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1 Introduction

We consider the (local) solution mapping S: U — Y, u + y, of the generalized equation

arXiv:2109.13569v1 [math.OC] 28 Sep 2021

0 € A(y,u) + B(y,u). (1)

Here, Y is a (real) Hilbert space, U is a Banach space, A: Y xU — Y™* is (locally) strongly
monotone and Lipschitz w.r.t. its first argument and the set-valued map B: Y x U =3 Y*
is assumed to be maximally monotone w.r.t. its first argument.
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The equation (1) can be used to model many real-world phenomena. In the case where
B(-,u) coincides with the subdifferential dj, of a proper, lower-semicontinuous and
convex function j,: Y — (—o0,00], (1) is a variational inequality (VI) of the second
kind. If further, j, is the indicator function d¢,: Y — {0, 00} of a non-empty, closed and
convex set C, C Y, it is a VI of the first kind.

We show by some simple arguments that the existence of solutions and directional
differentiability of .S follows from the properties of A and of the resolvent Jg of B and
from the directional differentiability of A and Jp, respectively. Here, Jg: Y x U = Y,
(¢, u) — vy, is the solution map of

0€ R(y—q)+ B(y,u) (2)

where R: Y — Y™ is the Riesz map of the Hilbert space Y. Similarly, we treat the
equation
OEA(y,u)—l—B(y—q)(y,u),u), (3)

where ®: Y xU — Y is assumed to have a small Lipschitz constant w.r.t. the first variable.
Note that (3) is an inclusion which generalizes the setting of so-called quasi-variational
inequalities (QVIs).

Let us put our work in perspective. The existence of solutions to (1) is well understood,
we refer to, e.g., Bauschke, Combettes, 2011, Section 23.4. The first contributions which
study differentiability of problems similar to (1) are Mignot, 1976; Haraux, 1977 in which
the case B = 0d¢ is considered under the assumption that C' C Y is polyhedric, see
also Wachsmuth, 2019. The case of non-linear A was treated in Levy, Rockafellar, 1994;
Levy, 1999. Later, theory for the differentiability of Jg with B = 95 was set up in Do,
1992. It was shown that the differentiability of Jy; is equivalent to the so-called twice
epi-differentiability of j, see also Christof, Wachsmuth, 2020. Finally, Adly, Rockafellar,
2020, Theorem 1 study (1) with a real parameter u > 0. However, since we are mainly
interested in directional differentiability, this is not a restriction.

Contributions corresponding to the QVI case (3) are rather new and are currently
restricted to the special case

Findy € K(y) st. (A(y) —u,v—y) >0 VYve K(y)

with K(y) = K — ®(y) for some polyhedric set K C Y. Important parameters for the
study of this problem are the constant p4 of strong monotonicity of A and the Lipschitz
constants L4 and Lg of A and ®, respectively. The first contribution in this direction
is Alphonse, Hintermiiller, Rautenberg, 2019, Theorem 1. Therein, the authors showed
directional differentiability into non-negative directions under monotonicity assumptions
on Aand Ly < pia/(a + La). Afterwards, Wachsmuth, 2020, Theorem 5.5 proved the
directional differentiability into arbitrary directions and the smallness assumption on ®
was relaxed to Ly < pa/L4 (and an even weaker inequality suffices if A is the derivative
of a convex function). However, this result needs that ® is Fréchet differentiable (or,
at least Bouligand differentiable). Later, Alphonse, Hintermiiller, Rautenberg, 2021,
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Theorem 3.2 showed that it is sufficient to have a directionally differentiable ® at the
price of having again the stricter requirement Ly < pa/(ua + La). A different approach,
which is based on concavity properties and which is not restricted to the special case
above, is given in Christof, Wachsmuth, 2021.

The main contributions of our paper are the following.

(i) Theorem 12 shows that the solution map of (1) is directionally differentiable.
This result is very similar to Adly, Rockafellar, 2020, Theorem 1. However,
our assumptions are localized around a solution and we require the directional
differentiability of the resolvent Jp instead of the proto-differentiability of B. This
results in a much easier proof.

(ii) Lemma 16 shows that the directional differentiability of Jp is equivalent to B
being proto-differentiable with a maximally monotone proto-derivative. Thus, the
differentiability assumptions on B in Theorem 12 and Adly, Rockafellar, 2020,
Theorem 1 coincide.

(iii) In Section 4 we show that the approaches of Alphonse, Hintermiiller, Rautenberg,
2019, Theorem 1 and Wachsmuth, 2020, Theorem 5.5 can be generalized to deal
with the solution map of (3). Moreover, we only need directional differentiability
of the data functions A, ® and Jp as in Alphonse, Hintermiiller, Rautenberg, 2019
and only the weaker requirements on Lg from Wachsmuth, 2020.

The paper is structured as follows. In Section 2 we fix some notation and state Theorem 2
concerning convex functions with a strongly monotone and Lipschitz continuous derivative.
Section 3 contains the differentiability result for (1), whereas Section 4 is concerned with
(3). Some applications are presented in Section 5.

2 Notation

Let U and Y be a Banach space and a Hilbert space, respectively. We denote by
R:Y — Y™* the Riesz map of Y. For ¢ > 0 and y* € Y, B.(y*) (Us(y*)) denotes the
closed (open) ball in Y with center y* and radius ¢, respectively.

If B:Y xU = Y* and U C U are given such that B(-,u): Y == Y* is maximally
monotone for all u € U, we say that B is a parametrized maximally monotone operator
and we define its resolvent Jp: Y xU — Y via Jp(-,u) := Jp(. ), i-e., for (q,u) € Y xU
the point y = Jp(q,u) = (R+ B(-,u))~! is the unique solution of

0€ R(y —q) + By, u).

For a closed, convex subset K C Y, we denote by Tx: Y = Y and Ng:Y = Y* the
tangent-cone and normal-cone map. Moreover, by

K :i={peY*|[(nv)<0Vwe K},  pr={veY|(uv)=0}
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we denote the polar cone of K and the annihilator of u € Y, respectively.

We need a characterization of convex functions defined on subsets of Y with a Lipschitz
continuous derivative.

Theorem 1. Let YV C Y be nonempty, open and convex. Further, let f: ) — R be
convex and let Ly € (0,00) be given. Then, the following assertions are equivalent.

(i) f is Gateaux differentiable on Y and f’: Y — Y* is Ly-Lipschitz continuous on

V.

(ii) f is Gateaux differentiable on J and f’: Y — Y™* is 1/L¢-cocoercive, i.e.,
1
(f'(y2) = F'(y1),y2 — 1) > ff|‘f,(y2) — ')l Vyi,y2 € Y.

(iii) The map %HH2 — f is convex on ).

For the proof, we refer to Pérez-Aros, Vilches, 2019, Theorem 3.1.

Next, we give an important inequality for convex functions. This inequality is well-known
in the finite-dimensional case if the convex function is defined on the entire space, see, e.g.,
Nesterov, 2004, Theorem 2.1.12 or Bubeck, 2015, Lemma 3.10. The infinite dimensional
version (on the entire space) was given in Wachsmuth, 2020, Lemma 3.4. By using
Theorem 1, we can adopt the proof to the situation at hand.

