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Optimal control of non-convex rate-independent systems via
vanishing viscosity – The finite dimensional case ∗

Dorothee Knees†, Christian Meyer†, Michael Sievers‡,

June 17, 2021

Dedicated to our teacher and good friend Fredi Tröltzsch on the occasion of his 70th birthday

Abstract

We investigate an optimal control problem governed by the evolution of a rate-independent system in finite
dimensions. The rate-independent system is determined by a (possibly) non-convex energy, which contains the
controllable, external load, and a dissipation potential, which is assumed to be positively homogenous of degree
one. Under the several different concepts of solutions for these rate-independent systems, we bear on the so-called
normalized parametrized BV solutions and prove the existence of a globally optimal solution of the optimal
control problem constrained by this notion of solution. Our main result however concerns the approximation
of optimal solutions by means of viscous regularization. The crucial issue in this context is that normalized
parametrized BV solutions are in general non-unique and lack regularity, whereas the viscous solutions are unique
and time-continuous. With the help of an additional regularity assumption on at least one optimal solution and
a tailored penalization of the energy, one can nonetheless show that global minimizers of the viscous optimal
control problems converge to an optimal solution of the original problem as the viscosity parameter tends to zero.

1 Introduction
The aim of this paper is to study an optimal control problem governed by the evolutionary system

0 ∈ ∂R(ż(t)) + ∂zI(`(t), z(t)), z(0) = z0, (RIS)

where the underlying space is Rn. Since the dissipation potentialR is assumed to be positive 1-homogeneous, the
system behaves rate-independent, i.e., the equation is indeed independent of the rate with which the external load
` is applied, and any rescaling of the time leads to a likewise rescaled solution. The other constitutive component
of (RIS) is the energy functional I. The precise assumptions on R and I are specified in Section 2 below. As
we will see, the energy is allowed to be non-convex and, for that reason, solutions are in general non-unique and
discontinuous. Therefore, several distinct notions of solutions have been developed in the past two decades. The
interested reader is referred to [Mie11, MR15] for a survey on the various concepts and a wide range of possible
applications. Here, we focus on the so-called normalized parametrized balanced viscosity (BV) solutions, a concept,
which has been introduced in [EM06] in a general form, but used earlier in e.g. [MSGM95, Bon96]. The precise

∗This research was supported by the German Research Foundation (DFG) under grant number ME 3281/9-1 within the priority program
Non-smooth and Complementarity-based Distributed Parameter Systems: Simulation and Hierarchical Optimization (SPP 1962).

†Universität Kassel, Institute forMathematics, Heinrich-Plett Straße 40, 34109Kassel, Germany, E-Mail: dknees@mathematik.uni-kassel.de
‡Technische Universität Dortmund, Fakultät für Mathematik, Vogelpothsweg 87, 44227 Dortmund, Germany, E-Mail: cmeyer@math.tu-

dortmund.de, michael.sievers@tu-dortmund.de

1



definition of this notion of solution is given in Definition 3.6 below. It arises as limit of the following regularized
viscous version of (RIS):

0 ∈ ∂R(ż(t)) + εż + ∂zI(`(t), z(t)), z(0) = z0, (RISε)

where ε > 0 is the viscosity parameter. The passage to the limit ε ↘ 0 together with a reparametrization of the
solution trajectory of (RISε) allows to establish the existence of a normalized parametrized BV solution consisting
of the triple (S, t̂, ẑ) ∈ [0,∞)×W 1,∞(0, S)×W 1,∞(0, S;Rn), where the physical time t̂ as well as the solution
ẑ are functions of an “artificial time” s ∈ [0, S]. In Section 3 below, the limit analysis is carried out in detail for
loads in ` ∈ H1(0, T ;Rn).
Based on the concept of normalized parametrized BV solutions, we introduce the following optimal control

problem

min J(S, z, `) := j(ẑ(S)) +
β

2
‖`‖2H1(0,T ;Rn)

s.t. ` ∈ H1(0, T ;Rn), (S, t̂, ẑ) ∈ [0,∞)×W 1,∞(0, S)×W 1,∞(0, S;Rn),

(S, t̂, ẑ) is a normalized parametrized BV solution associated with `,

−∇zI(`(0), z0) ∈ ∂R(0), −∇zI(`(T ), ẑ(S)) ∈ ∂R(0).


(1.1)

The assumptions on the data in (1.1) will be specified in Section 2 below. The motivation for this specific
optimization problem is as follows: The end time objective could for instance be of the form j(ẑ(S)) := 1

2‖ẑ(S)−
zd‖2 in order to minimize the deviation of the state at end time to a given desired state zd. Depending on the
Tikhonov parameter β > 0, the second part of the objective measures the control cost and guarantees the needed
regularity of the control variable `. The additional constraints at initial and end time ensure the local stability of
the initial and final state, which is physically motivated, see Remark 4.2 below.
Since the state equation (RIS) is in general not uniquely solvable as already mentioned above, there is no single-

valued control-to-state mapping. For this reason, (1.1) is more an optimization problem in function space rather
than an optimal control problem.
The main goal of this work is to approximate (optimal solutions of) (1.1) via viscous regularization, i.e., by

replacing the normalized parametrized BV solution concept by the viscous equation (RISε). In order to show that
optimal solutions of the regularized problems converge to solutions of (1.1) (in a certain topology) for viscosity
parameter tending to zero, the following steps have to be performed:

1. The existence of (weak) accumulation points of sequences of optimal solutions of the regularized problems
have to be verified.

2. Weak limits have to be feasible for the original problem (1.1).

3. In order to show the optimality of the weak limit, one has to construct a recovery sequence for at least one
optimal solution of the original problem.

The last item is also known as reverse approximation and might become a particularly challenging task in the
context of optimization of rate-independent systems, see [MR09]. This also happens to be the case here: In
contrast to (RIS), its viscous counterpart in (RISε) admits a unique solution. It is therefore very unlikely that one
can approximate every solution of (RIS) by means of vanishing viscosity and indeed, as the example in [MS20,
Section 2.4] demonstrates, this is in fact not true. However, in the context of optimal control and optimization,
respectively, we have an additional variable at hand in form of the control variable ` and, in order to construct a
recovery sequence, we have to find a sequence of tuples of state and control that are feasible for the viscous system
so that the associated objective function values converge to the optimal value of (1.1). This leads to much more
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flexibility in the construction of recovery sequences and is the essential ingredient for our reverse approximation
argument. Nevertheless, even with the control as additional variable at hand we are only able to construct a recovery
sequence under the fairly restrictive assumption that at least one optimal solution of (1.1) exists whose state is
continuous in the physical time, which is in general not true for rate-independent systems with non-convex energy
as explained above.
Let us put our work into perspective: Optimization and optimal control of rate-independent systems have been

considered by various authors and we only refer to [Bro87, BK13, AO14, BK15, CHHM16, SWW17, AC18, GW18,
Mün18] and the references therein. Albeit still nonsmooth, optimization problems of this type substantially simplify,
if the underlying energy is uniformly convex. In this case, (RIS) admits a unique solution that is continuous in the
physical time, which makes the construction of recovery sequences almost trivial. Nevertheless, the derivation of
optimality conditions is still an intricate issue, see [Wac12, Wac15, Wac16]. While all contributions mentioned so
far deal with uniformly convex energies, the literature becomes rather scarce, when it comes to energies that lack
strict convexity. In [Rin09b, Ste12, ELS13, EL14, KT18] the existence of optimal solutions for problems with non-
convex energies is addressed. The approximation of optimal control problems with non-convex energy by means
of time-discretization is investigated in [MR09, Rin09a] for the concept of energetic solutions, which substantially
differs from our notion of solution. For an overview over the various solution concepts for rate-independent systems,
we refer to [MR15]. The discretization leads to incremental minimization problems and, in order to resolve the
reverse approximation problem, the authors use ε-minimizers of these problems, i.e., solutions in each time step
that are only optimal up to a constant ε > 0. In this way, the set of discrete solutions is sufficiently enlarged in
order to contain a suitable recovery sequence. However, the optimal control problems discretized in this way are
all but straight forward to solve, since, similar to (RIS) itself, there is still no single-valued control-to-state map
(even worse, due to the ε-optimality, the set of discrete solutions is even enlarged). In contrast to this, the viscous
optimal control problems, where (RIS) is replaced by (RISε), provide a single-valued control-to-state operator. In
combination with a potential further smoothing, the viscous optimal control problems are therefore amenable for
standard adjoint-based optimization methods, see also Remark 6.5 at the very end of this paper.
The viscous regularization of an optimal control problem is also investigated in [MW20], where the rate-

independent system of perfect plasticity is considered. Using the particular structure of this problem, the reverse
approximation property is realized by means of an additional control variable, which is enforced to vanish as
the viscosity parameter tends to zero. Here, we pursue a different approach and convexify the energy by adding
a tailored quadratic penalization. It turns out that a finite penalization parameter suffice to obtain a uniformly
convex energy, which is the essential for the vanishing viscosity analysis and the reverse approximation property,
respectively.

Plan of the paper Before we investigate the state system and analyze the convergence behavior of viscous
solutions for viscosity parameter tending to zero in Section 3, we introduce our notation and list the standing
assumptions in Section 2. In Section 4, we then turn to the actual optimal control problem and establish the
existence of global minimizer. Sections 5 and 6 are finally devoted to the viscous approximation of the optimal
control problem. As already indicated above, the crucial result in this context is the reverse approximation property,
which is established in Section 5. With this at hand, it is straightforward to obtain a convergence result for global
minimizers of the viscous optimal control problem for viscosity parameter tending to zero, which is presented in
Section 6. The paper ends with two appendices concerning auxiliary results connected to the chain rule for Sobolev
functions and a uniqueness result for solutions to (RIS) in case of uniformly convex energies.
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2 Notation and standing assumptions
Throughout this paper, ‖ · ‖ denotes the Euclidian norm and 〈· , ·〉 the associated scalar product. Given a twice
differentiable function g : Rn → R, we denote its Hessian by ∇2g and, with a slight abuse of notation, the
corresponding bilinear form is denoted by the same symbol. For a convex function g : Rn → (−∞,∞], the convex
subdifferential and the (Fenchel-)conjugate functional are denoted by ∂g and g∗, respectively. Moreover, given a
point v ∈ Rn and a set M ⊂ Rn, we define dist(v,M) := infm∈M ‖v −m‖. Finally, C > 0 denotes a generic
constant.

The following standing hypotheses on the data in (1.1) are tacitly assumed to hold throughout the whole paper
without mentioning them every time.

Energy Throughout the paper, the energy functional I : Rn × Rn → R, n ∈ N is supposed to satisfy the
following conditions:

I ∈ C1(Rn × Rn;R) , ∇zI locally Lipschitz on Rn × Rn, (2.1)

∃λ, κ, µ > 0 ∀ ` ∈ Rn, z ∈ Rn : ‖∇`I(`, z)‖2 ≤ λ
(
I(`, z) + κ

)
+ µ‖`‖2. (2.2)

Moreover, we assume that

∀L > 0, R ∈ R the sets SL,R := {(`, z) : ‖`‖ ≤ L, I(`, z) ≤ R} are compact. (2.3)

Dissipation Concerning the dissipation potential, we suppose that R : Rn → [0,∞] is convex, lower semicon-
tinuous, positively homogeneous of degree one and satisfies

∃ cR > 0 ∀ z ∈ Rn : R(z) ≥ cR ‖z‖ . (2.4)

Example 2.1. Let us give an example fulfilling the above assumptions:

I(z) := 1
2 〈Az, z〉+ f(z)− 〈`, z〉, R(z) := ‖z‖,

where A ∈ Rn×n is symmetric and positive definite and f : Rn → R is bounded from below and continuously
differentiable with locally Lipschitz derivative fulfilling the following growth condition:

lim
‖x‖→∞

α

2
‖z‖2 + f(z)→∞ with α < λmin(A),

where λmin(A) > 0 denotes the minimal eigenvalue of A.

Initial state and end time For the initial state z0 ∈ Rn of the rate-independent evolution, we assume that there
is a load vector `0 ∈ Rn such that −∇zI(`0, z0) ∈ ∂R(0), i.e., the initial state is locally stable. Moreover, the end
time T > 0 is fixed throughout the paper.

