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conditions for an optimization problem with a composite objective function
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1 Introduction

Approximate stationarity conditions, claiming that, along a convergent sequence, a clas-
sical stationarity condition (like a multiplier rule) holds up to a tolerance which tends
to zero, have proved to be a powerful tool in mathematical optimization throughout the
last decades. The particular interest in such conditions is based on two prominent fea-
tures. First, they often serve as necessary optimality conditions even in the absence of
constraint quali�cations. Second, di�erent classes of solution algorithms for the compu-
tational treatment of optimization problems naturally produce sequences whose accumu-
lation points are approximately stationary. Approximate stationarity conditions can be
traced back to the early 1980s, see Kruger and Mordukhovich [1980], Kruger [1985], where
they popped up as a consequence of the famous extremal principle. The latter geometric
result, when formulated in in�nite dimensions in terms of Fréchet normals, can itself be
interpreted as a kind of approximate stationarity, see Kruger and Mordukhovich [1980],
Kruger [2003], Mordukhovich [2006]. In Andreani et al. [2010, 2011], this fundamental
concept, which is referred to as Approximate Karush�Kuhn�Tucker (AKKT) stationarity
in these papers, has been rediscovered due to its signi�cant relevance in the context of nu-
merical standard nonlinear programming. A notable feature of AKKT-stationary points
is the potential unboundedness of the associated sequence of Lagrange-multipliers. The
latter already depicts that AKKT-stationary points do not need to satisfy the classical
KKT conditions. This observation gave rise to the investigation of conditions ensuring
that AKKT-stationary points actually are KKT points, see e.g. Andreani et al. [2016].
The resulting constraint quali�cations for the underlying nonlinear optimization problem
turned out to be comparatively weak. During the last decade, reasonable notions of ap-
proximate stationarity have been introduced for more challenging classes of optimization
problems like programs with complementarity, see Andreani et al. [2019b], Ramos [2021],
cardinality, see Kanzow et al. [2021], conic, see Andreani et al. [2020], nonsmooth, see
Helou et al. [2020], Mehlitz [2020, 2021], and geometric constraints, see Jia et al. [2021], in
the �nite-dimensional situation. A generalization to optimization problems in abstract
Banach spaces can be found in Börgens et al. [2020]. In all these papers, the under-
lying optimization problem's objective function is assumed to be locally Lipschitzian.
Note that the (local) Lipschitz property of the (all but one) functions involved is a key
assumption in most conventional subdi�erential calculus results in in�nite dimensions
in convex and nonconvex settings, see e.g. the sum rules in Lemma 2.2. However, as
several prominent applications like sparse portfolio selection, compressed sensing, edge-
preserving image restoration, low-rank matrix completion, or signal processing, where the
objective function is often only lower semicontinuous, demonstrate, Lipschitz continuity
might be a restrictive property of the data. The purpose of this paper is to provide a
reasonable extension of approximate stationarity to a rather general class of optimization
problems in Banach spaces with a lower semicontinuous objective function and general-
ized equation constraints generated by a set-valued mapping in order to open the topic
up to the aforementioned challenging applications.
Our general approach to a notion of approximate stationarity, which serves as a nec-

essary optimality condition, is based on two major classical tools: Ekeland's variational
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principle, see Ekeland [1974], and the fuzzy calculus of Fréchet normals, see Io�e [2017],
Kruger [2003]. Another convenient ingredient of the theory is a new notion of lower
semicontinuity of extended-real-valued functions relative to a given set-valued mapping
which holds for free in �nite dimensions. We illustrate our �ndings in the context of
generalized set separation and derive a novel extremal principle which di�ers from the
traditional one which dates back to Kruger and Mordukhovich [1980]. On the one hand,
its prerequisites regarding the position of the involved sets relative to each other is slightly
more restrictive than in Kruger and Mordukhovich [1980] when the classical notion of
extremality, meaning that the sets of interest can be �pushed apart from each other�, is
used. On the other hand, our new extremal principle covers settings where extremality
is based on functions which are just lower semicontinuous, and, thus, applies in more
general situations. The �nal part of the paper is dedicated to the study of optimization
problems with so-called geometric constraints, where the feasible set equals the preimage
of a closed set under a smooth transformation, whose objective function is the sum of
a smooth part and a merely lower semicontinuous part. First, we apply our concept
of approximate stationarity to this problem class in order to obtain necessary optimal-
ity conditions. Furthermore, we introduce an associated quali�cation condition which
guarantees M-stationarity of approximately stationary points. As we will show, this gen-
eralizes related considerations from Chen et al. [2017], Guo and Ye [2018] which were
done in a completely �nite-dimensional setting. Second, we suggest an augmented La-
grangian method for the numerical solution of geometrically constrained programs and
show that it computes approximately stationary points in our new sense. Finally, we use
our theory in order to state necessary optimality conditions for optimal control problems
with a non-Lipschitzian so-called sparsity-promoting term in the objective function, see
Ito and Kunisch [2014], Wachsmuth [2019], which enforces optimal controls to be zero
on large parts of the domain.
The remaining parts of the paper are organized as follows. In Section 2, we comment

on the notation which is used in this manuscript and recall some fundamentals from
variational analysis. Section 3 is dedicated to the study of a new notion of lower semi-
continuity of an extended-real-valued function relative to a given set-valued mapping
or set. We derive necessary optimality conditions of approximate stationarity type for
rather general optimization problems in Section 4. This is used in Section 5 in order to
derive a novel extremal principle in generalized set separation. Furthermore, we apply
our �ndings from Section 4 in Section 6 in order to state necessary optimality condi-
tions of approximate stationarity type for optimization problems in Banach spaces with
geometric constraints and a composite objective function. Based on that, we derive a
new quali�cation condition ensuring M-stationarity of local minimizers, see Section 6.1,
an augmented Lagrangian method which naturally computes approximately stationary
points, see Section 6.2, and necessary optimality conditions for optimal control prob-
lems with a sparsity-promoting term in the objective function, see Section 6.3. Some
concluding remarks close the paper in Section 7.
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2 Notation and preliminaries

2.1 Basic notation

Our basic notation is standard, see e.g. Io�e [2017], Mordukhovich [2006], Rockafellar and
Wets [1998]. The symbols R and N denote the sets of all real numbers and all positive
integers, respectively. Throughout the paper, X and Y are either metric or Banach
spaces (although many facts, particularly, most of the de�nitions in Section 2.2, are valid
in arbitrary normed vector spaces, i.e., do not require the spaces to be complete). For
brevity, we use the same notations d(·, ·) and ‖ · ‖ for distances and norms in all spaces.
Banach spaces are often treated as metric spaces with the distance determined by the
norm in the usual way. The distance from a point x ∈ X to a set Ω ⊂ X in a metric space
X is de�ned by distΩ(x) := infu∈Ω d(x, u), and we use the convention dist∅(x) := +∞.
Throughout the paper, Ω and int Ω denote the closure and the interior of Ω, respectively.
Whenever X is a Banach space, {xk}k∈N ⊂ X is a sequence, and x̄ ∈ X is some point, we
exploit xk → x̄ (xk ⇀ x̄) in order to denote the strong (weak) convergence of {xk}k∈N to

x̄. Similarly, we use x∗k
∗
⇀ x∗ in order to express that a sequence {x∗k}k∈N ⊂ X∗ converges

weakly∗ to x∗ ∈ X∗. Finally, xk →Ω x̄ means that {xk}k∈N ⊂ Ω converges strongly to
x̄. In case where X is a Hilbert space and K ⊂ X is a closed, convex set, we denote by
PK : X → X the projection map associated with K.
If X is a Banach space, its topological dual is denoted by X∗, while 〈·, ·〉 : X∗×X → R

denotes the bilinear form de�ning the pairing between the two spaces. If not explicitly
stated otherwise, products of (primal) metric or Banach spaces are equipped with the
maximum distances or norms, e.g., ‖(x, y)‖ := max(‖x‖, ‖y‖) for all (x, y) ∈ X×Y . Note
that the corresponding dual norm is the sum norm given by ‖(x∗, y∗)‖ := ‖x∗‖+‖y∗‖ for
all (x∗, y∗) ∈ X∗×Y ∗. The open unit balls in the primal and dual spaces are denoted by
B and B∗, respectively, while the corresponding closed unit balls are denoted by B and
B∗, respectively. The notations Bδ(x) and Bδ(x) stand, respectively, for the open and
closed balls with center x and radius δ > 0 in X.
For an extended-real-valued function ϕ : X → R∞ := R ∪ {+∞}, its domain and

epigraph are de�ned by domϕ := {x ∈ X |ϕ(x) < +∞} and epiϕ := {(x, µ) ∈ X ×
R |ϕ(x) ≤ µ}, respectively. For each set Ω ⊂ X, we set ϕΩ := ϕ+ iΩ where iΩ : X → R∞
is the so-called indicator function of Ω which equals zero on Ω and is set to +∞ on X \Ω.
A set-valued mapping Υ: X ⇒ Y between metric spaces X and Y is a mapping, which

assigns to every x ∈ X a (possibly empty) set Υ(x) ⊂ Y . We use the notations gph Υ :=
{(x, y) ∈ X × Y | y ∈ Υ(x)}, Im Υ :=

⋃
x∈X Υ(x), and dom Υ := {x ∈ X |Υ(x) 6= ∅}

for the graph, the image, and the domain of Υ, respectively. Furthermore, Υ−1 : Y ⇒ X
given by Υ−1(y) := {x ∈ X | y ∈ Υ(x)} for all y ∈ Y is referred to as the inverse of Υ.
Assuming that x̄ ∈ dom Υ is �xed,

lim sup
x→x̄

Υ(x) := {y ∈ Y | ∃{(xk, yk)}k∈N ⊂ gph Υ: xk → x̄, yk → y}

is referred to as the (strong) outer limit of Υ at x̄. Finally, if X is a Banach space, for a
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set-valued mapping Ξ: X ⇒ X∗ and x̄ ∈ dom Ξ, we use

w∗− lim sup
x→x̄

Ξ(x) :=
{
x∗ ∈ X∗

∣∣∣ ∃{(xk, x∗k)}k∈N ⊂ gph Ξ: xk → x̄, x∗k
∗
⇀ x∗

}
in order to denote the outer limit of Ξ at x̄ when equipping X∗ with the weak∗ topol-
ogy. Let us note that both outer limits from above are limits in the sense of Painlevé�
Kuratowski.
Recall that a Banach space is a so-called Asplund space if every continuous, convex

function on an open convex set is Fréchet di�erentiable on a dense subset, or equiva-
lently, if the dual of each separable subspace is separable as well. We refer the reader
to Phelps [1993], Mordukhovich [2006] for discussions about and characterizations of As-
plund spaces. We would like to note that all re�exive, particularly, all �nite-dimensional
Banach spaces possess the Asplund property.

2.2 Variational analysis

The subsequently introduced notions of variational analysis and generalized di�erentia-
tion are standard, see e.g. Kruger [2003], Mordukhovich [2006].
Given a subset Ω of a Banach space X, a point x̄ ∈ Ω, and a number ε ≥ 0, the

nonempty, closed, convex set

NΩ,ε(x̄) :=

{
x∗ ∈ X∗

∣∣∣∣∣ lim sup
x→Ωx̄, x 6=x̄

〈x∗, x− x̄〉
‖x− x̄‖ ≤ ε

}
(2.1)

is the set of ε-normals to Ω at x̄. In case ε = 0, it is a closed, convex cone called Fréchet
normal cone to Ω at x̄. In this case, we drop the subscript ε in the above notation and
simply write

NΩ(x̄) :=

{
x∗ ∈ X∗

∣∣∣∣∣ lim sup
x→Ωx̄, x 6=x̄

〈x∗, x− x̄〉
‖x− x̄‖ ≤ 0

}
.

Based on (2.1), one can de�ne the more robust limiting normal cone to Ω at x̄ by means
of a limiting procedure:

NΩ(x̄) := w∗− lim sup
x→Ωx̄, ε↓0

NΩ,ε(x).

WheneverX is an Asplund space, the above de�nition admits the following simpli�cation:

NΩ(x̄) = w∗− lim sup
x→Ωx̄

NΩ(x).

If Ω is a convex set, the Fréchet and limiting normal cones reduce to the normal cone in
the sense of convex analysis, i.e.,

NΩ(x̄) = NΩ(x̄) = {x∗ ∈ X∗ | 〈x∗, x− x̄〉 ≤ 0∀x ∈ Ω} .
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For a lower semicontinuous function ϕ : X → R∞, de�ned on a Banach space X, its
Fréchet subdi�erential at x̄ ∈ domϕ is de�ned as

∂ϕ(x̄) : =

{
x∗ ∈ X∗

∣∣∣∣ lim inf
x→x̄, x 6=x̄

ϕ(x)− ϕ(x̄)− 〈x∗, x− x̄〉
‖x− x̄‖ ≥ 0

}
= {x∗ ∈ X∗ | (x∗,−1) ∈ Nepiϕ(x̄, ϕ(x̄))} .

The limiting and singular limiting subdi�erential of ϕ at x̄ are de�ned, respectively, by
means of

∂ϕ(x̄) :=
{
x∗ ∈ X∗

∣∣ (x∗,−1) ∈ N epiϕ(x̄, ϕ(x̄))
}
,

∂
∞
ϕ(x̄) :=

{
x∗ ∈ X∗

∣∣ (x∗, 0) ∈ N epiϕ(x̄, ϕ(x̄))
}
.

Note that in case where X is an Asplund space, we have

∂ϕ(x̄) = w∗− lim sup
x→x̄, ϕ(x)→ϕ(x̄)

∂ϕ(x),

∂
∞
ϕ(x̄) = w∗− lim sup

x→x̄, ϕ(x)→ϕ(x̄), t↓0
t ∂ϕ(x),

see [Mordukhovich, 2006, Theorems 2.34 and 2.38]. If ϕ is convex, the Fréchet and
limiting subdi�erential reduce to the subdi�erential in the sense of convex analysis, i.e.,

∂ϕ(x̄) = ∂ϕ(x̄) = {x∗ ∈ X∗ |ϕ(x)− ϕ(x̄)− 〈x∗, x− x̄〉 ≥ 0 ∀x ∈ X} .

By convention, we set NΩ(x) = NΩ(x) := ∅ if x /∈ Ω and ∂ϕ(x) = ∂ϕ(x) = ∂
∞
ϕ(x) :=

∅ if x /∈ domϕ. It is easy to check that NΩ(x̄) = ∂iΩ(x̄) and NΩ(x̄) = ∂iΩ(x̄).
For a set-valued mapping Υ: X ⇒ Y between Banach spaces, its Fréchet coderivative

at (x̄, ȳ) ∈ gph Υ is de�ned as

∀y∗ ∈ Y ∗ : D∗Υ(x̄, ȳ)(y∗) := {x∗ ∈ X∗ | (x∗,−y∗) ∈ Ngph Υ(x̄, ȳ)} .

The proof of our main result Theorem 4.1 relies on certain fundamental results of vari-
ational analysis: Ekeland's variational principle, see e.g. [Aubin and Frankowska, 2009,
Section 3.3] or Ekeland [1974], and two types of subdi�erential sum rules which address
the subdi�erential in the sense of convex analysis, see e.g. [Phelps, 1993, Theorem 3.16],
and the Fréchet subdi�erential, see e.g. [Fabian, 1989, Theorem 3]. Below, we provide
these results for completeness.

Lemma 2.1. Let X be a complete metric space, ϕ : X → R∞ be lower semicontinuous
and bounded from below, x̄ ∈ domϕ, and ε > 0. Then there exists a point x̂ ∈ X which
satis�es the following conditions:

(a) ϕ(x̂) ≤ ϕ(x̄);

(b) ∀x ∈ X : ϕ(x) + εd(x, x̂) ≥ ϕ(x̂).
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Lemma 2.2. Let X be a Banach space, ϕ1, ϕ2 : X → R∞, and x̄ ∈ domϕ1 ∩ domϕ2.
Then the following assertions hold.