Theorem 2. Let Y C Y be nonempty, open and convex. Further, let f: J — R be
convex such that f: ) — Y™* is strongly monotone with constant p; € (0,00) and
Lipschitz continuous with constant Ly € (0,00). Then,

/ ’ K Lf 1 ’ / 2
(f'(y2) = f'(y), 92 —y1) > m”m —ul* + m“f (y2) = f' ()]

for all y1,y2 € V.

Proof. We define g := f — %fHHQ The strong monotonicity of f’ implies that g is

convex. From Theorem 1 we infer that % 12— f = wﬂﬂz — g is convex. Applying

Theorem 1 again shows that ¢’ is 1/(Ly — puy)-cocoercive, i.e., for arbitrary yi,y2 € Y
we have

(Ly— Mf)(<f/(y2) — (1), y2 —y1) — pyllye — y1”2>
= (Ly —pp)g'(y2) — 9 (v1), 92 — v1)
> (|9’ (y2) — ¢’ (31)|1?
= (1 (w2) = Ol = 2us(f'(w2) = £/ (1), v2 — 1) + pFlly2 — .

Rearranging terms yields the claim.
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3 (Generalized equations

We consider the solution mapping of the generalized equation (1). We show that solutions
are locally stable and directionally differentiable under suitable assumptions.

3.1 Local solvability

We set up the standing assumptions which allow to prove that (1) is uniquely solvable
around a given reference solution (y*,u*).

Assumption 3 (Standing assumptions). Let (y*,u*) € Y x U be given and let Y C U
be a neighborhood of u*.

(i) For all w € U, A(-,u) is locally (uniformly) strongly monotone and Lipschitz in a
neighborhood of y*. That is, there exists constants ¢, 4, L4 > 0 such that
(A(y2,u) — Ay, w),y2 — y1) > pallyz — v
[A(y2, u) = Ay, w)l| < Lally2 — ]

holds for all y1,y2 € B:(y*) and for all u € U.

(ii) B(-,u): Y = Y™* is maximally monotone for all u € U.

Here and in the sequel, it is sufficient that A is defined only on B.(y*) x U and that B is
defined on Y x U.

We check that the VI has a unique solution in a neighborhood of y* for certain “small”
perturbations u of u*.

Theorem 4. Let Assumption 3 be satisfied by a solution (y*,u*) of (1). We select
p € (0,2u4/L%), r € (0,¢] and set ¢ := \/1 — 2ppa + p?L% € (0,1). Suppose that
¢ € Y* and u € U satisty

1Jp8(qp,w) = JoB (g, u)|| + Pl A(y™, u) — Ay u)| + ol < (X =c)r,  (4)
where ¢, = y* — pR™YA(y*,u*). Then, there exist unique solutions y, ¢ of
0€¢+ Ay u)+ By,u), yeB(y") (5)

and
0€ A(g,u) + B(f,u), 7€ B(y"). (6)

These solutions satisfy y,§ € B, (y*) and |ly — gl < $2||<]|-
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Proof. The proof is inspired by the proof of Brezis, 2011, Theorem 5.6 which treats the
special case of a variational inequality.
We define T: Y — Y, y — 2z as the solution operator of

0€ R(z— (y— pR " A(y,u) — pR')) + pB(z,u),

i.e.,
T(y) = Jop(y — pR Ay, u) — pR™'¢, ).

In order to apply the Banach fixed-point theorem, we check that the mapping
Q: B:(y*) = Y, x— x — pR ' A(z,u) is a contraction. Indeed,

lo = PR Afw,w) =y + pRT A ) = llo =yl + R (Al w) = Aly, )|
= 2p(A(z,u) = Ay, u),z — y)
< (L= 20pa+ 0713 | —

holds for all z,y € B-(y*) due to Assumption 3(i). Hence, @ is Lipschitz with constant
c € (0,1). Since J,p(-,u) is Lipschitz with constant 1, T': B.(y*) — Y is a contraction.
It remains to check that 7" maps B,(y*) onto itself. To this end, we denote the
three terms on the left-hand side of (4) by k1, k2 and k3, respectively. By using
y* = JpB(q,, u"), we have for an arbitrary y € B,(y”)

IT(y) — y*|| = [11o8(Qy) — pPR™'¢,u) — Jop(g), u’)|
< || Jo8(Qy) — pR™'C,u) — Jop(qh w)ll + | Jo8(q), w) — JpB (g, u®)||
<|ly — pRA(y,u) — pR™'¢ — (y* — pRTA(y", u))|| + k1
<|ly = pR™ Ay, u) — (y* — pRTA(Y", u)) || + pll Aly*, u) — A(y*, u) |
+ pllCIl + K1
= 1Q(y) — Q) + k1 + K2 + K3 < 7.

Hence, we have shown that T': B,(y*) — B,(y*) is a contraction.

The Banach fixed-point theorem yields a unique fixed point y € B,(y*) and this is a
solution of (5). Similarly, the solvability of (6) is obtained by using the same arguments
with ¢ = 0. By repeating the same argument with r = ¢, we establish the uniqueness
of solutions in B.(y*).

For the final estimate, we note

§=Jo5(H— pRA(f,u),u), y=Jop(y — pR™ " A(y,u) — pR'¢,u).

Thus,
ly = 7ll < Q) — QDI + pliCII < clly — gl + plIC]

and this gives the desired estimate.

The second term on the left-hand side of (4) becomes small if we assume some continuity
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of A and w is close to u*. In order to control the first term, we use a famous result by
Attouch.

Lemma 5 (Attouch, 1984, Proposition 3.60). Let (By),en be a sequence of maximal
monotone operators on Y and let By: Y == Y* be maximally monotone. Then, the
following are equivalent.

(i) There exists po > 0 such that for all y € Y we have J,,p, (y) = JpoB, (¥)-

(ii) For all p > 0 and all y € Y we have J,p, (y) = J,B,(¥)-

Corollary 6. Suppose that for every v € Y, the mapping Jp(v,-): U — Y is continuous
at u*. Then, for all p>0and v eY, J,p(v,-): U = Y is continuous at u*.

Proof. We have to show that J,g(v,u,) — J,p(v,u*) for all sequences (up)nen C U
with w, — w*. This follows directly from Lemma 5 by setting B,, := B(-,u,) and
B(] = B(,u*)

Hence, if Assumption 3 and the assumptions of Corollary 6 are satisfied and if the map
A(y*,): U — 'Y is continuous at u*, the estimate (4) holds if ¢ is small enough and if u
is sufficiently close to u*. For later reference, we also give a directional version of this
statement.

Lemma 7. Let Assumption 3 be satisfied by a solution (y*,u*) of (1) and choose p,r, ¢
as in Theorem 4. Further, let h € U be arbitrary. We assume that ¢ — A(y*,u* +th) €
Y* and t — Jp(v,u* +th) € Y are right-continuous at ¢t = 0 for all v € Y. Then, the
estimate (4) is satisfied by v = u* +th and ( € Y* if t > 0 and ||{|| are small enough.