Data in the optimization problem The Tikhonov parameter β in the objective is a fixed positive real number.
Moreover, the end time objective j : Rn → R is supposed to be continuous and bounded from below.
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3 Analysis of the state system
Before we are in the position to investigate the optimal control problem in (1.1), we first need to study the rate-
independent state system and its viscous regularization in detail. For the rest of this section, the control variable in
terms of the applied loads is therefore a fixed function ` ∈ H1(0, T ;Rn). We point out that the vanishing viscosity
analysis for rate-independent systems with loads inH1 has already been carried out in [KT18], even in the infinite
dimensional case, where the underlying space is a Banach space an not just Rn. However, for convenience of the
reader and for the sake of later reference, we present the arguments in the following two subsections. Moreover, in
the finite dimensional setting, some assumptions can be relaxed, e.g. the boundedness of the dissipation potential,
cf. [KT18, Eq. (1.1)].

3.1 Existence and uniqueness for viscous regularized system

As already indicated in the introduction, the existence of a normalized parametrized BV solution can be shown by
means of viscous regularization, which leads to following viscous problem

0 ∈ ∂R(żε(t)) + ε żε(t) +∇zI(`(t), zε(t)), zε(0) = z0, (RISε)

with viscosity parameter ε > 0. The main advantage in (RISε) compared to (RIS) is that the regularized version
provides a unique solution. Indeed, we have the following existence and regularity result.

Proposition 3.1. For every ε > 0, every ` ∈ H1(0, T ;Rn) and all z0 ∈ Rn, there exists a unique function
zε ∈ H2(0, T ;Rn) satisfying (RISε).
Moreover, the following estimates are valid with λ and c as in (2.2) and a further constant C > 0 that is

independent of ε:

I(`(t), zε(t)) ≤ eλt
(
I(`(0), z0) + κλT + ‖`‖2H1(0,T ;Rn)

)
, (3.1a)

‖zε‖L∞(0,T ;Rn) ≤ C
(
1 + I(`(0), z0) + ‖`‖2H1(0,T ;Rn)

)
, (3.1b)∫ T

0

Rε(żε(r))dr +

∫ T

0

R∗ε(−∇zI(`(r), zε(r)))dr ≤ C
(
1 + I(`(0), z0) + ‖`‖2H1(0,T ;Rn)

)
. (3.1c)

Proof. The arguments are rather standard, but, for convenience of the reader, we shortly sketch the proof. For
ε > 0, letR∗ε be the conjugate functional in the sense of convex analysis of

Rε(z) := R(z) +
ε

2
‖z‖2. (3.2)

From the 1-homogeneity of R it follows that ∂R∗ε is single-valued and globally Lipschitz continuous, and (RISε)
can be rewritten as

żε(t) = ∂R∗ε(−∇zI(`(t), zε(t))), zε(0) = z0. (3.3)

For givenM ∈ N and δ > 0, denote the orthogonal projection on the ball BM (0) with radiusM by ΠM and fix a
regularized version thereof, denoted by Πδ

M , with the following properties:

Πδ
M ∈ C1(Rn;Rn), Πδ

M (v) = ΠM (v) ∀ v ∈ BM (0), ‖DΠδ
M‖L∞(Rn;Rn) ≤ C, (3.4)

where DΠδ
M denotes the Jacobian of Πδ

M . Given Πδ
M , we consider the following modified ODE

ζ̇(t) = ∂R∗ε
(
DΠδ

M

(
ζ(t)

)>(−∇zI[`(t),Πδ
M (ζ(t))]

))
, ζ(0) = z0. (3.5)

Due to the local Lipschitz continuity of∇zI, ` ∈ H1(0, T ;Rn) ↪→ C([0, T ];Rn), and the boundedness assumption
in (3.4), the function ζ 7→ ∂R∗ε(DΠδ

M (ζ)>ΠM (−∇zI[`(t),ΠM (ζ)])) is globally Lipschitz continuous w.r.t. ζ,
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as locally Lipschitz continuous functions are globally Lipschitz on convex and compact sets. Therefore, the
Picard-Lindelöf theorem implies the existence and uniqueness of a global solution ζ ∈ C1([0, T ];Rn).
We proceed with showing the estimates (3.1a)-(3.1c) for ζ provided thatM is chosen sufficiently large. To this

end, we use the Fenchel-Young equality as well as the chain rule for Sobolev functions, cf. e.g. [Zie12, Thm. 2.1.11],
to rewrite (3.5) equivalently as

Rε(ζ̇(t)) +R∗ε
(
DΠδ

M

(
ζ(t)

)>(−∇zI[`(t),Πδ
M (ζ(t))]

))
=
〈
−∇zI[`(t),Πδ

M (ζ(t))], DΠδ
M (ζ(t))ζ̇(t)

〉
=

d
dt
I[`(t),Πδ

M (ζ(t))]−∇`I[`(t),Πδ
M (ζ(t))] ˙̀(t)

(3.6)

which holds for almost all t ∈ [0, T ]. Integration of this equality implies the following energy-dissipation identity,
that holds for all t ∈ [0, T ]:

I[`(t),Πδ
M (ζ(t))] +

∫ t

0

Rε(ζ̇(r)) +R∗ε
(
DΠδ

M (ζ(t))>(−∇zI[`(r),Πδ
M (ζ(r))])

)
dr

= I(`(0), z0) +

∫ t

0

∇`I[`(r),Πδ
M (ζ(r))] ˙̀(r)dr,

(3.7)

where we assumed that M ≥ ‖z0‖. With Youngs inequality and assumption (2.2) the right hand side can be
estimated as∫ t

0

∇`I[`(r),Πδ
M (ζ(r))] ˙̀(r)dr ≤ ‖`‖2H1(0,t;Rn) +

∫ t

0

λ
(
I[`(r),Πδ

M (ζ(r))] + κ
)

+ µ‖`(r)‖2dr. (3.8)

The non-negativity of Rε as well as R∗ε along with (3.7), (3.8), and Gronwall’s lemma imply (3.1a) for Πδ
M (ζ)

instead of zε, i.e.,

I[`(t),Πδ
M (ζ(t))] ≤ eλt

(
I(`(0), z0) + κλT + (1 + µ)‖`‖2H1(0,T ;Rn)

)
, (3.9)

Together with (3.7) and (3.8), this leads to an estimate analogous to (3.1c):∫ T

0

Rε(ζ̇(r))dr +

∫ T

0

R∗ε
(
DΠδ

M (ζ(t))>(−∇zI[`(r),Πδ
M (ζ(r))])

)
dr

≤ C(1 + I(`(0), z0) + ‖`‖2H1(0,T ;Rn)).

(3.10)

Thanks to assumption (2.4), this in turn implies

‖ζ(t)‖ ≤
∫ T

0

‖ζ̇(r)‖dr ≤ 1

cR

∫ T

0

Rε(ζ̇(r))dr ≤ C(1 + I(`(0), z0) + ‖`‖2H1(0,T ;Rn)). (3.11)

So, if we chooseM ≥ C(1 +I(`(0), z0) +‖`‖2H1(0,T ;Rn)), then the truncation in (3.5) becomes superfluous, since
Πδ
M = ΠM = identity in BM (0) by assumption. Therefore, (3.3) is equivalent to (3.5) and consequently, ζ also

solves (3.3) in this case such that (3.3) indeed admits a unique solution as claimed. In addition, the estimates in
(3.9)–(3.11) readily carry over to zε instead of ζ and Πδ

M (ζ), resp., ifM is sufficiently large.
The claimed regularity of zε finally follows from (3.3) and the Lipschitz continuity of the right-hand side.

Note that, due to the regularity of zε the ODE in (3.3) even holds for all t ∈ [0, T ]. Beyond this, we have the
following additional properties of solutions to (RISε) that turn out to be useful for the derivation of the reverse
approximation property, see Section 5 below.

Lemma 3.2. Let z0 ∈ Rn satisfy −∇zI(`(0), z0) ∈ ∂R(0). Assume further I ∈ C2(Rn × Rn,R). If zε ∈
H2(0, T ;Rn) is a solution of (RISε), then

ε〈żε(t), z̈ε(t)〉+∇2
zzI(`(t), zε(t))[żε(t), żε(t)] +∇2

`zI(`(t), zε(t))[ ˙̀(t), żε(t)] = 0 (3.12)

holds for almost all t ∈ [0, T ]. Moreover, it holds żε(0) = 0.
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Proof. The proof of (3.12) is similar to the proof of Lemma 5.6, see also [Mie11, Lem. 4.16].
For the second assertion, we again employ (3.3). Since żε ∈ H1(0, T ;Rn) ↪→ C([0, T ];Rn) and ∂R∗ε is

Lipschitz-continuous, this equation holds for every t ∈ [0, T ] and hence,

żε(0) = ∂R∗ε(−∇zI(`(0), z0)). (3.13)

Now, exploiting the inf-convolution formula we obtain

R∗ε(w) =
1

2ε
dist(w, ∂R(0))2. (3.14)

The assumption −∇zI(`(0), z0) ∈ ∂R(0) thus yields

R∗ε(−∇zI(0, z0)) + 〈0, η +∇zI(0, z0)〉 = 0 ≤ R∗ε(η) ∀η ∈ Rn, (3.15)

so that 0 ∈ ∂R∗ε(−∇zI(0, z0)) by the definition of the convex subdifferential. Since ∂R∗ε is a singleton as seen
above, (3.13) gives żε(0) = 0.

3.2 Vanishing viscosity and normalized parametrized BV solutions

We now turn to the convergence analysis for ε ↘ 0 in (RISε), where, in view of Section 4, we allow for a further
variation of the loads. This vanishing viscosity limit leads to the precise definition of normalized parametrized BV
solutions, see Definition 3.6 below. The key tool for the limit analysis is a tailored reparametrization by a specific
"energy arc-length". To this end, we follow closely the arguments from [MRS12]: For v, w ∈ Rn let

p(v, w) := R(v) + ‖v‖ dist
(
w, ∂R(0)

)
, (3.16)

be the so-called vanishing-viscosity contact potential. We do not want to elaborate on the properties of p here and
refer to [MRS12] for details. However, let us mention that, for any ε > 0, it holds p(v, w) ≤ Rε(v) + R∗ε(w).
Indeed, by the Young inequality, we have

p(v, w) = R(v) + ‖v‖ dist
(
w, ∂R(0)

)
≤ R(v) +

ε

2
‖v‖2 +

1

2ε
dist

(
w, ∂R(0)

)2
= Rε(v) +R∗ε(w). (3.17)

To proceed, we define

sε(t) := t+

∫ t

0

p(żε(r),−∇zI(`ε(r), zε(r)))dr and Sε := sε(T ). (3.18)

Since sε is a strictly increasing function in t it provides an inverse function s−1ε : [0, Sε] → [0, T ] by which we
define the final reparameterization

t̂ε(s) := s−1ε (s) and ẑε(s) := zε(t̂ε(s)). (3.19)

It is easy to verify that (t̂ε, ẑε) : [0, Sε]→ [0, T ]× Rn are Lipschitz continuous and satisfy

t̂′ε(s) + p(ẑ′ε(s),−∇zI(`ε(t̂ε(s)), ẑε(s))) = 1 (3.20)

for almost all s ∈ [0, Sε].

Lemma 3.3. Let (`n)n∈N ⊂ H1(0, T ;Rn) and (t̂n) : n ∈ N ⊂ W 1,∞(0, S), S > 0, be sequences with `n ⇀ `

weakly in H1(0, T ;Rn) and t̂n
∗
⇀ t̂ in W 1,∞(0, S) satisfying t̂n(0) = 0, t̂n(S) = T , and t̂′n(s) ≥ 0 f.a.a.

s ∈ (0, S) and all n ∈ N. Then

`n ◦ t̂n ⇀ ` ◦ t̂ weakly in H1(0, S;Rn). (3.21)
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Proof. First observe that, by Lemma A.1, ˆ̀
n = `n ◦ t̂n is an element of H1(0, S;Rn) and ‖ˆ̀′n‖L2(0,S;Rn) ≤

‖t̂′n‖L∞(0,S)‖ ˙̀
n‖L2(0,T ;Rn), which implies that (ˆ̀

n)n∈N is bounded in H1(0, S;Rn). Consequently, there exists a
subsequence, denoted by the same symbol for simplicity, converging weakly to some ¯̀ in H1(0, S;Rn). On the
other hand, due to the compact embeddings, it holds `n → ` uniformly in C([0, T ];Rn) and t̂n → t̂ uniformly in
C([0, S]). Hence, `n ◦ t̂n converges uniformly to ` ◦ t̂ in C([0, S];Rn) and also strongly in L2(0, S;Rn). Now,
since weak and strong limit coincide, we obtain ¯̀= ` ◦ t̂, which finishes the proof.

