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Abstract. This paper is devoted to the theoretical and numerical investigation of an

augmented Lagrangian method for the solution of optimization problems with geometric

constraints. Speci�cally, we study situations where parts of the constraints are noncon-

vex and possibly complicated, but allow for a fast computation of projections onto this

nonconvex set. Typical problem classes which satisfy this requirement are optimization

problems with disjunctive constraints (like complementarity or cardinality constraints) as

well as optimization problems over sets of matrices which have to satisfy additional rank

constraints. The key idea behind our method is to keep these complicated constraints ex-

plicitly in the constraints and to penalize only the remaining constraints by an augmented

Lagrangian function. The resulting subproblems are then solved with the aid of a problem-

tailored nonmonotone projected gradient method. The corresponding convergence theory

allows for an inexact solution of these subproblems. Nevertheless, the overall algorithm

computes so-called Mordukhovich-stationary points of the original problem under a mild

asymptotic regularity condition, which is generally weaker than most of the respective avail-

able problem-tailored constraint quali�cations. Extensive numerical experiments addressing

complementarity- and cardinality-constrained optimization problems as well as a semide�-

nite reformulation of Maxcut problems visualize the power of our approach.
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1 Introduction

We consider the program

min
w

f(w) s.t. G(w) ∈ C, w ∈ D, (P)

where W and Y are Euclidean spaces, i.e., real and �nite-dimensional Hilbert spaces,
f : W → R and G : W → Y are continuously di�erentiable, C ⊂ Y is nonempty,
closed, and convex, whereas the set D ⊂ W is only assumed to be nonempty and
closed. This setting is very general and covers, amongst others, standard nonlinear
programs, second-order cone and, more generally, conic optimization problems [11,
21], as well as several so-called disjunctive programming problems like mathematical
programs with complementarity, vanishing, switching, or cardinality constraints, see
[12, 13, 25, 49] for an overview and suitable references. Since W and Y are Euclidean
spaces, our model also covers matrix optimization problems like semide�nite programs
or low-rank approximation problems [46].

The aim of this paper is to apply a (structured) augmented Lagrangian technique
to (P) in order to �nd suitable stationary points. The augmented Lagrangian or mul-
tiplier penalty method is a classical approach for the solution of nonlinear programs,
see [14] as a standard reference. The more recent book [15] presents a slightly modi-
�ed version of this classical augmented Lagrangian method, which uses a safeguarded
update of the Lagrange multipliers and has stronger global convergence properties.
In the meantime, this safeguarded augmented Lagrangian method has also been ap-
plied to a number of optimization problems with disjunctive constraints, see e.g.
[4, 29, 38,41,54].

Since, to the best of our knowledge, augmented Lagrangian methods have not yet
been applied to the general problem (P) with nonconvexD, and in order to get a better
understanding of our contributions, let us add some comments regarding the existing
results for the probably most prominent non-standard optimization problem, namely
the class of mathematical programs with complementarity constraints (MPCCs). Due
to the particular structure of the feasible set, the usual Karush�Kuhn�Tucker (KKT
for short) conditions are typically not satis�ed at a local minimum. Hence, other
(weaker) stationary concepts have been proposed, like C- (abbreviating Clarke) and
M- (for Mordukhovich) stationarity, with M-stationarity being the stronger concept.
Most algorithms (regularization, penalty, augmented Lagrangian methods etc.) for
the solution of MPCCs solve a sequence of standard nonlinear programs, and their
limit points are typically C-stationary points only. Some approaches can identify M-
stationary points if the underlying nonlinear programs are solved exactly, but they
loose this desirable property if these programs are solved only inexactly, see the
discussion in [42] for more details.

The authors are currently aware of only three approaches where convergence to
M-stationary points for a general (nonlinear) MPCC is shown using inexact solutions
of the corresponding subproblems, namely [7,29,54]. All three papers deal with suit-
able modi�cations of the (safeguarded) augmented Lagrangian method. The basic
idea of reference [7] is to solve the subproblems such that both a �rst- and a second-
order necessary optimality condition hold inexactly at each iteration, i.e., satisfaction
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of the second-order condition is the central point here which, obviously, causes some
overhead for the subproblem solver and usually excludes the application of this ap-
proach to large-scale problems. The paper [54] proves convergence to M-stationary
points by solving some complicated subproblems, but for the latter no method is
speci�ed. Finally, the recent approach described in [29] provides an augmented La-
grangian technique for the solution of MPCCs where the complementarity constraints
are kept as constraints, whereas the standard constraints are penalized. The authors
present a technique which computes a suitable stationary point of these subproblems
in such a way that the entire method generates M-stationary accumulation points
for the original MPCC. Let us also mention that [32] suggests to solve (a discontinu-
ous reformulation of) the M-stationarity system associated with an MPCC by means
of a semismooth Newton-type method. Naturally, this approach should be robust
with respect to (w.r.t.) an inexact solution of the appearing Newton-type equations
although this issue is not discussed in [32].

The current paper universalizes the idea from [29] to the much more general prob-
lem (P). In fact, a closer look at the corresponding proofs shows that the technique
from [29] can be generalized using some relatively small modi�cations. We are there-
fore able to skip some of the proofs, complete details can be found in an appendix of
the preprint version [39] of this paper. This allows us to concentrate on some addi-
tional new contributions. In particular, we prove convergence to an M-type stationary
point of the general problem (P) under a very weak sequential constraint quali�cation
introduced recently in [47] for the general setting from (P). We further show that this
sequential constraint quali�cation holds under the conditions for which convergence
to M-stationary points of an MPCC is shown in [29]. Note that this is also the �rst
algorithmic application of the general sequential stationarity and regularity concepts
from [47].

The global convergence result for our method holds for the abstract problem (P)
with geometric constraints without any further assumptions regarding the sets C
and, in particular, D. Conceptually, we are therefore able to deal with a very large
class of optimization problems. On the other hand, we use a projected gradient-type
method for the solution of the resulting subproblems. Since this requires projections
onto the (usually nonconvex) set D, our method can be implemented e�ciently only
if D is simple in the sense that projections onto D are easy to compute. For this
kind of �structured� geometric constraints (this explains the title of this paper), the
entire method is then both an e�cient tool and applicable to large-scale problems.
In particular, we show that this is the case for MPCCs, optimization problems with
cardinality constraints, and some rank-constrained matrix optimization problems.

The paper is organized as follows. We begin with restating some basic de�nitions
from variational analysis in Section 2. There, we also relate the general regularity
concept from [47] to the constraint quali�cation (the so-called relaxed constant pos-
itive linear dependence condition, RCPLD for short) used in the underlying paper
[29] (as well as in many other related publications in this area). We then present the
spectral gradient method for optimization problems over nonconvex sets in Section 3.
This method is used to solve the resulting subproblems of our augmented Lagrangian
method whose details are given in Section 4. Global convergence to M-type stationary
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points is also shown in this section. Since, in our augmented Lagrangian approach,
we penalize the seemingly easy constraints G(w) ∈ C, but keep the condition w ∈ D
explicitly in the constraints, we have to compute projections onto D. Section 5 there-
fore considers a couple of situations where this can be done in a numerically very
e�cient way. Extensive computational experiments for some of these situations are
documented in Section 6. This includes MPCCs, cardinality-constrained (sparse)
optimization problems, and a rank-constrained reformulation of the famous Maxcut
problem. We close with some �nal remarks in Section 7.