3.2 Directional differentiability

In order to prove directional differentiability of the solution mapping, we need some
differentiability assumptions concerning the mappings A and B.

Assumption 8 (Differentiability assumptions). In addition to Assumption 3, we
suppose the following.

i) A is directionally differentiable at (y*, u™).
(i) y (T

(ii) Jp is directionally differentiable at (¢*,u*) with ¢* = y* — R™1A(y*, u*).

Interestingly, the next result shows that Assumption 8(ii) already implies that the
directional derivative of Jp is again a resolvent of a parametrized maximally monotone
operator. In the setting that B is a subdifferential and independent of u, this result
follows from Do, 1992, Theorems 3.9, 4.3.
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Lemma 9. Let Assumption 8 be satisfied by a solution (y*,u*) of (1). We further set
& = —A(y*,u*) € B(y*,u*). Then, the operator DB(y*,u* |£*): Y x U = Y™,

DB(y*,u*|£*)(0,h) := {R(k—0) | k € Y,d = Jg(q*,u*;k,h)} Y(0,h) € Y xU, (7)
is a parametrized maximally monotone operator and we have
J(@",u";-) = IpBy ulen)s (8)
ie., 6 = Jp(q* u*; k, h) = Jpp(y urje=) (K, h) if and only if § solves

0 € R(§ — k) + DB(y*, u* | £)(6,h).

We have chosen such a complicated name for the linearization of B, since it will turn out
that this linearization coincides with the so-called proto-derivative of B, see Section 3.3.

Proof. Let us check the monotonicity w.r.t. the parameter §. For fixed h € U and
arbitrary ki1, k2 € Y, we have

‘|J/B(q*7U*a k17h) - J/B(q*7U*a k27h)H2
. ‘ Jp(q" +thy, u* +th) — Jg(x)  Jp(q" + thy,u” + th) — Jp(x)|
t t

1
= t—2||JB(q* + thy,u* +th) — Jp(¢* + thy, u* + th)|?

=7 (JB(CJ +thky,u" +th) — Jp(q" + tha,u™ +th),t (k1 — k2))

( (] + tky, u* +th) JB(x) JB(q* + tko, u* +th) — JB(.CU) k k >
_ — k1 — ko
t t
( (q u* kla ) J/B(q*7U*;k2ah)ak1_k2)'

Here, the convergences are as t N\, 0 and the inequality follows from the fact that
resolvents of maximally monotone operators are firmly non-expansive. Hence,

(‘]IB(q*7U*a k;l?h) - JIB(q*’U*a k27h)7 kl - J/B(q*7U*7kl) - (kQ - J/B(q*7U*7 k?))) 2 07

i.e.,

(R(k1 — 1) — R(k2 — d2),01 — d2) > 0,

where 0; := Jp(¢*, u*; ki, h). This shows monotonicity of DB(y*,u* | £*)(-, h).

Minty’s theorem, see Bauschke, Combettes, 2011, Theorem 21.1, implies that the
operator DB(y*, u*|£*)(-, h) is maximally monotone if and only if R+DB(y*, u*|&*) (-, h)
is surjective. This, however, is obvious: for an arbitrary ¢ € Y*, we can set § =
J5(q*,u*; R71¢, h) and have ¢ € RS + DB(y*,u* | £€*)(6, h).

Finally, (8) follows from a straightforward calculation.
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Remark 10. Minimal changes to the proof show that the assertion of Lemma 9 remains
true if we only assume that Jp is weakly directionally differentiable at (¢*, u*), i.e., if

Jp(q" + thk,u* +th) — J(q*, u*)
t
for all (k,h) €Y x U.

— Jp(q*,u*; k, h) inY ast\,0

Next, we apply Lemma 9 to the normal cone mapping of a polyhedric set.

Proposition 11. Suppose that K C Y is polyhedric and B(-,u) := N is the normal
cone mapping to K (independent of u). Then, Assumption 8(ii) is satisfied and we have

Kenel ifsek,

DB(y" | £)(6) = Nk(d) = {@ if 6 ¢ K

where K = Ti (y*) N (€*)* denotes the critical cone. That is, DB(y* | £) is the normal
cone mapping to the critical cone K. Here, we have suppressed the arguments u* and h.

Proof. From Mignot, 1976; Haraux, 1977 we get the directional differentiability of
Jp = Projy and
Proj (¢"; k) = Proj (k).

Using (7), we have

DB(y* | £)(6) :={R(k —0) | k € Y, = Proji(k)}
= {R(k—0)| ke Y,6 € K,R(k — 6) € K°, (R(k — §),8) = 0}

and the claim follows.

Theorem 12. Suppose that Assumption 8 is satisfied by a solution (y*,u*) of (1). We
denote by S the local solution mapping of (1), cf. Theorem 4 and Lemma 7. Then, S is
directionally differentiable at u*. For h € U, the derivative 6 = S’(u*; h) is the unique
solution of

0€ A'(y",u";0,h) + DB(y", u" [ £)(,h), (9)

where £* = —A(y*, u*).

Proof. The proof is inspired by Levy, 1999. Since A'(y*,u*;-,h): Y — Y* is again
strongly monotone and Lipschitz, and since the operator DB(y*,u* | £*)(-,h): Y = Y™
is maximally monotone by Lemma 9, it is clear that the linearized equation possesses
a unique solution § € Y for an arbitrary h € U. It remains to check that § is the
directional derivative of S. We set

¢ =y — R Ay, u), k:=086—R YA (y*,u*;6,h).
This implies y* = Jp(q*,u*) and 6 = Jz(¢*, u*; k, h), cf. (8).
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Next, we take an arbitrary sequence (ty)nen C (0, 00) with ¢, N\, 0 and define
Yn = JB(q¢" + tuk,u™ + tph), ie, 0€ R(yn—q" —tuk)+ B(yn,u" + tph)

for n large enough. Then, Assumption 8(ii) implies

*

Yn — Y
tn

— Jp(q*,u*;k,h) = 6.

Now, we define
R(yn — q* — tak) — A(yn, u* + t,h)

Cn = t .

By using the definition of ¢* we get

R(yn — y* = tnk) + A(y", u") = A(yn, u" + tnh)

gn: ;
n =y A(y*,u*) — A(y* + tpd,u* + thh
:R(y y_k)+ " u") — A(Y™ + tad, u” + tnh)
tn tn
AW+ a0, tah) — Alyn, u" + tah)
t '

Due to Assumption 3(i), the last addend can be bounded by La||(yn — y*)/tn — 0| — 0.
Thus, the directional differentiability of A implies ¢, — R(6 — k) — A'(y*,u*,d,h) = 0.
Next, we note that the definition of (,, yields

0 € tnCn + A(Yn,u™ + tph) + B(yn, u™ + tph).

Due to Lemma 7, we can apply Theorem 4 for n large enough. This yields the existence
of a unique solution g, € B:(y*) of

0 € A(fn,u” +tyh) + B(gn, u" + tph)
and this solution satisfies ||y, — ¥n|| < C||tn(nl|- Note that g, = S(u* + t,h). Hence,

S(u "’tnth)_s(u):ynt_yn_i_ynt_y S50+,

This shows the claim.