As an immediate consequence of the above lemma and the compact embeddingH1(0, S;Rn) ↪→ C([0, T ];Rn)

in combination with the continuity of ∇`I, we obtain the following

Corollary 3.4. Let (ẑn)n∈N ⊂ C([0, S];Rn) with ẑn → ẑ in C([0, S];Rn) and let (`n)n∈N ⊂ H1(0, T ;Rn) and
(t̂n)n∈N ⊂W 1,∞(0, S) be sequences that converge as in Lemma 3.3. Then for all s ∈ [0, S] it holds

lim
n→∞

∫ s

0

∇`I(ˆ̀
n(r), ẑn(r))ˆ̀′

n(r)dr =

∫ s

0

∇`I(ˆ̀(r), ẑ(r))ˆ̀′(r)dr, (3.22)

where ˆ̀
n := `n ◦ t̂n and ˆ̀ := ` ◦ t̂.

After these preparatory steps, we are now in the position to formulate the following Theorem for the vanishing
viscosity limit (ε↘ 0) under an additional weak convergence of the loads `ε in H1(0, T ;Rn).

Theorem 3.5 (Vanishing viscosity limit). Let (zε)ε>0 be solutions to (RISε) with `ε ∈ H1(0, T ;Rn) and fixed
z0 ∈ Rn. Let further `ε weakly converge to some ` in H1(0, T ;Rn). Then there exists S > 0, (t̂, ẑ) ∈
W 1,∞(0, S;R× Rn) and a vanishing sequence (εn)n∈N (i.e. εn ↘ 0) such that

Sεn → S, (t̂εn , ẑεn)
∗
⇀ (t̂, ẑ) inW 1,∞(0, S;R× Rn) (3.23)

together with uniform convergence on [0, S]. Together with ˆ̀ := ` ◦ t̂, the limit functions satisfy the following
system:

t̂(S) = T, ẑ(0) = z0, (3.24)

for a.a. s ∈ (0, S) : t̂′(s) ≥ 0, t̂′(s) + p(ẑ′(s),−∇zI(ˆ̀(s), ẑ(s))) = 1, (3.25)

t̂′(s) dist(−∇zI(ˆ̀(s), ẑ(s)), ∂R(0)) = 0, (3.26)

for all s ∈ [0, S] : I(ˆ̀(s), ẑ(s)) +

∫ s

0

R(ẑ′(σ)) + ‖ẑ′(σ)‖ dist(−∇zI(ˆ̀(s), ẑ(s)), ∂R(0))dσ

= I(ˆ̀(0), z0) +

∫ s

0

∇`I(ˆ̀(σ), ẑ(σ))ˆ̀′(σ)dσ.

(3.27)

Moreover, every cluster point in the above sense of the sequence (Sε, t̂ε, ẑε)ε>0 satisfies (3.25)–(3.27).

Note that the Theorem in particular includes the case where `ε ≡ `. The proof is essentially identical to the
arguments presented in [MRS12, Section 5]. For convenience, we repeat here the main steps.

Proof. First of all, we show that the arc-length Sε is uniformly bounded. Therefore, we observe that by the weak
convergence of `ε inH1(0, T ;Rn) the sequence is also bounded. Due to the compact embeddingH1(0, T ;Rn) ↪→c

C([0, T ];Rn) and the continuity of I, the same also holds true for I(`ε(0), z0). Now, thanks to (3.17) and estimate
(3.1c) it holds

Sε = T +

∫ T

0

p(żε(r),−∇zI(`ε(r), zε(r)))dr ≤ C
(
1 + I(`(0), z0) + ‖`ε‖2H1(0,T ;Rn)

)
. (3.28)
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By the boundedness of I(`ε(0), z0) and ‖`ε‖H1(0,T ;Rn) we thus have Sε ≤ CS for some constant CS > 0

independent of ε. Therefore, the end time Sε is uniformly bounded and we can extract a subsequence converging
to some S. Let further S̃ = supε>0 Sε. Since every parametrized solution ẑε is defined on its own time horizon
[0, Sε], we extend them to [0, S̃] by constant continuation. Note that we still have S̃ ≤ CS . From the normalization
condition in (3.20) in combination with the definition of p and assumption (2.4), we find that (t̂ε, ẑε) is uniformly
bounded inW 1,∞(0, S̃;R× Rn) independent of ε, so that the convergences in (3.23) immediately follow.
Therewith, the initial and end time condition in (3.24) as well as the sign condition in (3.25) follow directly

from ẑε(0) = zε(0) = z0, t̂ε(Sε) = T , and t̂′ε(s) ≥ 0 for all s ∈ [0, Sε]. Again, by the boundedness of `ε
in H1(0, T ;Rn) and I(`ε(0), zε(0)), we infer that the estimates in Proposition 3.1 hold uniform in ε. Now let
ˆ̀
ε = `ε ◦ t̂ε. In order to prove (3.26), we may argue as follows: Having in mind thatR∗ε(w) = 1

2ε dist(w, ∂R(0))2

andRε(z) ≥ 0, the uniform estimate (3.1c) implies, after transformation to the new variable s, that

0 ≤
∫ Sε

0

t̂′ε(s) dist(−∇zI(ˆ̀
ε(s), ẑε(s)), ∂R(0))2ds

=

∫ T

0

dist(−∇zI(`ε(r), zε(r)), ∂R(0))2dr =

∫ T

0

2εR∗ε(−∇zI(`ε(r), zε(r))dr ≤ εC, (3.29)

where C is independent of ε. Since −∇zI(ˆ̀
ε, ẑε) converges uniformly, the continuity of dist(·, ∂R(0)) implies

that dist(−∇zI(ˆ̀
ε(·), ẑε(·)), ∂R(0))2 → dist(−∇zI(ˆ̀(·), ẑ(·)), ∂R(0))2 in L1(0, S̃). In combination with the

weak-* convergence of t̂′ in L∞(0, S̃), this gives

0 = lim
ε→0

∫ Sε

0

t̂′ε(s)
(

dist(−∇zI(ˆ̀
ε(s), ẑε(s)), ∂R(0)

)2ds =

∫ S

0

t̂′(s)
(

dist(−∇zI(ˆ̀(s), ẑ(s)), ∂R(0))2ds.

Since t̂′ (and therewith also the whole integrand) is non-negative, we find (3.26).
We proceed with proving (3.27). As in the proof of Proposition 3.1, one can show that (RISε) is equivalent to

the following energy-dissipation identity:

I(`(t), zε(t)) +

∫ t

0

Rε(żε(r)) +R∗ε
(
−∇zI(`ε(r), zε(r))

)
dr = I(`ε(0), z0) +

∫ t

0

∇`I(`ε(r), zε(r)) ˙̀
ε(r)dr

(cf. (3.7)). Thanks to (3.17), we can estimate the integrand on the left hand side from below by p and the positive
homogeneity of p w.r.t. its first variable allows to rewrite the arising inequality in terms of the new variables ẑε and
t̂ε as follows:

I(ˆ̀
ε(s), ẑε(s))+

∫ s

0

p
(
ẑ′ε(s),−∇zI(ˆ̀

ε(r), ẑε(r))
)
dr ≤ I(`ε(0), z0)+

∫ s

0

∇`I(ˆ̀
ε(r), ẑε(r))ˆ̀′

ε(r)dr, (3.30)

which holds for all s ∈ [0, S̃]. By Corollary 3.4, the integral term on the right hand side converges to∫ s
0
∇`I(ˆ̀(r), ẑ(r))ˆ̀′(r)dr. Clearly, I(ˆ̀

ε(s), ẑε(s)) converges to I(ˆ̀(s), ẑ(s)) for ε → 0 by the uniform con-
vergence of `ε, t̂ε and ẑε and the continuity of I. For the integral on the left hand side of (3.30) we use the
lower-semicontinuity result for p(·, ·) from [MRS09, Lemma 3.1]. Altogether, we obtain for all s ∈ [0, S]:

I(ˆ̀(s), ẑ(s)) +

∫ s

0

p(ẑ′(r),−∇zI(ˆ̀(r), ẑ(r)))dr

≤ lim inf
ε→0

(
I(ˆ̀

ε(s), ẑε(s)) +

∫ s

0

p
(
ẑ′ε(s),−∇zI(ˆ̀

ε(r), ẑε(r))
)
dr
)

≤ lim sup
ε→0

(
I(ˆ̀

ε(s), ẑε(s)) +

∫ s

0

p
(
ẑ′ε(s),−∇zI(ˆ̀

ε(r), ẑε(r))
)
dr
)

≤ lim sup
ε→0

(
I(`(0), z0) +

∫ s

0

∇`I(ˆ̀
ε(r), ẑε(r))ˆ̀′

ε(r)dr
)

= I(`(0), z0) +

∫ s

0

∇`I(ˆ̀(r), ẑ(r))ˆ̀′(r)dr.

(3.31)
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Consequently, (3.30) carries over to the limit and, by Lemma A.2, the inequality is in fact an equality, which, in
view of the definition of p, is just the desired energy-dissipation identity in (3.27).
It remains to verify the last equation in (3.26). To this end, observe that the energy-dissipation identity implies

that (3.31) holds with equality. In combination with the uniform convergence of I(ˆ̀
ε(·), ẑε(·)) and the weak

convergence of t̂′, this in particular yields that, for all s ∈ [0, S],

s =

∫ s

0

t̂′ε(r) + p(ẑ′ε(r),−∇zI(ˆ̀
ε(r), ẑε(r)))dr →

∫ s

0

t̂′(r) + p(ẑ′(r),−∇zI(ˆ̀(r), ẑ(r)))dr. (3.32)

Now assume that there is a Lebesgue measurable set E ⊂ (0, S) such that t̂′(·) + p(ẑ′(·),−∇zI(ˆ̀(·), ẑ(·))) > 1

a.e. on E and |E| > 0. Then for every finite union U ⊂ (0, S) of disjoint open intervals, which contains E, (3.32)
implies

|U | =
∫
U

t̂′(r) + p(ẑ′(r),−∇zI(ˆ̀(r), ẑ(r)))dr ≥
∫
E

t̂′(r) + p(ẑ′(r),−∇zI(ˆ̀(r), ẑ(r)))dr > |E|, (3.33)

which contradicts the regularity of the Lebesgue measure. Hence, t̂′(·) + p(ẑ′(·),−∇zI(ˆ̀(·), ẑ(·))) ∈ [0, 1] a.e.
in (0, S) and (3.32) finally yields the last assertion of (3.25).

Observe that every limit curve in the sense of Theorem 3.5 satisfies S = T +
∫ S
0
p(ẑ′(r),−∇zI(ˆ̀(r), ẑ(r))dr.

The result of the former theorem directly leads us to the following definition:

Definition 3.6 (Normalized parametrized BV solution). Let z0 ∈ Rn, ` ∈ H1(0, T ;Rn). A triple (S, t̂, ẑ) with
S > 0 and (t̂, ẑ) ∈ W 1,∞(0, S;R × Rn) is a normalized parametrized balanced viscosity (BV) solution of the
system (RIS) if (3.24)–(3.27) are satisfied.

Remark 3.7. The denotation normalized parametrized BV solution indicates that we are dealing with a particular
version of so-called balanced viscosity solutions and indeed, normalization and parametrization, respectively, is
only one way of representing a BV solution, cf. [MRS12] for details on this solution concept.

Remark 3.8. The above Theorem shows the existence of normalized parametrized BV solutions. It generalizes
slightly the results from [MRS12] to the case with ` ∈ H1(0, T ) and whenR is unbounded. Note that, however, the
case of an unbounded dissipation highly benefits from the fact that the spaces are finite dimensional. Normalized
parametrized BV solutions in the sense of Definition 3.6 coincide with nondegenerate, surjective, normalized
parametrized BV solutions in the sense of [MRS12, Definition 5.2].

We underline that there are several other solution concepts for (RIS), among them the notion of global energetic
solutions. For a detailed overview, we refer to [MR15]. The most rigorous solution concept is certainly the
following:

Definition 3.9 (Differential solution). Let z0 ∈ Rn, ` ∈ H1(0, T ;Rn) be given. We call z̃ ∈ W 1,1(0, T ;Rn) a
differential solution of the system (RIS) if

0 ∈ ∂R( ˙̃z(t)) +∇zI(`(t), z̃(t)), z̃(0) = z0

is satisfied for almost all t ∈ [0, T ].