Notation. The Euclidean inner product of two vectors x, y ∈ Rn will be de-
noted by x>y. More generally, 〈x, y〉 is used to represent the inner product of
x, y ∈ W whenever W is some abstract Euclidean space. For brevity, we exploit
x + A := A + x := {x + a | a ∈ A} for arbitrary vectors x ∈ W and sets A ⊂ W.
The sets coneA and spanA denote the smallest cone containing the set A and the
smallest subspace containing A, respectively. Whenever L : W → Y is a linear op-
erator between Euclidean spaces W and Y, L∗ : Y → W denotes its adjoint. For
some continuously di�erentiable mapping ϕ : W→ Y and some point w ∈W, we use
ϕ′(w) ∈ L(W,Y) in order to denote the derivative of ϕ at w. In the particular case
Y := R, we set ∇ϕ(w) := ϕ′(w)∗1 ∈W for brevity.

2 Preliminaries

We �rst recall some basic concepts from variational analysis in Section 2.1, and then
introduce and discuss general stationarity and regularity concepts for the abstract
problem (P) in Section 2.2.

2.1 Fundamentals of Variational Analysis

In this section, we comment on the tools of variational analysis which will be exploited
in order to describe the geometry of the closed, convex set C ⊂ Y and the closed (but
not necessarily convex) set D ⊂W which appear in the formulation of (P).

The Euclidean projection PC : Y→ Y onto the closed, convex set C is given by

PC(y) := argmin
z∈C

‖z − y‖.

Thus, the corresponding distance function dC : Y→ R can be written as

dC(y) := min
z∈C
‖z − y‖ = ‖PC(y)− y‖.

On the other hand, projections onto the potentially nonconvex set D still exist, but
are, in general, not unique. Therefore, we de�ne the corresponding (usually set-
valued) projection operator ΠD : W⇒W by

ΠD(x) := argmin
z∈D

‖z − x‖ 6= ∅.
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Given w̄ ∈ D, the closed cone

N lim
D (w̄) := lim sup

w→w̄

[
cone(w − ΠD(w))

]
is referred to as the limiting normal cone to D at w̄, see [52,57] for other representa-
tions and properties of this variational tool. Above, we used the notion of the outer
(or upper) limit of a set-valued mapping at a certain point, see e.g. [57, De�nition 4.1].
For w /∈ D, we set N lim

D (w) := ∅. Note that the limiting normal cone depends on the
inner product of W and is stable in the sense that

lim sup
w→w̄

N lim
D (w) = N lim

D (w̄) ∀w̄ ∈W (2.1)

holds. This stability property, which might be referred to as outer semicontinuity of
the set-valued operator N lim

D : W ⇒ W, will play an essential role in our subsequent
analysis. The limiting normal cone to the convex set C coincides with the standard
normal cone from convex analysis, i.e., for ȳ ∈ C, we have

N lim
C (ȳ) = NC(ȳ) := {λ ∈ Y | 〈λ, y − ȳ〉 ≤ 0 ∀y ∈ C} .

For points y /∈ C, we set NC(y) := ∅ for formal completeness. Note that the stability
property (2.1) is also satis�ed by the set-valued operator NC : Y⇒ Y.

2.2 Stationarity and Regularity Concepts

Noting that the abstract set D is generally nonconvex in the exemplary settings
we have in mind, the so-called concept of Mordukhovich-stationarity, which exploits
limiting normals to D, is a reasonable concept of stationarity which addresses (P).

De�nition 2.1. Let w̄ ∈W be feasible for the optimization problem (P). Then w̄ is
called an M-stationary point (Mordukhovich-stationary point) of (P) if there exists a
multiplier λ ∈ Y such that

0 ∈ ∇f(w̄) +G′(w̄)∗λ+N lim
D (w̄), λ ∈ NC(G(w̄)).

Note that this de�nition coincides with the usual KKT conditions of (P) if the set
D is convex. An asymptotic counterpart of this de�nition is the following one, see
[47].

De�nition 2.2. Let w̄ ∈ W be feasible for the optimization problem (P). Then w̄
is called an AM-stationary point (asymptotically M-stationary point) of (P) if there
exist sequences {wk}, {εk} ⊂ W and {λk}, {zk} ⊂ Y such that wk → w̄, εk → 0,
zk → 0, as well as

εk ∈ ∇f(wk) +G′(wk)∗λk +N lim
D (wk), λk ∈ NC(G(wk)− zk) ∀k ∈ N.
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The de�nition of an AM-stationary point is similar to the notion of an AKKT
(asymptotic or approximate KKT) point, see [15], but requires some explanation:
The meanings of the iterates wk and the Lagrange multiplier estimates λk should be
clear. The vector εk measures the inexactness by which the stationary conditions are
satis�ed at wk and λk. The vector zk does not occur (at least not explicitly) in the
context of standard nonlinear programs, but is required here for the following reason:
The method to be considered in this paper generates a sequence {wk} satisfying wk ∈
D, while the constraint G(w) ∈ C gets penalized, hence, the condition G(wk) ∈ C
will typically be violated. Consequently, the corresponding normal cone NC(G(wk))
would be empty which is why we cannot expect to have λk ∈ NC(G(wk)), though we
hope that this holds asymptotically. In order to deal with this situation, we therefore
have to introduce the sequence {zk}.

Apart from this di�erence, the motivation of AM-stationarity is similar to the one
of AKKT-stationarity: Suppose that the sequence {λk} is bounded and, therefore,
convergent along a subsequence. Then, taking the limit on this subsequence in the
de�nition of an AM-stationary point while using the stability property (2.1) of the lim-
iting normal cone shows that the corresponding limit point satis�es the M-stationarity
conditions from De�nition 2.1. In general, however, the Lagrange multiplier estimates
{λk} in the de�nition of AM-stationarity might be unbounded. Though this bound-
edness can be guaranteed under suitable (relatively strong) assumptions, the resulting
convergence theory works under signi�cantly weaker conditions.

It is well known in optimization theory that a local minimizer of (P) is M-
stationary only under validity of a suitable constraint quali�cation. In contrast, it has
been pointed out in [47, Theorem 4.2, Section 5.1] that each local minimizer of (P) is
AM-stationary. In order to infer that an AM-stationary point is already M-stationary,
the presence of so-called asymptotic regularity is necessary, see [47, De�nition 4.4].

De�nition 2.3. A feasible point w̄ ∈W of (P) is called AM-regular (asymptotically
Mordukhovich-regular) whenever the condition

lim sup
w→w̄, z→0

M(w, z) ⊂M(w̄, 0)

holds, whereM : W× Y⇒W is the set-valued mapping de�ned via

M(w, z) := G′(w)∗NC(G(w)− z) +N lim
D (w).