We mention that a similar result has been given in Adly, Rockafellar, 2020, Theorem 1.
Therein, global assumptions on A are used, i.e., Assumption 3(i) is required to hold for
€ = 00. Moreover, this contribution uses the concept of proto-differentiability, which is
not utilized in our proof. In particular, instead of Assumption 8(ii), Adly, Rockafellar,
2020 require that B is proto-differentiable with a maximally monotone proto-derivative.

In our opinion, it is often easier and more natural to study the differentiability properties
of Jp instead of checking whether B is proto-differentiable. Indeed, in the case that B

10
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is the normal cone mapping of a polyhedric set C' C Y, the directional differentiability
of Jp = Projs was already shown in Mignot, 1976; Haraux, 1977, whereas the proto-
differentiability of B was proved later in Do, 1992, Example 4.6, see also Levy, 1999.
Moreover, the former proofs are rather elementary, whereas the latter proof utilizes Do,
1992, Theorem 3.9 which is based on Attouch’s theorem linking the Mosco-convergence
of convex functions with the graphical convergence of their subdifferentials.

Remark 13. We comment on some extensions and limitations of Theorem 12.

(i) The strong monotonicity of A can be replaced by requiring that the linearized
equation (9) possesses solutions for all h € U and by assuming that the assertion
of Theorem 4 holds.

(ii) It is not possible to adapt the proof to the situation of Remark 10. Indeed, if we
only assume weak directional differentiability of Jp, we only get (y, — y*)/tn, — ¢
and, thus, only ¢, — 0 (if A is Bouligand differentiable). This, however, is not
enough to obtain ||y, — ¥n|| = o(t,) in the last step of the proof.

(iii) Another approach for proving Theorem 12 is to directly consider ¢, := S(u*+t,h).
Due to the Lipschitz continuity of S, one gets (g, —y*)/t, — 0 along a subsequence
for some § € Y. The next step would be to perform a Taylor expansion of
A(Gn, u* + tyh) — A(y*, u*), but this needs stronger differentiability assumptions
for A, e.g., Bouligand /Fréchet differentiability w.r.t. its first argument, cf. Christof,
Wachsmuth, 2020, Remark 2.3(iii), Theorem 2.14. In the above proof, this is
avoided via the construction of y,,.

Finally, we mention that the directional differentiability of J,,p for some pg > 0 implies
the directional differentiability for all p > 0.

Corollary 14. Let B: Y x U = Y* as in Assumption 3(ii) be given and fix (¢*,u*) €
Y x U. With y* = Jp(¢*,u*), the following are equivalent.

1 There exists Lo > 0 SUCh th&t the resolvent J B is directionally differentiable at
PO

(ii) For all p >0, J,p is directionally differentiable at (y* + p(¢* — y*), u*).

Proof. This follows from Theorem 12, since J,p: (x,u) — y is the solution mapping of
0€ B2 R(y— )+ poB(y,u) and y* = Jop(y* + p(g” — y*),u").

Similarly, an application of Theorem 12 shows that the directional differentiability of
the resolvent Jp is actually independent of the Riesz isomorphism R of Y and, thus,
independent of the inner product in Y.

11
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3.3 Relation to proto-differentiability

The purpose of this section is to shed some light on the relation of directional differentia-
bility of the resolvent Jp and the proto-differentiability of B.

We first fix the notion of proto-differentiability of the parametrized set-valued map B.

Definition 15. Let (y*,u*) € Y x U be given, such that Assumption 3(ii) is satisfied.
For some &* € B(y*,u*) and (0,h) € Y x U, we define

B(y* +td,u* +th) — &*
t

AB(y",u [ £7)(6,h) = (10)
for t > 0 small enough. We say that B is proto-differentiable at (y*,u*) relative to
¢* € B(y*,u*) if the graph of A;B(y*,u* | £*)(-,h): Y =2 Y* converges as t \, 0 in the
sense of Painlevé—Kuratowski, see Adly, Rockafellar, 2020, Definition 2, for all h € U.
In this case, we define its proto-derivative DB(y*,u* |£*): Y x U = Y* via

graph DB(y*, u* [ £¥)(-, h) := graph limy o AB(y", u™ [ £¥)(-, h)

forall h e U.

Although the operator A;B(y*,u* | £*)(-, h) defined in (10) is maximally monotone, cf.
Adly, Rockafellar, 2020, Lemma 1, its graphical limit DB(y*, u* | £*)(-, h) might fail to
be maximally monotone, even if it exists, see Wachsmuth, 2021, Theorem 2.

Lemma 16. Let (y*,u*) € Y x U be given, such that Assumption 3(ii) is satisfied.
Further, let ¢* € Y be given such that y* = Jp(¢*,u*) and we set £* := R(q¢* — y*) €
B(y*,u*). Then, the following are equivalent.

(i) The mapping Jp is directionally differentiable at (¢*, u™*).

(i) The mapping B is proto-differentiable at (y*,u*) relative to £* and its proto-
derivative DB(y*,u* | £*)(+, h) is maximally monotone for all h € U.

Proof. By defining A(y,u) := R(y — ¢*) it can be easily checked that (y*,u*) is a
solution of (1) and that Assumption 8 is satisfied.
In order to apply the results from Adly, Rockafellar, 2020, we fix h € U and tg > 0
such that u* +th € U for all ¢t € [0,tp). We define

By, (t,y) := B(y,u* + th) Vt € [0,t9),y €Y.

Now, it can be checked that A;B(y*,u* | £€*)(-,h) coincides with A,By(y* | £*)(-) as
defined in Adly, Rockafellar, 2020, (9). Thus, B is proto-differentiable at (y*,u*)
relative to &* if and only if By, is proto-differentiable at y* relative to £* for all h € U
and we have the formula

DB(y*,u* | €)(-h) = DBy(y" | €°)()

12
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for the corresponding proto-derivatives.

“=": Due to Jg(q,u* +th) = Jp (t,q), we get that Jp is directionally differentiable.
Further, Jp (t,q) € Y is Lipschitz continuous w.r.t. ¢ € Y and, thus, we get the
semi-differentiability (see Adly, Rockafellar, 2020, Definition 1) of J 5, at ¢*. Now, we
can apply Adly, Rockafellar, 2020, Remark 5 to obtain that Jp is proto-differentiable
at ¢" relative to y* = Jz (0,¢*). Now, Adly, Rockafellar, 2020, Lemma 2 yields that Bj,
is proto-differentiable at y* relative to £*. As explained above, this yields the desired
proto-differentiability of B. Moreover, from these arguments, we can distill the formula

= (R+DB(y",u" | €)( h) ™"

Since a maximal monotone mapping is uniquely determined by its resolvent, this shows
that DB(y*,u* | £*) coincides with the mapping defined in Lemma 9 and, therefore, is
maximally monotone.

“«<”: Using similar arguments as above, this follows from Adly, Rockafellar, 2020,
Theorem 2.