It is noted however that the existence of a differential solution cannot be guaranteed in case of a non-convex
energy such that alternative, less rigorous solutions concepts such as normalized parametrized BV solutions are
inevitable. We will return to the concept of a differential solution in connection with the reverse approximation
problem in Section 5 below.
Thanks to [MRS12, Corollary 5.6] there is an equivalent characterization of normalized parametrized BV

solutions as a differential inclusion, see also [KT18, Proposition 3.4] for a detailed proof within a similar setting.
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Lemma 3.10. A triple (S, t̂, ẑ) with (t̂, ẑ) ∈W 1,∞(0, S;R×Rn) that satisfies (3.25) is a normalized parametrized
BV solution in the sense of Definition 3.6 if and only if there exists a measurable function λ : (0, S)→ [0,∞) such
that

0 ∈ ∂R(ẑ′(s)) + λ(s)ẑ′(s) +∇zI(ˆ̀(s), ẑ(s)), t̂′(s)λ(s) = 0. (3.34)

for almost all s ∈ [0, S].

Testing (3.34) with ẑ′, integration with respect to s and applying the chain rule to the terms involving the energy
I shows, after a comparison with the energy-dissipation identity (3.27), that

for almost all s ∈ [0, S] : λ(s)‖ẑ′(s)‖2 = ‖ẑ′(s)‖ dist(−∇zI(ˆ̀(s), ẑ(s)), ∂R(0)).

Since, by (3.34), −∇zI(ˆ̀(s), ẑ(s)) ∈ ∂R(ẑ′(s)) ⊂ ∂R(0) f.a.a. s ∈ (0, S) with ẑ′(s) = 0, we even obtain

for almost all s ∈ [0, S] : λ(s)‖ẑ′(s)‖ = dist(−∇zI(ˆ̀(s), ẑ(s)), ∂R(0)). (3.35)

This observation gives rise to the following distinction of physical regimes that may occur during a rate-independent
evolution:

• Sticking:
If t̂′(s) > 0 and ẑ′(s) = 0 a.e. in an interval I ⊂ [0, S], then the physical time proceeds in I , but the external
loading is too small to change the system state such that the dissipation forces the system state to remain
constant.

• Rate-independent slip:
If t̂(s) > 0 and ẑ′(s) > 0 a.e. in I ⊂ [0, S], then the state indeed changes but in such a matter that the
dissipation is strong enough to compensate the external loading.

• Jump sets:
If t̂(s) = 0 and ẑ′(s) > 0 a.e. in I , then the physical time does not proceed, although the system state changes,
and thus and we observe a discontinuous behavior of the system. Then we have to distinguish between two
different cases:

– Viscous jump:
If in addition λ(s) > 0 a.e. in I , then, according to (3.34), an additional viscous term arises in the state
equation. Moreover, due to (3.35), we have dist(−∇zI(ˆ̀(s), ẑ(s)), ∂R(0)) > 0 such that the state is
no longer locally stable in I . There is thus a viscous transition through the complement of the region
of local stability, which is seen as a jump in physical time, cf. Example 3.11 below.

– Rate-independent jump:
Discontinuities may even occur in the area of local stability, where −∇zI(ˆ̀(s), ẑ(s)) ∈ ∂R(0) and
thus λ(s) = 0, as [Sie20, Example 2.3.5] demonstrates. If I ⊂ [0, S] is an interval, where t̂′(s) = 0 and
−∇zI(ˆ̀(s), ẑ(s)) ∈ ∂R(0) a.e. in I , then (3.25) implies R(ẑ′(s)) = 1 a.e. in I such that, according
to the energy identity in (3.27), the energy has to decay linearly along this part of the trajectory of ẑ,
which is probably a rather pathological situation.

If the normalization condition in (3.25) is relaxed to an inequality, i.e., t̂′(s) + p(ẑ′(s),−∇zI(ˆ̀(s), ẑ(s))) ≤ 1

f.a.a. t ∈ [0, T ], such that t̂′ and ẑ′ may vanish at the same time, there is an additional regime that might occur:
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• Removable arcs:
If t̂(s) = 0 and ẑ′(s) = 0 a.e. in I , then I can simply be removed from the evolution without changing the
system behavior.

The following example is taken from [Sie20, Example 2.4.8] and visualizes the prior comments.

Example 3.11. We consider I : R× R→ R with

I(t, z) = E(z)− `(t) z with E(z) =


1
2 (z + 4)2, z ≤ −2,

4− 1
2z

2, |z| < 2,

1
2 (z − 4)2, z ≥ 2,

as well as R(z) = |z|, cf. [MR15, Ex. 1.8.3]. We additionaly set z0 = −2 and `(t) = t + 1. Then, direct
calculations lead to the corresponding parametrized BV solution

ẑ(s) =


−2, s ∈ [0, 2],

s− 4, s ∈ (2, 10],

(s+ 2)/2, s ∈ (10, 16],

and t̂(s) =


s, s ∈ [0, 2],

2, s ∈ (2, 10],

(s− 6)/2, s ∈ (10, 16],

and the multiplier

λ(s) =


0, s ∈ [0, 2],

2− s, s ∈ (2, 6],

s− 10, s ∈ (6, 10],

0, s ∈ (10, 16].

Note that during the viscous jump, we obtain the additional viscous dissipation λ(s)‖ẑ′(s)‖2.
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Figure 1: Left: Plot of the functions ẑ, t̂ and λ (from top to bottom) depending on the artificial time s. The
numbers indicate the different regimes Sticking Ê, Rate-independent slip Ë and Viscous jump Ì. Right: Graph
{(t̂(s), ẑ(s)) : s ∈ [0, S]} ⊂ [0, T ]× R of the parametrized BV solution (t̂, ẑ).

In preparation of the investigation of the optimization problem governed by (RIS), we provide the following
boundedness results for normalized parametrized BV solutions:
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Lemma3.12. For all z0 ∈ Rn, ` ∈ H1(0, T ;Rn) and all normalized parametrized BV solutions (S, t̂, ẑ) associated
with (z0, `) it holds with λ, κ, and µ from (2.2):

I(ˆ̀(s), ẑ(s)) +

∫ s

0

p(ẑ′(r),−∇zI(ˆ̀(r), ẑ(r)))dr

≤
(
I(`(0), z0) + λµ+1

2 ‖`‖
2
H1((0,T );Rn) + λκT

2

) (
1 + λT

2 exp(λT2 )
)

(3.36)

for all s ∈ [0, S].

Proof. The estimate is a consequence of the Gronwall inequality applied to the energy-dissipation identity (3.27).
Indeed, the integral on the right hand side of (3.27) can be estimated as follows by using (A.1) from the appendix
and assumption (2.2):∫ s

0

∇`I(ˆ̀(r), ẑ(r))ˆ̀′(r)dr ≤ 1

2

∫ s

0

‖∇`I(ˆ̀(r), ẑ(r))‖2t̂′(r)dr +
1

2
‖ ˙̀‖2L2(0,T ;Rn)

≤
∫ s

0

λ

2

(
I(ˆ̀(r), ẑ(r)) + κ+ µ‖ˆ̀(r)‖2

)
t̂′(r)dr +

1

2
‖ ˙̀‖2L2(0,T ;Rn)

≤
∫ s

0

λ

2

(
I(ˆ̀(r), ẑ(r)) + κ

)
t̂′(r)dr +

λµ+ 1

2
‖`‖2H1(0,T ;Rn)

(3.37)

With α(s) := I(`(0), z0) + λµ+1
2 ‖`‖

2
H1((0,T );Rn) + λκ

2 t̂(s), relation (3.27) leads to the following estimate:

I(ˆ̀(s), ẑ(s)) ≤ α(s) +

∫ s

0

λ

2
t̂′(r) I(ˆ̀(r), ẑ(r))dr.

Hence, by the Gronwall inequality we find

I(ˆ̀(s), ẑ(s)) ≤ α(s) exp
(∫ s

0

λ

2
t̂′(r)dr

)
≤ α(S) exp

(
λT
2

)
.

Inserting this into (3.37) and exploiting once more the energy equality from (3.27) we end up with (3.36).

Corollary 3.13. For every L > 0 there exists a constant CL > 0 such that for all z0 ∈ Rn, ` ∈ H1(0, T ;Rn) with
‖z0‖+ ‖`‖H1(0,T ;Rn) ≤ L and all normalized parametrized BV solutions (S, t̂, ẑ) associated with (z0, `), it holds

S + ‖ẑ‖L∞(0,S;Rn) +

∫ S

0

p(ẑ′(r),−∇zI(ˆ̀(r), ẑ(r)))dr ≤ CL. (3.38)

Proof. By the normalization, i.e. t̂′(s) + p(ẑ′(s),−∇zI(ˆ̀(s), ẑ(s))) = 1, the artificial end time fulfills

S =

∫ S

0

t̂′(r) + p(ẑ′(r),−∇zI(ˆ̀(r), ẑ(r)))dr = T +

∫ S

0

p(ẑ′(r),−∇zI(ˆ̀(r), ẑ(r)))dr.

Exploiting (3.36) and the compactness assumption in (2.3) gives (3.38).

A natural question is, whether BV solutions are unique and whether or not every normalized parametrized BV
solution can be approximated by the above viscosity scheme. In the non-convex case there exist examples that show
that both questions have a negative answer. Such an example is for instance given in [MS20, Section 2.4]. However,
if we also allow the function ` to vary with the parameter ε, then the question of approximability can be answered
positively, at least partly. This essentially forms the basis for our reverse approximation result in Section 5. Prior
to that, we will, however, take a look at an optimization problem whose constraint is given by the rate-independent
evolution (RIS). The main result here is the existence of an optimal solution.
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4 Existence of globally optimal solutions
The existence of globally optimal solutions to optimal control problems governed by rate-independent systems is
already addressed in [KT18], even in a spatially distributed setting, where the underlying spaces are Banach spaces
and not just Rn. However, since one can employ much easier and more direct arguments in the finite dimensional
case and the results are slightly sharper, we present the proof of existence in detail for convenience of the reader.
Our control variable is the applied load `, while we assume the initial state z0 to be fixed for the rest of the paper.

For the precise formulation of our optimal control problem, let us introduce the following set:

L(`) :=
{

(S, t̂, ẑ) ∈ [T,∞)×W 1,∞(0, S)×W 1,1(0, S;Rn) :

(S, t̂, ẑ) is a normalized parametrized BV solution of (RIS) associated with `
}
, (4.1)

cf. Definition 3.6. Then the optimal control problem under consideration reads as follows:

min J(S, ẑ, `) := j(ẑ(S)) +
β

2
‖`‖2H1(0,T ;Rn)

s.t. ` ∈ H1(0, T ;Rn), (S, t̂, ẑ) ∈ L(`),

−∇zI(`(0), z0) ∈ ∂R(0), −∇zI(`(T ), ẑ(S)) ∈ ∂R(0).

 (OCP)

Remark 4.1. The objective in (OCP) provides an end time observation of the state variable z, which is meaningful
in many applications, where the goal is to reach a desired final state. Other types of objectives such as integral type
functionals can easily be incorporated into the subsequent analysis. To keep the discussion concise we however
focus on objectives of the form in (OCP).

Remark 4.2. The additional end time constraint in (OCP) enforces the final state to be locally stable. This is to
ensure that the optimal trajectory does not stop during a viscous jump, which would mean that the final state is not
seen in the physical time, which would certainly make no sense from an application point of view.
It is to be noted that, given a load ` ∈ H1(0, T ;Rn) and an associated normalized parametrized BV solution

(S, t̂, ẑ) ∈ L(`), one can always find a point s∗ ∈ (0, S] such that t̂(s∗) = T and −∇zI(ˆ̀(s∗), ẑ(s∗)) ∈ ∂R(0),
i.e., if we restrict the trajectory to [0, s∗], then the final time condition is fulfilled. This is seen as follows:
We define s∗ by

s∗ := arg max
{
s ∈ [0, S] : dist

(
−∇zI(ˆ̀(s), ẑ(s), ∂R(0)

)
= 0
}
.