The concept of AM-regularity has been inspired by the notion of AKKT-regularity
(sometimes referred to as cone continuity property), which became popular as one of
the weakest constraint quali�cations for standard nonlinear programs or MPCCs, see
e.g. [5, 6, 54], and can be generalized to a much higher level of abstractness. In this
regard, we would like to point the reader's attention to the fact that AM-stationarity
and -regularity from De�nitions 2.2 and 2.3 are referred to as decoupled asymptotic
Mordukhovich-stationarity and -regularity in [47] since these are already re�nements
of more general concepts. For the sake of a concise notation, however, we omit the
term decoupled here.
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It has been shown in [47, Section 5.1] that validity of AM-regularity at a feasible
point w̄ ∈W of (P) is implied by

0 ∈ G′(w̄)∗λ+N lim
D (w̄), λ ∈ NC(G(w̄)) =⇒ λ = 0. (2.2)

The latter is known as NNAMCQ (no nonzero abnormal multiplier constraint quali�-
cation) or GMFCQ (generalized Mangasarian�Fromovitz constraint quali�cation) in
the literature. Indeed, in the setting where we �x C := Rm1

− × {0}m2 and D := W,
(2.2) boils down to the classical Mangasarian�Fromovitz constraint quali�cation from
standard nonlinear programming. The latter choice for C will be of particular interest,
which is why we formalize this setting below.

Setting 2.4. Given m1,m2 ∈ N, we set m := m1 + m2, Y := Rm, and C := Rm1
− ×

{0}m2 . No additional assumptions are postulated on the set D. We denote the
component functions of G by G1, . . . , Gm : W → R. Thus, the constraint G(w) ∈ C
encodes the constraint system

Gi(w) ≤ 0 i = 1, . . . ,m1, Gi(w) = 0 i = m1 + 1, . . . ,m

of standard nonlinear programming. For our analysis, we exploit the index sets

I(w̄) := {i ∈ {1, . . . ,m1} |Gi(w̄) = 0}, J := {m1 + 1, . . . ,m},

whenever w̄ ∈ D satis�es G(w̄) ∈ C in the present situation.

Let us emphasize that we did not make any assumptions regarding the structure
of the set D in Setting 2.4. Thus, it still covers numerous interesting problem classes
like complementarity-, vanishing-, or switching-constrained programs. These so-called
disjunctive programs of special type are addressed in the setting mentioned below
which provides a re�nement of Setting 2.4.

Setting 2.5. Let X be another Euclidean space, let X ⊂ X be a closed, convex set
of simple structure, and let T ⊂ R2 be the union of two polyhedrons T1, T2 ⊂ R2. For
functions g : X → Rm1 , h : X → Rm2 , and p, q : X → Rm3 , we consider the constraint
system given by

gi(x) ≤ 0 i = 1, . . . ,m1,

hi(x) = 0 i = 1, . . . ,m2,(
pi(x), qi(x)

)
∈ T i = 1, . . . ,m3,

x ∈ X.
Setting W := X× Rm3 × Rm3 , Y := Rm1 × Rm2 × Rm3 × Rm3 ,

G(x, u, v) :=
(
g(x), h(x), p(x)− u, q(x)− v

)
,

and

C := Rm1
− × {0}m2+2m3 , D := X × {(u, v) | (ui, vi) ∈ T ∀i ∈ {1, . . . ,m3}} ,

we can handle this situation in the framework of this paper.
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Constraint regions as characterized in Setting 2.4 can be tackled with a recently
introduced version of RCPLD (relaxed constant positive linear dependence constraint
quali�cation), see [60, De�nition 1.1].

De�nition 2.6. Let w̄ ∈ W be a feasible point of the optimization problem (P) in
Setting 2.4. Then w̄ is said to satisfy RCPLD whenever the following conditions hold:

(i) the family (∇Gi(w))i∈J has constant rank on a neighborhood of w̄,

(ii) there exists an index set S ⊂ J such that the family (∇Gi(w̄))i∈S is a basis of
the subspace span{∇Gi(w̄) | i ∈ J}, and

(iii) for each index set I ⊂ I(w̄), each set of multipliers λi ≥ 0 (i ∈ I) and λi ∈ R
(i ∈ S), not all vanishing at the same time, and each vector η ∈ N lim

D (w̄) which
satisfy

0 ∈
∑
i∈I∪S

λi∇Gi(w̄) + η,

we �nd neighborhoods U of w̄ and V of η such that for all w ∈ U and η̃ ∈
N lim
D (w) ∩ V , the vectors from

(∇Gi(w))i∈I∪S, η̃

are linearly dependent.

RCPLD has been introduced for standard nonlinear programs (i.e., D := W = Rn

in Setting 2.4) in [3]. Some extensions to complementarity-constrained programs can
be found in [23,30].

In case whereD is a set of product structure, condition (iii) in De�nition 2.6 can be
slightly weakened in order to obtain a reasonable generalization of the classical relaxed
constant positive linear dependence constraint quali�cation, see [60, Remark 1.1] for
details. Observing that GMFCQ from (2.2) takes the particular form

0 ∈
∑

i∈I(w̄)∪J

λi∇Gi(w̄) +N lim
D (w̄), λi ≥ 0 (i ∈ I) =⇒ λi = 0 (i ∈ I(w̄) ∪ J)

in Setting 2.4, it is obviously su�cient for RCPLD. The subsequently stated result
generalizes related observations from [5,54].

Lemma 2.7. Let w̄ ∈ W be a feasible point for the optimization problem (P) in
Setting 2.4 where RCPLD holds. Then w̄ is AM-regular.

Proof: Fix some ξ ∈ lim supw→w̄, z→0M(w, z). Then we �nd {wk}, {ξk} ⊂ W and
{zk} ⊂ Rm which satisfy wk → w̄, ξk → ξ, zk → 0, and ξk ∈M(wk, zk) for all k ∈ N.
Particularly, there are sequences {λk} and {ηk} satisfying λk ∈ NC(G(wk) − zk),
ηk ∈ N lim

D (wk), and ξk = G′(wk)∗λk + ηk for each k ∈ N. From G(wk) − zk → G(w̄)
and the special structure of C, we �nd Gi(w

k)− zki < 0 for all i ∈ {1, . . . ,m1} \ I(w̄)
and all su�ciently large k ∈ N, i.e.,

λki

{
= 0 i ∈ {1, . . . ,m1} \ I(w̄),

≥ 0 i ∈ I(w̄)
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for su�ciently large k ∈ N. Thus, we may assume without loss of generality that

ξk =
∑

i∈I(w̄)∪J

λki∇Gi(w
k) + ηk

holds for all k ∈ N. By de�nition of RCPLD, (∇Gi(w
k))i∈S is a basis of the subspace

span{∇Gi(w
k) | i ∈ J} for all su�ciently large k ∈ N. Hence, there exist scalars µki

(i ∈ S) such that

ξk =
∑
i∈I(w̄)

λki∇Gi(w
k) +

∑
i∈S

µki∇Gi(w
k) + ηk

holds for all su�ciently large k ∈ N. On the other hand, [3, Lemma 1] yields the
existence of an index set Ik ⊂ I(w̄) and multipliers µ̂ki > 0 (i ∈ Ik), µ̂ki ∈ R (i ∈ S),
and σk ≥ 0 such that

ξk =
∑

i∈Ik∪S

µ̂ki∇Gi(w
k) + σk η

k

and
σk > 0 =⇒ (∇Gi(w

k))i∈Ik∪S, η
k linearly independent,

σk = 0 =⇒ (∇Gi(w
k))i∈Ik∪S linearly independent.

