) : i ∈
{i1, . . . , ir}} is an affine basis of aff({∇f(x0)} ∪ ∂g(x0)), there are coefficients θl ∈ R
and νl ∈ Rr for every l ∈ L with θl +

∑r
j=1 ν

l
j = 1 and

∇gl(x0) = θl∇f(x0) +

r∑
j=1

νlj∇gij (x0).

Let θ̄ := −
∑
l∈L θ

l and ν̄j := −
∑
l∈L ν

l
j for j ∈ {1, . . . , r}. Then

0 =
∑
l∈L

∇gl(x0)− θl∇f(x0)−
r∑
j=1

νlj∇gij (x0)


= θ̄∇f(x0) +

r∑
j=1

ν̄j∇gij (x0) +
∑
l∈L

∇gl(x0)

and θ̄ +
∑r
j=1 ν̄j +

∑
l∈L 1 = 0. Let α0 > 0 and β0 ∈ (R>0)r as in A3. Then

0 = α0∇f(x0) +

r∑
j=1

β0
j∇gij (x0)

= α0∇f(x0) +

r∑
j=1

β0
j∇gij (x0) + λ

θ̄∇f(x0) +

r∑
j=1

ν̄j∇gij (x0) +
∑
l∈L

∇gl(x0)



= (α0 + λθ̄)∇f(x0) +

r∑
j=1

(β0
j + λν̄j)∇gij (x0) +

∑
l∈L

λ∇gl(x0)

(SM2.1)

for all λ ∈ R. By construction, there is some λ > 0 such that (SM2.1) is a van-
ishing convex combination with strictly positive coefficients. Applying Lemma 2.17
completes the proof.

SM3. Remark regarding Section 3.2. Let

f : Rn → R, x 7→ 1

2
x>Ax+ b>x+ c
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for A ∈ Rn×n, b ∈ Rn and c ∈ R. Furthermore, assume that there is a set of selection
functions {g1, . . . , gk} of g consisting of affinely linear functions, i.e.,

gi : Rn → R, x 7→ d>i x+ ei

for di ∈ Rn, ei ∈ R, i ∈ {1, . . . , k}. Let x0 ∈ Pc and assume that Lemma 3.12
is applicable, yielding an index set {i1, . . . , ir} ⊆ {1, . . . , k}, an open neighborhood
U ′ ⊆ Rn of x0 and coefficients α0 ∈ R>0 and β0 ∈ (R>0)r such that h(x0, α0, β0) = 0.
In this case, the map h reduces to

h(x, α, β) =

 α(Ax+ b) +
∑r
j=1 βjdij

α+
∑r
j=1 βj − 1

((d>ij − di1)>x+ eij − ei1)j∈{2,...,r}

 .

We will show that

prx(h−1(0)) ∩ U ′ = (x0 + prx(ker(Dh(x0, α0, β0)))) ∩ U ′,(SM3.1)

which by Lemma 3.12 implies that P
Ie(x0)
c ∩ΩI

e(x0) ∩U ′ is an affinely linear set with
dimension dim(prx(ker(Dh(x0, α0, β0)))).

To this end, let (vx, vα, vβ) ∈ ker(Dh(x0, α0, β0)). Since α0 > 0, there is some
ε > 0 such that α0 − tvα > 0 for all t ∈ [0, ε). Define

s : [0, ε)→ R, t 7→ tα0

α0 − tvα
.

Since α0 > 0 and β0 ∈ (R>0)r, there is some ε′ ∈ (0, ε) such that

α0 + s(t)vα > 0,

β0
j + s(t)vβj > 0 ∀j ∈ {1, . . . , r}

for all t ∈ [0, ε′). Furthermore, since U ′ is an open neighborhood of x0, there is some
ε′′ > 0 such that x0 + tvx ∈ U ′ for all t ∈ [0, ε′′). Finally, a simple calculation shows
that

h(x0 + tvx, α0 + s(t)vα, β0 + s(t)vβ) = 0 ∀t ∈ [0, ε′′).

Thus, “⊇” holds in (SM3.1).

In turn, let (x1, α1, β1) ∈ U ′ × R>0 × (R>0)r with h(x1, α1, β1) = 0. Let s := α0

α1 . It
is easy to show that

(x1 − x0, s(α1 − α0), s(β1 − β0)) ∈ ker(Dh(x0, α0, β0)),

implying that “⊆” holds in (SM3.1).