Note that the set {s ∈ [0, S] : dist(−∇zI(ˆ̀(s), ẑ(s), ∂R(0)) = 0} is non-empty, since otherwise t̂′ = 0 a.e.
in (0, S) by the complementarity in (3.26), which contradicts t̂(S) = T . Moreover, this set is compact by the
continuity of `, t̂, and ẑ due to the compactness of H1(0, T ;Rn) ↪→ C([0, T ];Rn) and thus, s∗ is well defined. If
s∗ = S, then the assertion is fulfilled because t̂(S) = T . If s∗ < S, then dist(−∇zI(ˆ̀(s), ẑ(s), ∂R(0)) > 0 for
all s ∈ (s∗, S] and again by the complementarity in (3.26), we have t̂′ = 0 a.e. in (s∗, S]. Hence t̂ is constant in
(s∗, S] and the continuity of t̂ along with t̂(S) = T gives t̂(s∗) = T .

Remark 4.3. The initial time constraint in (OCP) allows us to employ the results of Lemma 3.2 that will be useful
in Section 5 below. For the mere existence of optimal solutions, this is not needed, but, for reasons of clarity, we
already included it here.

Given a load ` ∈ H1(0, T ;Rn) and an associated normalized parametrized BV solution (S, t̂, ẑ) ∈ L(`), we will
frequently use the notation ˆ̀ := ` ◦ t̂ in the following.

Theorem 4.4 (Existence of optimal solutions). There exists a globally optimal solution

(Ŝ∗, t̂∗, ẑ∗, `∗) ∈ [T,∞)×W 1,∞(0, S∗)×W 1,∞(0, S∗;Rn)×H1(0, T ;Rn)

to the optimization problem (OCP).
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Proof. The proof is very similar to the one of Theorem 3.5. Nevertheless, we shortly sketch the arguments
for convenience of the reader. First of all, the feasible set of (OCP) is non-empty, since, by our standing
assumption−∇zI(`0, z0) ∈ ∂R(0) so that the constant tuple (z0, `0) together with t̂ = id (identity) is a normalized
parametrized BV solution that, additionally, also fulfills the initial and end time condition in (OCP) and is therefore
feasible.
Thus there exists an infimal sequence. Let (`n, Sn, t̂n, ẑn) be such a sequence, i.e.,

J(Sn, ẑn, `n)→ J∗ := inf{J(S, ẑ, `) : ` ∈ H1(0, S;Rn), (S, t̂, ẑ) ∈ L(`)}

withL(`) from (4.1). Due to the Tikhonov-term in the objective and the boundedness assumption on j, the sequence
{`n} is bounded in H1(0, T ;Rn) so that there exists a weakly converging subsequence, which we denote by the
same symbol for simplicity, i.e.,

`n ⇀ `∗ in H1(0, T ;Rn). (4.2)

Therefore, Corollary 3.13 implies that {Sn} ⊂ [T,∞) is also bounded, and consequently, there is a converging
subsequence, too, again unrelabeled for simplicity, i.e.,

Sn → S∗ ∈ [T,∞). (4.3)

Moreover, the conditions in (3.25) imply the boundedness of {‖t̂n‖W 1,∞(0,Sn)} and, thanks to the assumption on
R in (2.4), the last equation in (3.25) together with the definition of p yields that {‖ẑ′n‖L∞(0,Sn;Rn)} is bounded,
too. Corollary 3.13 and the weak convergence of {`n} imply the same for {‖ẑn‖L∞(0,Sn;Rn)}. Therefore, possibly
after an extension of t̂n and ẑn to the time interval [0, S∗], for instance by constant continuation, we may select
weakly convergent subsequences, w.l.o.g. again denoted by the same symbols, i.e.,

t̂n
∗
⇀ t̂∗ inW 1,∞(0, S∗) and ẑn

∗
⇀ ẑ∗ inW 1,∞(0, S∗;Rn). (4.4)

By the weak-∗ closedness of the set of non-negative functions inW 1,∞(0, S∗) and compactness of the embedding
W 1,∞(0, S∗) ↪→ C([0, S∗]), we see that the weak limit t̂∗ fulfills (t̂∗)′(s) ≥ 0 a.e. in (0, S∗) and t̂∗(S∗) = T ,
i.e., the final time condition in (3.24) and the sign condition in (3.25). Moreover, the uniform convergence of ẑn
yields ẑ∗(0) = z0, i.e., the initial condition in (3.24). In order to pass to the limit in the energy identity (3.27), let
s ∈ [0, S∗) be fixed, but arbitrary. Then, thanks to (4.3), there is an indexNs ∈ N (depending on s) so that s < Sn

for all n ≥ Ns. Consequently, (3.27) holds for n ≥ Ns, i.e.

I(`n(t̂n(s)), ẑn(s)) +

∫ s

0

(
R(ẑ′n(σ)) + ‖ẑ′n(σ)‖dist

(
−∇zI(`n(t̂n(σ)), ẑn(σ)), ∂R(0)

))
dσ

= I(`n(t̂n(0)), z0) +

∫ s

0

∇`I(ˆ̀
n(σ), ẑn(σ))ˆ̀′

n(σ)dσ.

In view of the uniform convergence of {t̂n}, {ẑn}, and {`n} by the compact embeddingH1(0, S∗) ↪→ C([0, S∗]),
the passage to the limit in this energy identity follows exactly by the same arguments as in the proof of Theorem 3.5.
The convergence of the integral involving the load follows again from Corollary 3.4 and the lower-semicontinuity
result for p(·, ·) from [MRS09, Lemma 3.1] again yield an inequality analogous to (3.31). This first gives an energy
inequality, which, thanks to Lemma A.2, indeed holds with equality, which is the desired energy identity in the
limit. Since s ∈ [0, S∗) was arbitrary, the energy identity holds for every s ∈ [0, S∗) and, as t̂∗, `∗, and ẑ∗ are
continuous, also for s = S∗.
The normalization condition in (3.25) is derived as in the proof of Theorem 3.5, too. Completely analogously to

(3.32), one deduces

s =

∫ s

0

(t̂∗)′(r) + p
(
(ẑ∗)′(r),−∇zI(`∗(t̂∗(r)), ẑ∗(r))

)
dr
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and an argument by contradiction analogous to (3.33) gives the last equation in (3.26).
From the uniform convergence of {t̂n}, {ẑn}, and {`n}, the weak convergence of {t̂′n}, and the Lipschitz

continuity of dist, we obtain

0 =

∫ Sn

0

t̂′n(r) dist
(
−∇zI(`n(t̂n(r)), ẑn(r)), ∂R(0)

)
dr

→
∫ S∗

0

(t̂∗)′(r) dist
(
−∇zI(`∗(t̂∗(r)), ẑ∗(r)), ∂R(0)

)
dr.

Since the integrand is non-negative almost everywhere, we obtain (3.26) such that (S∗, t̂∗, ẑ∗) is indeed a normalized
parametrized BV solution associated with `∗, i.e., (S∗, t̂∗, ẑ∗) ∈ L(`∗).
Finally, the initial and end time condition follows from (4.3), the uniform convergence of {`n} and {ẑn}, the

continuity of ∇zI, and the closedness of ∂R(0).

5 Reverse approximation
For the rest of this paper we assume that the energy is linear in `, i.e.

I(`, z) = E(z)− 〈`, z〉 (5.1)

with a function E : Rn → R satisfying the following

Assumption 5.1 (Structural assumptions on the energy functional).

(a) The nonlinear part E of the energy fulfills E ∈ C2(Rn;R). Moreover, E is such that (2.2) and (2.3) hold true
and its Hessian is Lipschitz continuous on bounded sets, i.e.,

‖∇2E(z1)−∇2E(z2)‖ ≤ L(r)‖z1 − z2‖ ∀ z1, z2 ∈ B(0, r) (5.2)

with a constant L(r) ≥ 0 depending only on the radius r > 0.

(b) Moreover, we assume that there is a constant K ≥ 0 such that ‖∇2E(z)‖ ≤ K for all z ∈ Rn. This
boundedness assumption can be avoided, see Corollary 5.10 below, but in order to ease the following
arguments, let us suppose it holds for the time being.

Note that the energy functional in Example 2.1 is exactly of this form provided that the nonlinearity f is twice
continuously differentiable with a Hessian that fulfills the above Lipschitz and boundedness condition.
As already announced, this section is devoted to the approximation of normalized parametrized BV solutions by

means of viscous regularization. Since the set of normalized parametrized BV solutions associated with a given
load is in general no singleton, while the viscous equation always admits a unique solution as seen in Section 3.1,
there is no hope that every normalized parametrized BV solution can be approximated via viscous regularization.
However, in the context of optimal control, we can also vary the loads, which gives us additional flexibility, as
already explained in the introduction. Unfortunately, this does still not suffice to construct an approximating
sequence of viscous solutions. We additionally need the following

Assumption 5.2 (Critical continuity assumption). Let ` ∈ H1(0, T ;Rn) and z0 ∈ Rn with −∇zI(`(0), z0) ∈
∂R(0) be given. We assume that, among all normalized parametrized BV solutions associated with (z0, `), there
is at least one, denoted by (S, t̂, ẑ), that fulfills

∃ δ ∈ (0, 1] : t̂′(s) ≥ δ f.a.a. s ∈ [0, S]. (5.3)
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This is cleary a very strong assumption on the regularity of the solution (S, t̂, ẑ). It implies that the physical
time always proceeds and no (viscous or rate-independent) jump occurs. In principle, Assumption 5.2 is equivalent
to the existence of a differential solution, as defined in Definition 3.9. This is seen as follows: Thanks to (5.3),
t̂ is invertible and the inverse function σ = t̂−1 is Lipschitz continuous with a Lipschitz constant that is bounded
by δ−1. Hence, the function z̃ := ẑ ◦ σ belongs to W 1,∞(0, T ;Rn) and, since (5.3) yields that the associated
multiplier λ vanishes almost everywhere (cf. the second equation in (3.34)), we deduce from the first equation in
(3.34) that, indeed,

0 ∈ ∂R( ˙̃z(t)) +∇zI(`(t), z̃(t)), z̃(0) = z0 (5.4)

is satisfied for almost all t ∈ [0, T ].

Remark 5.3. As already emphasized in the context of Definition 3.9, the existence of a differential solution can
in general not be guaranteed in case of a non-convex energy. Assumption 5.2 is therefore rather restrictive. In
context of our optimal control problem, we need to assume that there is at least one optimal solution, which fulfills
Assumption 5.2, see Theorem 6.3 below. We underline that we do not require every optimal solution to be of this
form, which would really be very restrictive.

Remark 5.4. It is to be noted that (5.4) along with the embedding of H1(0, T ;Rn) in C([0, T ];Rn) implies
that −∇zI(`(t), z̃(t)) ∈ ∂R(0) for every t ∈ [0, T ]. Thus the initial time constraint in (OCP) is a mandatory
prerequisite on the initial value of ` for the existence of a differential solution.

The construction of the approximation sequence is not only based on viscous regularization, but also includes a
quadratic penalty term, which we add to the energy. The penalized energy reads I(`, z) + η

2 ‖z − z̃(t)‖
2 with a

penalization parameter η > 0 that is potentially large, but finite. This leads to the following regularized system

0 ∈ ∂R(żε(t)) + ε żε(t) +∇zI(`(t), zε(t)) + η(zε(t)− z̃(t)), zε(0) = z0 (5.5)

where ε > 0 is arbitrary and η > 0 is chosen such that the new energy

Iη(`, z) := I(`, z) +
η

2
‖z‖2 (5.6)

is uniformly convex with constant α > 0, i.e.,

∇2
zzIη(`, z)[s, s] ≥ α‖s‖2 ∀ (`, z, s) ∈ Rn × Rn × Rn.