Since there are only �nitely many subsets of I(w̄), there needs to exist I ⊂ I(w̄) such
that Ik = I holds along a whole subsequence. Along such a particular subsequence
(without relabeling), we furthermore may assume σk > 0 (otherwise, the proof will
be easier) and, thus, may set η̂k := σkη

k ∈ N lim
D (wk). From above, we �nd linear

independence of
(∇Gi(w

k))i∈I∪S, η̂
k.

Furthermore, we have
ξk =

∑
i∈I∪S

µ̂ki∇Gi(w
k) + η̂k. (2.3)

Suppose that the sequence {((µ̂ki )i∈I∪S, η̂k)} is not bounded. Dividing (2.3) by
the norm of ((µ̂ki )i∈I∪S, η̂

k), taking the limit k → ∞, and respecting boundedness of
{ξk}, continuity of G′, and outer semicontinuity of the limiting normal cone yield the
existence of a non-vanishing multiplier ((µ̂i)i∈I∪S, η̂) which satis�es µ̂i ≥ 0 (i ∈ I),
η̂ ∈ N lim

D (w̄), and
0 =

∑
i∈I∪S

µ̂i∇Gi(w̄) + η̂.

Obviously, the multipliers µ̂i (i ∈ I ∪ S) do not vanish at the same time since,
otherwise, η̂ = 0 would follow from above which yields a contradiction. Now, validity
of RCPLD guarantees that the vectors

(∇Gi(w
k))i∈I∪S, η̂

k

need to be linearly dependent for su�ciently large k ∈ N. However, we already have
shown above that these vectors are linearly independent, a contradiction.
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Thus, the sequence {((µ̂ki )i∈I∪S, η̂k)} is bounded and, therefore, possesses a conver-
gent subsequence with limit ((µ̄i)i∈I∪S, η̄). Taking the limit in (2.3) while respecting
ξk → ξ, the continuity of G′, and the outer semicontinuity of the limiting normal
cone, we come up with µ̄i ≥ 0 (i ∈ I), η̄ ∈ N lim

D (w̄), and

ξ =
∑
i∈I∪S

µ̄i∇Gi(w̄) + η̄.

Finally, we set µ̄i := 0 for all i ∈ {1, . . . ,m} \ (I ∪ S). Then we have (µ̄i)i=1,...,m ∈
NC(G(w̄)) from I ⊂ I(w̄), i.e.,

ξ ∈ G′(w̄)∗NC(G(w̄)) +N lim
D (w̄) =M(w̄, 0).

This shows that w̄ is AM-regular. �

Another popular situation, where AM-regularity is inherently satis�ed, is de-
scribed in the following lemma which follows from [48, Theorem 3.10].

Lemma 2.8. Let w̄ ∈ W be a feasible point for the optimization problem (P) where
G is a�ne, C is a polyhedron, and D is the union of �nitely many polyhedrons. Then
w̄ is AM-regular.

The above considerations underline that AM-regularity is a comparatively weak
constraint quali�cation for (P).

3 A Spectral Gradient Method for Nonconvex Sets

In this section, we discuss a solution method for constrained optimization problems
which applies whenever projections onto the feasible set are easy to �nd. Particu-
larly, our method can be used in situations where the feasible set has a complicated
nonconvex structure.

To motivate the method, �rst consider the unconstrained optimization problem

min
w

ϕ(w) s.t. w ∈ Rn

with a continuously di�erentiable objective function ϕ : Rn → R, and let wk be a
current estimate for a solution of this problem. Computing the next iterate wk+1 as
the unique minimizer of the local quadratic model

min
w

ϕ(wk) +∇ϕ(wk)>(w − wk) +
γk
2
‖w − wk‖2

for some γk > 0 leads to the explicit expression

wk+1 := wk − 1

γk
∇ϕ(wk),

10



i.e., we get a steepest descent method with stepsize tk := 1/γk. Classical approaches
compute tk using a suitable stepsize rule such that ϕ(wk+1) < ϕ(wk). On the other
hand, one can view the update formula as a special instance of a quasi-Newton scheme

wk+1 := wk −B−1
k ∇ϕ(wk)

with the very simple quasi-Newton matrix Bk := γkI as an estimate of the (not nec-
essarily existing) Hessian ∇2ϕ(wk). Then the corresponding quasi-Newton equation

Bk+1s
k = yk with sk := wk+1 − wk, yk := ∇ϕ(wk+1)−∇ϕ(wk),

see [24], reduces to the linear system γk+1s
k = yk. Solving this overdetermined system

in a least squares sense, we then obtain the stepsize

γk+1 := (sk)>yk/(sk)>sk

introduced by Barzilai and Borwein [8]. This stepsize often leads to very good nu-
merical results, but may not yield a monotone decrease in the function value. A
convergence proof for general nonlinear programs is therefore di�cult, even if the
choice of γk is safeguarded in the sense that it is projected onto some box [γmin, γmax]
for suitable constants 0 < γmin < γmax.

Raydan [55] then suggested to control this nonmonotone behavior by combining
the Barzilai�Borwein stepsize with the nonmonotone linesearch strategy introduced
by Grippo et al. [28]. This, in particular, leads to a global convergence theory for
general unconstrained optimization problems.

This idea was then generalized by Birgin et al. [16] to constrained optimization
problems

min
w

ϕ(w) s.t. w ∈ W

with a nonempty, closed, and convex set W ⊂ Rn and is called the nonmonotone
spectral gradient method. Here, we extend their approach to minimization problems

min
w

ϕ(w) s.t. w ∈ D (3.1)

with a continuously di�erentiable function ϕ : W→ R and some nonempty, closed set
D ⊂ W, where W is an arbitrary Euclidean space. Let us emphasize that neither ϕ
nor D need to be convex in our subsequent considerations. A detailed description of
the corresponding generalized spectral gradient method is as follows.

Algorithm 3.1. (General Spectral Gradient Method)

(S.0) Choose τ > 1, σ ∈ (0, 1), 0 < γmin ≤ γmax <∞,m ∈ N, w0 ∈ D, and set k := 0.

(S.1) If a suitable termination criterion holds at iteration k: STOP.

(S.2) Set mk := min(k,m) and choose γ0
k ∈ [γmin, γmax]. For i = 0, 1, . . ., compute a

solution wk,i of

min
w

ϕ(wk) + 〈∇ϕ(wk), w − wk〉+
γk,i
2
‖w − wk‖2 s.t. w ∈ D (Q(k, i))

11



with γk,i = τ iγ0
k, until the acceptance criterion

ϕ(wk,i) ≤ max
j=0,1,...,mk

ϕ(wk−j) + σϕ′(wk)(wk,i − wk) (3.2)

holds. Denote by ik := i the terminal value and set γk := γk,ik and w
k+1 = wk,ik .

(S.3) Set k ← k + 1, and go to (S.1).