In particular, the normal cone mapping to a polyhedric set is proto-differentiable and
the proto-derivative is given as in Proposition 11. As already mentioned, this result is
known from Do, 1992; Levy, 1999.

4 Quasi-generalized equations

In this section, we treat the generalization
0€ A(y,u)+ By — (y,u), u) (3)

of (1). Here, ®: Y x U — Y is an additional mapping. We will follow two approaches
to investigate the solution mapping of (3). In the first approach, we reformulate (3) in
the form (1) by introducing a new variable z = y — ®(y,u). This idea was successfully
used in Wachsmuth, 2020 to prove the directional differentiability of QVIs. The second
approach, which was pioneered in Alphonse, Hintermiiller, Rautenberg, 2019, uses a
iteration approach, i.e., it builds a sequence (Y n)nen, in which y,, , solves

0€ A(yu,m u) + B(yu,n - (I)(yu,nfly u)7 u)

We shall see that both approaches will use a similar set of assumptions.

Assumption 17. We assume that (y*,u*) € Y x U is a solution of (3) such that the
operators A and B satisfy Assumption 3. In addition, ®: Y x U — Y is continuous
at (y*,u*) and ®(-,u) is locally a uniform contraction, i.e., there exists a Lipschitz

13
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constant Lg € [0,1) such that

19 (y2, ) = D(y1, u)l| < Lally2 — y1]

for all y1,y2 € B:(y*) and for all u € U.

Assumption 18. In addition to Assumption 17, we require
(a) Lo <7y',or

(b) Lo < 2/74/(1+74) and there exists a function g: U.(y*) x U — R such that A
is the Fréchet derivative of g w.r.t. the first variable,

where 74 = La/pa > 1 is the local condition number of A.

Assumption 19. In addition to Assumption 17, we assume that
(i) A is directionally differentiable at (y*, u*).

(ii) Jp is directionally differentiable at (¢* — ¢*, u*) with ¢* = y* — R~'A(y*,u*) and
9" = D(y*,u").

(iii) ® is directionally differentiable at (y*, u*).

As a preparation, we state a consequence of Assumption 18.

Lemma 20. Let Assumption 18 be satisfied. Then, there are constants C' > 0 and
¢ € (0,1), such that for all y1,y2, 21, 22 € B:(y*) we have

(A(z2,u) — A(z1,u), 22 — P(y2,u) — 21 + ®(y1,u)) > C(sz —z|? = &y — y1||2)~

Proof. We denote the left-hand side of the inequality by M € R.
In case that Assumption 18(a) holds, we have

2 72
A L4 L
M > pallze — 211% = LaLollz — zilllyz — sl > 220122 — 2112 — “A72|lya — |2,
2 214
i.e., we can use C' = puq/2 and ¢ = LyLo/pia = yaLle < 1.
Under Assumption 18(b), we first consider z1, z2 € Us(y*). Theorem 2 yields

M> paLla 1
pa+ La A+ La
— Lo||A(z2,u) — A(z1, w)][|ly2 — vl

pa+ La)L2
21||2——( I )(I’H?JQ

[ |A(z2,u) — A(z1, u)|?

pmala

_raA~A o 2
“pua+La wll

|22 —

Here, we have used Young’s inequality. Since everything is continuous w.r.t. 21,29 € Y,

14
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the inequality carries over to z1, z2 € B:(y*). Now, we can choose C' = paLa/(pa+La)
and ¢ = (ua + La)La/(2v/uaLla) = (1 +v4)La/(2/74) < 1.

Interestingly, this already shows that (locally) (3) has at most one solution.

Lemma 21. Let Assumption 18 be satisfied. Then, for each u € U, (3) has at most
one solution in B.(y*).

Proof. Let y1,y2 € B:(y*) be solutions of (3). Due to —A(y;,u) € B(y; — ®(y;),u) we
get
(A(y2,u) — A(yr,u), 1 — (y1,u) — y2 + (y2,u)) =2 0

and Lemma 20 shows C(1 — &)|ly2 — 1> <0, i.e., y1 = y2.

4.1 Via a reformulation as GE

In this first approach, we reformulate (3) via the new variable

z=y—D(y,u). (11)

Let us first check that this transformation is locally well defined.

Lemma 22. Let Assumption 17 be satisfied. There exists neighborhoods Z C Y and
U CU of z* :=y* — ®(y*,u*) and of u*, respectively, such that the equation (11) has a
unique solution y € B.(y*) for all (z,u) € Z x U.

Moreover, the mapping

(d—®(,u)"": Z > B.(y")
is Lipschitz with constant (1 — Lg) ™! for all u € U.

Proof. We define the mappings A: Y x (Y xU) - Y*and B: Y x (Y xU) = Y* via
Ay, (z,u) == R(y — 2 — @(y,u)), By, (z,u)) == {0}.
Now, our transformation (11) is equivalent to the generalized equation
0 € A(y, (2,u)) = B(y, (2,u))

and the first part of the assertion follows from Theorem 4.
To estimate the Lipschitz constant, we take 21,22 € Z and set y; = (id —®(-,u)) 71 (2;)
for ¢ = 1,2. Then,

ly2 = w1l = llz2 + @(y2, u) — 21 = P(yr, w)|| < llz2 — 21] + Laly2 — v |

and this shows the claim.

15
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Using the result of Lemma 22, we transform (3) into
0 € A(z,u) + B(z,u), (12)
where A: Z x U — Y is defined via
A(z,u) = A((Id =@ (-, u)) " H(2), u).

By inserting the definitions, we verify that (3) and (12) are locally equivalent.

Lemma 23. Let Assumption 17 be satisfied.

(a) If (y,u) € B:(y*) x U is a solution of (3) with z := y — ®(y,u) € Z, then z is a
solution of (12).

(b) If (z,u) € Z x U is a solution of (12), then y := (id —®(-,u))~*(2) is a solution of
(3)-

Note that z € Z in (a) is satisfied if (y, u) is sufficiently close to (y*,u*).

By using the ideas of Wachsmuth, 2020, Lemmas 3.3, 3.5, we check that the analysis
from Section 3 applies to (12). In what follows, we use z* := y* — ®(y*, u*).

Lemma 24. Let Assumption 18 be satisfied. Then, the operator A: Z x U=y
satisfies Assumption 3 at (z*,u*).

Proof. Let n > 0 be given such that B,(z*) C Z. We have to show the existence of
i, Lz > 0 such that

(A(22,u) — A(z1,u), 220 — 21) > pjllz2 — 212
[A(22,u) = A(z1,u)|| < Ljll22 — 21

holds for all z1, 29 € By (2*) and for all u € U. The Lipschitz property follows directly
from Lemma 22 and it remains to prove the strong monotonicity.