Note that this is always possible, since ∇2
zzIη(`, z) = ∇2E(z) + η and ∇2E is bounded by Assumption 5.1, see

also Corollary 5.10 below. With Iη at hand, we can rewrite the above inclusion equivalently as

0 ∈ ∂R(żε(t)) + ε żε(t) +∇zIη(`(t) + ηz̃(t), zε(t)), zε(0) = z0. (RISε,η)

From Proposition 3.1, we know that there exists a solution zε ∈ H2(0, T ;Rn) of (RISε,η). From Lemma 3.2, we
furthermore have

ε

2

d
dt
‖żε‖2 +∇2

zzIη(`+ ηz̃, zε)[żε, żε]− 〈 ˙̀ + η ˙̃z, żε〉 = 0 a.e. in [0, T ]. (5.7)

If we now define
Eη(z) := E(z) +

η

2
‖z‖2

and exploit once more the explicit form of the energy I, then we can rewrite (5.7) as

ε

2

d
dt
‖żε‖2 +∇2Eη(zε)[żε, żε]− 〈 ˙̀ + η ˙̃z, żε〉 = 0 a.e. in [0, T ], (5.8)

which is the starting point for the following auxiliary result. Note that∇2Eη(z) = ∇2
zzIη(`, z), such that Eη is also

uniformly convex.
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Lemma 5.5. Under the Assumption 5.2 the solutions zε of (RISε,η) fulfill

zε ⇀ z̃ in H1(0, T ;Rn) as ε↘ 0, (5.9)

where z̃ = ẑ ◦ t̂−1 is the solution satisfying (5.4).

Proof. We split the proof into three steps.
(i) Boundedness of zε:

We first use (5.8) to show that zε is bounded in H1(0, T ;Rn). For this we integrate (5.8) from 0 to T and exploit
‖żε(0)‖V = 0 from Lemma 3.2 (which is applicable due to −∇zI(`(0), z0) ∈ ∂R(0) by Assumption 5.2) and the
uniform convexity of ∇2Eη with constant α to obtain

0 =
ε

2
‖żε(T )‖2 − ε

2
‖żε(0)‖2 +

∫ T

0

∇2Eη(zε(t))[żε(t), żε(t)]− 〈 ˙̀(t) + η ˙̃z(t), żε(t)〉dt

≥ α
∫ T

0

‖żε(t)‖2 − 〈 ˙̀(t) + η ˙̃z(t), żε(t)〉dt.

Hence
‖żε‖L2(0,T ;Rn) ≤

1

α

(
‖ ˙̀‖L2(0,T ;Rn) + η‖ ˙̃z‖L2(0,T ;Rn)

)
, (5.10)

which, together with the initial conditions, gives the claimed boundedness in H1(0, T ;Rn). There is thus a
weakly convergent subsequence and w.l.o.g. we assume that the whole sequence convergence weakly to simplify
the notation, i.e., zε ⇀ z∗ in H1(0, T ;Rn) as ε ↘ 0. (At the end of the proof, we will see that the weak limit is
unique so that indeed the whole sequence converges.)
(ii) The weak limit is a differential solution:

In order to show that z∗ is a differential solution of (5.4), we reformulate (RISε,η) as

R(żε(t))−R(v) + ε〈żε(t), żε(t)− v〉+ 〈∇zIη(`(t) + ηz̃(t), zε(t)), żε(t)− v〉 ≤ 0 ∀ v ∈ Rn,

which holds for almost all t ∈ [0, T ]. Now let ϕ ∈ C∞c (0, T ) with ϕ ≥ 0 be arbitrary. Then the above inequality
implies for all v ∈ Rn∫ T

0

(
R(żε(t))−R(v) + ε〈żε(t), żε(t)− v〉+ 〈∇zIη(`(t) + ηz̃(t), zε(t)), żε(t)− v〉

)
ϕ(t) dt ≤ 0. (5.11)

Since ∇zIη as well as ` and z̃ are continuous by assumption and zε converges uniformly to z∗ because of the
compactness of H1(0, T ;Rn) ↪→ C([0, T ];Rn), we have that ∇zIη(` + ηz̃, zε) → ∇zIη(` + ηz̃, z∗) uniformly
in [0, T ]. Together with the weak lower semicontinuity of the mapping z 7→

∫ T
0
R(z)ϕdt, the boundedness of zε

in H1(0, T ;Rn), and the weak convergence of żε, this allows us to pass to the limit ε↘ 0 in (5.11) to obtain

0 ≥ lim inf
ε↘0

∫ T

0

(
R(żε(t))−R(v) + ε〈żε(t), żε(t)− v〉+ 〈∇zIη(`(t) + ηz̃(t), zε(t)), żε(t)− v〉

)
ϕ(t) dt

≥
∫ T

0

(
R(ż∗(t))−R(v) + 〈∇zIη(`(t) + ηz̃(t), z∗(t)), ż∗(t)− v〉

)
ϕ(t) dt.

Since this holds for all ϕ ∈ C∞c (0, T ) with ϕ ≥ 0, the fundamental theorem of calculus of variations implies

0 ∈ ∂R(ż∗(t)) +DzIη(`(t) + ηz̃(t), z∗(t)) f.a.a. t ∈ [0, T ] (5.12)

such that z∗ is indeed a differential solution.
(ii) z∗ = z̃:

By construction of Iη , there holds ∇zIη(`(t) + ηz̃(t), z) = ∇zI(`(t), z) + η(z − z̃(t)) for all t ∈ [0, T ] and all
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z ∈ Rn. Thus, ∇zIη(`(t) + ηz̃(t), z̃(t)) = ∇zI(`(t), z̃(t)) and therefore, (5.4) implies that z̃ is a differential
solution of (5.12), too. However, according to [MR07, MT04], differential solutions are unique in case of uniformly
convex energies, cf. also Appendix B. Note that, at this point, the Lipschitz continuity of ∇2E on bounded sets is
needed, which is ensured by Assumption 5.1. Thus, we obtain z∗ = z̃ and a well known argument by contradiction
gives the weak convergence of the whole sequence.

In view of Section 6 the weak convergence is not enough to ensure approximibality of the optimal control by
viscous regularization. We in fact need strong convergence of zε for which we need the following Lemma:

Lemma 5.6. The solution z̃ ∈W 1,∞(0, T ;Rn) of (5.4) (whose existence is guaranteed by Assumption 5.2) satisfies

∇2E(z̃(t))[ ˙̃z(t), ˙̃z(t)]− 〈 ˙̀(t), ˙̃z(t)〉 = 0 f.a.a. t ∈ [0, T ]. (5.13)

Proof. Due to ∂R(v) ⊂ ∂R(0) for all v ∈ Rn, the embeddingW 1,∞(0, T ;Rn) ↪→ C([0, T ];Rn), the continuity
of DzI and the closedness of ∂R(0), we deduce from (5.4) that

0 ∈ ∂R(0) +∇zI(`(t), z̃(t)) ∀ t ∈ [0, T ].

Exploiting the 1-homogeneity ofR we can rewrite this inclusion and (5.4) by

R( ˙̃z(t)) = 〈−∇zI(`(t), z̃(t)), ˙̃z(t)〉 f.a.a. t ∈ [0, T ] (5.14)

∀ v ∈ Rn : R(v) ≥ 〈−∇zI(`(τ), z̃(τ)), v〉 ∀ τ ∈ [0, T ]. (5.15)

Now, let t ∈ (0, T ) be a Lebesgue point of ˙̃z for which (5.14) holds. Testing (5.15) with ˙̃z(t), inserting τ = t± h
as well as the explicit form of I and substracting (5.14) thereof, we obtain

0 ≤ 〈∇E(z̃(t± h))−∇E(z̃(t)), ˙̃z(t)〉 − 〈`(t± h)− `(t), ˙̃z(t)〉.

We then divide by h > 0, pass to the limit h↘ 0 and obtain, using Lebesgue’s differentiation theorem,

∇2E(z̃(t))[ ˙̃z(t), ˙̃z(t)]− 〈 ˙̀(t), ˙̃z(t)〉 = 0.

Since this holds for almost all t ∈ (0, T ), we end up with (5.13).

Lemma 5.7. Let the Assumption 5.2 hold and let z̃ denote the corresponding solution satisfying (5.4). Then the
solutions zε of (RISε,η) fulfill

zε → z̃ in H1(0, T ;Rn). (5.16)

Proof. We start with the equality in Lemma 5.6 and rewrite it using the new energy Eη:

0 = ∇2E(z̃(t))[ ˙̃z(t), ˙̃z(t)]− 〈 ˙̀(t), ˙̃z(t)〉 = ∇2Eη(z̃(t))[ ˙̃z(t), ˙̃z(t)]− 〈 ˙̀(t) + η ˙̃z(t), ˙̃z(t)〉 (5.17)

for almost all t ∈ [0, T ]. Subtracting (5.17) from (5.8) and integrating yields

0 =
ε

2
‖żε(T )‖2 − ε

2
‖żε(0)‖2

+

∫ T

0

∇2Eη(zε(t))[żε(t), żε(t)]−∇2Eη(z̃(t))[ ˙̃z(t), ˙̃z(t)] dt−
∫ T

0

〈 ˙̀ + η ˙̃z, żε(t)− ˙̃z(t)〉 dt

=
ε

2
‖żε(T )‖2 +

∫ T

0

∇2Eη(zε(t))[żε(t)− ˙̃z(t), żε(t)− ˙̃z(t)] dt−
∫ T

0

〈 ˙̀ + η ˙̃z, żε(t)− ˙̃z(t)〉 dt

+

∫ T

0

2∇2Eη(zε(t))[ ˙̃z(t), żε(t)]−∇2Eη(zε(t))[ ˙̃z(t), ˙̃z(t)]−∇2Eη(z̃(t))[ ˙̃z(t), ˙̃z(t)] dt

≥ α
∫ T

0

‖żε(t)− ˙̃z(t)‖2dt−
∫ T

0

〈 ˙̀ + η ˙̃z, żε(t)− ˙̃z(t)〉 dt

+

∫ T

0

2∇2Eη(zε(t))[ ˙̃z(t), żε(t)]−∇2Eη(zε(t))[ ˙̃z(t), ˙̃z(t)]−∇2Eη(z̃(t))[ ˙̃z(t), ˙̃z(t)] dt,
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where we exploited the uniform convexity of Eη , as well as ‖żε(0)‖ = 0 from Lemma 3.2. The goal now is to
show that the last two integral-terms on the right-hand side converge to zero as ε↘ 0, which yields that in fact zε
strongly converges to z̃ in H1(0, T ;Rn). The first integral involving ˙̀ clearly converges to zero due to the weak
convergence of zε by Lemma 5.6. Furthermore, thanks to the compactness of H1(0, T ;Rn) ↪→ C([0, T ];Rn), zε
converges uniformly to z∗ and therefore the continuity of∇2Eη yields that

∇2Eη(zε(t)) ˙̃z(t)→ ∇2Eη(z̃(t)) ˙̃z(t) pointwise a.e. in [0, T ] as ε↘ 0.

Moreover, the boundedness assumption on ∇2E implies ‖∇2Eη(zε(t)) ˙̃z(t)‖ ≤ (K + η)‖ ˙̃z(t)‖ f.a.a. t ∈ [0, T ].
Since ‖ ˙̃z(t)‖ ∈ L2(0, T ), Lebesgue’s dominated convergence theorem implies

∇2Eη(zε) ˙̃z → ∇2Eη(z̃) ˙̃z in L2(0, T ;Rn).

Combining this with the weak convergence of żε in L2(0, T ;Rn) we finally obtain∫ T

0

2∇2Eη(zε(t))[ ˙̃z(t), żε(t)]−∇2Eη(zε(t))[ ˙̃z(t), ˙̃z(t)]−∇2Eη(z̃(t))[ ˙̃z(t), ˙̃z(t)] dt→ 0,

which proves the claim.