Particular instances of this approach with nonconvex sets D can already be found
in [10,29]. Note that all iterates belong to the set D, that the subproblems (Q(k, i))
are always solvable, and that we have to compute only one solution, although their
solutions are not necessarily unique. We would like to emphasize that ∇ϕ(wk) was
used in the formulation of (Q(k, i)) in order to underline that Algorithm 3.1 is a pro-
jected gradient method. Indeed, simple calculations reveal that the global solutions of
(Q(k, i)) correspond to the projections of wk−γ−1

k,i∇ϕ(wk) onto D. Note also that the
acceptance criterion in (S.2) is the nonmonotone Armijo rule introduced by Grippo
et al. [28].

We stress that the previous generalization of existing spectral gradient methods
plays a fundamental role in order to apply our subsequent augmented Lagrangian
technique to several interesting and di�cult optimization problems, but the conver-
gence analysis of Algorithm 3.1 can be carried out similar to the one given in [29].
We therefore skip the corresponding proofs in this section, but for the readers' con-
venience, we present complete proofs in the appendix of the preprint version [39] of
this paper.

Throughout, we assume implicitly that Algorithm 3.1 generates an in�nite se-
quence, i.e., we neglect the termination criterion in (S.1). The next result then
shows that the inner loop in (S.2) is always �nite as long as wk is not already an
M-stationary point of the given optimization problem (3.1). To this end, recall that
wk is an M-stationary point of (3.1) if

0 ∈ ∇ϕ(wk) +N lim
D (wk)

holds. Similarly, wk+1 solves the subproblem

min
w

ϕ(wk) + 〈∇ϕ(wk), w − wk〉+
γk
2
‖w − wk‖2 s.t. w ∈ D (3.3)

and satis�es the corresponding stationarity condition

0 ∈ ∇ϕ(wk) + γk
(
wk+1 − wk

)
+N lim

D (wk+1). (3.4)

Let us point the reader's attention to the fact that strong stationarity, where the
limiting normal cone is replaced by the smaller regular normal cone in the stationarity
system, provides a more restrictive necessary optimality condition for (3.1) and the
surrogate (3.3), see [57, De�nition 6.3, Theorem 6.12]. It is well known that the
limiting normal cone is the outer limit of the regular normal cone. In contrast to the
limiting normal cone, the regular one is not robust in the sense of (2.1), and since
we are interested in taking limits later on, one either way ends up with a stationarity
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systems in terms of limiting normals at the end. Thus, we will rely on the limiting
normal cone and the associated concept of M-stationarity.

Coming back to (3.4), if wk+1 = wk, then wk would already be an M-stationary
point of the given optimization problem. Otherwise, we have the following result.

Proposition 3.2. Consider a �xed iteration k and assume that wk is not an M-
stationary point of (3.1). Then the inner loop in (S.2) of Algorithm 3.1 is �nite, i.e.,
we have γk = γk,ik for some �nite index ik ∈ {0, 1, 2, . . .}.

Let w0 ∈ D be the starting point from Algorithm 3.1, and let

Lϕ(w0) :=
{
w ∈ D

∣∣ϕ(w) ≤ ϕ(w0)
}

denote the corresponding (feasible) sublevel set. Then the following observation holds,
see [28, 39,59] for the details.

Proposition 3.3. Let {wk} be a sequence generated by Algorithm 3.1. Assume that ϕ
is bounded from below and uniformly continuous on Lϕ(w0). Then ‖wk+1 −wk‖ → 0
holds as k →∞.

The previous result allows to prove the following main convergence result for
Algorithm 3.1, see, again, [39] for a complete proof.

Theorem 3.4. Let {wk} be a sequence generated by Algorithm 3.1. Assume that ϕ
is bounded from below and uniformly continuous on Lϕ(w0). Suppose that w̄ is an
accumulation point of {wk}, i.e., wk →K w̄ along a subsequence K. Then w̄ is an M-
stationary point of the optimization problem (3.1), and we have γk

(
wk+1 − wk

)
→K 0.

Observe that (3.4) implies

γk−1

(
wk−1 − wk

)
+∇ϕ(wk)−∇ϕ(wk−1) ∈ ∇ϕ(wk) +N lim

D (wk)

and this justi�es the termination criterion (evaluated in iterations k > 0)

‖γk−1

(
wk−1 − wk

)
+∇ϕ(wk)−∇ϕ(wk−1)‖ ≤ εtol (3.5)

with εtol > 0 for Algorithm 3.1, since the condition 0 ∈ ∇ϕ(wk)+N lim
D (wk) encodes M-

stationarity of wk for (3.1). Thus, (3.5) means that wk is approximately M-stationary.
Moreover, Proposition 3.3 and Theorem 3.4 imply that this condition is satis�ed for
k ∈ K large enough since wk, wk−1 →K w̄ and ∇ϕ : W→W is continuous.

Finally, we mention that it may happen that some iterate wk is already M-
stationary. However, this is not easy to detect algorithmically. Then Proposition 3.2
does not apply and the inner iteration might not terminate. To circumvent this
pathological situation, one could add the termination criterion

‖γk,i
(
wk,i − wk

)
+∇ϕ(wk)−∇ϕ(wk,i)‖ ≤ εtol (3.6)

to the inner loop in (S.2). If this condition is satis�ed, the entire Algorithm 3.1 termi-
nates with the approximately M-stationary point wk,i. The proof of Proposition 3.2
shows that any su�ciently large i satis�es (3.2) or (3.6), even if wk is M-stationary.
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4 An Augmented Lagrangian Approach for Struc-

tured Geometric Constraints

Section 4.1 contains a detailed statement of our augmented Lagrangian method ap-
plied to the general class of problems (P) together with several explanations. The
convergence theory is then presented in Section 4.2.

4.1 Statement of the Algorithm

We now consider the optimization problem (P) under the given smoothness and con-
vexity assumptions stated there (recall that D is not necessarily convex). This section
presents a safeguarded augmented Lagrangian approach for the solution of (P). The
method penalizes the constraints G(w) ∈ C, but leaves the possibly complicated con-
dition w ∈ D explicitly in the constraints. Hence, the resulting subproblems that
have to be solved in the augmented Lagrangian framework have exactly the structure
of the (simpli�ed) optimization problems discussed in Section 3.

To be speci�c, consider the (partially) augmented Lagrangian

Lρ(w, λ) := f(w) +
ρ

2
d2
C

(
G(w) +

λ

ρ

)
(4.1)

of (P), where ρ > 0 denotes the penalty parameter. Note that the squared distance
function of a convex set is always smooth which yields that Lρ(·, λ) is a continuously
di�erentiable mapping. Using the de�nition of the distance, we can alternatively
write this (partially) augmented Lagrangian as

Lρ(w, λ) = f(w) +
ρ

2

∥∥∥∥G(w) +
λ

ρ
− PC

(
G(w) +

λ

ρ

)∥∥∥∥2

.

In order to control the update of the penalty parameter, we also introduce the auxil-
iary function

Vρ(w, λ) :=

∥∥∥∥G(w)− PC
(
G(w) +

λ

ρ

)∥∥∥∥ (4.2)

which may be viewed as a kind of composite measure of feasibility and complemen-
tarity (i.e., G(w) ∈ C and λ ∈ NC(G(w))) at the current point. The overall method
then is as follows.