SM4. Proof of Lemma 3.16. By assumption there is a sequence (xs)s ∈ Pc
with lims→∞ xs = x0 and Ie(xs) 6= Ie(x0) for all s ∈ N. Assume w.l.o.g. that Ie(xs)
is constant for all s ∈ N. Due to the definition of the essentially active set, we can
assume w.l.o.g. that Ie(xs) = {i1, . . . , im} ⊆ Ie(x0) for some m < l. Since xs ∈ Pc for
all s ∈ N, there are sequences (αs)s ∈ R≥0, (βs)s ∈ (R≥0)m with αs +

∑m
j=1 β

s
j = 1

and

αs∇f(xs) +

m∑
j=1

βsj∇gij (xs) = 0
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for all s ∈ N. Since (αs)s and (βs)s are bounded, we can assume w.l.o.g. that there
are α ∈ R≥0 and β̄ ∈ (R≥0)m with lims→∞ αs = α and lims→∞ βs = β̄. In particular,

α+
∑l
j=1 β̄j = 1. By continuity of ∇f and ∇gi, i ∈ {1, . . . , k}, we have

α∇f(x0) +

m∑
j=1

β̄j∇gij (x0) = 0.

The proof follows by setting β = (β̄i1 , . . . , β̄im , 0, . . . , 0)> ∈ (R≥0)l.

SM5. Remark regarding Section 4.1. Let g : Rn → R be any piecewise linear
and convex function. Let x0 ∈ Rn. By Lemma 2.4, there is an open neighborhood
U ⊆ Rn of x0 and a set of (affinely linear) selection functions {g1, . . . , gk} of g|U which
are all essentially active in x0. In particular, I(x0) = {1, . . . , k}, so A1(i) holds.
To see that A1(ii) holds, let z ∈ U and j ∈ I(z). Since all selection functions are
essentially active in x0, we have

x0 ∈ cl(int({y ∈ U : g(y) = gj(y)})),

so V := int({y ∈ U : g(y) = gj(y)}) 6= ∅. Let y ∈ V . Since g is convex and gj is
affinely linear, we have

(SM5.1)
g((1− λ)y + λz) ≤ (1− λ)g(y) + λg(z) = (1− λ)gj(y) + λgj(z)

= gj((1− λ)y + λz) ∀λ ∈ [0, 1].

Assume that we have inequality in (SM5.1), i.e., assume that there is some λ̄ ∈ [0, 1]
with g(x̄) < gj(x̄) for x̄ := (1− λ̄)y + λ̄z. Then

g((1− λ)y + λx̄) ≤ (1− λ)g(y) + λg(x̄) < (1− λ)g(y) + λgj(x̄)

= gj((1− λ)y + λx̄) ∀λ ∈ (0, 1].

This is a contradiction to the openness of V , so we must have equality in (SM5.1).
This implies

j ∈ I((1− λ)y + λz) ∀λ ∈ [0, 1].

As this holds for arbitrary y ∈ V , we have

j ∈ I(x) ∀x ∈ conv(V ∪ {z}).

Since V is open in Rn, it is possible to show that

z ∈ cl(int(conv(V ∪ {z}))) ⊆ cl(int({y ∈ U : g(y) = gj(y)})),

showing that j ∈ Ie(z).
Since ∇gi is constant for all i ∈ {1, . . . , k}, it is easy to see that A1(iii) holds as well.

SM6. Remark regarding Section 4.2. We begin by deriving an explicit ex-
pression for the active set. To this end, let x ∈ Rn and assume w.l.o.g. that there are
p̄ ∈ {1, . . . , p}, q̄ ∈ {1, . . . , q} such that

(SM6.1)
c1i (x) = 0, ∀i ∈ {1, . . . , p̄}, c1i (x) 6= 0, ∀i ∈ {p̄+ 1, . . . , p},
c2j (x) = 0, ∀j ∈ {1, . . . , q̄}, c2j (x) 6= 0, ∀j ∈ {q̄ + 1, . . . , q}.
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For i ∈ {p̄+ 1, . . . , p} and j ∈ {q̄ + 1, . . . , q} define

(SM6.2)
θ̂i :=

{
1, if c1i (x) > 0

0, if c1i (x) < 0
,

σ̂j := sign(c2j (x)),

and

c̄ : Rn → R, x 7→
p∑

i=p̄+1

θ̂ic
1
i (x) +

q∑
j=q̄+1

σ̂jc
2
j (x).

Then by construction,

g(x) =

p∑
i=1

max{c1i (x), 0}+

q∑
j=1

|c2j (x)| =
p∑

i=p̄+1

max{c1i (x), 0}+

q∑
j=q̄+1

|c2j (x)|

=

p∑
i=p̄+1

θ̂ic
1
i (x) +

q∑
j=q̄+1

σ̂jc
2
j (x) = c̄(x)

= c̄(x) +

p̄∑
i=1

θ̄ic
1
i (x) +

q̄∑
j=1

σ̄jc
2
j (x)

= g(θ̄,θ̂),(σ̄,σ̂)(x)

for all θ̄ ∈ {0, 1}p, σ̄ ∈ {−1, 1}q. Thus

Ī :=
{

((θ̄, θ̂)>, (σ̄, σ̂)>) : θ̄ ∈ {0, 1}p̄, σ̄ ∈ {−1, 1}q̄
}
⊆ I(x).