(a) Convex sum rule. Let ϕ1 and ϕ2 be convex, and ϕ1 be continuous at a point in
domϕ2. Then ∂(ϕ1 + ϕ2)(x̄) = ∂ϕ1(x̄) + ∂ϕ2(x̄).

(b) Fuzzy sum rule. Let X be Asplund, ϕ1 be Lipschitz continuous around x̄, and ϕ2

be lower semicontinuous in a neighborhood of x̄. Then, for each x∗ ∈ ∂(ϕ1 +ϕ2)(x̄)
and ε > 0, there exist x1, x2 ∈ X with ‖xi − x̄‖ < ε and |ϕi(xi) − ϕi(x̄)| < ε,
i = 1, 2, such that x∗ ∈ ∂ϕ1(x1) + ∂ϕ2(x2) + εB∗.

We will need representations of the subdi�erentials of the distance function collected
in the next lemma. These results are taken from [Kruger, 2003, Proposition 1.30], [Io�e,
2017, Theorem 4.40], and [Penot, 2013, Section 3.5.2, Exercise 6].

Lemma 2.3. Let X be a Banach space, Ω ⊂ X be nonempty and closed, and x̄ ∈ X.
Then the following assertions hold.

(a) If x̄ ∈ Ω, then ∂ distΩ(x̄) = NΩ(x̄) ∩ B∗.

(b) If x̄ /∈ Ω and either X is Asplund or Ω is convex, then, for each x∗ ∈ ∂ distΩ(x̄)
and each ε > 0, there exist x ∈ Ω and u∗ ∈ NΩ(x) such that ‖x− x̄‖ < distΩ(x̄)+ε
and ‖x∗ − u∗‖ < ε.

Let us brie�y mention that assertion (b) of Lemma 2.3 can obviously be improved
when the set of projections of x̄ onto Ω is nonempty, see [Mordukhovich, 2006, Propo-
sition 1.102]. This is always the case if Ω is a nonempty, closed, convex subset of a
re�exive Banach space, since in this case Ω is weakly sequentially compact while the
norm is weakly sequentially lower semicontinuous.
The conditions in the �nal de�nition of this subsection are standard, see e.g. Klatte

and Kummer [2002], Kruger [2009].

De�nition 2.4. Let X be a metric space, ϕ : X → R∞, and x̄ ∈ domϕ.

(a) We call x̄ a stationary point of ϕ if lim infx→x̄, x 6=x̄
ϕ(x)−ϕ(x̄)
d(x,x̄) ≥ 0.

(b) Let ε > 0 and U ⊂ X with x̄ ∈ U . We call x̄ an ε-minimal point of ϕ on U if
infx∈U ϕ(x) > ϕ(x̄)− ε. If U = X, x̄ is called a globally ε-minimal point of ϕ.

In the subsequent remark, we interrelate the concepts from De�nition 2.4.

Remark 2.5. For a metric space X, ϕ : X → R∞, and x̄ ∈ domϕ, the following asser-
tions hold.

(a) If x̄ is a local minimizer of ϕ, then it is a stationary point of ϕ.

(b) If x̄ is a stationary point of ϕ, then, for each ε > 0 and each su�ciently small
δ > 0, x̄ is an εδ-minimal point of ϕ on Bδ(x̄).

(c) If X is a normed space, then x̄ is a stationary point of ϕ if and only if 0 ∈ ∂ϕ(x̄).
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3 Novel notions of semicontinuity

In this paper, we exploit new notions of lower semicontinuity of extended-real-valued
functions relative to a given set-valued mapping or set. Here, we �rst introduce the
concepts of interest before studying their properties and presenting su�cient conditions
for their validity.

3.1 Lower semicontinuity of a function relative to a set-valued mapping or
set

Let us start with the de�nition of the property of our interest.

De�nition 3.1. Fix metric spaces X and Y , Φ: X ⇒ Y , ϕ : X → R∞, and ȳ ∈ Y .
(a) Let a subset U ⊂ X be such that U ∩Φ−1(ȳ)∩domϕ 6= ∅. The function ϕ is lower

semicontinuous on U relative to Φ at ȳ if

inf
u∈Φ−1(ȳ)∩U

ϕ(u) ≤ inf
U ′+ρB⊂U,

ρ>0

lim inf
x∈U ′, y→ȳ,

distgph Φ(x,y)→0

ϕ(x). (3.1)

(b) Let x̄ ∈ Φ−1(ȳ)∩domϕ. The function ϕ is lower semicontinuous near x̄ relative to
Φ at ȳ if there is a δ0 > 0 such that, for each δ ∈ (0, δ0), ϕ is lower semicontinuous
on Bδ(x̄) relative to Φ at ȳ.

Inequality (3.1) can be strict, see Example 3.4 below. Note that whenever (3.1) holds
with a subset U ⊂ X, it also holds with U in place of U . The converse implication
is not true in general, see Example 3.5 below. Particularly, a function which is lower
semicontinuous on a set U relative to Φ at ȳ may fail to have this property on a smaller
set. This shortcoming explains the idea behind De�nition 3.1 (b). Furthermore, we have
the following result.

Lemma 3.2. Fix metric spaces X and Y , Φ: X ⇒ Y , ϕ : X → R∞, (x̄, ȳ) ∈ gph Φ, and
a subset U ⊂ X with x̄ ∈ U ∩ domϕ. Assume that x̄ is a minimizer of ϕ on U . If ϕ
is lower semicontinuous on U relative to Φ at ȳ, then it is lower semicontinuous on Û
relative to Φ at ȳ for each subset Û satisfying x̄ ∈ Û ⊂ U .
Proof. For each subset Û satisfying x̄ ∈ Û ⊂ U , we �nd

inf
u∈Φ−1(ȳ)∩Û

ϕ(u) = ϕ(x̄) = inf
u∈Φ−1(ȳ)∩U

ϕ(u)

≤ inf
U ′+ρB⊂U,

ρ>0

lim inf
x∈U ′, y→ȳ,

distgph Φ(x,y)→0

ϕ(x) ≤ inf
U ′+ρB⊂Û ,

ρ>0

lim inf
x∈U ′, y→ȳ,

distgph Φ(x,y)→0

ϕ(x),

which shows the claim.

The properties in the next de�nition are particular cases of the ones in De�nition 3.1,
corresponding to the set-valued mapping Φ: X ⇒ Y whose graph is given by gph Φ :=
Ω× Y , where Ω ⊂ X is a �xed set and Y can be an arbitrary metric space, e.g., one can
take Y := R. Observe that in this case, Φ−1(y) = Ω is valid for all y ∈ Y .
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De�nition 3.3. Fix a metric space X, ϕ : X → R∞, and Ω ⊂ X.

(a) Let a subset U ⊂ X be such that U ∩ Ω ∩ domϕ 6= ∅. The function ϕ is lower
semicontinuous on U relative to Ω if

inf
u∈Ω∩U

ϕ(u) ≤ inf
U ′+ρB⊂U,

ρ>0

lim inf
x∈U ′,

distΩ(x)→0

ϕ(x). (3.2)

(b) Let x̄ ∈ Ω ∩ domϕ. The function ϕ is lower semicontinuous near x̄ relative to Ω
if there is a δ0 > 0 such that, for each δ ∈ (0, δ0), ϕ is lower semicontinuous on
Bδ(x̄) relative to Ω.

The subsequent example shows that (3.2) can be strict.

Example 3.4. Consider the lower semicontinuous function ϕ : R→ R given by ϕ(x) := 0
if x ≤ 0 and ϕ(x) := 1 if x > 0, and the sets Ω = U := [0, 1] ⊂ R. Then infu∈Ω∩U ϕ(u) =
0, while if a subset U ′ satis�es U ′ + ρB ⊂ U for some ρ > 0, then U ′ ⊂ (0, 1), and
consequently ϕ(x) = 1 for all x ∈ U ′. Hence, the right-hand side of (3.2) equals 1.

A function which is lower semicontinuous on a set U relative to Ω may fail to have this
property on a smaller set.

Example 3.5. Consider the function ϕ : R → R given by ϕ(x) := 0 if x ≤ 0, and
ϕ(x) := −1 if x > 0, the set Ω := {0, 1} ⊂ R, and the point x̄ := 0. Consider the closed
interval U1 := [−1, 1]. We �nd infu∈Ω∩U1 ϕ(u) = −1 which is the global minimal value
of ϕ on R. Hence, ϕ is lower semicontinuous on U1 relative to Ω by De�nition 3.3. For
U2 := (−1, 1), we �nd infu∈Ω∩U2 ϕ(u) = 0. Moreover, choosing U ′ := (−1/2, 1/2) and
xk := 1/(k+ 2) for each k ∈ N, we �nd U ′ + 1

2B ⊂ U2, {xk}k∈N ⊂ U ′, d(xk, x̄)→ 0, and
ϕ(xk)→ −1, i.e., ϕ is not lower semicontinuous on U2 relative to Ω by de�nition. Note
that x̄ is a local minimizer of ϕ on Ω but not on U1 or U2.

In the next two statements, we present sequential characterizations of the properties
from De�nition 3.1 (a) and De�nition 3.3 (a).

Proposition 3.6. Fix metric spaces X and Y , Φ: X ⇒ Y , ϕ : X → R∞, ȳ ∈ Y , and
a subset U ⊂ X with U ∩ Φ−1(ȳ) ∩ domϕ 6= ∅. Then ϕ is lower semicontinuous on U
relative to Φ at ȳ if and only if

inf
u∈Φ−1(ȳ)∩U

ϕ(u) ≤ lim inf
k→+∞

ϕ(xk)

for all sequences {(xk, yk)}k∈N ⊂ X × Y satisfying yk → ȳ, distgph Φ(xk, yk) → 0, and
{xk}k∈N + ρB ⊂ U for some ρ > 0.

Proof. We need to show that the right-hand side of (3.1) equals the in�mum over all
numbers lim infk→+∞ ϕ(xk) where the sequence {(xk, yk)}k∈N ⊂ X × Y needs to satisfy
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yk → ȳ, distgph Φ(xk, yk)→ 0, and {xk}k∈N + ρB ⊂ U for some ρ > 0. Let {(xk, yk)}k∈N
be such a sequence. Then

inf
U ′+ρB⊂U,

ρ>0

lim inf
x∈U ′, y→ȳ,

distgph Φ(x,y)→0

ϕ(x) ≤ lim inf
x∈{xk}k∈N, y→ȳ,
distgph Φ(x,y)→0

ϕ(x) ≤ lim inf
k→+∞

ϕ(xk).

Conversely, let the right-hand side of (3.1) be �nite, and choose ε > 0 arbitrarily. Then
there exist a subset Û ⊂ U and a number ρ̂ > 0 such that Û + ρ̂B ⊂ U and

lim inf
k→+∞

inf
x∈Û , d(y,ȳ)< 1

k
,

distgph Φ(x,y)< 1
k

ϕ(x) = lim inf
x∈Û , y→ȳ,

distgph Φ(x,y)→0

ϕ(x) < inf
U ′+ρB⊂U,

ρ>0

lim inf
x∈U ′, y→ȳ,

distgph Φ(x,y)→0

ϕ(x) + ε.

For each k ∈ N such that inf
x∈Û , d(y,ȳ)< 1

k
,distgph Φ(x,y)< 1

k
ϕ(x) is �nite, there is a tuple

(xk, yk) ∈ X × Y such that xk ∈ Û , d(yk, ȳ) < 1/k, distgph Φ(xk, yk) < 1/k, and

ϕ(xk) < inf
x∈Û , d(y,ȳ)< 1

k
,

distgph Φ(x,y)< 1
k

ϕ(x) +
1

k
.

Considering the tail of the sequences, if necessary, we have {xk}k∈N + ρ̂B ⊂ U , yk → ȳ,
distgph Φ(xk, yk)→ 0, and

lim inf
k→+∞

ϕ(xk) < inf
U ′+ρB⊂U,

ρ>0

lim inf
x∈U ′, y→ȳ,

distgph Φ(x,y)→0

ϕ(x) + ε.

As the number ε has been chosen arbitrarily, this proves the converse part in the present
setting. If the right-hand side of (3.1) equals −∞, then for each M > 0, we �nd a subset
Û ⊂ U and a number ρ̂ > 0 such that Û + ρ̂B ⊂ U and

lim inf
x∈Û , y→ȳ,

distgph Φ(x,y)→0

ϕ(x) < −M.

Hence, there is a sequence {(xk, yk)}k∈N ⊂ X × Y such that {xk}k∈N + ρ̂B ⊂ U , yk → ȳ,
and distgph Φ(xk, yk) → 0 as k → +∞ while lim infk→+∞ ϕ(xk) < −M . Taking the
in�mum over all M > 0 now completes the proof of the assertion.

Corollary 3.7. Let X be a metric space, ϕ : X → R∞, and Ω, U ⊂ X be sets with
Ω ∩ U ∩ domϕ 6= ∅. Then ϕ is lower semicontinuous on U relative to Ω if and only if

inf
u∈Ω∩U

ϕ(u) ≤ lim inf
k→+∞

ϕ(xk) (3.3)

for all sequences {xk}k∈N ⊂ X satisfying distΩ(xk)→ 0, and {xk}k∈N+ρB ⊂ U for some
ρ > 0.
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3.2 Su�cient conditions for lower semicontinuity of a function relative to
a set-valued mapping

As we will demonstrate below, the property from De�nition 3.1 (a) is valid whenever the
involved function ϕ and the set-valued mapping Φ enjoy certain semicontinuity proper-
ties, i.e., it can be decomposed into two independent properties regarding the two main
data objects. This will be bene�cial in order to identify scenarios where the new concept
applies.
The upper semicontinuity properties of a set-valued mapping that we state in the

following two de�nitions seem to �t well for this purpose (in combination with the cor-
responding lower semicontinuity properties of a function).

De�nition 3.8. Fix metric spaces X and Y , S : Y ⇒ X, and ȳ ∈ domS. The mapping
S is upper semicontinuous at ȳ if

lim
x∈S(y), y→ȳ

distS(ȳ)(x) = 0.

De�nition 3.9. Fix a Banach space X, a metric space Y , S : Y ⇒ X, and ȳ ∈ domS.
The mapping S is partially weakly sequentially upper semicontinuous at ȳ if x ∈ S(ȳ)
holds for each sequence {(yk, xk)}k∈N ⊂ gphS which satis�es yk → ȳ and xk ⇀ x.

For a discussion of the property in De�nition 3.8, we refer the reader to [Klatte and
Kummer, 2002, p. 10]. The property in De�nition 3.9 can be interpreted as the usual
sequential upper semicontinuity if X is equipped with the weak topology. In case where
Y is a Banach space, this property is inherent whenever the graph of the underlying
set-valued mapping is weakly sequentially closed which is naturally given whenever the
latter is convex and closed. Obviously, each closed-graph set-valued mapping with a
�nite-dimensional image space is partially weakly sequentially upper semicontinuous.

Proposition 3.10. Fix metric spaces X and Y , Φ: X ⇒ Y , and ϕ : X → R∞. Let
ȳ ∈ Y and a subset U ⊂ X with U ∩ Φ−1(ȳ) ∩ domϕ 6= ∅ be arbitrarily chosen. De�ne
S : Y ⇒ X by S(y) := Φ−1(y) ∩ U for all y ∈ Y . If one of the following criteria holds,
then ϕ is lower semicontinuous on U relative to Φ at ȳ:

(a) ϕ is lower semicontinuous on U relative to Φ−1(ȳ) and S is upper semicontinuous
at ȳ;

(b) X is a re�exive Banach space, U is closed and convex, ϕ is weakly sequentially lower
semicontinuous on U , and S is partially weakly sequentially upper semicontinuous
at ȳ.