Let 21,20 € By(2*) and u € U be arbitrary and set y; := (id —®(-,u)) " (2;) € B:(y*)
for ¢ = 1,2. Then, Lemma 20 implies

<A(z27u) - ‘Zl(zlvu)a z2 — 21> = <A(y27u) - A(ylvu)ayQ — Y1 — (I)(y%u) + (I)(yhu»
C(1=28)ly2 — 1>

v

In combination with

lz2 = 21l = [ly2 — y1 — @(y2, u) + Dy, w)|| < (14 La)lly2 — wll,

this shows the uniform strong monotonicity of A.
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In order to apply Theorem 12, we have to check that A is directionally differentiable. To
this end, we verify that (z,u) — (id —®(-,u))~(2) is directionally differentiable.

Lemma 25. Let Assumption 19 be satisfied. Then, U: Z x U — B:(y*), defined via
U(z,u) = (id —®(-,u))~!(2), is directionally differentiable at (z*,u*) and the directional
derivative 6 = W'(z*,u*; k, h) in direction (k,h) € Y x U is the unique solution of

§— @' (y*,u*;6,h) = k.

Proof. We define A and B as in the proof of Lemma 22. Then, ¥ is the solution
mapping (y,u) — z of
0e A(ya (Za u)) - B(y7 (z7 u))

and the assertion follows from Theorem 12.

Corollary 26. Let Assumption 19 be satisfied. Then, the operator A is directionally
differentiable at (z*,u*) and we have

fl'(z*,u*; k,h) = A'(y*,u*; W (25, u*; k, h), h).

Proof. We have

A(z,u) = A(Y(z,u),u)

with the operator ¥ from Lemma 25. Let (k,h) € Y x U be arbitrary. For ¢t > 0 we
have

A(z* + th,u* +th) — A(z*,u*)  A(U(z* + th,u* +th),u* + th) — A(U(z*, u*), u*)

t t
A(U(2F A th,ut 4 th),ut 4 th) — A(U (2", u*) + V' (2%, u*; k, h), u* + th)
N t
N AW (2%, u*) + 0 (2%, u*; k, ht),u* +th) — A(¥(2*,u*), u*) L 4D

Due to the Lipschitz continuity of A, the first term on the right-hand side is bounded
by

L
|00 < =20+ thyu” 4 th) = (=" w') — 00 (=", w's k. B)| = 0,

where we used the directional differentiability of ¥, see Lemma 25. Since A is direc-
tionally differentiable, we have

. Ak kT Sk
%{I(I)IQ—A(y,U,\IJ(Z’U,k,h),h)

and this shows the claim.

Theorem 27. Suppose that Assumptions 18 and 19 are satisfied. Then, for each
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h € U, there is ty > 0 such that
0 € A(yt,u+th) + B(yr — ®(y¢, u + th),u + th)

possesses a unique solution y; € B:(y*) for all ¢ € [0, tg]. Moreover, (y; — y*)/t — ¢ as
t ¢ 0, where 6 € Y is the unique solution of

0e€ A(y*,u*;0,h) + DB(y* — ®(y*,u™),u | €)(6 — ®'(y*,u*;0,h), h), (13)

where £* = —A(y*, u*).

Proof. Due to Lemma 23, (3) locally equivalent to (12). Owing to the previous
results, we can apply Theorem 12 to (12). In particular, Assumption 8(i) follows from
Corollary 26, whereas Assumption 8(ii) requires directional differentiability of Jp at
(z* — R7YA(2*,u*),u*) = (¢* — ¢*,u*) and this is ensured by Assumption 19(ii). If we
denote by z; € Z the local solution of (12) w.r.t. u = u* + th, then (z; — 2*)/t — k,
where k is the unique solution to

0c A'(z*,u*;k,h) + DB(z*,u* | €")(k, h)
= Al(y*,u*; W' (25, u* k), h) + DB(2*, u* | €)(k, h).

It is clear that this equation is equivalent to (13) via the transformation

k=§—® (y*, u*;6,h), ie., §=W'(2* u*;k, h).

Finally,
ye —y* Wz, u+th) — V(2% u")
t t
U(zy, u+ th) — W(z* + thk,u + th) N U(z* + th,u+ th) — U(z*, u*)

t t
— (2" u*;k, h) =6,

where we used that W(-,u + th) is Lipschitz continuous, see Lemma 22. The uniqueness
of y; in B.(y*) follows from Lemma 20.

We mention that Assumption 18 is mainly used (see Lemma 24) to show that the operator
A: ZxU —Y is locally (uniformly) strongly monotone in a neighborhood of (z*, u*).

4.2 Via an iteration approach

Here, we use a different approach to tackle

0€ A(y,u) + By — ®(y,u),u). (3)

18
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For u € U sufficiently close to u*, we consider the sequence (yyn)neny C Y defined via
Yu,0 =Y, (14a)
0 € A(Yun, u) + B(Yun — P(Yun-1,u),u). (14b)

We will see that this iteration is well defined in the sense that (14b) has a unique
solution y, , € B:(y*) under appropriate assumptions. This idea was used in Alphonse,
Hintermiiller, Rautenberg, 2019 to show the directional differentiability of QVIs. We
demonstrate that this idea can also be applied to (3).

In order to study (14b) with the methods from Section 3, we introduce the operators
A:Y x (Y xU) =Y ", B:Y x(Y xU)=2Y”* via

A(ya (¢7 ’LL)) = A(y7 U), B(ya (¢a U)) = B(y - st ’LL) (15)

Moreover, we set ¢* := ®(y*, u*). Then, under Assumption 17, it is clear that Assump-
tion 3 is satisfied by (A, B) at (v*, (y* — ¢*,u*)).

Moreover, for arbitrary (¢, (¢,u)) € Y x (Y xU) and p > 0, the point y = J,5(q, (¢, u))
solves

0€ R(y—q)+pBy,(¢,u) = R((y — ¢) — (a— ¢)) + pB(y — ¢,u),
i.e., we have the relation
JpB(Qa (¢7u)) = JpB(Q*¢,U)+¢ (16)
between the resolvents of B and B.

Next, we address the local solvability of (14b).

Lemma 28. Let Assumption 17 be satisfied and fix p, c and ¢, as in Theorem 4. Then,
for all r € (0,¢], (¢,u) € Y x U with

2o = &%l + [ TpB(ay — % u) = Jpp(q, — ¢, ul)ll + pll A" u) = A(y™, u) | < (1 —c)r

the equation
0€ A(z,u) + B(z — ¢,u)

has a unique solution z € B,(y*).

Proof. The equation can be recast as

0 € Ay, (¢,u)) + B(y, (¢, u))

and we are going to apply Theorem 4 with ¢ = 0. It is clear that Assumption 3 is
satisfied by (A, B) and the operator A possesses the same constants as A. Thus, it
remains to show that

1708(ap, (& w)) = Jpi(p, (07, u)) | + pll A" (9, w)) — A(y™, (@7, u))| < (1= o)r
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is satisfied. This, however, follows from the estimate

108(dps (6:1)) = Jpi(qp, (97, )| = | IpB gy — &, u) + ¢ = Jpp(g, — &7, u”) = &7
< |pBlgy — ¢,u) = Jon(g, — ¢ wll + o8 gy — 6%, w) — Jp(g, — &, u?)l
+ [l — ¢l
<2[l¢p = ¢*l + 1 JpB(g, — &7 u) = JoB(g, — ¢% u)|.-

Lemma 29. Let Assumption 17 be satisfied and fix p, c and ¢, as in Theorem 4. Then,
there exists a constant A € (0,¢], such that for all y € By(y*) and all u € U with

Co(u) = 2[|®(y", u) — @(y", w)l| + | JpB gy — 6%, u) — JoB(q, — &, u’)[|l+

. ar
oA ) — Al ) < Lo % )

3

the equation
0€ A(z,u) + B(z — ®(y,u),u)

has a unique solution z := T, (y) € B:(y*).