Lemma 5.8. Let the Assumption 5.2 hold and let z̃ = ẑ ◦ t̂−1 denote the corresponding solution satisfying (5.4).
Then there is a constant C̃ > 0, depending on ` and z̃, but not on ε, such that

dist
(
−∇E(zε(T ))− `(T )− η(zε(T )− z̃(T )), ∂R(0)

)
≤ C̃ ε1/4. (5.18)

Proof. We first derive an estimate of zε inW 1,∞(0, T ;Rn). For this purpose, let us return to (5.8), which together
with Lemma 3.2 gives the following estimate for almost every t ∈ [0, T ]:

ε

2
‖żε(t)‖2 = −

∫ t

0

∇2Eη(zε(r))[żε(r), żε(r)]− 〈 ˙̀(r) + η ˙̃z(r), żε(r)〉dr

≤ ‖ ˙̀ + η ˙̃z‖L2(0,T ;Rn) ‖żε‖L2(0,T ;Rn) ≤ α−1
(
‖ ˙̀‖L2(0,T ;Rn) + η‖ ˙̃z‖L2(0,T ;Rn)

)2
,

(5.19)

where we used the convexity of Eη and the bound for ‖żε‖L2(0,T ;Rn) by (5.10). Now, recall the regularized equation
(5.5), which, thanks to (5.1), can be reformulated as

żε(t) = ∂R∗ε
(
−∇E(zε(t))− `(t)− η(zε(t)− z̃(t))

)
, zε(0) = z0. (5.20)

In view of the Fenchel-Young-equality, this in turn is equivalent to

Rε(żε(t)) +R∗ε
(
−∇E(zε(t))− `(t)− η(zε(t)− z̃(t))

)
= 〈−∇E(zε(t))− `(t)− η(zε(t)− z̃(t)), żε(t)〉

f.a.a. t ∈ [0, T ]. Using (3.14), this leads to

1

2ε
dist

(
−∇E(zε(T ))− `(T )− η(zε(T )− z̃(T )), ∂R(0)

)2
= R∗ε

(
−∇E(zε(T ))− `(T )− η(zε(T )− z̃(T ))

)
≤ ‖∇E(zε)− `− η(zε − z̃)‖L∞(0,T ;Rn)‖żε‖L∞(0,T ;Rn)

≤ C 1√
ε
,

(5.21)

where we used the positivity of Rε and the estimate from (5.19). Note that ‖zε‖L∞(0,T ;Rn) can be estimated by
(5.10) due toH1(0, T ;Rn) ↪→ C([0, T ];Rn). Therefore, the constant in (5.21) and thus also the one in (5.18) only
depends on ` and z̃, but not on ε.
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We collect the findings of this section in the following

Theorem 5.9 (Reverse approximation property). Suppose that the energy functional satisfies Assumption 5.1. Let
` and a normalized parametrized BV solution (S, t̂, ẑ) be given such that Assumption 5.2 is fulfilled and define
z̃ := ẑ ◦ t̂−1. Then there exists a sequence {(`ε, zε)}ε>0 ⊂ H1(0, T ;Rn)×H2(0, T ;Rn) that fulfills

0 ∈ ∂R(żε(t)) + ε żε(t) +∇zI(`ε(t), zε(t)), zε(0) = z0, (5.22)

zε → z̃ in H1(0, T ;Rn), `ε → ` in H1(0, T ;Rn) as ε↘ 0, (5.23)

and
`ε(0) = `(0), dist

(
−∇I(`ε(T ), zε(T )), ∂R(0)

)
≤ C̃ ε1/4 (5.24)

with a constant C̃ > 0 not depending on ε.

Proof. The assertion follows from Proposition 5.7 and Lemma 5.8 by setting `ε := `+ η(zε − z̃).

The prior theorem guarantees the existence of a sequence of loads {`ε}ε>0 such that z̃ can be approximated
by solutions of the viscous regularized problem. In fact, this so-called "reverse approximation property" is an
essential ingredient in Theorem 6.2 below. However, before we step on to the next section, let us investigate on the
assumption of the boundedness of the Hessian of E . For this purpose, we introduce the following variant of the
penalized energy functional

Jη(t, `, z) := E(z) +
η

2
‖z − z̃(t)‖2 − 〈`, z〉

and rewrite (5.5) by means of the Fenchel-Young equality as

Rε(żε(t)) +R∗ε
(
−∇zJc(t, `(t), zε(t))

)
= 〈−∇zJc(t, `(t), zε(t)), żε(t)〉.

Now we can argue exactly as in the proof of Proposition 3.1, when we derived (3.11) from (3.6) to obtain

‖zε‖L∞(0,T ;Rn) ≤ C
(
1 + Jc(0, `(0), z0) + ‖`‖2H1(0,T ;Rn)

)
. (5.25)

Note in this context that Jc satisfies (2.2) with the same constants as I does such that the constant C in the above
estimate is the same as in (3.11) and thus independent of η. For the energy at the initial time, z̃(0) = z0 implies
that Jc(0, `(0), z0) = I(`(0), z0) and therefore (5.25) yields that

‖zε‖L∞(0,T ;Rn) ≤ R (5.26)

with a bound R > 0 that is independent of ε and η. Revisiting now the arguments of this section, we see that the
boundedness of ∇2E is only needed in the points zε(t). In view of (5.26), we can therefore drop the boundedness
assumption on ∇2E and replace the constantK from Assumption 5.1 by

K := max
v∈B(0,R)

‖∇2E(v)‖.

This yields the following

Corollary 5.10. The assertions of Theorem 5.9 also hold without the boundedness assumption on ∇2E from
Assumption 5.1.
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6 Approximation of optimal control problems via viscous regularization
With the results of Section 5, we are now in the position to prove our final result, the approximation of optimal
solutions to (OCP) by minimizers of “viscous” optimal control problems. The latter read as follows:

min Jε(zε, `) := j(zε(T )) +
β

2
‖`‖2H1(0,T ;Rn)

s.t. ` ∈ H1(0, T ;Rn), zε ∈ H2(0, T ;Rn),

0 ∈ ∂R(żε(t)) + εżε(t) + ∂zI(`(t), zε(t)), z(0) = z0,

−∇zI(`(0), z0) ∈ ∂R(0), dist
(
−∇zI(`(T ), zε(T )), ∂R(0)

)
≤ ε1/8.


(vOPCε)

While the objective is the same as in (OCP), we replaced the rate-independent system by its viscous regularization.
Moreover, the end time constraint is relaxed in order to guarantee the feasibility of the recovery sequence from
Theorem 5.9, see the proof of Proposition 6.2 below.
On the basis of the equivalent dual formulation in (3.3), it is easy to see that the solution map ` 7→ zε of

the viscous equation is continuous from L∞(0, T ;Rn) to W 1,∞(0, T ;Rn). Together with the compactness of
H1(0, T ;Rn) ↪→ C([0, T ];Rn), the standard direct method of the calculus of variations immediately gives the
following

Lemma 6.1. For every ε > 0, there exists an optimal solution (`∗ε, z
∗
ε ) ∈ H1(0, T ;Rn) × H2(0, T ;Rn) of

(vOPCε).

In view of Section 5, we moreover have the following:

Proposition 6.2. Let Assumption 5.1 (a) be fulfilled. Then there holds the following "Mosco-type" convergence of
the viscous optimal control problem:

(i) Weak lower semicontinuity:
Let {`∗ε}ε>0 be a sequence of global minimizers for (vOPCε) with corresponding states {z∗ε}ε>0. Denote
the reparametrized solution according to (3.18) and (3.19) by (S∗ε , t̂

∗
ε, ẑ
∗
ε ) ∈ [0,∞) × W 1,∞(0, S∗ε ) ×

W 1,∞(0, S∗ε ;Rn). Suppose moreover that `∗ε ⇀ `∗ in H1(0, T ;Rn).

Then, there is a subsequence (denoted w.l.o.g. by the same symbol) such that

S∗ε → S∗, t̂∗ε
∗
⇀ t̂∗, ẑ∗ε

∗
⇀ ẑ∗ inW 1,∞(0, S∗;R× Rn), (6.1)

where (S∗, t̂∗, ẑ∗) is a normalized parametrized BV solution associated with `∗, i.e. (S∗, t̂∗, ẑ∗) ∈ L(`∗).
Furthermore, the initial and end time constraint in (OCP) is fulfilled, i.e., (S∗, t̂∗, ẑ∗, `∗) is feasible for
(OCP), and there holds

lim inf
ε↘0

Jε(z
∗
ε , `
∗
ε) ≥ J(S∗, ẑ∗, `∗). (6.2)

(ii) Reverse approximation property:
Assume that (S, t, z, `) is global minimizer of (OCP) that fulfills Assumption 5.2, i.e., there is a constant δ > 0

such that t′(s) ≥ δ f.a.a. t ∈ [0, S]. Then there exists a sequence {`ε}ε>0 ⊂ H1(0, T ;Rn) with associated
viscous solution zε ∈ H2(0, T ;Rn) such that (zε, `ε) is feasible for (vOPCε) for all ε > 0 sufficiently small
and

lim
ε↘0

Jε(zε, `ε) = J(S, z, `). (6.3)

Proof. Let a sequence {`∗ε}ε>0 as in (i) be given. From Theorem 3.5 we directly obtain a subsequence such
that (6.1) holds true with a limit in L(`∗). By compact embeddings, `∗ε and ẑ∗ε converge uniformly to `∗ and ẑ∗,
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respectively. Therefore, the initial and final time constraints in (OCP) are fulfilled, too, and thus the weak limit
is feasible for (OCP). The uniform convergence of ẑ∗ε furthermore gives j(z∗ε (T )) = j(ẑ∗ε (S∗ε )) → j(ẑ∗(S∗)).
Together with weak lower-semicontinuity of the squared norm, this implies (6.2) as claimed.
The second assertion is an immediate consequence of Theorem 5.9 and Corollary 5.10, respectively. Because of

(5.24), the initial and finial time constraint in (vOPCε) are fulfilled for all sufficiently small ε > 0. Moreover, the
strong convergence in (5.23) along with H1(0, T ;Rn) ↪→ C([0, T ];Rn) implies (6.3).

With all this at hand, we can now prove our main result:

Theorem 6.3 (Main result – approximation of global minimizers via vanishing viscosity). Let Assumption 5.1 (a)
be fulfilled and denote by {`∗ε}ε>0 a sequence of global minimizers for (vOPCε)with corresponding states {z∗ε}ε>0.
Assume moreover that a global minimizer (S, t, z, `) of (OCP) exists, which fulfills Assumption 5.2, i.e., there is a
δ > 0 such that t′(s) ≥ δ f.a.a. t ∈ [0, S].
Then there is a weak accumulation point (S∗, t̂∗, ẑ∗, ˆ̀∗) in the sense that

`∗ε ⇀ `∗ in H1(0, T ;Rn), S∗ε → S∗, t̂∗ε
∗
⇀ t̂∗ in W 1,∞(0, S), ẑ∗ε

∗
⇀ ẑ∗ in W 1,∞(0, S;Rn), (6.4)

where (S∗ε , t̂
∗
ε, ẑ
∗
ε ) again denote the reparametrized solution according to (3.18) and (3.19), and every such

accumulation point is a global minimizer of (OCP). Moreover, with respect to the control variable, every weak
accumulation point is automatically a strong one, i.e., `∗ε → `∗ in H1(0, T ;Rn).

Proof. According to our standing assumptions, there exists `0 such that−DzI(`0, z0) ∈ ∂R(0). Thus, the constant
tuple (z0, `0) forms a solution of the viscous equation and is feasible for (vOPCε) for every ε > 0. Thus Jε(z∗ε , `∗ε)
is bounded independent of ε. Therefore, since j is bounded from below, we have that ‖`∗ε‖H1(0,T ;Rn) is also
bounded independent of ε and we can extract a subsequence converging weakly to some `∗ inH1(0, T ;Rn). Now,
by Proposition 6.2(i), there exists a further subsequence (denoted by the same symbol) such that (6.4) and (6.2)
hold true and the limit (S∗, t̂∗, ẑ∗, `∗) is feasible for (OCP).
On the other hand, the reverse approximation property along with the optimality of (z∗ε , `

∗
ε) for the viscous

optimal control problem implies

J(S∗, ẑ∗, `∗) ≤ lim inf
ε↘0

Jε(z
∗
ε , `
∗
ε) ≤ lim sup

ε↘0
Jε(z

∗
ε , `
∗
ε) ≤ lim

ε↘0
Jε(zε, `ε) = J(S, z, `) = min (OCP) (6.5)

so that (S∗, t̂∗, ẑ∗, `∗) is indeed optimal for (OCP) as claimed.
Moreover, (6.5) implies the convergence of {Jε(z∗ε , `∗ε)} and, due to the uniform convergence of {z∗ε}, we obtain

‖`∗ε‖2H1(0,T ;Rn) =
2

β

(
Jε(z

∗
ε , `
∗
ε)− j(z∗ε (T ))

)
→ 2

β

(
J(S∗, ẑ∗, `∗)− j(ẑ∗(S∗))

)
= ‖`∗‖2H1(0,T ;Rn).

Since weak and norm convergence yield strong convergence, this completes the proof.

Remark 6.4. As already mentioned in Remark 5.3, Assumption 5.2 is rather restrictive, but need not be satisfied
by every global minimizer of (OCP), but just by at least one. Nevertheless, if we restrict to control variables in
H1(0, T ;Rn), then an assumption of this type seems to be indispensable, at least if the recovery sequence in the
reverse approximation argument is constructed in the way we did it. This is seen as follows: the approximating
control is given by the derivative of the penalized energy, i.e., `ε = ` + η

(
zε − z̃), cf. the proof of Theorem 5.9.