Proof. Let a sequence {(xk, yk)}k∈N ⊂ X × Y satisfying yk → ȳ, distgph Φ(xk, yk) → 0,
and {xk}k∈N + ρB ⊂ U for some ρ > 0 be arbitrarily chosen. There exists a sequence
{(x′k, y′k)}k∈N ⊂ gph Φ such that d((x′k, y

′
k), (xk, yk)) → 0. Hence, y′k → ȳ and, for all

su�ciently large k ∈ N, we have d(x′k, xk) < ρ, and, consequently, x′k ∈ U .
(a) By De�nition 3.8, distΦ−1(ȳ)(x

′
k) → 0. Then distΦ−1(ȳ)(xk) → 0 and, by Corol-

lary 3.7, inequality (3.3) holds, where Ω := Φ−1(ȳ).
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(b) Passing to a subsequence (without relabeling), we can assume xk ⇀ x̂ for some x̂ ∈
conv{xk}k∈N ⊂ U since {xk}k∈N is a bounded sequence of a re�exive Banach space
and U is convex as well as closed. Hence, we �nd ϕ(x̂) ≤ lim infk→+∞ ϕ(xk) by weak
sequential lower semicontinuity of ϕ. Obviously, we have x′k ⇀ x̂. By De�nition 3.9,
x̂ ∈ Φ−1(ȳ) holds true. Thus, infu∈Φ−1(ȳ)∩U ϕ(u) ≤ ϕ(x̂) ≤ lim infk→+∞ ϕ(xk).

As the sequence {(xk, yk)}k∈N has been chosen arbitrarily, the conclusion follows from
Proposition 3.6.

The next assertion is an immediate consequence of Proposition 3.10 with the conditions
from (b).

Corollary 3.11. Fix a re�exive Banach space X, a closed and convex set U ⊂ X,
ϕ : X → R∞ which is weakly sequentially lower semicontinuous on U , Φ: X ⇒ Y where
Y is another Banach space, and some ȳ ∈ Y such that U ∩ Φ−1(ȳ) ∩ domϕ 6= ∅. Then
ϕ is lower semicontinuous on U relative to Φ at ȳ provided that one of the following
conditions is satis�ed:

(a) gph Φ ∩ (U × Y ) is weakly sequentially closed;

(b) X is �nite-dimensional and gph Φ ∩ (U × Y ) is closed.

Particularly, whenever x̄ ∈ Φ−1(ȳ) ∩ domϕ is �xed, ϕ is weakly sequentially lower semi-
continuous, and either gph Φ is weakly sequentially closed or gph Φ is closed while X is
�nite-dimensional, then ϕ is lower semicontinuous near x̄ relative to Φ at ȳ.

In the upcoming subsections, we discuss su�cient conditions for the semicontinuity
properties of a set-valued mapping and an extended-real-valued function appearing in
the conditions (a) of Proposition 3.10.

3.3 Su�cient conditions for lower semicontinuity of a function relative to
a set

In the statement below, we present some simple situations where a function is lower
semicontinuous relative to a set in the sense of De�nition 3.3 (a).

Proposition 3.12. Let X be a metric space, ϕ : X → R∞, and Ω, U ⊂ X be sets with
Ω ∩ U ∩ domϕ 6= ∅. Then ϕ is lower semicontinuous on U relative to Ω provided that
one of the following conditions is satis�ed:

(a) U ⊂ Ω;

(b) Ω ∩ U = {x̄}, and ϕ is lower semicontinuous at x̄;

(c) x̄ ∈ Ω ∩ U is a minimizer of ϕ on U ;

(d) ϕ is uniformly continuous on U .
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Proof. Under each of the condition (a), (b), and (c), the conclusion is straightforward
since inequality (3.2) is an immediate consequence of the following simple relations,
respectively, holding with any U ′ ⊂ U :

(a) inf
u∈Ω∩U

ϕ(u) = inf
u∈U

ϕ(u), lim inf
x∈U ′, distΩ(x)→0

ϕ(x) = inf
x∈U ′

ϕ(x) ≥ inf
x∈U

ϕ(x);

(b) inf
u∈Ω∩U

ϕ(u) = ϕ(x̄), lim inf
x∈U ′, distΩ(x)→0

ϕ(x) = lim inf
x→U′ x̄

ϕ(x) ≥ lim inf
x→x̄

ϕ(x) ≥ ϕ(x̄);

(c) inf
u∈Ω∩U

ϕ(u) = ϕ(x̄), lim inf
x∈U ′, distΩ(x)→0

ϕ(x) ≥ ϕ(x̄).

It remains to prove the claim under condition (d). Let a number ε > 0 be arbitrarily
chosen. Let a subset U ′ ⊂ X and a number ρ > 0 be such that U ′ + ρB ⊂ U . By (d),
there is a δ > 0 such that

∀x, x′ ∈ U : d(x, x′) < δ =⇒ |ϕ(x)− ϕ(x′)| < ε.

Let a point x ∈ U ′ satisfy distΩ(x) < δ′ := min(ρ, δ). Then there is a point x′ ∈ Ω
satisfying d(x, x′) < δ′. Hence, x, x′ ∈ U , d(x, x′) < δ, and, consequently, |ϕ(x)−ϕ(x′)| <
ε. Thus, we have infu∈Ω∩U ϕ(u) ≤ ϕ(x′) < ϕ(x) + ε, and, consequently,

inf
u∈Ω∩U

ϕ(u) ≤ lim inf
x∈U ′,distΩ(x)→0

ϕ(x) + ε.

Taking the in�mum on the right-hand side of the last inequality over ε and U ′, we arrive
at (3.2).

As a corollary, we obtain su�cient conditions for the lower semicontinuity property
from De�nition 3.3 (b).

Corollary 3.13. Let X be a metric space, ϕ : X → R∞, Ω ⊂ X, and x̄ ∈ Ω ∩ domϕ.
Then ϕ is lower semicontinuous near x̄ relative to Ω provided that one of the following
conditions is satis�ed:

(a) x̄ ∈ int Ω;

(b) x̄ is an isolated point of Ω, and ϕ is lower semicontinuous at x̄;

(c) x̄ is an (unconditional) local minimizer of ϕ;

(d) ϕ is uniformly continuous near x̄.

It follows from Corollary 3.13 (d) that each locally Lipschitz function is lower semicon-
tinuous near a reference point relative to any set containing this point.
The subsequent result can be directly distilled from Corollary 3.11.

Proposition 3.14. Fix a re�exive Banach space X, a closed and convex set U ⊂ X,
and ϕ : X → R∞ which is weakly sequentially lower semicontinuous on U . Let Ω ⊂ X be
chosen such that Ω ∩ U ∩ domϕ 6= ∅ while Ω ∩ U is weakly sequentially closed. Then ϕ
is lower semicontionuous on U relative to Ω.
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As a corollary, we obtain the subsequent result.

Corollary 3.15. Fix a re�exive Banach space X, ϕ : X → R∞ which is weakly sequen-
tially lower semicontinuous, and a weakly sequentially closed set Ω ⊂ X. Then, for each
x̄ ∈ Ω ∩ domϕ, ϕ is lower semicontinuous near x̄ relative to Ω.

Note that whenever X is �nite-dimensional, ϕ : X → R∞ is lower semicontinuous, and
Ω ⊂ X is closed, then the assumptions of Corollary 3.15 hold trivially.
The following statement shows that lower semicontinuity relative to a set is preserved

under decoupled summation.

Proposition 3.16. Fix n ∈ N with n ≥ 2. For each i ∈ {1, . . . , n}, let Xi be a metric
space, ϕi : Xi → R∞, Ωi, Ui ⊂ Xi, and Ωi ∩ Ui ∩ domϕi 6= ∅. Suppose that ϕi is lower
semicontinuous on Ui relative to Ωi. Then ϕ : X1 × . . .×Xn → R∞ given by

∀(x1, . . . , xn) ∈ X1 × . . .×Xn : ϕ(x1, . . . , xn) := ϕ1(x1) + . . .+ ϕn(xn)

is lower semicontinuous on U := U1 × . . .× Un relative to Ω := Ω1 × . . .× Ωn.

Proof. The assertion is a direct consequence of De�nition 3.3 (a). More precisely, we �nd

inf
u∈Ω∩U

ϕ(u) =
n∑
i=1

inf
ui∈Ωi∩Ui

ϕi(ui) ≤
n∑
i=1

inf
U ′i+ρiB⊂Ui,

ρi>0

lim inf
xi∈U ′i ,

distΩi
(xi)→0

ϕi(xi)

= inf
U ′+ρB⊂U,

ρ>0

lim inf
x∈U ′,

distΩ(x)→0

ϕ(x),

and this proves the claim.

3.4 A su�cient condition for upper semicontinuity of the inverse of a
set-valued mapping

The next statement presents a condition ensuring validity of the upper semicontinuity
assumption which appears in Proposition 3.10 (a).

Proposition 3.17. Let X and Y be metric spaces, Φ: X ⇒ Y , and (x̄, ȳ) ∈ gph Φ.
Assume that Φ is metrically subregular at (x̄, ȳ), i.e., that there exist a neighborhood U
of x̄ and a constant L > 0 such that

∀x ∈ U : distΦ−1(ȳ)(x) ≤ L distΦ(x)(ȳ). (3.4)

Then, for each set U ′ ⊂ U satisfying x̄ ∈ U ′, the mapping SU ′ : Y ⇒ X, given by
SU ′(y) := Φ−1(y) ∩ U ′ for each y ∈ Y , is upper semicontinuous at ȳ.

Proof. Let a number ε > 0 as well as U ′ ⊂ U with x̄ ∈ U ′ be given. Choose a number
δ ∈ (0, ε/L). Then, for each y ∈ Bδ(ȳ) and each x ∈ SU ′(y), condition (3.4) yields
distSU′ (ȳ)(x) = distΦ−1(ȳ)(x) ≤ Ld(y, ȳ) < Lδ < ε. By De�nition 3.8, SU ′ is upper
semicontinuous at ȳ.
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We note that the metric subregularity condition (3.4) from Proposition 3.17 already
amounts to a quali�cation condition addressing sets of type {x ∈ X | ȳ ∈ Φ(x)}, see
[Gfrerer, 2013, Section 5]. Su�cient conditions for metric subregularity can be found e.g.
in Bai et al. [2019], Dontchev and Rockafellar [2014], Dontchev et al. [2020], Io�e [2017],
Kruger [2015], Maréchal [2018], Zheng and Ng [2010].
We would like to point the reader's attention to the fact that metric subregularity of Φ

is a quantitative continuity property coming along with a modulus of subregularity L > 0
while upper semicontinuity of the mappings SU ′ in Proposition 3.17 is just a qualitative
continuity property. In this regard, there exist weaker su�cient conditions ensuring
validity of the upper semicontinuity requirements from Proposition 3.10 (a). However, it
is not clear if such conditions can be easily checked in terms of initial problem data while
this is clearly possible for metric subregularity as the aforementioned list of references
underlines. Finally, we would like to mention that in case where one wants to avoid �xing
the component x̄ ∈ X in the preimage space in Proposition 3.17, it is possible to demand
that Φ−1 is Lipschitz upper semicontinuous at ȳ in the sense of [Klatte and Kummer,
2002, p. 10]. Again, this is a quantitative continuity property.

Example 3.18. Let G : X → Y be a single-valued mapping between Banach spaces.
Furthermore, let C ⊂ X and K ⊂ Y be nonempty, closed sets. We investigate the
feasibility mapping Φ: X ⇒ Y × X given by Φ(x) := (G(x) −K,x − C) for all x ∈ X
as well as some point x̄ ∈ X such that (x̄, (0, 0)) ∈ gph Φ and some neighborhood U of
x̄. Let us de�ne S : Y × X ⇒ X by means of S(y, z) := Φ−1(y, z) ∩ U for each pair
(y, z) ∈ Y ×X. One can check that S is upper semicontinuous at (0, 0) if and only if

distK×C((G(xk), xk))→ 0 =⇒ lim
k→+∞

distG−1(K)∩C(xk) = 0

for each sequence {xk}k∈N ⊂ U , and this is trivially satis�ed if G is continuous and
X is �nite-dimensional. For the purpose of completeness, let us also mention that S is
partially weakly sequentially upper semicontinuous at (0, 0) if and only if

xk ⇀ x, distK×C((G(xk), xk))→ 0 =⇒ x ∈ G−1(K) ∩ C (3.5)

is valid for each sequence {xk}k∈N ⊂ U and each point x ∈ U . Again, this is inherent if
G is continuous while X is �nite-dimensional and U is closed.
In in�nite-dimensional situations, whenever G is continuously Fréchet di�erentiable

and C as well as K are convex, Robinson's constraint quali�cation, given by

G′(x̄)

[⋃
α∈[0,+∞)

α(C − x̄)

]
−
⋃

α∈[0,+∞)
α(K −G(x̄)) = Y,

is equivalent to so-called metric regularity of Φ at (x̄, (0, 0)), see [Bonnans and Shapiro,
2000, Proposition 2.89], and the latter is su�cient for metric subregularity of Φ at
(x̄, (0, 0)).

The �nal corollary of this section now follows from Propositions 3.10 and 3.17 and Corol-
lary 3.13.

15



Corollary 3.19. Fix metric spaces X and Y , Φ: X ⇒ Y , ϕ : X → R∞, ȳ ∈ Y , and
x̄ ∈ Φ−1(ȳ)∩domϕ. Assume that Φ is metrically subregular at (x̄, ȳ) and that ϕ satis�es
one of the conditions (a)-(d) of Corollary 3.13. Then ϕ is lower semicontinuous near x̄
relative to Φ at ȳ.

4 Optimality conditions and approximate stationarity

We consider the optimization problem

min{ϕ(x) | ȳ ∈ Φ(x)}, (P)

where ϕ : X → R∞ is an arbitrary function, Φ: X ⇒ Y is a set-valued mapping between
Banach spaces, and ȳ ∈ Im Φ. Let us mention that the model (P) is quite general
and covers numerous important classes of optimization problems, see e.g. Gfrerer [2013],
Mehlitz [2020] for a discussion. The constrained problem (P) is obviously equivalent to
the unconditional minimization of the restriction ϕΦ−1(ȳ) of ϕ to Φ−1(ȳ). We say that x̄
is an ε-minimal point of problem (P) on U if it is an ε-minimal point of ϕΦ−1(ȳ) on U .
Analogously, stationary points of (P) are de�ned.
The next theorem presents dual (i.e., subdi�erential/coderivative based) necessary

conditions for ε-minimal points of problem (P).

Theorem 4.1. Let X and Y be Banach spaces, ϕ : X → R∞ be lower semicontinuous,
Φ: X ⇒ Y have closed graph, and �x ȳ ∈ Y , x̄ ∈ domϕ ∩ Φ−1(ȳ), U ⊂ X, ε > 0, as
well as δ > 0. Assume that Bδ(x̄) ⊂ U , and

(a) on U , ϕ is bounded from below and lower semicontinuous relative to Φ at ȳ;

(b) either X and Y are Asplund, or ϕ and gph Φ are convex.

Suppose that x̄ is an ε-minimal point of problem (P) on U . Then, for each η > 0,
there exist points x1, x2 ∈ Bδ(x̄) and y2 ∈ Φ(x2) ∩ Bη(ȳ) such that ‖x2 − x1‖ < η,
distgph Φ(x1, ȳ) < η, ϕ(x1) < ϕ(x̄) + η, and

0 ∈ ∂ϕ(x1) + ImD∗Φ(x2, y2) +
2ε

δ
B∗.

Moreover, if ϕ and gph Φ are convex, then ϕ(x1) ≤ ϕ(x̄).