Algorithm 4.1. (Safeguarded Augmented Lagrangian Method for Geometric Con-
straints)

(S.0) Choose ρ0 > 0, β > 1, η ∈ (0, 1), w0 ∈ D, and a nonempty, bounded set U ⊂ Y.
Set k := 0.

(S.1) If wk satis�es a suitable termination criterion: STOP.

(S.2) Choose uk ∈ U and compute an approximate M-stationary point wk+1 of the
subproblem

min
w
Lρk(w, uk) s.t. w ∈ D (4.3)
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satisfying
εk+1 ∈ ∇wLρk(wk+1, uk) +N lim

D (wk+1)

for some suitable (su�ciently small) vector εk+1 ∈W.

(S.3) Set

λk+1 := ρk

[
G(wk+1) +

uk

ρk
− PC

(
G(wk+1) +

uk

ρk

)]
. (4.4)

(S.4) If k = 0 or
Vρk(w

k+1, uk) ≤ ηVρk−1
(wk, uk−1),

then set ρk+1 := ρk, else update ρk+1 := βρk.

(S.5) Set k ← k + 1, and go to (S.1).

Throughout our convergence analysis, we assume implicitly that Algorithm 4.1
does not stop after �nitely many iterations. Since we will prove (under suitable as-
sumptions) convergence to M-stationary points of the optimization problem (P), this
means that the termination criterion in (S.1) could check whether the M-stationarity
condition holds (at least approximately). Another reasonable approach would be to
check approximate feasibility w.r.t. the penalized constraint G(w) ∈ C. Step (S.2), in
general, contains the main computational e�ort since we have to �solve� a constrained
nonlinear program at each iteration. Due to the nonconvexity of this subproblem, we
only require to compute an M-stationary point of this program. In fact, we allow the
computation of an inexact M-stationary point, with the vector εk+1 measuring the de-
gree of inexactness. The choice εk+1 = 0 corresponds to an exact M-stationary point.
Note that the subproblems arising in (S.2) have precisely the structure of the prob-
lem investigated in Section 3, hence, the spectral gradient method discussed there is a
canonical candidate for the solution of these subproblems (note also that the objective
function Lρk(·, uk) is once, but usually not twice continuously di�erentiable).

Note that Algorithm 4.1 is called a safeguarded augmented Lagrangian method
due to the appearance of the auxiliary sequence {uk}. In fact, if we would replace
uk by λk in (S.2) (and the corresponding subsequent formulas), we would obtain
the classical augmented Lagrangian method. However, the safeguarded version has
superior global convergence properties, see [15] for a general discussion and [43] for
an explicit (counter-) example. In practice, uk is typically chosen to be equal to λk as
long as this vector belongs to the set U , otherwise uk is taken as the projection of λk

onto this set. In situations where Y is equipped with some (partial) order relation .,
a typical choice for U is given by the box [umin, umax] := {u ∈ Y |umin . u . umax}
where umin, umax ∈ Y are given bounds satisfying umin . umax.

In order to understand the update of the Lagrange multiplier estimate in (S.3),
recall that the augmented Lagrangian is di�erentiable, with its derivative given by

∇wLρ(w, λ) = ∇f(w) + ρG′(w)∗
[
G(w) +

λ

ρ
− PC

(
G(w) +

λ

ρ

)]
.

Hence, if we denote the usual (partial) Lagrangian of (P) by

L(w, λ) := f(w) + 〈λ,G(w)〉,
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we obtain from (S.3) that

∇wLρk(wk+1, uk) = ∇f(wk+1) +G′(wk+1)∗λk+1 = ∇wL(wk+1, λk+1). (4.5)

This formula is actually the motivation for the precise update used in (S.3).
The particular updating rule in (S.4) is quite common, but other formulas might

also be possible. In particular, one can use a di�erent norm in the de�nition (4.2) of Vρ.
Exemplary, we exploited the maximum-norm for our experiments in Section 6 where
W is a space of real vectors or matrices. Let us emphasize that increasing the penalty
parameter ρk based on a pure infeasibility measure does not work in Algorithm 4.1.
One usually has to take into account both the infeasibility of the current iterate
(w.r.t. the constraint G(w) ∈ C) and a kind of complementarity condition (i.e.,
λ ∈ NC(G(w))).

4.2 Convergence

Like all penalty-type methods, augmented Lagrangian methods su�er from the draw-
back that they generate accumulation points which are not necessarily feasible for the
given optimization problem (P). The following (standard) result therefore presents
some conditions under which it is guaranteed that limit points are feasible.

Proposition 4.2. Each accumulation point w̄ of a sequence {wk} generated by Algo-
rithm 4.1 is feasible for the optimization problem (P) if one of the following conditions
holds:

(a) {ρk} is bounded, or
(b) there exists some B ∈ R such that Lρk(wk+1, uk) ≤ B holds for all k ∈ N.

Proof: (a) Since {ρk} is bounded, (S.4) implies that Vρk(w
k+1, uk) → 0 for k → ∞.

This implies

dC(G(wk+1)) ≤
∥∥∥∥G(wk+1)− PC

(
G(wk+1) +

uk

ρk

)∥∥∥∥ = Vρk(w
k+1, uk)→ 0.

Now, let w̄ be an arbitrary accumulation point and, say, {wk+1}K a corresponding
subsequence with wk+1 →K w̄. A continuity argument yields dC(G(w̄)) = 0. Since
C is a closed set, this implies G(w̄) ∈ C. Furthermore, by construction, we have
wk+1 ∈ D for all k ∈ N, so that the closedness of D also yields w̄ ∈ D. Altogether,
this shows that w̄ is feasible for the optimization problem (P).
(b) In view of part (a), it su�ces to consider the situation where ρk → ∞. By
assumption, we have

f(wk+1) +
ρk
2
d2
C

(
G(wk+1) +

uk

ρk

)
≤ B ∀k ∈ N.

Rearranging terms yields

d2
C

(
G(wk+1) +

uk

ρk

)
≤ 2(B − f(wk+1))

ρk
∀k ∈ N. (4.6)
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Let w̄ be once again an accumulation point and {wk+1}K be a convergent subsequence
with limit w̄. Then, taking the limit k →K ∞ in (4.6) and using the boundedness of
{uk}, we obtain

d2
C

(
G(w̄)

)
= lim

k→K∞
d2
C

(
G(wk+1) +

uk

ρk

)
= 0

by a continuity argument. Similar to part (a), this implies feasibility of w̄. �

The two conditions in (a) and (b) of Proposition 4.2 are, of course, di�cult to
check a priori. Nevertheless, in the situation where each iterate wk+1 is actually a
global minimizer of the subproblem in (S.2) and w denotes any feasible point of the
optimization problem (P), we have

Lρk(wk+1, uk) ≤ Lρk(w, uk) ≤ f(w) +
‖uk‖2

2ρk
≤ f(w) +

‖uk‖2

2ρ0

≤ B

for some suitable constant B due to the boundedness of the sequence {uk}. The same
argument also works if wk+1 is only an inexact global minimizer.