Proof. Using

[@(y, u) = ¢"|| < [|P(y, u) = D(y" w)l[ + [[@(y", u) — (v, u’)|
< Lolly =y I+ 19(y" u) = 2(y" u’)[| < LaAd + [|D(y", u) — 2(y", u?)]

the assertion follows from Lemma 28 with A = (1 — ¢)e/(4Lg).

In the next lemma, we apply the Banach fixed-point theorem to T, in order to show the
convergence of (14).

Lemma 30. Let Assumption 18 be satisfied and fix p, ¢, ¢; as in Theorem 4 and
choose A according to Lemma 29.

(a) There is a constant ¢ € (0,1), such that Tj,: By(y*) — B:(y*) is Lipschitz
continuous with modulus ¢é for all u € U.

(b) If uw € U is chosen such that C,(u) < (1 —c¢)min{(1—¢)\, e}, then T;, maps By(y*)
to Bx(y*). Moreover, the sequence (yyn)nen given by the iteration (14) satisfies

~n

[Yun — yull < mcp(u)a

where y,, € By(y*) is the solution of (3).

Proof. We start by proving (a). Let y1,y2 € Bx(y*) be given and set z; := T,,(y;) €
B:(y*), 1 =1,2. Then, —A(z;,u) € B(z; — ®(y;,u),u) and, thus, the monotonicity of
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B yields
(A(z2,u) — A(z1,u), 21 — ®(y1,u) — 22 + P(y2,u)) > 0.

Consequently, Lemma 20 implies
0> C(llz2 = 21| = &[ly2 — na|*),

i, 122 — 2112 < ellys — mll

Now, let u € U be chosen as in (b). This enables us to apply Lemma 28 with the
choices r = (1 — ¢)71Cy(u) < € and ¢ = ®(y*,u). This shows that T, (y*), which is
the solution of 0 € A(z,u) + B(z — ®(y*,u),u), satisfies ||T,(y*) —y*|| <r < (1 —¢&)A.
Consequently, every y € By(y*) satisfies

1Tu(y) =71l < [Tuly) = Tu(y") + 1 Tu(y”) =yl SEA+ (1 =)A= A
Thus, we can apply the Banach fixed-point theorem to obtain the existence of y, €
By (y*). Due to yo, = y* and y1,, = Ty, (y*), this also yields the a-priori estimate

~n ~n

— P
1— 5||yu,1 yu,OH — (1 _ C)(l _ 5)

Hyum - yu” < Cp(u).

The next lemma helps us to control the term C,(u* + th).

Lemma 31. Let Assumption 19 be satisfied and fix h € U. Then, for any p > 0, there
exist constants C' > 0 and tg > 0 such that

Co(u* +th) < Ct Vit e [0,t).

Proof. With g5 = y* — pRIA(y*,u*) and ¢* = ®(y*,u*) we have y* — ¢* = JoB(q; —
¢*,u*). Owing to Corollary 14, the directional differentiability of J,p at (g, — ¢*,u")
follows from the directional differentiability of Jp at (¢* — ¢*, u*) and this is guaranteed
by Assumption 19. Hence, for all terms appearing in the definition (17) of C,(u* + th),
we can utilize the directional differentiabilities of the involved operators and this yields
the desired estimate.

Theorem 32. Let Assumptions 18 and 19 be satisfied. For all h € U there exists
to > 0, such that for all ¢ € [0, ¢o], the equation

0 € A(ys,u+th) + B(ye — ®(yr,u + th),u +th)

has a unique solution y; € B)(y*), where A is chosen as in Lemma 29. Moreover, the
difference quotient (y; — y*)/t converges strongly in Y towards § € Y which is the
unique solution of the linearized equation

0€ A'(y",u";6,h) + DB(y" — @(y",u"), u" [ £7)(6 — '(y",u"; 6, h), h), (13)

where £* = —A(y*, u*).
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Proof. We fix h € U. Then, Lemmas 30 and 31 imply the existence of ¢y > 0, such that
for all t € [0,tp] the sequence (y¢n)nen defined via y; o := y* and each y,,, € B:(y*)
solves

0 € A(Yen, u” +th) + B(ysn — ®(yen—1,u” + th),u” +th),

satisfies
Y. =yl < Cte" (18)

where ¢ € (0,1) is as in Lemma 30 and C > 0 is a constant.
Next, we study the differentiability of y;,, w.r.t. ¢ > 0. We claim that for all n > 0, we
have the directional differentiabilities

Ytn t_ Yt - 5n7 q)(yt,nv u* ;_ th) — ¢*

— &' (y*, u*; 0, h), (19)
where dg = 0 and for n > 1 the point §,, € Y solves
0e A (y*,u*;0n,h) + DB(y* — ¢*,u* | £€) (6, — ®'(y*,u*; 6n_1,h), h). (20)

We argue by induction over n. The base case n = 0 is clear since y; 0 = y* = yo. Assume
that the assertion holds for n — 1. We abbreviate ¢;,, := ®(y¢n,u* + th). Using the
operators from (15), we can recast the equation for y; , as

0 € A(Yin, (Ptn—1,u" +th)) + By, (dtn—1,u” +th)).

Next, we apply Lemma 28 for £ > 0 small enough (depending on n) with ¢ := ¢* +t1)y ,,,
Y = O'(y*, u*; 0p—1, h) to obtain a solution J;, € B:(y*) of

0 € A(Gp,u" +th)+ B(Grn — " — t@/(y*, w5 0p—1,h), u”" +th)
or, equivalently,
0€ A(gt,na (¢* + td}t,n» U* + th)) + B(gt,m (¢* + t@bt,na U* + th))'

Now, we are in position to apply Theorem 12 and this yields (g, —y*)/t = d, in Y as
t \( 0, where §,, € Y solves

0 S A/(y*a (QZS*) U*)a 5717 (wtﬂl) h)) + DB(?J*: (¢*7 U*)a 5TL) (¢t,n7 h))

Using Lemma 9 and (16), we can relate DB and DB as follows

DB(y", (¢",u") | £) (6, (¥, 1))

= {&( k? ) |’f€Y5—st( (6", u")s K, (1, 1)}

= {R( ) |k €Y,6—1p = Jp(q" — ¢ u'sk —,h)}
= DB (y —<z> ut [€7)(0 =9, h).
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This results in the equation (20). By using the equations satisfied by v, and g, we
get

(A(Jtn,u" +th) — Ayt u” +th), Jem — Yen)
S <A(gt,na U* + th’) - A(yt,nv U* + th)a ¢* + tq),(y*a U*, 6n717 h) - q)(yt,nfl; U* + th)>

Consequently,
1 ~ LA * / * * *
;Hyt,n — Yl < mH(ﬁ + 1@ (y*, u* 6n—1,h) — P(ytn—1,u” +th)|[| = 0 ast\,0.