Proof. Since ϕ is bounded from below on U , and x̄ is an ε-minimal of problem (P) on
U , there exist numbers c > 0 and ε′ ∈ (0, ε) such that

∀x ∈ U : ϕ(x) > ϕ(x̄)− c, (4.1a)

∀x ∈ Φ−1(ȳ) ∩ U : ϕ(x) > ϕ(x̄)− ε′. (4.1b)

For γ > 0 and γ1 > 0, let the functions φγ , φ̂γ,γ1 : X × Y → R∞ be given by

∀(x, y) ∈ X × Y : φγ(x, y) := ϕ(x) + γ
(
‖y − ȳ‖+ distgph Φ(x, y)

)
, (4.2a)
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φ̂γ,γ1(x, y) := φγ(x, y) + γ1 ‖x− x̄‖2 . (4.2b)

Set δ0 := δε′/ε, and choose numbers δ′ ∈ (δ0, δ) and ξ ∈ (0, δ − δ′) such that ξ(δ′ + 2) <
2(εδ′/δ − ε′). Fix an arbitrary η > 0 and a positive number η′ < min(η, 2(δ − δ′)). Set
γ1 := (ε′ + ξ)/(δ′)2. Observe that φ̂γ,γ1(x̄, ȳ) = ϕ(x̄), and φ̂γ,γ1 is bounded from below
on Bδ′(x̄)×Y due to (4.1a). By Ekeland's variational principle, see Lemma 2.1, for each
k ∈ N, there exists a point (xk, yk) ∈ Bδ′(x̄)× Y such that

φ̂k,γ1(xk, yk) ≤ ϕ(x̄), (4.3a)

∀(x, y) ∈ Bδ′(x̄)× Y : φ̂k,γ1(x, y) + ξ ‖(x, y)− (xk, yk)‖ ≥ φ̂k,γ1(xk, yk). (4.3b)

It follows from (4.1a), (4.2), and (4.3a) that

k
(
‖yk − ȳ‖+ distgph Φ(xk, yk)

)
+ γ1 ‖xk − x̄‖2 ≤ ϕ(x̄)− ϕ(xk) < c,

and, consequently,

‖yk − ȳ‖+ distgph Φ(xk, yk) < c/k, (4.4a)

γ1 ‖xk − x̄‖2 ≤ ϕ(x̄)− ϕ(xk) (4.4b)

are valid for all k ∈ N. By (4.4a), yk → ȳ and distgph Φ(xk, yk) → 0 as k → +∞, and
yk ∈ Bη′/4(ȳ) as well as distgph Φ(xk, yk) < η′/4 follow for all k > 4c/η′. Recall that
{xk}k∈N + ρB ⊂ Bδ(x̄) ⊂ U for any positive ρ < δ − δ′. By Proposition 3.6, there exist
an integer k̄ > 4c/η′ and a point x′ ∈ Φ−1(ȳ)∩U such that ϕ(x′) < ϕ(xk̄)+ξ. By (4.1b),
we have ϕ(x̄) − ϕ(x′) < ε′. Set γ := k̄, x̂ := xk̄, and ŷ := yk̄. Thus, ŷ ∈ Bη′/4(ȳ) and
distgph Φ(x̂, ŷ) < η′/4. By (4.4b),

γ1 ‖x̂− x̄‖2 ≤ (ϕ(x̄)− ϕ(x′)) + (ϕ(x′)− ϕ(x̂)) < ε′ + ξ = γ1(δ′)2.

Hence, we �nd ‖x̂− x̄‖ < δ′. In view of (4.2b), condition (4.3a) is equivalent to

φγ(x̂, ŷ) + γ1 ‖x̂− x̄‖2 ≤ ϕ(x̄). (4.5)

For each (x, y) ∈ Bδ′(x̄)× Y di�erent from (x̂, ŷ), it follows from (4.2b) that

φγ(x̂, ŷ)− φγ(x, y)

‖(x, y)− (x̂, ŷ)‖ =
φ̂γ,γ1(x̂, ŷ)− φ̂γ,γ1(x, y) + γ1

(
‖x− x̄‖2 − ‖x̂− x̄‖2

)
‖(x, y)− (x̂, ŷ)‖

≤ φ̂γ,γ1(x̂, ŷ)− φ̂γ,γ1(x, y) + γ1 ‖x− x̂‖ (‖x− x̄‖+ ‖x̂− x̄‖)
‖(x, y)− (x̂, ŷ)‖

≤ φ̂γ,γ1(x̂, ŷ)− φ̂γ,γ1(x, y)

‖(x, y)− (x̂, ŷ)‖ + γ1

(
‖x− x̄‖+ ‖x̂− x̄‖

)
,

and, consequently, in view of (4.3b),

sup
(x,y)∈(Bδ′ (x̄)×Y )\{(x̂,ŷ)}

φγ(x̂, ŷ)− φγ(x, y)

‖(x, y)− (x̂, ŷ)‖ < ξ + 2γ1δ
′ =

2ε′ + ξ(δ′ + 2)

δ

′
<

2ε

δ
.
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Since x̂ is an interior point of Bδ′(x̄), it follows that

lim sup
(x,y)→(x̂,ŷ)

φγ(x̂, ŷ)− φγ(x, y)

‖(x, y)− (x̂, ŷ)‖ <
2ε

δ
. (4.6)

By (4.2a) and (4.5), we �nd ϕ(x̂) ≤ ϕ(x̄), and due to (4.6), there is a number ε̂ ∈ (0, 2ε
δ )

such that

lim inf
(x,y)→(x̂,ŷ)

φγ(x, y) + ε̂ ‖(x, y)− (x̂, ŷ)‖ − φγ(x̂, ŷ)

‖(x, y)− (x̂, ŷ)‖ ≥ 0.

Set ξ′ := 2ε/δ − ε̂ > 0. By de�nition of the Fréchet subdi�erential, the above inequality
yields

(0, 0) ∈ ∂ (φγ + ε̂ ‖(·, ·)‖) (x̂, ŷ). (4.7)

Condition (4.7) can be rewritten as (0, 0) ∈ ∂ (ϕ+ γg + h) (x̂, ŷ), where the functions
g, h : X × Y → R are given by

∀(x, y) ∈ X × Y : g(x, y) := distgph Φ(x, y),

h(x, y) := γ‖y − ȳ‖+ ε̂‖(x, y)− (x̂, ŷ)‖.

Note that g and h are Lipschitz continuous, and h is convex. We distinguish two cases.
Case 1: Let X and Y be Asplund spaces. Let us recall the estimates ‖x̂− x̄‖ < δ′ < δ,
‖ŷ − ȳ‖ < η′/4 < η/4, distgph Φ(x̂, ŷ) < η′/4 < η/4, and ϕ(x̂) ≤ ϕ(x̄). By the fuzzy sum
rule, see Lemma 2.2 (b), there exist points (x1, y1), (u2, v2) ∈ X × Y arbitrarily close to
(x̂, ŷ) with ϕ(x1) arbitrarily close to ϕ(x̂), so that

‖x1 − x̄‖ < δ, ‖u2 − x̄‖ < δ′, ϕ(x1) < ϕ(x̄) + η, ‖y1 − ȳ‖ <
η

2
,

‖v2 − ȳ‖ <
η′

2
, ‖u2 − x1‖ <

η′

2
, distgph Φ(x1, y1) <

η

2
, distgph Φ(u2, v2) <

η′

4
,

and subgradients x∗1 ∈ ∂ϕ(x1) and (u∗2, v
∗
2) ∈ ∂g(u2, v2) satisfying

‖x∗1 + γu∗2‖ < ε̂+
ξ′

2
.

Thus, x1 ∈ Bδ(x̄) and distgph Φ(x1, ȳ) < distgph Φ(x1, y1) + ‖y1 − ȳ‖ < η. In view of
Lemma 2.3 (b), there exist (x2, y2) ∈ gph Φ and (u∗′2 , v

∗′
2 ) ∈ Ngph Φ(x2, y2) such that

‖(x2, y2)− (u2, v2)‖ < distgph Φ(u2, v2) +
η′

4
<
η′

2
,
∥∥u∗′2 − u∗2∥∥ < ξ′

2γ
.

Set x∗2 := γu∗′2 and y∗ := −γv∗′2 . Thus, x∗2 ∈ D∗Φ(x2, y2)(y∗), and we have

‖y2 − ȳ‖ ≤‖v2 − ȳ‖+ ‖y2 − v2‖ < η′ < η,

‖x2 − x̄‖ ≤‖u2 − x̄‖+ ‖x2 − u2‖ < δ′ +
η′

2
< δ,
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‖x2 − x1‖ ≤‖x2 − u2‖+ ‖u2 − x1‖ < η′ < η,

‖x∗1 + x∗2‖ ≤‖x∗1 + γ u∗2‖+ γ
∥∥u∗′2 − u∗2∥∥ < ε̂+ ξ′ =

2ε

δ
.

Case 2: Let ϕ and gph Φ be convex. We have x̂ ∈ Bδ′(x̄) ⊂ Bδ(x̄), ϕ(x̂) ≤ ϕ(x̄),
‖ŷ − ȳ‖ < η′/4, and distgph Φ(x̂, ŷ) < η′/4 < η. By the convex sum rule, see Lemma 2.2 (a),
there exist subgradients x∗1 ∈ ∂ϕ(x̂) and (u∗2, v

∗
2) ∈ ∂g(x̂, ŷ) satisfying

‖x∗1 + γu∗2‖ ≤ ε̂.

In view of Lemma 2.3 (b), there exist (x2, y2) ∈ gph Φ and (u∗′2 , v
∗′
2 ) ∈ Ngph Φ(x2, y2) such

that

‖(x2, y2)− (x̂, ŷ)‖ < distgph Φ(x̂, ŷ) +
η′

4
,
∥∥u∗′2 − u∗2∥∥ < ξ′

γ
.

Set x1 := x̂, x∗2 := γu∗′2 , and y
∗ := −γv∗′2 . Thus, x1 ∈ Bδ(x̄), distgph Φ(x1, ȳ) < η′/2 < η,

ϕ(x1) ≤ ϕ(x̄), and x∗2 ∈ D∗Φ(x2, y2)(y∗). Replacing (u2, v2) with (x̂, ŷ) in the corre-
sponding estimates established in Case 1, we obtain

‖y2 − ȳ‖ < η, ‖x2 − x̄‖ < δ, ‖x2 − x1‖ < η,

‖x∗1 + x∗2‖ ≤ ‖x∗1 + γ u∗2‖+ γ
∥∥u∗′2 − u∗2∥∥ < ε̂+ ξ′ =

2ε

δ
.

This completes the proof.

Clearly, Theorem 4.1 provides dual necessary conditions for ε-minimality of a feasible
point of problem (P) under some additional structural assumptions on the data which
are almost for free in the �nite-dimensional setting, see Corollary 3.11, and of reasonable
strength in the in�nite-dimensional one. In the subsequent remark, we comment on
additional primal and dual conditions for ε-minimality which can be distilled from the
proof of Theorem 4.1.

Remark 4.2. (a) In the proof of Theorem 4.1, more sets of necessary conditions for
local ε-minimality of a feasible point of problem (P) have been established along the
way. Moreover, the �rst part of the proof does not use the linear structure of the
spaces, i.e., the arguments work in the setting of general complete metric spaces
X and Y . The conditions can be of independent interest and are listed below. We
assume that X and Y are complete metric spaces and all the other assumptions of
Theorem 4.1 are satis�ed, except condition (b).

Necessary conditions for local ε-minimality. There is a δ0 ∈ (0, δ) such that,
for each δ′ ∈ (δ0, δ) and η > 0, there exist points x̂ ∈ Bδ′(x̄) and ŷ ∈ Bη(ȳ)
satisfying distgph Φ(x̂, ŷ) < η, and numbers γ > 0 and γ1 > 0 such that, with the
function φγ : X × Y → R∞ given by

∀(x, y) ∈ X × Y : φγ(x, y) := ϕ(x) + γ
(
d(y, ȳ) + distgph Φ(x, y)

)
,

the following conditions hold:
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• φγ(x̂, ŷ) + γ1d(x̂, x̄)2 ≤ ϕ(x̄), and

• primal nonlocal condition (PNLC): sup
(x,y)6=(x̂,ŷ)
x∈Bδ′ (x̄)

φγ(x̂, ŷ)− φγ(x, y)

d((x, y), (x̂, ŷ))
<

2ε

δ
,

• primal local condition (PLC): lim sup
(x,y)→(x̂,ŷ)

φγ(x̂, ŷ)− φγ(x, y)

d((x, y), (x̂, ŷ))
<

2ε

δ
,

• dual condition (DC) (X and Y are Banach spaces): condition (4.7) is satis-

�ed with some ε̂ ∈ (0, 2ε
δ ).

The relationship between the conditions is as follows: (PNLC) ⇒ (PLC) ⇒
(DC). The dual conditions in Theorem 4.1 are consequences of the above con-
ditions.

Let us note that the left-hand side in (PNLC) is the nonlocal slope, see Fabian
et al. [2010], of the function φγ+iBδ′ (x̄) at (x̂, ŷ), while the left-hand side in (PLC)

is the conventional slope of φγ at (x̂, ŷ).

(b) Since the function ϕ in Theorem 4.1 is assumed to be lower semicontinuous, it is
automatically bounded from below on some neighborhood of x̄. We emphasize that
Theorem 4.1 requires all the conditions to hold on the same set U containing a
neighborhood of x̄.

As a consequence of Theorem 4.1, we obtain necessary conditions characterizing local
minimizers of (P).

Corollary 4.3. Let X and Y be Banach spaces, ϕ : X → R∞ lower semicontinuous,
Φ: X ⇒ Y have closed graph, ȳ ∈ Y , and x̄ ∈ domϕ ∩ Φ−1(ȳ). Assume that

(a) the function ϕ is lower semicontinuous near x̄ relative to Φ at ȳ;

(b) either X and Y are Asplund, or ϕ and gph Φ are convex.

Suppose that x̄ is a local minimizer of (P). Then, for each ε > 0, there exist points
x1, x2 ∈ Bε(x̄) and y2 ∈ Φ(x2) ∩Bε(ȳ) such that |ϕ(x1)− ϕ(x̄)| < ε and

0 ∈ ∂ϕ(x1) + ImD∗Φ(x2, y2) + εB∗.

Moreover, if ϕ and gph Φ are convex, then ϕ(x1) ≤ ϕ(x̄).

Proof. Let a number ε > 0 be arbitrarily chosen. Set ε′ := ε/2. By the assumptions and
Remark 2.5, there exists a δ ∈ (0, ε) such that on U := Bδ(x̄) the function ϕ is bounded
from below and lower semicontinuous relative to Φ at ȳ, and x̄ is an ε′δ-minimal point
of ϕΦ−1(ȳ) on U . Thus, all the assumptions of Theorem 4.1 are satis�ed. Moreover,
2(ε′δ)/δ = ε and, since ϕ is lower semicontinuous, one can ensure that ϕ(x1) > ϕ(x̄) + ε.
Hence, taking any η ∈ (0, ε), the assertion follows from Theorem 4.1.

In the subsequent remark, we comment on the �ndings in Corollary 4.3.
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Remark 4.4. (a) The analogues of the necessary conditions in Remark 4.2 (a) are
valid in the setting of Corollary 4.3, too. More precisely, it su�ces to replace 2ε

δ
with just ε in the involved conditions.

(b) The necessary conditions in Corollary 4.3 hold for each stationary point (not nec-
essarily a local minimizer) of problem (P).

We now consider an important particular case of problem (P), namely

min{ϕ(x) |x ∈ Ω}, (P̃)

where Ω ⊂ X is a nonempty subset of a Banach space. To obtain this setting from the one
in (P), it su�ces to consider the set-valued mapping Φ: X ⇒ Y whose graph is given by
gph Φ := Ω× Y . Here, Y can be an arbitrary Asplund space, e.g., one can take Y := R.
Observe that Φ−1(y) = Ω holds for all y ∈ Y . Hence, by De�nition 3.8, for all y ∈ Y ,
the mapping Φ−1 is upper semicontinuous at y. Moreover, Ngph Φ(x, y) = NΩ(x)× {0}.
Thus, the next statement is a consequence of Proposition 3.10 and Theorem 4.1.

Theorem 4.5. Let X be a Banach space, ϕ : X → R∞ lower semicontinuous, Ω ⊂ X a
closed set, and �x x̄ ∈ domϕ ∩ Ω, U ⊂ X, ε > 0, and δ > 0. Assume that Bδ(x̄) ⊂ U ,
and

(a) on U , the function ϕ is bounded from below and lower semicontinuous relative to
Ω;

(b) either X is Asplund, or ϕ and Ω are convex.

Suppose that x̄ is an ε-minimal point of problem (P̃) on U . Then, for each η > 0, there
exist points x1 ∈ Bδ(x̄) and x2 ∈ Ω ∩Bδ(x̄) such that ‖x2 − x1‖ < η, ϕ(x1) < ϕ(x̄) + η,
and

0 ∈ ∂ϕ(x1) +NΩ(x2) +
2ε

δ
B∗.