Now, z̃ is a function in the physical time, where also ` “lives”, i.e., we have to transform z back to the physical
time t. If, however, this transformed function is no differential solution and provides (countably many) jumps in the
physical time, then it will no longer be an element of H1(0, T ;Rn) (as required for the control variable), but only
in BV (0, T ;Rn). We therefore need to consider control functions in BV (0, T ;Rn). However, the mere existence
of normalized parametrized BV solutions for external loadings in BV has been addressed only recently in the
literature, see e.g. [KZ19], and therefore, the weakening of Assumption 5.2 is subject to future research.
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Remark 6.5. The regularized optimal control problem in (vOPCε) offers ample possibilities for numerical algo-
rithms. By dualization, the state equation in (vOPCε) is equivalent to

żε(t) = ε
[
−∇zI(`(t), zε(t))−Π∂R(0)

(
−∇zI(`(t), zε(t))

)]
, zε(0) = z0,

where Π∂R(0) denotes the orthogonal projection on ∂R(0), cf. (3.3) and (3.14). Due to the projection, this is still a
non-smooth equation, but, by means of a further smoothing of the projection, one obtains a smooth control-to-state
mapping. The Gâteaux-derivative of the objective (reduced to the control variable only) can then be computed
with the standard adjoint approach. This gives rise to gradient-based optimization algorithms for the solution of
(vOPCε).

A Appendix: Chain rules
Lemma A.1. Let ` ∈ H1(0, T ;Rn) and t̂ ∈W 1,∞(0, S) with t̂(0) = 0, t̂(S) = T , and t̂′(s) ≥ 0 f.a.a. s ∈ (0, S)

be given. Then ˆ̀ := ` ◦ t̂ ∈ H1(0, S;Rn) and ‖ˆ̀′‖2L2(0,S;Rn) ≤ ‖t̂
′‖L∞(0,S)‖ ˙̀‖2L2(0,T ;Rn).

Moreover, for every ẑ ∈ C([0, S];Rn), there holds∫ s

0

∂`I(ˆ̀(r), ẑ(r))ˆ̀′(r)dr ≤ 1

2

∫ s

0

‖∂`I(ˆ̀(r), ẑ(r))‖2t̂′(r)dr +
1

2
‖ ˙̀‖2L2(0,T ;Rn). (A.1)

Proof. Let δ ∈ (0, 1] be fixed but arbitrary. We extend ` and t̂ to R by constant continuation and denote these
extensions by the same symbols for simplicity. Define the function t̂δ(s) := t̂(s) + δ s. Then t̂δ : R → R
is clearly strictly monotone increasing, and thus bi-Lipschitz. Thus [Zie12, Thm. 2.2.2] implies that ` ◦ t̂δ ∈
H1(t̂−1δ (0, T + δS);Rn) = H1(0, S;Rn) and its derivative is given by

(` ◦ t̂δ)′(s) = ˙̀(t̂δ(s))(t̂
′(s) + δ) f.a.a. s ∈ (0, S).

This leads to

‖(` ◦ t̂δ)′‖2L2(0,S;Rn) ≤
(
‖t̂′‖L∞(0,S) + δ

) ∫ S

0

(
˙̀(t̂δ(s))

)2
t̂′δ(s) ds

=
(
‖t̂′‖L∞(0,S) + δ

) ∫ T+δS

0

˙̀(t)2dt

=
(
‖t̂′‖L∞(0,S) + δ

)
‖ ˙̀‖2L2(0,T ;Rn)

≤
(
‖t̂′‖L∞(0,S) + 1

)
‖ ˙̀‖2L2(0,T ;Rn) ≤ C 6= C(δ) <∞.

(A.2)

where we exploited the constant continuation of `. Now, if we consider a sequence δ ↘ 0, then {` ◦ t̂δ} is
bounded in H1(0, S;Rn) and consequently, there is a subsequence converging weakly in H1(0, S;Rn). On
the other hand, t̂δ converges uniformly to t̂ on [0, S] so that the continuity of ` (due to the compactness of
H1(0, T +S;Rn) ↪→ C([0, T +S];Rn)) gives the pointwise convergence of `◦ t̂δ to `◦ t̂ on [0, S]. Since the weak
and the pointwise limit coincide, this gives the claimed regularity of ˆ̀. The estimate of its norm directly follows
from (A.2) together with the weak convergence of `◦ t̂δ to `◦ t̂ and the lower weak semicontinuity of ‖ ·‖2L2(0,S;Rn).
The inequality in (A.1) is proven similarly: using the same notation as above, it holds∫ s

0

∂`I
(
`(t̂δ(r)), ẑ(r)

)
˙̀(t̂δ(r))t̂

′
δ(r)dr

≤ 1

2

∫ s

0

∥∥∂`I(`(t̂δ(r)), ẑ(r))∥∥2 t̂′δ(r)dr +
1

2

∫ s

0

‖ ˙̀(t̂δ(r))‖2t̂′δ(r)dr
(A.3)

For the right hand side, we have as above∫ S

0

‖ ˙̀(t̂δ(r))‖2t̂′δ(r)dr =

∫ T+δS

0

‖`(t)‖2 dt = ‖ ˙̀‖2L2(0,T ;Rn)
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and, by t̂δ(s)→ t̂(s) inW 1,∞(0, S) and the continuity of `, ẑ, and ∂`I, see (2.1),

1

2

∫ s

0

∥∥∂`I(`(t̂δ(r)), ẑ(r))∥∥2t̂′δ(r)dr → 1

2

∫ s

0

∥∥∂`I(`(t̂(r)), ẑ(r))∥∥2t̂′(r)dr.
For the left hand side, the weak convergence ` ◦ t̂δ ⇀ ` ◦ t̂ in H1(0, S;Rn) implies∫ s

0

∂`I
(
`(t̂δ(r)), ẑ(r)

)
˙̀(t̂δ(r))t̂

′
δ(r)dr =

∫ s

0

∂`I
(
`(t̂δ(r)), ẑ(r)

)
(` ◦ t̂δ)′(r)dr

→
∫ s

0

∂`I
(
`(t̂(r)), ẑ(r)

)
(` ◦ t̂)′(r)dr,

which finally proves (A.1).

Lemma A.2. Let (t̂, ẑ) be a pair with t̂ ∈ W 1,∞(0, S) and ẑ ∈ W 1,1(0, S;Rn). Then, the energy equality (3.27)
is equivalent to the following energy inequality:

I(`(t̂(s)), ẑ(s)) +

∫ s

0

R(ẑ′(r)) + ‖ẑ′(r)‖ dist{−DzI(t̂(r), ẑ(r)), ∂R(0)}dr

≤ I(`(0), z0) +

∫ s

0

∂`I(`(t̂(r)), ẑ(r))`′(t̂(r))t̂′(r)dr ∀ s ∈ [0, S].

(A.4)

Proof. The proof of this Lemma is based on [KRZ13, Lem. 6.6]. Clearly, if (3.27) holds, then so does the
above inequality (A.4). It therefore suffices to proof the opposite direction. Hence, let (t̂, ẑ) be given as in the
assumptions, which fulfills the inequality (A.4). Applying the chain rule for Sobolev functions, cf. e.g. [Zie12,
Thm. 2.1.11], gives for almost all s ∈ [0, S]:

d
ds
I(t̂(s), ẑ(s)) = 〈DzI(t̂(s), ẑ(s)), ẑ′(s)〉+ ∂tI(t̂(s), ẑ(s)) t̂′(s). (A.5)

Now, let ξ(s) ∈ ∂R(0) such that dist{−DzI(t̂(r), ẑ(r)), ∂R(0)} = ‖−DzI(t̂(s), ẑ(s)) − ξ(s)‖ for almost all
s ∈ (0, S). Exploiting thatR(v) ≥ 〈ξ, v〉 for all ξ ∈ ∂R(0), we can consequently estimate

− d
ds
I(t̂(s), ẑ(s)) + ∂tI(t̂(s), ẑ(s)) t̂′(s)

= 〈−DzI(t̂(s), ẑ(s))− ξ(s), ẑ′(s)〉+ 〈ξ(s), ẑ′(s)〉

≤ ‖−DzI(t̂(s), ẑ(s))− ξ(s)‖‖ẑ′(s)‖+R(ẑ′(s))

= ‖ẑ′(s)‖ dist{−DzI(t̂(s), ẑ(s)), ∂R(0)}+R(ẑ′(s)).

Integration with respect to time and inserting the energy inequality, we obtain

I(0, z0)− I(t̂(s), ẑ(s)) +

∫ s

0

∂tI(t̂(r), ẑ(r))t̂′(r)dr

≤
∫ s

0

‖ẑ′(r)‖ dist{−DzI(t̂(r), ẑ(r)), ∂R(0)}+R(ẑ′(r))dr

≤ I(0, z0) +

∫ s

0

∂tI(t̂(r), ẑ(r))t̂′(r)dr − I(t̂(s), ẑ(s))

for all s ∈ [0, S]. Hence, (A.4) holds in fact with equality which is (3.27).

B Appendix: Uniqueness of differential solutions for ` ∈ H1(0, T ;Rn)

For the sake of completeness, let us briefly comment on the uniqueness of differential solutions in case of uniformly
convex energies for loads inH1(0, T ;Rn), since this case is not covered by the results from the literature (which in
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general require ` ∈W 1,∞(0, T ;Rn), cf. e.g. [MT04]). To this end, let z1, z2 ∈W 1,1(0, T,Rn) be two differential
solutions. We introduce the following distance measure

γ(t) := 〈∇zI(`(t), z1(t))−∇zI(`(t), z2(t)), z1(t)− z2(t)〉.

Note that by the uniform convexity of I, we have γ(t) ≥ α‖z1(t) − z2(t)‖2 with some α > 0. Clearly, by the
structure of I, i.e., I(`, z) = E(z)− 〈`, z〉, we have γ(t) = 〈∇E(z1(t))−∇E(z2(t)), z1(t)− z2(t)〉. Now, using
the symmetry of ∇2E , we calculate

γ′(t) = 〈∇2E(t, z1(t))[z1(t)− z2(t)], z′1(t)〉

− 〈∇2E(t, z2(t))[z1(t)− z2(t)], z′2(t)〉+ 〈∇2E(t, z1(t))−DzI(t, z2(t)), z′1(t)− z′2(t)〉.

Rearranging terms, we arrive at

γ′(t) = 〈∇2E(t, z1(t))[z1(t)− z2(t)] +∇E(t, z2(t))−∇E(t, z1(t)), z′1(t)〉

− 〈∇2E(t, z2(t))[z1(t)− z2(t)] +∇E(t, z1(t))−∇E(t, z2(t)), z′2(t)〉

+ 2〈∇E(t, z1(t))−∇E(t, z2(t)), z′1(t)− z′2(t)〉.

Now, due to z1, z2 ∈W 1,1(0, T ;Rn) and the regularity on E (see (5.2)), we find that

γ′(t) ≤ C‖z1(t)− z2(t)‖2‖z′1(t)‖+ C‖z1(t)− z2(t)‖2‖z′2(t)‖

+ 2〈∇zI(`(t), z1(t))−∇zI(`(t), z2(t)), z′1(t)− z′2(t)〉.
(B.1)

Since z1 and z2 are differential solutions, it holds

0 ∈ ∂R(żi(t)) +∇zI(`(t), zi(t)) i = 1, 2

and testing these equations with z′1−z′2 and adding them lead to 〈∇zI(t, z1(t))−∇zI(t, z2(t)), z′1(t)−z′2(t)〉 ≤ 0.
Hence, inserting this and the fact that ‖z1(t)− z2(t)‖2 ≤ γ(t)/α into (B.1) and integrating over [0, t] gives

γ(t) ≤ γ(0) + C

∫ t

0

(‖z′1(τ)‖+ ‖z′2(τ)‖)γ(τ)dτ.

Applying Gronwall’s lemma we eventually end up with

γ(t) ≤ γ(0) exp
{
C

∫ t

0

(‖z′1(τ)‖+ ‖z′2(τ)‖)dτ
}
.

Since z1(0) = z2(0) = z0 we have γ(0) = 0 and thus γ(t) = 0 for all t ∈ [0, T ] which proves the uniqueness of
differential solutions.
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