To show that “⊇” holds, let (θ̃, σ̃) ∈ I(x). Then

θ̂i − θ̃i =


−1, if θ̂i 6= θ̃i, θ̂i = 0

1, if θ̂i 6= θ̃i, θ̂i = 1

0, otherwise

, σ̂j − σ̃j =


−2, if σ̂j 6= σ̃j , σ̂i = −1

2, if σ̂j 6= σ̃j , σ̂i = 1

0, otherwise

for all i ∈ {p̄+ 1, . . . , p}, j ∈ {q̄ + 1, . . . , q}. Combined with (SM6.2), this implies

0 = g(x)− gθ̃,σ̃(x) =

p∑
i=1

max{c1i (x), 0}+

q∑
j=1

|c2j (x)| −
p∑
i=1

θ̃ic
1
i (x)−

q∑
j=1

σ̃jc
2
j (x)

=

p∑
i=p̄+1

(θ̂i − θ̃i)c1i (x) +

q∑
j=q̄+1

(σ̂j − σ̃j)c2j (x)

=

p∑
i=p̄+1

θ̂i 6=θ̃i

|c1i (x)|+
q∑

j=q̄+1
σ̂j 6=σ̃j

2|c2j (x)|,

so both sums must be empty, i.e., θ̂i = θ̃i for all i ∈ {p̄+ 1, . . . , p} and σ̂j = σ̃j for all

i ∈ {q̄ + 1, . . . , q}. In particular (θ̃, σ̃) ∈ Ī, so Ī = I(x) for all x ∈ Rn.
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In the following, we will show that all active selection functions are essentially
active. To this end, let (θ, σ) ∈ I(x) = Ī. Define

vi :=

{
∇c1i (x), if θi = 0

−∇c1i (x), if θi = 1
∀i ∈ {1, . . . , p̄},

wj := −σj∇c2j (x) ∀j ∈ {1, . . . , q̄},
C := conv({vi : i ∈ {1, . . . , p̄}} ∪ {wj : j ∈ {1, . . . , q̄}}).

The LICQ (cf. (4.5)) implies that 0 /∈ C. With a basic result from convex analysis
(cf. Lemma in [SM1]), it follows that there is some d ∈ Rn \ {0} with

0 > 〈vi, d〉 =

{
〈∇c1i (x), d〉, if θi = 0

−〈∇c1i (x), d〉, if θi = 1
∀i ∈ {1, . . . , p̄},

0 > 〈wj , d〉 = −〈σj∇c2j (x), d〉 ∀j ∈ {1, . . . , q̄}.

The continuity of the constraint functions implies that there is some T > 0 such that

sign(c1i (x+ td)) =

{
−1, if θi = 0

1, if θi = 1
∀i ∈ {1, . . . , p},

sign(c2j (x+ td)) = σj ∀j ∈ {1, . . . , q},

for all t ∈ (0, T ). Note that in particular, for all points x + td with t ∈ (0, T ), there
is a neighborhood of x + td on which g is smooth with g = gθ,σ. This shows that
(θ, σ) ∈ Ie(x).

Let x0 ∈ Rn. From our discussion up to this point it follows that A1(i) and (ii)
hold for an appropriate open neighborhood U of x0. To show that A1(iii) holds, let
(θ′, σ′) be any element of Ī = I(x0) (with p̄ and q̄ as in (SM6.1)) and z ∈ U . Clearly,

(SM6.3) span({∇gθ,σ(z)−∇gθ′,σ′(z) : (θ, σ) ∈ Ī})
⊆ span({∇c1i (z) : i ∈ {1, . . . , p̄}} ∪ {∇c2j (z) : j ∈ {1, . . . , q̄}}).

We will show that we actually have equality in (SM6.3), which implies that A1(iii)
holds by the LICQ (cf. (4.5)). To this end, let i′ ∈ {1, . . . , p̄}. Define

θ̃i :=


θ′i, if i 6= i′

1, if i = i′, θ′i = 0

0, if i = i′, θ′i = 1

∀i ∈ {1, . . . , p̄}.

Then (θ̃, σ′) ∈ Ī, so gθ̃,σ′(z) − gθ′,σ′(z) = ±∇c1i′(z) and ∇c1i′(z) is contained in the

left-hand side of (SM6.3). Analogously, it is possible to show that ∇c2j (z) is contained
in the left-hand side of (SM6.3) for all j ∈ {1, . . . , q̄}, such that equality holds.
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