Moreover, if ϕ and Ω are convex, then ϕ(x1) ≤ ϕ(x̄).

The next corollary follows immediately.

Corollary 4.6. Let X be a Banach space, ϕ : X → R∞ lower semicontinuous, Ω ⊂ X a
closed set, and x̄ ∈ domϕ ∩ Ω. Assume that

(a) the function ϕ is lower semicontinuous near x̄ relative to Ω;

(b) either X is Asplund, or ϕ and Ω are convex.

Suppose that x̄ is a local minimizer of (P̃). Then, for each ε > 0, there exist x1 ∈ Bε(x̄)
and x2 ∈ Ω ∩Bε(x̄) such that |ϕ(x1)− ϕ(x̄)| < ε and

0 ∈ ∂ϕ(x1) +NΩ(x2) + εB∗.

Moreover, if ϕ and Ω are convex, then ϕ(x1) ≤ ϕ(x̄).
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Whenever ϕ is Lipschitz continuous around x̄, the assertion of Corollary 4.6 is an imme-
diate consequence of Fermat's rule and the sum rules stated in Lemma 2.2. We note that
Corollary 4.6 is applicable in more general situations, exemplary, if ϕ is only uniformly
continuous in a neighborhood of the investigated local minimizer, see Corollary 3.13, or
if X is �nite-dimensional, see Corollary 3.15.
Note that the dual necessary optimality conditions in Corollaries 4.3 and 4.6 do not

hold at the reference point but at some other points arbitrarily close to it. Such conditions
describe certain properties of admissible points which can be interpreted as a kind of
dual approximate stationarity. The precise meaning of approximate stationarity will be
discussed in Section 6.1 in the setting of geometrically-constrained optimization problems.

5 Generalized separation and extremal principle

Below, we discuss certain generalized extremality and separation properties of a collection
of closed subsets Ω1, . . . ,Ωn of a Banach space X, having a common point x̄ ∈ ⋂n

i=1 Ωi.
Here, n is an integer satisfying n ≥ 2. We write {Ω1, . . . ,Ωn} to denote the collection of
sets as a single object.
We begin with deriving necessary conditions for so-called F-extremality of a collection

of sets. The property in the de�nition below is determined by a nonempty family F of
nonnegative lower semicontinuous functions f : Xn → R∞ and mimics the corresponding
conventional one, see e.g. Kruger and Mordukhovich [1980].

De�nition 5.1. Let a family F described above be given. Suppose that, for each f ∈ F ,
the function f̂ : Xn → R∞ is de�ned by

∀z := (x1, . . . , xn) ∈ Xn : f̂(z) := f(x1 − xn, . . . , xn−1 − xn, xn). (5.1)

The collection {Ω1, . . . ,Ωn} is F-extremal at x̄ if, for each ε > 0, there exist a function
f ∈ F and a number ρ > 0 such that f(0, . . . , 0, x̄) < ε and

∀xi ∈ Ωi + ρB (i = 1, . . . , n) : f̂(x1, . . . , xn) > 0. (5.2)

The following theorem, which is based on Theorem 4.5, provides a general necessary
condition for F-extremality.

Theorem 5.2. Assume that

(a) there is a neighborhood U of x̄ such that, for each f ∈ F , the function f̂ : Xn → R∞
de�ned by (5.1) is lower semicontinuous on Un relative to Ω := Ω1 × . . .× Ωn;

(b) either X is Asplund, or Ω1, . . . ,Ωn and all f ∈ F are convex.

Suppose that the collection {Ω1, . . . ,Ωn} is F-extremal at x̄. Then, for each ε > 0 and
η > 0, there exist a function f ∈ F with f(0, . . . , 0, x̄) < ε and points xi ∈ Ωi ∩ Bε(x̄),
x′i ∈ Bη(xi), and x∗i ∈ X∗ (i = 1, . . . , n) such that

n∑
i=1

distNΩi
(xi) (x∗i ) < ε, (5.3a)
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0 < f(w) < f(0, . . . , 0, x̄) + η, (5.3b)

−
(
x∗1, . . . , x

∗
n−1,

n∑
i=1

x∗i

)
∈ ∂f(w), (5.3c)

where w := (x′1−x′n, . . . , x′n−1−x′n, x′n) ∈ Xn. Moreover, if f and Ω1, . . . ,Ωn are convex,
then f(w) ≤ f(0, . . . , 0, x̄).

Proof. Let arbitrary numbers ε > 0 and η > 0 be �xed. Choose a number δ ∈ (0, ε) so
that Bδ(x̄) ⊂ U , and set ε′ := εmin(δ/2, 1). By De�nition 5.1, there exist a function
f ∈ F and a number ρ > 0 such that f(0, . . . , 0, x̄) < ε′ ≤ ε, and condition (5.2)
holds, where the function f̂ : Xn → R∞ is de�ned by (5.1). Observe that Ω is a closed
subset of the Banach space Xn, z̄ := (x̄, . . . , x̄) ∈ Ω, and f̂(z̄) = f(0, . . . , 0, x̄) < ε′.
Since the function f is nonnegative, so is f̂ , and, consequently, z̄ is an ε′-minimal point
of f̂Ω (as well as f̂) on Xn. Set η′ := min(η, ρ). By Theorem 4.5, there exist points
z := (x1, . . . , xn) ∈ Ω∩Bδ(z̄), z′ := (x′1, . . . , x

′
n) ∈ Bη′(z), and x∗ := (x∗1, . . . , x

∗
n) ∈ (X∗)n

such that f(w) = f̂(z′) < f̂(z̄) + η = f(0, . . . , 0, x̄) + η, and

− x∗ ∈ ∂f̂(z′), distNΩ(z)(x
∗) <

2ε′

δ
≤ ε. (5.4)

Moreover, if f and Ω1, . . . ,Ωn are convex, then f(w) ≤ f(0, . . . , 0, x̄). Observe that
x′i ∈ Ωi + ρB (i = 1, . . . , n), and it follows from (5.2) that f(w) = f̂(z′) > 0 which shows
(5.3b).
The function f̂ given by (5.1) is a composition of f and the continuous linear mapping

A : Xn → Xn given as follows:

∀(u1, . . . , un) ∈ Xn : A(u1, . . . , un) := (u1 − un, . . . , un−1 − un, un).

The mapping A is obviously a bijection. It is easy to check that the adjoint mapping
A∗ : (X∗)n → (X∗)n is of the form

∀(u∗1, . . . , u∗n) ∈ (X∗)n : A∗(u∗1, . . . , u
∗
n) :=

(
u∗1, . . . , u

∗
n−1, u

∗
n −

n−1∑
i=1

u∗i

)
. (5.5)

By the Fréchet subdi�erential chain rule, which can be distilled from [Mordukhovich,
2006, Theorem 1.66, Proposition 1.84]), we obtain ∂f̂(z′) = A∗∂f(w), where w = Az′ =
(x′1−x′n, . . . , x′n−1−x′n, x′n). In view of (5.5), the inclusion in (5.4) is equivalent to (5.3c).
It now su�ces to observe that NΩ(z) = NΩ1(x1)× . . .×NΩn(xn), and, consequently, the
inequality in (5.4) yields (5.3a).

For the conclusions of Theorem 5.2 to be non-trivial, one must ensure that the family
F satis�es the following conditions:

(a) inff∈F f(0, . . . , 0, x̄) = 0;

(b) lim inf
w→(0,...,0,x̄), f∈F , f(w)↓0, w∗∈∂f(w)

‖w∗‖ > 0.
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A typical example of such a family is given by the collection FA of functions of type

∀z := (x1, . . . , xn) ∈ Xn : fa(z) := max
1≤i≤n−1

‖xi − ai‖, (5.6)

where a := (a1, . . . , an−1) ∈ Xn−1. The proofs of the conventional extremal principle and
its extensions usually employ such functions. Note that functions from FA are constant
in the last variable.
It is easy to see that, for each fa ∈ FA and z := (x1, . . . , xn) ∈ Xn, the value fa(z) is

the maximum norm of (x1 − a1, . . . , xn−1 − an−1) in Xn−1. Thus, fa(z) > 0 if and only
if (x1, . . . , xn−1) 6= a, and

fa(0, . . . , 0, x̄) = max
1≤i≤n−1

‖ai‖ → 0 as a→ 0

showing (a). Moreover, ∂fa(z) 6= ∅ for all z ∈ Xn and, if fa(z) > 0, then ‖w∗‖ = 1 for
all w∗ ∈ ∂fa(w), i.e., the limit in (b) equals 1. Observe also that, since each function
fa ∈ FA is convex and Lipschitz continuous, the same holds true for the corresponding
function f̂a de�ned by (5.1). Hence, f̂a is automatically lower semicontinuous near each
point of Xn relative to each set containing this point, see Corollary 3.13.
When fa ∈ FA is given by (5.6), condition (5.2) takes the following form:

n−1⋂
i=1

(Ωi + ρB− ai) ∩ (Ωn + ρB) = ∅. (5.7)

With this in mind, the extremality property in De�nition 5.1 admits a geometric inter-
pretation.

Proposition 5.3. The collection {Ω1, . . . ,Ωn} is FA-extremal at x̄ if and only if, for
each ε > 0, there exist vectors a1, . . . , an−1 ∈ X and a number ρ > 0 such that
max1≤i≤n−1 ‖ai‖ < ε, and condition (5.7) holds.

The characterization in Proposition 5.3 means that sets with nonempty intersection
can be �pushed apart� by arbitrarily small translations in such a way that even small
enlargements of the sets become nonintersecting. Note that condition (5.7) is stronger
than the conventional extremality property originating from Kruger and Mordukhovich
[1980], which corresponds to setting ρ = 0 in (5.7). The converse statement is not true
as the next example shows.

Example 5.4. Consider the closed sets Ω1,Ω2 ⊂ R2 given by

Ω1 := {(x, y) | x ≥ 0, y = 0} , Ω2 :=
{

(x, y) | x ≥ 0, |y| ≥ e−x
}
∪ {(0, 0)},

see Figure 5.1(a). We have Ω1 ∩ Ω2 = {(0, 0)} and (Ω1 − (t, 0)) ∩ Ω2 = ∅ for each
t < 0. At the same time, (Ω1 + ρB − a) ∩ (Ω2 + ρB) 6= ∅ for all a ∈ R2 and ρ > 0. By
Proposition 5.3, {Ω1,Ω2} is not FA-extremal at (0, 0).

Theorem 5.2 produces the following necessary condition for FA-extremality.
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Figure 5.1: Visualization of the sets Ω1 and Ω2 from Examples 5.4 and 5.6.

Corollary 5.5. Assume that either X is Asplund, or Ω1, . . . ,Ωn are convex. Suppose
that the collection {Ω1, . . . ,Ωn} is FA-extremal at x̄. Then, for each ε > 0, there exist
points xi ∈ Ωi ∩Bε(x̄) and x∗i ∈ X∗ (i = 1, . . . , n) satisfying (5.3a) and

n∑
i=1

x∗i = 0, (5.8a)

n−1∑
i=1

‖x∗i ‖ = 1. (5.8b)

Moreover, for each τ ∈ (0, 1), the points xi and x
∗
i (i = 1, . . . , n) can be chosen so that

n−1∑
i=1

〈x∗i , xn − xi + ai〉 > τ max
1≤i≤n−1

‖xn − xi + ai‖, (5.9)

where a1, . . . , an−1 are vectors satisfying the characterization in Proposition 5.3.

Proof. Fix ε > 0 arbitrarily. Recall that, for each fa ∈ FA, the function f̂a : Xn → R∞
de�ned according to (5.1) is lower semicontinuous near z̄ := (x̄, . . . , x̄) relative to Ω :=
Ω1 × . . . × Ωn. By de�nition of FA, Proposition 5.3, and Theorem 5.2, for each η > 0,
there exist vectors a1, . . . , an−1 ∈ X, points xi ∈ Ωi ∩ Bε(x̄), x′i ∈ Bη(xi), and x∗i ∈ X∗
(i = 1, . . . , n), and a number ρ > 0 such that max1≤i≤n−1 ‖ai‖ < ε, and conditions (5.3)
and (5.7) hold, where w := (x′1 − x′n, . . . , x′n−1 − x′n, x′n) and the function f is replaced
by fa de�ned by (5.6). Clearly, we �nd

∂fa(w) = ∂‖ · ‖Xn−1(x′1 − x′n − a1, . . . , x
′
n−1 − x′n − an−1)× {0},

where ‖ · ‖Xn−1 is the maximum norm in Xn−1. Condition (5.8a) follows immediately
from (5.3c). Moreover, since fa(w) > 0, we can apply [Z linescu, 2002, Corollary 2.4.16]
to �nd that condition (5.8b) is satis�ed, and

n−1∑
i=1

〈
x∗i , x

′
n − x′i + ai

〉
= fa(w). (5.10)
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Let an arbitrary number τ ∈ (0, 1) be �xed, and let η := ρ(1− τ)/4. In view of (5.7),
we have

max
1≤i≤n−1

‖xn − xi + ai‖ ≥ ρ. (5.11)

Using (5.6), (5.8b), (5.10), and (5.11), we can prove the remaining estimate (5.9):

n−1∑
i=1

〈x∗i , xn − xi + ai〉 ≥
n−1∑
i=1

(〈
x∗i , x

′
n − x′i + ai

〉
− 2 ‖x∗i ‖ max

1≤j≤n

∥∥xj − x′j∥∥)

>
n−1∑
i=1

〈
x∗i , x

′
n − x′i + ai

〉
− 2η

= max
1≤i≤n−1

‖x′n − x′i + ai‖ − 2η

> max
1≤i≤n−1

‖xn − xi + ai‖ − 4η

= max
1≤i≤n−1

‖xn − xi + ai‖ − ρ(1− τ)

≥τ max
1≤i≤n−1

‖xn − xi + ai‖.

This completes the proof.

The next example illustrates application of Theorem 5.2 in the case where F consists
of discontinuous functions.

Example 5.6. Consider the closed sets Ω1,Ω2 ⊂ R2 given by

Ω1 := {(x, y) | max(y, x+ y) ≥ 0} , Ω2 := {(x, y) | y ≤ 0} .

Let us equip R2 with the Euclidean norm. We have (0, 0) ∈ Ω1 ∩ Ω2 and int(Ω1 ∩ Ω2) =
{(x, y) | y > 0, x + y > 0}. Hence, these sets cannot be �pushed apart�, and {Ω1,Ω2} is
not extremal at (0, 0) in the conventional sense, see Figure 5.1(b) for an illustration. Let
the family F consist of all nonnegative lower semicontinuous functions ft : R2×R2 → R∞
of the type

∀(x, y), (u, v) ∈ R2 × R2 : ft((x, y), (u, v)) := ‖(x, y + t)‖+ i(−∞,0](u), (5.12)

corresponding to all t ≥ 0.
We now show that {Ω1,Ω2} is F-extremal at (0, 0). Indeed, for each ε > 0 and t ∈

(0, ε), we have ft((0, 0), (0, 0)) = t < ε. The function from (5.1) takes the form

∀(x, y), (u, v) ∈ R2 × R2 : f̂t((x, y), (u, v)) := ‖(x− u, y − v + t)‖+ i(−∞,0](u).