The next result shows that, even in the case where a limit point is not necessarily
feasible, it still contains some useful information in the sense that it is at least a
stationary point for the constraint violation. In general, this is the best that one can
expect.

Proposition 4.3. Suppose that the sequence {εk} in Algorithm 4.1 is bounded. Then
each accumulation point w̄ of a sequence {wk} generated by Algorithm 4.1 is an M-
stationary point of the so-called feasibility problem

min
w

1
2
d2
C(G(w)) s.t. w ∈ D. (4.7)

Proof: In view of Proposition 4.2, if {ρk} is bounded, then each accumulation point
is a global minimum of the feasibility problem (4.7) and, therefore, an M-stationary
point of this problem.

Hence, it remains to consider the case where {ρk} is unbounded, i.e., we have
ρk →∞ as k →∞. In view of (S.2) and (S.3), see also (4.5), we have

εk+1 ∈ ∇f(wk+1) +G′(wk+1)∗λk+1 +N lim
D (wk+1)

with λk+1 as in (4.4). Dividing this inclusion by ρk and using the fact that N lim
D (wk+1)

is a cone, we therefore get

εk+1

ρk
∈ ∇f(wk+1)

ρk
+G′(wk+1)∗

[
G(wk+1) +

uk

ρk
− PC

(
G(wk+1) +

uk

ρk

)]
+N lim

D (wk+1).

Now, let w̄ be an accumulation point and {wk+1}K be a subsequence satisfying
wk+1 →K w̄. Then the sequences {εk+1}K , {uk}K , and {∇f(wk+1)}K are bounded.
Thus, taking the limit k →K ∞ yields

0 ∈ G′(w̄)∗
[
G(w̄)− PC(G(w̄))

]
+N lim

D (w̄)
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by the outer semicontinuity of the limiting normal cone. Since we also have w̄ ∈ D
and due to

∇
(

1
2
d2
C ◦G

)
(w̄) = G′(w̄)∗

[
G(w̄)− PC(G(w̄))

]
,

it follows that w̄ is an M-stationary point of the feasibility problem (4.7). �

We next investigate suitable properties of feasible limit points. The following may
be viewed as the main observation in that respect and shows that any such accumu-
lation point is automatically an AM-stationary point in the sense of De�nition 2.2.

Theorem 4.4. Suppose that the sequence {εk} in Algorithm 4.1 satis�es εk → 0.
Then each feasible accumulation point w̄ of a sequence {wk} generated by Algo-
rithm 4.1 is an AM-stationary point.

Proof: Let {wk+1}K denote a subsequence such that wk+1 →K w̄. De�ne

sk+1 := PC

(
G(wk+1) +

uk

ρk

)
and zk+1 := G(wk+1)− sk+1

for each k ∈ N. We claim that the four (sub-) sequences {wk+1}K , {zk+1}K , {εk+1}K ,
and {λk+1}K generated by Algorithm 4.1 or de�ned in the above way satisfy the
properties from De�nition 2.2 and therefore show that w̄ is an AM-stationary point.
By construction, we have wk+1 →K w̄ and εk+1 →K 0. Further, from (S.2) and (4.5),
we obtain

εk+1 ∈ ∇wLρk(wk+1, uk) +N lim
D (wk+1) = ∇f(wk+1) +G′(wk+1)∗λk+1 +N lim

D (wk+1).

SinceNC(sk+1) is a cone, the relation between PC andNC together with the de�nitions
of sk+1, λk+1, and zk+1 yield

λk+1 = ρk

[
G(wk+1) +

uk

ρk
− sk+1

]
∈ NC(sk+1) = NC(G(wk+1)− zk+1).

Hence, it remains to show zk+1 →K 0. To this end, we consider two cases, namely
whether {ρk} stays bounded or is unbounded. In the bounded case, (S.4) implies that
Vρk(w

k+1, uk)→ 0 for k →∞. The corresponding de�nitions therefore yield

‖zk+1‖ = ‖G(wk+1)− sk+1‖ = Vρk(w
k+1, uk)→ 0 for k →K ∞.

On the other hand, if {ρk} is unbounded, we have ρk → ∞. Since {uk} is bounded
by construction, the continuity of the projection operator together with the assumed
feasibility of w̄ implies

sk+1 = PC

(
G(wk+1) +

uk

ρk

)
→ PC(G(w̄)) = G(w̄) for k →K ∞.

Consequently, we obtain zk+1 = G(wk+1)− sk+1 →K 0 also in this case. Altogether,
this implies that w̄ is AM-stationary. �

Recalling that, by de�nition, each AM-stationary point of (P) which is AM-regular
must already be M-stationary, we obtain the following corollary.
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Corollary 4.5. Suppose that the sequence {εk} in Algorithm 4.1 satis�es εk → 0.
Then each feasible and AM-regular accumulation point w̄ of a sequence {wk} generated
by Algorithm 4.1 is an M-stationary point.

This result generalizes [29, Theorem 3] which addresses a similar MPCC-tailored
augmented Lagrangian method and exploits an MPCC-tailored version of RCPLD,
see Lemma 2.7 as well.

5 Realizations

Recall that we need to solve the subproblem

min
w
Lρk(wk, uk) + 〈∇wLρk(wk, uk), w − wk〉+

γk
2
‖w − wk‖2 s.t. w ∈ D

with some given γk > 0 in the iterations of Algorithm 3.1, which is a promising
candidate to solve the ALM-subproblem (4.3) in Algorithm 4.1. As pointed out in
Section 3, the above problem possesses the same solutions as

min
w

∥∥∥∥w − (wk − 1

γk
∇wLρk(wk, uk)

)∥∥∥∥2

s.t. w ∈ D,

i.e., we need to be able to compute elements of the (possibly multi-valued) projection
ΠD

(
wk − 1

γk
∇wLρk(wk, uk)

)
. Boiling this requirement down to its essentials, we have

to be in position to �nd projections of arbitrary points onto the set D in an e�cient
way. Subsequently, this will be discussed in the context of several practically relevant
settings.

5.1 The Disjunctive Programming Case

We consider (P) in the special Setting 2.5 with X := Rn and X := [`, u] where
`, u ∈ Rn satisfy −∞ ≤ `i < ui ≤ ∞ for i = 1, . . . , n. Recall that the set D is given
by

D = {(x, y, z) ∈ Rn × Rm3 × Rm3 |x ∈ [`, u], (yi, zi) ∈ T ∀i ∈ {1, . . . ,m3}} (5.1)

in this situation. For given w̄ = (x̄, ȳ, z̄) ∈ Rn × Rm3 × Rm3 , we want to characterize
the elements of ΠD(w̄). Therefore, we consider the optimization problem

min
w

1
2
‖w − w̄‖2 s.t. w = (x, y, z) ∈ D. (5.2)

We observe that the latter can be decomposed into the n one-dimensional optimization
problems

min
xi

1
2
(xi − x̄i)2 s.t. xi ∈ [`i, ui],

i = 1, . . . , n, possessing the respective solution P[`i,ui](x̄i), as well as into m3 two-
dimensional optimization problems

min
yi,zi

1
2
(yi − ȳi)2 + 1

2
(zi − z̄i)2 s.t. (yi, zi) ∈ T, (5.3)
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i = 1, . . . ,m3. Due to T = T1 ∪ T2, each of these problems on its own can be
decomposed into the two two-dimensional subproblems

min
yi,zi

1
2
(yi − ȳi)2 + 1

2
(zi − z̄i)2 s.t. (yi, zi) ∈ Tj, (R(i, j))

j = 1, 2. In most of the popular settings from disjunctive programming, (R(i, j)) can
be solved with ease. By a simple comparison of the associated objective function val-
ues, we �nd the solutions of (5.3). Putting the solutions of the subproblems together,
we �nd the solutions of (5.2), i.e., the elements of ΠD(w̄).