In combination with (g, — y*)/t — 0n, this yields the first convergence in (19). The
second convergence in (19) follows since @ is directionally differentiable and Lipschitz
w.r.t. its first argument. Consequently, (19) holds for all n > 0.

Thus, we have shown

i Ybn — v o=y
1m =

n—00 t

*

. Ytn — Y
d lim=/——>* = 21
and  lim == > (21)

where both limits exist (strongly) in Y. Moreover,

Yton — Yt
t

<o,
t ¢ =

yt,n—y*_yt—y*H:

cf. (18). This shows that the limit n — oo in (21) is uniform in ¢ € (0, ¢o]. Hence, the
classical theorem on the existence and equality of iterated limits ensures

_ * %
6 := lim yt = lim lim ¥n 7Y _ lim §,, inY.
t\0 t t\,0 n—00 t n—00 t\,0 t n—00

Yton —

Finally, passing to the limit n — oo in (20) yields the equation for 4.

Note that Assumption 18 is only used in Lemma 30. It can be replaced by requiring that
T, : Bx(y*) = B:(y*) is a contraction uniformly in u € U.

It is quite interesting to see that the approaches from Sections 4.1 and 4.2 use the same
assumptions and, actually, Theorems 27 and 32 coincide. If we look a little bit more
carefully, we see that in Section 4.1, Lemma 20 is only applied in the special case y; = z;,
i = 1,2, see Lemmas 21 and 24, whereas Section 4.2 requires the application in the
general case y; # z;, 1 = 1,2, see Lemma 30.

Altogether, it seems to be possible to craft special situations in which only one of the
approaches of Sections 4.1 and 4.2 is applicable. However, we think that (up to some
exceptional boundary cases) the range of applicability of both approaches coincide.
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5 Applications

5.1 Optimization with a parameter-dependent sparsity functional

As a first application, we consider the minimization problem
Minimize F(y)+ G(y,u) wart.yeY (P(u))

with a parameter v € U. Here, (Q,3, ) is a measure space and Y = U = L?(u).
Moreover, F': Y — R is a given functional and G: Y x U — R is defined via

Gly.w) = [ Juyld

Thus, (P(u)) models, e.g., optimal control problems which include a sparsity functional
and we are interested in the sensitivity of the solution y w.r.t. the distributed sparsity
parameter u.

Suppose that v* € U is fixed and y* € Y is a local minimizer of (P(u)). We assume that F'
is Fréchet differentiable in B.(y*) for some € > 0, such that its derivative F” is (uniformly)
strongly monotone and Lipschitz continuous on B (y*), see Assumption 3(i).

As it is usually done, we identify the dual space of Y = L?(u) with itself.

Due to the convexity of F', a point y € Y with ||y — y*|| < € is a local minimizer of (P(u))
with u € U if and only if
0e F,(y) + ayG(ya u)a

where
0,G(y,u) = {g € L*(Q) | G(v,u) > G(y,u) + /Qg(v —y)dp YveY}

is the subdifferential of G w.r.t. y. It is clear that Assumption 3 is satisfied with the
setting

A(y,u) == F'(y),  B(y,u) := 9,G(y, ).

In order to apply the results from Section 3, we have to study the properties of the
resolvent J,p, p > 0. It is clear that

o1
JpB(q,u) = ProX (.. (q) = arg mm/ —(v—q)% + pluv| dp.
veY Q2

Now, a pointwise discussion shows that the resolvent can be computed pointwise and is
given by a soft-shrinkage with parameter p|ul, i.e.,

JpB(q, u)(x) = shrink ) (q()) := max(|g(z)| — plu(x)],0) sign(q(x)).
Now, since

R? 2 (Q7 u) = Shrinkp|u\(‘]) = max(|q| - p|u|7 0) Sign(Q) €eR
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is Lipschitz continuous and directionally differentiable, it is easy to check that also the
associated Nemytskii operator J,p: Y x U — Y is Lipschitz continuous and directionally
differentiable. If, additionally, F’: Y — Y is directionally differentiable, we are in position
to apply Theorem 12 to obtain the directional differentiability of the (local) solution
mapping of (P(u)). Using Lemma 9, it is also possible to characterize the directional
derivative.

5.2 Quasi-linear QVIs

We demonstrate the applicability of our results to a QVI governed by a quasi-linear
operator. To this end, let 2 C R? be open and bounded and with Y = H3 () and
U = L*(Q) we define the quasi-linear operator A: Y x U — Y* via

A(y,u) == —divg(Vy,u) + f(u), ie. @M%u%w:iégﬂwﬂOVv+fwwd%

where g: R? x R — R? is (uniformly) strongly monotone w.r.t. its first argument; and
Lipschitz continuous and differentiable on R% x R. Moreover, f: R — R is differentiable
and Lipschitz continuous. These conditions imply that A satisfies Assumption 3 globally
on Y. Moreover, using the dominated convergence theorem, we can check that A is
directionally differentiable with

(A'(y,u;6,h),v) = /Q(g;(Vy, )V + g.(Vy,u)h) Vv + f'(u)hv dx,

see also Goldberg, Kampowsky, Troltzsch, 1992, Theorem 8.

To define the operator B, let K C Y be given such that Proj is directionally differentiable,
e.g., we could choose a polyhedric K. We set B(:) := Nk(-), where Nk is the normal
cone mapping of K. Note that B is independent of the variable .

With this setting, Assumptions 3 and 8 are satisfied. Next, we choose ®: Y x U — Y
such that there exists a Lipschitz constant Le € [0,1) with

[@(y2, u) — P(y1,u)|| < Lally2 — 1|

for all y1,92 € Y and all u € U. Further, we suppose that ® is directionally differentiable
and that Assumption 18 concerning the smallness of Lg is satisfied.

Since our assumptions on A, B and ® are global, we obtain that for all u € U, there
exists a unique solution y € Y of the QVI

0€ Ay, u) + By — ®(y,u)),

cf. Wachsmuth, 2020, Section 3. Since all the assumptions from Section 4 are satisfied,
our differentiability theorems imply that the mapping y — u is directionally differentiable.
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For a fixed parameter uv* € U we denote the solution by y* € Y. Then, The directional
derivative 6 € Y in the direction h € U is given by the solution of

0e€ A'(y*,u*;0,h) + DB(y* — ®(y*,u") | ) (0 — @' (y*, u"; 0, h)),

where £* = —A(y*,u*). We mention that in the particular case that the set K is
polyhedric, the set-valued mapping DB(y* — ®(y*, u*) | £*) coincides with the normal
cone mapping of the critical cone K = Tk (y*) N (£*)*, see Proposition 11.

It is also clear that the above assumptions and arguments can be localized if we already
have a solution y* of the QVI corresponding to the parameter u*.
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