Let ρ ∈ (0, t/3), (x, y) ∈ Ω1 + ρB, and (u, v) ∈ Ω2 + ρB. If u > 0 or x 6= u, then
f̂t((x, y), (u, v)) > 0. Let x = u ≤ 0. Then y > −2ρ, v < ρ, and, consequently,
f̂t((x, y), (u, v)) = |y − v + t| > −3ρ+ t > 0. Hence, condition (5.2) holds, i.e., {Ω1,Ω2}
is F-extremal at (0, 0).
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For each t ≥ 0, f̂t is Lipschitz continuous on dom f̂t = R2 × ((−∞, 0] × R) and, for
every point ((x, y), (u, v)) ∈ dom f̂t, the distance distΩ1×Ω2((x, y), (u, v)) is attained at
some point ((x′, y′), (u′, v′)) with u′ = u, i.e., ((x′, y′), (u′, v′)) ∈ dom f̂t. Using this, it
is easy to see from De�nition 3.3 (b) that f̂t is lower semicontinuous near ((0, 0), (0, 0))
relative to Ω1 × Ω2.
By Theorem 5.2, for each ε > 0, there exist a number t ∈ (0, ε) and points (x, y) ∈

Ω1 ∩Bε(0, 0), (u, v) ∈ Ω2 ∩Bε(0, 0), (x∗, y∗), (u∗, v∗) ∈ R2, and w ∈ X2 ×X2 such that
0 < ft(w) <∞ and

distNΩ1
(x,y) ((x∗, y∗)) + distNΩ2

(u,v) ((u∗, v∗)) < ε, (5.13a)

− ((x∗, y∗), (x∗, y∗) + (u∗, v∗)) ∈ ∂ft(w). (5.13b)

In view of (5.12), it follows from (5.13b) that ‖(x∗, y∗)‖ = 1, x∗+u∗ ≤ 0, and y∗+v∗ = 0.
When ε is su�ciently small, condition (5.13a) implies one of the following situations:

• x < 0, y = v = 0, and (x∗, y∗) as well as (u∗, v∗) can be made arbitrarily close to
(0,−1) and (0, 1), respectively,

• x > 0, y = −x, v = 0, and (x∗, y∗) as well as (u∗, v∗) can be made arbitrarily close
to (−

√
2/2,−

√
2/2) and (0,

√
2/2), respectively.

This can be interpreted as a kind of generalized separation.

6 Geometrically-constrained optimization problems with

composite objective function

In this section, we are going to apply the theory of Section 4 to the optimization problem

min{f(x) + q(x) |G(x) ∈ K, x ∈ C} (Q)

where f : X → R is continuously Fréchet di�erentiable, q : X → R∞ is lower semicontin-
uous, G : X → Y is continuously Fréchet di�erentiable, and C ⊂ X as well as K ⊂ Y
are nonempty and closed. Here, X and Y are assumed to be Banach spaces. Through-
out the section, the feasible set of (Q) will be denoted by S, and we implicitly assume
S ∩ dom q 6= ∅ in order to avoid trivial situations.
Observe that the objective function ϕ := f+q can be decomposed into a regular part f

and some challenging irregular part q while the constraints in (Q) are stated in so-called
geometric form. In this regard, the model (Q) still covers numerous applications ranging
from data science and image processing (in case where q is a sparsity-promoting func-
tional) over conic programs (in which case K is a convex cone) to disjunctive programs
which comprise, exemplary, complementarity- and cardinality-constrained problems (in
this situation, K is a nonconvex set of combinatorial structure).
In the subsequently stated remark, we embed program (Q) into the rather general

framework which has been discussed in Section 4.
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Remark 6.1. Observing that f is di�erentiable, we �nd

∀x ∈ X : ∂ϕ(x) = ∂(f + q)(x) = f ′(x) + ∂q(x)

from the sum rule stated in [Kruger, 2003, Corollary 1.12.2]. The feasibility mapping
Φ: X ⇒ Y ×X associated with (Q) is given by means of Φ(x) := (G(x)−K,x−C) for
all x ∈ X, see Example 3.18. We �nd

gph Φ = {(x, (y, x′)) ∈ X × Y ×X | (G(x)− y, x− x′) ∈ K × C}. (6.1)

Observing that the continuously di�erentiable mapping (x, y, x′) 7→ (G(x) − y, x − x′)
possesses a surjective derivative, we can apply the change-of-coordinates formula from
[Mordukhovich, 2006, Corollary 1.15] in order to obtain

Ngph Φ(x, (y, x′)) =

{
(G′(x)∗λ+ η,−λ,−η) ∈ X∗ × Y ∗ ×X∗

∣∣∣∣∣λ ∈ NK(G(x)− y),

η ∈ NC(x− x′)

}

for each triplet (x, (y, x′)) ∈ gph Φ, and this yields

D∗Φ(x, (y, x′))(λ, η) =

{
G′(x)∗λ+ η if λ ∈ NK(G(x)− y), η ∈ NC(x− x′),
∅ otherwise

for arbitrary λ ∈ Y ∗ and η ∈ X∗.

6.1 Approximate stationarity and uniform quali�cation condition

The subsequent theorem is a simple consequence of Corollary 4.3 and Remark 6.1, and
provides a necessary optimality condition for (Q).

Theorem 6.2. Fix x̄ ∈ S ∩ dom q and assume that

(a) the function f + q is lower semicontinuous near x̄ relative to Φ from Remark 6.1
at (0, 0);

(b) either X and Y are Asplund, or f , q, and gph Φ from (6.1) are convex.

Suppose that x̄ is a local minimizer of (Q). Then, for each ε > 0, there exist points
x, x′, x′′ ∈ Bε(x̄) and y ∈ εB such that |q(x)− q(x̄)| < ε and

0 ∈ f ′(x) + ∂q(x) +G′(x′)∗NK(G(x′)− y) +NC(x′′) + εB∗. (6.2)

In the subsequent remark, we comment on some special situations where the assump-
tions of Theorem 6.2 are naturally valid and which can be checked in terms of initial
data.

Remark 6.3. Let x̄ ∈ S ∩ dom q. Due to Proposition 3.10, Corollaries 3.11 and 3.19,
and Example 3.18, each of the following conditions implies condition (a) of Theorem 6.2:
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(a) the function f + q satis�es one of the conditions (a)-(d) in Corollary 3.13 and the
mapping Φ from Remark 6.1 is metrically subregular at (x̄, (0, 0)), see Example 3.18;

(b) X is re�exive, the functions f and q are weakly sequentially lower semicontinuous,
and condition (3.5) holds for all sequences {xk}k∈N ⊂ X and all points x ∈ X.

Furthermore, condition (b) of Theorem 6.2 is valid whenever X and Y are Asplund, or
if f , q, and C are convex, K is a convex cone, and G is K-convex in the following sense:

∀x, x′ ∈ X ∀s ∈ [0, 1] : G(sx+ (1− s)x′)− sG(x)− (1− s)G(x′) ∈ K.

We note that (Q) already satis�es condition (b) of Remark 6.3 as soon as X and Y
are �nite-dimensional. In the presence of condition (b) from Remark 6.3, Theorem 6.2
is closely related to [Börgens et al., 2020, Proposition 3.3] as soon as q is absent.
Due to Theorem 6.2, the following de�nition is reasonable.

De�nition 6.4. A point x̄ ∈ S ∩ dom q is an approximately stationary point of (Q) if,
for each ε > 0, there exist points x, x′, x′′ ∈ Bε(x̄) and y ∈ εB such that |q(x)− q(x̄)| < ε
and (6.2) are valid.

Approximate necessary optimality conditions in terms of Fréchet subgradients and
normals can be traced back to the 1980s, see e.g. Kruger and Mordukhovich [1980],
Kruger [1985] and the references therein.
In order to compare the notion of stationarity from De�nition 6.4 to others from the

literature, let us mention an equivalent characterization of asymptotic stationarity in
terms of sequences.

Remark 6.5. A point x̄ ∈ S ∩ dom q is approximately stationary if and only if there are
sequences {xk}k∈N, {x′k}k∈N, {x′′k}k∈N ⊂ X, {yk}k∈N ⊂ Y , and {ηk}k∈N ⊂ X∗ such that
xk → x̄, x′k → x̄, x′′k → x̄, yk → 0, ηk → 0, q(xk)→ q(x̄), and

∀k ∈ N : ηk ∈ f ′(xk) + ∂q(xk) +G′(x′k)
∗NK(G(x′k)− yk) +NC(x′′k).

In case where X and Y are �nite-dimensional while q is locally Lipschitzian, a sim-
ilar approximate stationarity condition in terms of sequences has been investigated in
[Mehlitz, 2020, Sections 4, 5.1]. In Börgens et al. [2020], the authors considered the
model (Q) with convex sets K and C in the absence of q. Generally, using approximate
notions of stationarity in nonlinear programming can be traced back to Andreani et al.
[2010, 2011]. Let us mention that in all these papers, the authors speak of asymptotic
or sequential stationarity conditions. A sequential Lagrange multiplier rule for convex
programs in Banach spaces can be found already in Thibault [1997].
During the last decade, the concept of approximate stationarity has been extended

to several classes of optimization problems comprising, exemplary, complementarity-
and cardinality-constrained programs, see Andreani et al. [2019b], Kanzow et al. [2021],
Ramos [2021], conic optimization problems, see Andreani et al. [2020], smooth geometri-
cally-constrained optimization problems in Banach spaces, see Börgens et al. [2020], and
nonsmooth Lipschitzian optimization problems in �nite-dimensional spaces, see Mehlitz
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[2020, 2021]. In each of the aforementioned situations, it has been demonstrated that
approximate stationarity, on the one hand, provides a necessary optimality condition
in the absence of constraint quali�cations, and Theorem 6.2 demonstrates that this is
the case for our concept from De�nition 6.4 as well under reasonable assumptions. On
the other hand, the results from the literature underline that approximate stationarity
is naturally satis�ed for accumulation points of sequences generated by some solution
algorithms. In Section 6.2, we extend these observations to the present setting.
Assume that x̄ ∈ S ∩ dom q is an approximately stationary point of (Q). Due to

Remark 6.5, we �nd sequences {xk}k∈N, {x′k}k∈N, {x′′k}k∈N ⊂ X, {yk}k∈N ⊂ Y , and
{ηk}k∈N ⊂ X∗ satisfying xk → x̄, x′k → x̄, x′′k → x̄, yk → 0, ηk → 0, q(xk) → q(x̄), and
ηk ∈ f ′(xk) + ∂q(xk) + G′(x′k)

∗NK(G(x′k) − yk) + NC(x′′k) for each k ∈ N. Particularly,
we �nd sequences {λk}k∈N ⊂ Y ∗ and {µk}k∈N ⊂ X∗ of multipliers and a sequences
{ξk}k∈N ⊂ X∗ of subgradients such that ηk = f ′(xk) + ξk + G′(x′k)

∗λk + µk, λk ∈
NK(G(x′k)− yk), µk ∈ NC(x′′k), and ξk ∈ ∂q(xk) for each k ∈ N. Assuming for a moment

λk
∗
⇀ λ, µk

∗
⇀ µ, and ξk

∗
⇀ ξ for some λ ∈ Y ∗ and µ, ξ ∈ X∗, we �nd λ ∈ NK(G(x̄)),

µ ∈ NC(x̄), and ξ ∈ ∂q(x̄) by de�nition of the limiting normal cone and subdi�erential,
respectively, as well as 0 = f ′(x̄) + ξ + G′(x̄)∗λ + µ, i.e., a multiplier rule is valid at x̄
which is referred to as M-stationarity in the literature.

De�nition 6.6. A feasible point x̄ ∈ S ∩ dom q is an M-stationary point of (Q) if

0 ∈ f ′(x̄) + ∂q(x̄) +G′(x̄)∗NK(G(x̄)) +NC(x̄).

Let us note that in the case of standard nonlinear programming, where q vanishes
while C := X, Y := Rm1+m2 , and K := (−∞, 0]m1 × {0}m2 for m1,m2 ∈ N, the system
of M-stationarity coincides with the classical Karush�Kuhn�Tucker system.
One can easily check by means of simple examples that approximately stationary points

of (Q) do not need to be M-stationary even in �nite dimensions. Roughly speaking, this
phenomenon is caused by the fact that the multiplier and subgradient sequences {λk}k∈N,
{µk}k∈N, and {ξk}k∈N in the considerations which pre�xed De�nition 6.6 do not need
to be bounded, see [Mehlitz, 2020, Section 3.1] for related observations. The following
example is inspired by [Mehlitz, 2020, Example 3.3].

Example 6.7. We consider X = Y = C := R, set f(x) := x, q(x) := 0, as well as
G(x) := x2 for all x ∈ R, and �x K := (−∞, 0]. Let us investigate x̄ := 0. Note that
this is the only feasible point of the associated optimization problem (Q) and, thus, its
uniquely determined global minimizer. Due to f ′(x̄) = 1 and G′(x̄) = 0, x̄ cannot be an
M-stationary point of (Q). On the other hand, setting

xk := 0, x′k := − 1

2k
, yk :=

1

4k2
, ηk := 0, λk := k

for each k ∈ N, we have xk → x̄, x′k → x̄, yk → 0, ηk → 0, as well as ηk = f ′(xk) +
G′(x′k)

∗λk and λk ∈ NK(G(x′k)− yk) for each k ∈ N, i.e., x̄ is approximately stationary
for (Q). Observe that {λk}k∈N is unbounded.
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Let us underline that the above example demonstrates that local minimizers of (Q)
do not need to be M-stationary in general while approximate stationarity serves as a
necessary optimality condition under some assumptions on the data which are inherent in
�nite dimensions, see Theorem 6.2 and Remark 6.3. Nevertheless, M-stationarity turned
out to be a celebrated stationarity condition in �nite-dimensional optimization. On the
one hand, it is restrictive enough to exclude non-reasonable feasible points of (Q) when
used as a necessary optimality condition. On the other hand, it is weak enough to hold
at the local minimizers of (Q) under very mild quali�cation conditions. Exemplary, we
would like to refer the reader to Flegel et al. [2007] where this is visualized by so-called
disjunctive programs where K is the union of �nitely many polyhedral sets. Another
interest in M-stationarity arises from the fact that this system can often be solved directly
in order to identify reasonable feasible points of (Q), see e.g. Guo et al. [2015], Harder
et al. [2021]. In in�nite-dimensional optimization, particularly, in optimal control, M-
stationarity has turned out to be of limited practical use since the limiting normal cone
to nonconvex sets in function spaces is uncomfortably large due to convexi�cation e�ects
arising when taking weak limits, see e.g. Harder and Wachsmuth [2018], Mehlitz and
Wachsmuth [2018].
Due to this interest in M-stationarity, at least from the �nite-dimensional point of view,

we aim to �nd conditions guaranteeing that a given approximately stationary point of
(Q) is already M-stationary.

De�nition 6.8. We say that the uniform quali�cation condition holds at x̄ ∈ S ∩ dom q
whenever

lim sup
x→x̄, x′→x̄, x′′→x̄,
y→0, q(x)→q(x̄)

(
∂q(x) +G′(x′)∗NK(G(x′)− y) +NC(x′′)

)
⊂ ∂q(x̄) +G′(x̄)∗NK(G(x̄)) +NC(x̄).

By construction, the uniform quali�cation condition guarantees that a given approxi-
mately stationary point of (Q) is already M-stationary as desired.

Proposition 6.9. Let x̄ ∈ S ∩ dom q satisfy the uniform quali�cation condition. If x̄ is
an approximately stationary point of (Q), then it is M-stationary.

Proof. By de�nition of approximate stationarity, for each k ∈ N, we �nd xk, x
′
k, x
′′
k ∈

B1/k(x̄), yk ∈ 1
kB, and ηk ∈ 1

kB
∗ such that |q(xk) − q(x̄)| < 1

k and ηk − f ′(xk) ∈
∂q(xk) + G′(x′k)

∗NK(G(x′k) − yk) + NC(x′′k). Since f is assumed to be continuously
di�erentiable, we �nd ηk−f ′(xk)→ −f ′(x̄). Thus, by validity of the uniform quali�cation
condition, it holds

−f ′(x̄) ∈ lim sup
k→+∞

(
∂q(xk) +G′(x′k)

∗NK(G(x′k)− yk) +NC(x′′k)
)

⊂ ∂q(x̄) +G′(x̄)∗NK(G(x̄)) +NC(x̄),

i.e., x̄ is an M-stationary point of (Q).

31



Combining this with Theorem 6.2 yields the following result.

Corollary 6.10. Let x̄ ∈ S ∩ dom q be a local minimizer of (Q) which satis�es the
assumptions of Theorem 6.2 as well as the uniform quali�cation condition. Then x̄ is
M-stationary.

Observe that we do not need any so-called sequential normal compactness condition, see
[Mordukhovich, 2006, Section 1.1.4], for the above statement to hold which pretty much
contrasts the results obtained in [Mordukhovich, 2006, Section 5]. Indeed, sequential
normal compactness is likely to fail in the function space context related to optimal
control, see Mehlitz [2019].
Let us point the reader's attention to the fact that the uniform quali�cation condition

is not a constraint quali�cation in the narrower sense for (Q) since it also depends on
(parts of) the objective function. Nevertheless, Corollary 6.10 shows that it may serve as
a quali�cation condition for M-stationarity of local minimizers under mild assumptions
on the data. In the absence of q, the uniform quali�cation condition is related to other
prominent so-called sequential or asymptotic constraint quali�cations from the literature
which address several di�erent kinds of optimization problems, see e.g. Andreani et al.
[2019a,b, 2016], Börgens et al. [2020], Mehlitz [2020, 2021], Ramos [2021]. In Section 6.3,
we demonstrate by means of a prominent setting from optimal control that the uniform
quali�cation condition may hold in certain situations where q is present, see Lemma 6.17.

Remark 6.11. Note that in the particular setting q ≡ 0, the uniform quali�cation con-
dition from De�nition 6.8 at some point x̄ ∈ S simpli�es to

lim sup
x′→x̄, x′′→x̄, y→0

(
G′(x′)∗NK(G(x′)− y) +NC(x′′)

)
⊂ G′(x̄)∗NK(G(x̄)) +NC(x̄). (6.3)

In the light of Proposition 6.9 and Corollary 6.10, (6.3) serves as a constraint quali�cation
guaranteeing M-stationarity of x̄ under mild assumptions as soon as this point is a local
minimizer of the associated problem (Q). One may, thus, refer to (6.3) as the uniform
constraint quali�cation.

Observations related to the ones from Remark 6.11 have been made in Börgens et al.
[2020], [Jia et al., 2021, Section 2.2], and [Mehlitz, 2020, Section 5.1] and underline that
(6.3) is a comparatively weak constraint quali�cation whenever q ≡ 0. Exemplary, let
us mention that whenever X and Y are �nite-dimensional the generalized Mangasarian�
Fromovitz constraint quali�cation

−G′(x̄)∗λ ∈ NC(x̄), λ ∈ NK(G(x̄)) =⇒ λ = 0 (6.4)

is su�cient for (6.3) to hold, but the uniform constraint quali�cation is often much weaker
than (6.4) which corresponds to metric regularity of Φ from Remark 6.1 at (x̄, (0, 0)),
see [Mehlitz, 2020, Section 3.2] for related discussions. Let us also mention that (6.4) is
su�cient for metric subregularity of Φ at (x̄, (0, 0)) exploited in Corollary 3.19.
The following proposition provides a su�cient condition for validity of the uniform

quali�cation condition in case where X is �nite-dimensional.
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Proposition 6.12. Let X be �nite-dimensional and x̄ ∈ S ∩ dom q. Suppose that the
uniform constraint quali�cation (6.3) is valid at x̄, and(

G′(x̄)∗NK(G(x̄)) +NC(x̄)
)
∩ (−∂∞q(x̄)) = {0}. (6.5)

Then the uniform quali�cation condition holds at x̄.

Proof. Let us �x

x∗ ∈ lim sup
x→x̄, x′→x̄, x′′→x̄,
y→0, q(x)→q(x̄)

(
∂q(x) +G′(x′)∗NK(G(x′)− y) +NC(x′′)

)
.

Then we �nd sequences {xk}k∈N, {x′k}k∈N, {x′′k}k∈N ⊂ X, {yk}k∈N ⊂ Y , and {x∗k}k∈N ⊂
X∗ such that xk → x̄, x′k → x̄, x′′k → x̄, yk → ȳ, q(xk) → q(x̄), and x∗k → x∗ as
well as x∗k ∈ ∂q(xk) + G′(x′k)

∗NK(G(x′k) − yk) + NC(x′′k) for all k ∈ N. Thus, there
are sequences {u∗k}k∈N, {v∗k}k∈N ⊂ X∗ satisfying x∗k = u∗k + v∗k, u

∗
k ∈ ∂q(xk), and v∗k ∈

G′(x′k)
∗NK(G(x′k)− yk) +NC(x′′k) for all k ∈ N.

Let us assume that {u∗k}k∈N is unbounded. Then, due to x∗k → x∗, {v∗k}k∈N is un-
bounded, too. For each k ∈ N, we de�ne ũ∗k := u∗k/(‖u∗k‖+ ‖v∗k‖) and ṽ∗k := v∗k/(‖u∗k‖+
‖v∗k‖), i.e., the sequence {(ũ∗k, ṽ∗k)}k∈N belongs to the unit sphere of X∗ ×X∗. Without
loss of generality, we may assume ũ∗k → ũ∗ and ṽ∗k → ṽ∗ for some ũ∗, ṽ∗ ∈ X∗ since X is
�nite-dimensional. We note that ũ∗ and ṽ∗ cannot vanish at the same time. Taking the
limit in x∗k/(‖u∗k‖+ ‖v∗k‖) = ũ∗k + ṽ∗k, we obtain 0 = ũ∗+ ṽ∗. By de�nition of the singular
limiting subdi�erential, we have ũ∗ ∈ ∂∞q(x̄) while

ṽ∗ ∈ lim sup
k→+∞

(
G′(x′k)

∗NK(G(x′k)− yk) +NC(x′′k)
)
⊂ G′(x̄)∗NK(G(x̄)) +NC(x̄)

follows by the uniform constraint quali�cation (6.3). Thus, we �nd ũ∗ = ṽ∗ = 0 from
condition (6.5). The latter, however, contradicts (ũ∗, ṽ∗) 6= (0, 0).
From above, we now know that {u∗k}k∈N and {v∗k}k∈N are bounded. Without loss of

generality, we may assume u∗k → u∗ and v∗k → v∗ for some u∗, v∗ ∈ X∗. By de�nition
of the limiting subdi�erential we have u∗ ∈ ∂q(x̄), and v∗ ∈ G′(x̄)∗NK(G(x̄)) + NC(x̄)
is guaranteed by the uniform constraint quali�cation (6.3). Thus, we end up with x∗ ∈
∂q(x̄) +G′(x̄)∗NK(G(x̄)) +NC(x̄) which completes the proof.

Proposition 6.12 shows that in case where X is �nite-dimensional, validity of the
uniform quali�cation condition can be guaranteed in the presence of two conditions. The
�rst one, represented by condition (6.3), is a sequential constraint quali�cation which
guarantees regularity of the constraints at the reference point. The second one, given
by condition (6.5), ensures in some sense that the challenging part of the objective
function and the constraints of (Q) are somewhat compatible at the reference point. A
similar decomposition of quali�cation conditions has been used in Chen et al. [2017],
Guo and Ye [2018] in order to ensure M-stationarity of standard nonlinear problems in
�nite dimensions with a composite objective function. In the latter papers, the authors
referred to a condition of type (6.5) as basic quali�cation, and this terminology can be
traced back to the works of Mordukhovich, see e.g. Mordukhovich [2006].
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Note that in order to transfer Proposition 6.12 to the in�nite-dimensional setting, one
would be in need to postulate sequential compactness properties on q or the constraint
data which are likely to fail in several interesting function spaces, see Mehlitz [2019]
again.

6.2 Augmented Lagrangian methods for optimization problems with
non-Lipschitzian objective functions

We consider the optimization problem (Q) such that X is an Asplund space, Y is a
Hilbert space with Y ∼= Y ∗, and K is convex. Let us note that the assumption on Y
can be relaxed by assuming the existence of a Hilbert space H with H ∼= H∗ such that
(Y,H, Y ∗) is a Gelfand triplet, see [Börgens et al., 2020, Section 7] or Börgens et al.
[2019], Kanzow et al. [2018] for a discussion. Furthermore, we will exploit the following
assumption which is standing throughout this section.

Assumption 6.13. At least one of the following assumptions is valid.

(a) The space X is �nite-dimensional.

(b) The function q is uniformly continuous.

(c) The functions f , q, and x 7→ dist2
K(G(x)) are weakly sequentially lower semicon-

tinuous and C is weakly sequentially closed. Furthermore, X is re�exive.

Throughout this subsection, we assume that C is a comparatively simple set, e.g., a
box if X is equipped with a (partial) order relation, while the constraints G(x) ∈ K are
di�cult and will be treated with the aid of a multiplier-penalty approach. In this regard,
for some penalty parameter θ > 0, we investigate the (partial) augmented Lagrangian
function Lθ : X × Y → R∞ given by

∀(x, λ) ∈ X × Y : Lθ(x, λ) := f(x) +
θ

2
dist2

K

(
G(x) +

λ

θ

)
+ q(x).

We would like to point the reader's attention to the fact that the second summand in
the de�nition of Lθ is continuously di�erentiable since the squared distance to a convex
set possesses this property. For the control of the penalty parameter, we make use of the
function Vθ : X × Y → R given by

∀(x, y) ∈ X × Y : Vθ(x, λ) := ‖G(x)− PK(G(x) + λ/θ)‖ .

The method of interest is now given as stated in Algorithm 1.
We would like to point the reader's attention to the fact that Algorithm 1 is a so-called

safeguarded augmented Lagrangian method since the multiplier estimates uk are chosen
from the bounded set B. In practice, one typically chooses B as a (very large) box,
and de�nes uk as the projection of λk onto B in (S.2). Note that without safeguarding,
one obtains the classical augmented Lagrangian method. However, it is well known that
the safeguarded version possesses superior global convergence properties, see Kanzow and
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Algorithm 1 Safeguarded augmented Lagrangian method for (Q).

(S.0) Choose (x0, λ0) ∈ (dom q)×Y , θ0 > 0, γ > 1, τ ∈ (0, 1), and a nonempty, bounded
set B ⊂ Y arbitrarily. Set k := 0.

(S.1) If (xk, λk) satis�es a suitable termination criterion, then stop.

(S.2) Choose uk ∈ B and �nd an approximate solution xk+1 ∈ C ∩ dom q of

min{Lθk(x, uk) |x ∈ C}. (6.6)

(S.3) Set
λk+1 := θk [G(xk+1) + uk/θk − PK (G(xk+1) + uk/θk)] .

(S.4) If k = 0 or Vθk(xk+1, uk) ≤ τ Vθk−1
(xk, uk−1), then set θk+1 := θk. Otherwise, set

θk+1 := γ θk.

(S.5) Go to (S.1).

Steck [2017]. An overview of augmented Lagrangian methods in constrained optimization
can be found in Birgin and Martínez [2014].
Let us comment on potential termination criteria for Algorithm 1. On the one hand,

Algorithm 1 is designed for the computation of M-stationary points of (Q) which, at the
latest, will become clear in Corollary 6.16. Thus, one may check approximate validity
of these stationarity conditions in (S.1). However, if q or C is variationally challenging,
this might be a nontrivial task. On the other hand, at its core, Algorithm 1 is a penalty
method, so it is also reasonable to check approximate feasibility with respect to the
constraints G(x) ∈ K in (S.1).
In Chen et al. [2017], the authors suggest to solve (Q), where all involved spaces are

instances of Rn while the constraints G(x) ∈ K are replaced by smooth inequality and
equality constraints, with the classical augmented Lagrangian method. In case where q
is not present and X as well as Y are Euclidean spaces, Algorithm 1 recovers the partial
augmented Lagrangian scheme studied in Jia et al. [2021] where the authors focus on
situations where C is nonconvex and of challenging variational structure. We note that,
technically, Algorithm 1 is also capable of handling this situation. However, it might
be di�cult to solve the appearing subproblems (6.6) if both q and C are variationally
complex. Note that we did not specify in (S.2) how precisely the subproblems have to
be solved. Exemplary, one could aim to �nd stationary or globally ε-minimal points of
the function Lθk(·, uk)C here. We comment on both situations below.
Our theory from Section 4 can be used to show that Algorithm 1 computes approxi-

mately stationary points of (Q) when the subproblems (6.6) are solved up to stationarity
of Lθk(·, uk)C .

Theorem 6.14. Let {xk}k∈N be a sequence generated by Algorithm 1 such that xk+1
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is a stationary point of Lθk(·, uk)C for each k ∈ N. Assume that, along a subsequence
(without relabeling), we have xk → x̄ and q(xk)→ q(x̄) for some x̄ ∈ X which is feasible
to (Q). Then x̄ is an approximately stationary point of (Q).

Proof. Observe that Assumption 6.13 guarantees that Lθk(·, uk) is lower semicontinuous
relative to C near each point from C ∩ dom q, see Corollaries 3.13 and 3.15. Since xk+1

is a stationary point of Lθk(·, uk)C , we can apply Remark 2.5 and Theorem 4.5 in order
to �nd x′k+1 ∈ B1/k(xk+1) and x′′k+1 ∈ C ∩B1/k(xk+1) such that |q(x′k+1)− q(xk+1)| < 1

k
and

0 ∈ ∂Lθk(x′k+1, uk) +NC(x′′k+1) + 1
k B
∗

for each k ∈ N. From xk → x̄ and q(xk) → q(x̄) we have x′k → x̄, x′′k → x̄, and
q(x′k)→ q(x̄). Noting that f , G, and, by convexity of K, the squared distance function
dist2

K are continuously di�erentiable, we �nd

0 ∈ f ′(x′k+1) + θkG
′(x′k+1)∗

[
G(x′k+1) + uk/θk − PK

(
G(x′k+1) + uk/θk

)]
+ ∂q(x′k+1) +NC(x′′k+1) + 1

k B
∗ (6.7)

for each k ∈ N where we used the subdi�erential sum rule from [Kruger, 2003, Corol-
lary 1.12.2]. Let us set yk+1 := G(x′k+1) − PK(G(x′k+1) + uk/θk) for each k ∈ N. By
de�nition of the projection and convexity of K, we �nd

θk(yk + uk/θk) ∈ NK(PK(G(x′k+1) + uk/θk)) = NK(G(x′k+1)− yk+1),

so we can rewrite (6.7) by means of

0 ∈ f ′(x′k+1) + ∂q(x′k+1) +G′(x′k+1)∗NK(G(x′k+1)− yk+1) +NC(x′′k+1) + 1
k B
∗ (6.8)

for each k ∈ N.
It remains to show yk+1 → 0. We distinguish two cases.
First, assume that {θk}k∈N remains bounded. By construction of Algorithm 1, this

yields Vθk(xk+1, uk) → 0 as k → +∞. Recalling that the projection PK is Lipschitz
continuous with modulus 1 by convexity of K, we have

‖yk+1‖ ≤ Vθk(xk+1, uk) +
∥∥G(x′k+1)−G(xk+1)

∥∥
+
∥∥PK(G(x′k+1) + uk/θk)− PK(G(xk+1) + uk/θk)

∥∥
≤ Vθk(xk+1, uk) + 2

∥∥G(x′k+1)−G(xk+1)
∥∥

for each k ∈ N. Due to xk → x̄ and x′k → x̄ as well as continuity of G, this yields
yk+1 → 0.
Finally, suppose that {θk}k∈N is unbounded. Since this sequence is monotonically

increasing, we have θk → +∞. By boundedness of {uk}k∈N, continuity of G as well as
the projection PK , x

′
k → x̄, and feasibility of x̄ for (Q), it holds

yk+1 = G(x′k+1)− PK(G(x′k+1) + uk/θk)→ G(x̄)− PK(G(x̄)) = 0,

and this completes the proof.
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Let us mention that the assumption q(xk) → q(x̄) is trivially satis�ed as soon as q
is continuous on its domain. For other types of discontinuity, however, this does not
follow by construction of the method and has to be presumed. Let us note that this
convergence is also implicitly used in the proof of the related result [Chen et al., 2017,
Theorem 3.1] but does not follow from the postulated assumptions, i.e., this assumption
is missing there.
Note that demanding feasibility of accumulation points is a natural assumption when

considering augmented Lagrangian methods. This property naturally holds whenever
the sequence {θk}k∈N remains bounded or if q is bounded from below while the sequence
{Lθk(xk+1, uk)}k∈N remains bounded. The latter assumption is typically satis�ed when-
ever globally εk-minimal points of Lθk(·, uk)C can be computed in order to approximately
solve the subproblems (6.6) in (S.2), where {εk}k∈N ⊂ [0,+∞) is a bounded sequence.
Indeed, we have

∀x ∈ S : Lθk(xk+1, uk) ≤ Lθk(x, uk) + εk ≤ f(x) + ‖uk‖2 /(2θk) + q(x) + εk (6.9)

in this situation, and this yields the claim by boundedness of {uk}k∈N and monotonicity
of {θk}k∈N. If {εk}k∈N is a null sequence, we obtain an even stronger result.

Theorem 6.15. Let {xk}k∈N ⊂ X be a sequence generated by Algorithm 1 and let
{εk}k∈N ⊂ [0,+∞) be a null sequence such that xk+1 is a globally εk-minimal point
of Lθk(·, uk)C for each k ∈ N. Then each accumulation point x̄ ∈ X of {xk}k∈N is a
global minimizer of (Q) and, along the associated subsequence, we �nd q(xk)→ q(x̄).

Proof. Without loss of generality, we assume xk → x̄. By closedness of C, we have x̄ ∈ C.
The estimate (6.9) yields

f(xk+1) + q(xk+1) +
θk
2

dist2
K

(
G(xk+1) +

uk
θk

)
− ‖uk‖

2

2θk
≤ f(x) + q(x) + εk (6.10)

for each x ∈ S. We show the statement of the theorem by distinguishing two cases.
In case where {θk}k∈N remains bounded, we �nd distK(G(xk+1)) ≤ Vθk(xk+1, uk)→ 0

from (S.4), so the continuity of the distance function distK and G yields G(x̄) ∈ K, i.e.,
x̄ is feasible to (Q). Using the triangle inequality, we also obtain

distK(G(xk+1) + uk/θk) ≤ distK(G(xk+1)) + ‖uk‖ /θk ≤ Vθk(xk+1, uk) + ‖uk‖ /θk
for each k ∈ N. Squaring on both sides, exploiting the boundedness of {uk}k∈N and
Vθk(xk+1, uk)→ 0 yields

lim sup
k→+∞

(
dist2

K (G(xk+1) + uk/θk)− (‖uk‖ /θk)2
)
≤ 0.

The boundedness of {θk}k∈N and (6.10) thus show lim supk→+∞(f(xk+1) + q(xk+1)) ≤
f(x) + q(x) for each x ∈ S. Exploiting the lower semicontinuity of q, this leads to
f(x̄) + q(x̄) ≤ f(x) + q(x), i.e., x̄ is a global minimizer of (Q). On the other hand, we
have

f(x̄) + q(x̄) ≤ lim inf
k→+∞

(f(xk+1) + q(xk+1)) ≤ lim sup
k→+∞

(f(xk+1) + q(xk+1)) ≤ f(x̄) + q(x̄)
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from the particular choice x := x̄, so the continuity of f yields q(xk)→ q(x̄) as claimed.
Now, let us assume that {θk}k∈N is not bounded. Then we have θk → +∞ from (S.4).

By choice of xk+1, we have Lθk(xk+1, uk) ≤ Lθk(x, uk) + εk for all x ∈ C and each k ∈ N,
so the de�nition of the augmented Lagrangian function yields

f(xk+1)+q(xk+1)+
θk
2

dist2
K

(
G(xk+1) +

uk
θk

)
≤ f(x)+q(x)+

θk
2

dist2
K

(
G(x) +

uk
θk

)
+εk

for each x ∈ C. By continuity of f and lower semicontinuity of q, {f(xk+1)+q(xk+1)}k∈N
is bounded from below. Thus, dividing the above estimate by θk and taking the limit
inferior, we �nd

dist2
K(G(x̄)) = lim inf

k→+∞
dist2

K (G(xk+1) + uk/θk)

≤ lim inf
k→+∞

dist2
K (G(x) + uk/θk) = dist2

K(G(x))

for each x ∈ C from θk → +∞ and continuity of distK and G. Hence, x̄ is a global mini-
mizer of dist2

K ◦G over C. Since S is assumed to be nonempty, we infer dist2
K(G(x̄)) = 0,

i.e., x̄ is feasible to (Q). Exploiting boundedness of {uk}k∈N, nonnegativity of the distance
function, and θk → +∞, we now obtain lim supk→+∞(f(xk+1) + q(xk+1)) ≤ f(x) + q(x)
for each x ∈ S from (6.10). Proceeding as in the �rst case now yields the claim.

It remains to clarify how the subproblems (6.6) can be solved in practice. If the non-
Lipschitzness of q is, in some sense, structured while C is of simple form, it should be
reasonable to solve (6.6) with the aid of a nonmonotone proximal gradient method, see
[Chen et al., 2017, Section 3.1]. On the other hand, in situations where q is not present
while C possesses a variational structure which allows for the e�cient computation of
projections, a nonmonotone spectral gradient method might be used to solve (6.6), see
[Jia et al., 2021, Section 3]. Finally, it might be even possible to solve (6.6) up to global
optimality in analytic way in some practically relevant applications where q is a standard
sparsity-promoting term and the remaining data is simple enough.
Coming back to the assertion of Theorem 6.14, the following is now clear from Corol-

lary 6.10.

Corollary 6.16. Let {xk}k∈N be a sequence generated by Algorithm 1 such that xk+1

is a stationary point of Lθk(·, uk)C for each k ∈ N. Assume that, along a subsequence
(without relabeling), we have xk → x̄ and q(xk)→ q(x̄) for some x̄ ∈ X which is feasible
to (Q) and satis�es the uniform quali�cation condition. Then x̄ is M-stationary.

Note that in the light of Proposition 6.12, Corollary 6.16 drastically generalizes and
improves [Chen et al., 2017, Theorem 3.1] which shows global convergence of a related
augmented Lagrangian method to certain stationary points under validity of a basic
quali�cation, see condition (6.5), and the relaxed constant positive linear dependence
constraint quali�cation which is more restrictive than condition (6.3) in the investigated
setting, see [Jia et al., 2021, Lemma 2.7] as well. Let us mention that such a result has
been foreshadowed in [Jia et al., 2021, Section 5.4]. We would like to point the reader's
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attention to the fact that working with strong accumulation points in the context of
Theorems 6.14 and 6.15 and Corollary 6.16 is indispensable as long as q or the sets K
and C are not convex since the limiting variational tools rely on strong convergence in
the primal space. In the absence of q and if K and C are convex, some convergence
results based on weak accumulation points are available, see e.g. [Börgens et al., 2020,
Section 7] and Börgens et al. [2019], Kanzow et al. [2018]. Clearly, in �nite dimensions,
both types of convergence are equivalent and the consideration of strong accumulation
points is not restrictive at all.

6.3 Sparsity-promotion in optimal control

In this section, we apply the theory derived earlier to an optimal control problem with
a sparsity-promoting term in the objective function. As it is common to denote control
functions by u in the context of optimal control, we will use the same notation here for
the decision variable for notational convenience.
For some bounded domainD ⊂ Rd and some p ∈ (0, 1), we de�ne a function q : L2(D)→

R by means of

∀u ∈ L2(D) : q(u) :=

∫
D
|u(ω)|p dω. (6.11)

Above, L2(D) denotes the standard Lebesgue space of (equivalence classes of) measurable
functions whose square is integrable and is equipped with the usual norm. In optimal
control, the function q is used as an additive term in the objective function in order to
promote sparsity of underlying control functions, see Ito and Kunisch [2014], Natemeyer
and Wachsmuth [2021], Wachsmuth [2019]. A reason for this behavior is that the in-
tegrand t 7→ |t|p possesses a unique global minimizer and in�nite growth at the origin.
In Mehlitz and Wachsmuth [2021], the authors explore the variational properties of the
functional q. It has been shown to be uniformly continuous in [Mehlitz and Wachsmuth,
2021, Lemma 2.3]. Furthermore, in [Mehlitz and Wachsmuth, 2021, Theorem 4.6], the
following formula has been proven for each ū ∈ L2(D):

∂q(ū) = ∂q(ū) =
{
η ∈ L2(D) | η = p |ū|p−2 ū a.e. on {ū 6= 0}

}
. (6.12)

Let us emphasize that this means that the Fréchet and limiting subdi�erential actually
coincide and can be empty if the reference point is a function which tends to zero too
fast somewhere on its domain. This underlines the sparsity-promoting properties of q.
Now, for a continuously di�erentiable function f : L2(D) → R and functions ua, ub ∈

L2(D) satisfying ua < 0 < ub almost everywhere on D, we consider the optimization
problem

min
u
{f(u) + q(u) |u ∈ C} (OC)

where C ⊂ L2(D) is given by the box

C := {u ∈ L2(D) |ua ≤ u ≤ ub a.e. on D}.
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For later use, let us mention that, for each u ∈ C, the (Fréchet) normal cone to C at u
is given by the pointwise representation

NC(u) =

{
η ∈ L2(D)

∣∣∣∣∣ η ≤ 0 a.e. on {u < ub}
η ≥ 0 a.e. on {ua < u}

}
. (6.13)

Typically, in optimal control, f is a function of type

∀u ∈ L2(D) : f(u) := 1
2 ‖S(u)− yd‖2 + σ

2 ‖u‖
2 (6.14)

where S : L2(D) → H is the continuously di�erentiable control-to-observation operator
associated with a given system of di�erential equations, H is a Hilbert space, yd ∈ H
is the desired state, and σ ≥ 0 is a regularization parameter. Clearly, by means of the
chain rule, f is continuously di�erentiable with derivative given by

∀u ∈ L2(D) : f ′(u) = S′(u)∗[S(u)− yd] + σu.

The presence of q in the objective functional of (OC) enforces sparsity of its solutions,
i.e., the support of optimal controls is likely to be small. It already has been mentioned
in Ito and Kunisch [2014], Natemeyer and Wachsmuth [2021] that one generally cannot
show existence of solutions to optimization problems of type (OC). Nevertheless, the
practical need for sparse controls makes it attractive to consider the model and to derive
necessary optimality conditions in order to identify reasonable stationary points.
In the subsequent lemma, we show that the feasible points of (OC) satisfy the uniform

quali�cation condition stated in De�nition 6.8.

Lemma 6.17. Let ū ∈ L2(D) be a feasible point of (OC). Then the uniform quali�cation
condition holds at ū.

Proof. Recalling that q is continuous while C is convex, the uniform quali�cation condi-
tion takes the simpli�ed form

lim sup
u→ū, u′→ū

(
∂q(u) +NC(u′)

)
⊂ ∂q(ū) +NC(ū).

Let us �x some point η ∈ lim supu→ū, u′→ū
(
∂q(u) + NC(u′)

)
. Then we �nd sequences

{uk}k∈N, {u′k}k∈N, {ηk}k∈N ⊂ L2(D) such that uk → ū, u′k → ū, ηk → η, as well as
ηk ∈ ∂q(uk)+NC(u′k) for all k ∈ N. Particularly, there are sequences {ξk}k∈N, {µk}k∈N ⊂
L2(D) such that ξk ∈ ∂q(uk), µk ∈ NC(u′k), and ηk = ξk + µk for all k ∈ N. From (6.12)
we �nd ξk = p |uk|p−2 uk almost everywhere on {uk 6= 0} for each k ∈ N. Furthermore,
we have µk ≤ 0 almost everywhere on {u′k = ua}, µk ≥ 0 almost everywhere on {u′k =
ub}, and µk = 0 almost everywhere on {ua < u′k < ub} for each k ∈ N from (6.13).
Along a subsequence (without relabeling) we can ensure the convergences uk(ω)→ ū(ω),
u′k(ω) → ū(ω), and ηk(ω) → η(ω) for almost every ω ∈ D. Thus, for almost every
ω ∈ {ū = ua}, we can guarantee uk(ω) < 0 and u′k(ω) ∈ [ua(ω), 0), i.e., ηk(ω) =
ξk(ω) + µk(ω) ≤ p|uk(ω)|p−2uk(ω) for all large enough k ∈ N, so, taking the limit yields
η(ω) ≤ p |ū(ω)|p−2 ū(ω). Similarly, we �nd η(ω) ≥ p |ū(ω)|p−2 ū(ω) for almost every
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ω ∈ {ū = ub}. Finally, for almost every ω ∈ {ū 6= 0}∩{ua < ū < ub}, we have uk(ω) 6= 0
and ua(ω) < u′k(ω) < ub(ω), i.e., ηk(ω) = p |uk(ω)|p−2 uk(ω) for large enough k ∈ N,
so taking the limit, we have η(ω) = p |ū(ω)|p−2 ū(ω). Again, from (6.12) and (6.13), we
have η ∈ ∂q(ū) +NC(ū), and this yields the claim.

Recalling that q is uniformly continuous, the subsequent result now directly follows
from Corollary 6.10, the above lemma, and formulas (6.12) as well as (6.13).

Theorem 6.18. Let ū ∈ L2(D) be a local minimizer of (OC). Then there exists a
function η ∈ L2(D) such that

f ′(ū) + η = 0, (6.15a)

η = p|ū|p−2ū a.e. on {ū 6= 0} ∩ {ua < ū < ub}, (6.15b)

η ≤ p |ua|p−2 ua a.e. on {ū = ua}, (6.15c)

η ≥ p |ub|p−2 ub a.e. on {ū = ub}. (6.15d)

We note that our approach to obtain necessary optimality conditions for (OC) is much
di�erent from the one used in Ito and Kunisch [2014], Natemeyer and Wachsmuth [2021]
where Pontryagin's maximum principle has been used to derive pointwise conditions
characterizing local minimizers under more restrictive assumptions than we needed to
proceed. On the one hand, this led to optimaility conditions which also provide informa-
tion on the subset of D where the locally optimal control is zero, and one can easily see
that this is not the case in Theorem 6.18. On the other hand, a detailed inspection of
(6.15) makes clear that our necessary optimality conditions provide helpful information
regarding the structure of the optimal control as the multiplier η possesses L2-regularity
while (6.15b) causes η to possess singularities as the optimal control tends to zero some-
where on the domain. Thus, this condition clearly promotes sparse controls which either
are zero, tend to zero (if at all) slowly enough, or are bounded away from it. Note
that this di�ers from the conditions derived in Ito and Kunisch [2014], Natemeyer and
Wachsmuth [2021] which are multiplier-free.

7 Concluding remarks

In this paper, we established a theory on approximate stationarity conditions for opti-
mization problems with potentially non-Lipschitzian objective functions in a very general
setting. In contrast to the �nite-dimensional situation, where approximate stationarity
has been shown to serve as a necessary optimality condition for local optimality without
any additional assumptions, some additional semicontinuity properties need to be present
in the in�nite-dimensional context. We exploited our �ndings in order to re-address the
classical topic of set extremality and were in position to derive a novel version of the
popular extremal principle. This may serve as a starting point for further research which
compares the classical as well as the new version of the extremal principle in a more
detailed way. Moreover, we used our results in order to derive an approximate notion of
stationarity as well as an associated quali�cation condition related to M-stationarity for
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optimization problems with a composite objective function and geometric constraints in
the Banach space setting. This theory then has been applied to study the convergence
properties of an associated augmented Lagrangian method for the numerical solution of
such problems. Furthermore, we demonstrated how these �ndings can be used to derive
necessary optimality conditions for optimal control problems with control constraints
and a sparsity-promoting term in the objective function. Some future research may
clarify whether our approximate stationarity conditions can be used to �nd necessary
optimality conditions for optimization problems in function spaces where nonconvexity
or nonsmoothness pop up in a di�erent context. Exemplary, it would be interesting to
study situations where the solution operator S appearing in (6.14) is nonsmooth, see
e.g. Christof et al. [2018], Hintermüller et al. [2014], Rauls and Wachsmuth [2020], where
the set of feasible controls is nonconvex, see e.g. Clason et al. [2017, 2020], Mehlitz and
Wachsmuth [2018], or where the function q is a term promoting sharp edges in continuous
image denoising or deconvolution, see e.g. [Bredies and Lorenz, 2018, Section 6].
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