In the remainder of this section, we consider a particularly interesting instance of
this setting where T is given by

T := {(s, t) | s ∈ [σ1, σ2], t ∈ [τ1, τ2], st = 0}. (5.4)

Here, −∞ ≤ σ1, τ1 ≤ 0 and 0 < σ2, τ2 ≤ ∞ are given constants. Particularly, we �nd
the decomposition

T1 := [σ1, σ2]× {0}, T2 := {0} × [τ1, τ2]

of T in this case. Due to the geometrical shape of the set T , one might be tempted
to refer to this setting as �box-switching constraints�. Note that it particularly covers

� switching constraints (σ1 = τ1 := −∞, σ2 = τ2 :=∞), see [40,50],

� complementarity constraints (σ1 = τ1 := 0, σ2 = τ2 :=∞), see [45,53], and

� relaxed reformulated cardinality constraints (σ1 := −∞, σ2 := ∞, τ1 := 0,
τ2 := 1), see [18,20].

We refer the reader to Figure 5.1 for a visualization of these types of constraints.
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Figure 5.1: Geometric illustrations of box-switching, switching, complementarity, and
relaxed reformulated cardinality constraints (from left to right), respectively.

One can easily check that the solutions of (R(i, 1)) and (R(i, 2)) are given by
(P[σ1,σ2](ȳi), 0) and (0, P[τ1,τ2](z̄i)), respectively. This yields the following result.

Proposition 5.1. Consider the set D from (5.1) where T is given as in (5.4). For
given w̄ = (x̄, ȳ, z̄) ∈ Rn × Rm3 × Rm3, we have ŵ := (x̂, ŷ, ẑ) ∈ ΠD(w̄) if and only if
x̂ = P[`,u](x̄) and

(ŷi, ẑi) ∈


{(P[σ1,σ2](ȳi), 0)} if φs(ȳi, z̄i) < φt(ȳi, z̄i),

{(0, P[τ1,τ2](z̄i))} if φs(ȳi, z̄i) > φt(ȳi, z̄i),

{(P[σ1,σ2](ȳi), 0), (0, P[τ1,τ2](z̄i))} if φs(ȳi, z̄i) = φt(ȳi, z̄i)
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for all i = 1, . . . ,m3, where we used

φs(a, b) := (P[σ1,σ2](a)− a)2 + b2, φt(a, b) := a2 + (P[τ1,τ2](b)− b)2.

Particularly, it turns out that in order to compute the projections onto the set D
under consideration, one basically needs to compute n + 2m3 projections onto real
intervals. In the speci�c setting of complementarity-constrained programming, this
already has been observed in [29, Section 4].

Let us brie�y mention that other popular instances of disjunctive programs like
vanishing- and or-constrained optimization problems, see e.g. [1,48], where T is given
by

T := {(s, t) | st ≤ 0, t ≥ 0} or T := {(s, t) | min(s, t) ≤ 0},

respectively, can be treated in an analogous fashion.

5.2 The Sparsity-Constrained Case

We �x W := Rn and some κ ∈ N with 1 ≤ κ ≤ n− 1. Consider the set

Sκ :=
{
w ∈ Rn

∣∣ ‖w‖0 ≤ κ
}

with ‖w‖0 being the number of nonzero entries of the vector w. This set plays a
prominent role in sparse optimization and for problems with cardinality constraints.
Since Sκ is nonempty and closed, projections of some vector w ∈ Rn (w.r.t. the
Euclidean norm) onto this set exist (but may not be unique), and are known to
consist of those vectors y ∈ Rn such that the nonzero entries of y are precisely the
κ largest (in absolute value) components of w (which may not be unique), see e.g.
[9, Proposition 3.6].

Hence, within our augmented Lagrangian framework, we may take D := Sκ and
then get an explicit formula for the solutions of the corresponding subproblems arising
within the spectral gradient method. However, typical implementations of augmented
Lagrangian methods (like ALGENCAN, see [2]) do not penalize box constraints, i.e., they
leave the box constraints explicitly as constraints when solving the corresponding
subproblems. Hence, let us assume that we have some lower and upper bounds
satisfying −∞ ≤ `i < ui ≤ ∞ for all i = 1, . . . , n. We are then forced to compute
projections onto the set

D := Sκ ∩ [`, u]. (5.5)

It turns out that there exists an explicit formula for this projection. Before presenting
the result, let us �rst assume, for notational simplicity, that

0 ∈ [`i, ui] ∀i = 1, . . . , n. (5.6)

We mention that this assumption is not restrictive. Indeed, let us assume that, e.g.,
0 6∈ [`1, u1]. Then the �rst component of w ∈ D cannot be zero, and this shows

D = Sκ ∩ [`, u] = [`1, u1]×
(
Ŝκ−1 ∩ [ˆ̀, û]

)
, (5.7)
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where Ŝκ−1 := {w ∈ Rn−1 | ‖w‖0 ≤ κ − 1} and the vectors ˆ̀, û ∈ Rn−1 are obtained
from `, u by dropping the �rst component, respectively. For the computation of the
projection onto Sκ, we can now exploit the product structure (5.7). Similarly, we can
remove all remaining components i = 2, . . . , n with 0 6∈ [`i, ui] from D. Thus, we can
assume (5.6) without loss of generality.

We begin with a simple observation.

Lemma 5.2. Let w ∈ Rn be arbitrary. Then, for each y ∈ ΠD(w), where D is the
set from (5.5), we have

yi ∈
{

0, P[`i,ui](wi)
}

∀i = 1, . . . , n.

Proof: To the contrary, assume that yi 6= 0 and yi 6= P[`i,ui](wi) hold for some index
i ∈ {1, . . . , n}. De�ne the vector q ∈ Rn by qj := yj for j 6= i and qi := P[`i,ui](wi).
Due to yi 6= 0, we have ‖q‖0 ≤ ‖y‖0 ≤ κ, i.e., q ∈ Sκ. Additionally, q ∈ [`, u]
is clear from y ∈ [`, u] and qi = P[`i,ui](wi). Thus, we �nd q ∈ D. Furthermore,
‖q − w‖ < ‖y − w‖ since qi = P[`i,ui](wi) 6= yi. This contradicts the fact that y is a
projection of w onto D. �

Due to the above lemma, we only have two choices for the value of the components
associated with projections to D from (5.5). Thus, for an arbitrary index set I ⊂
{1, . . . , n} and an arbitrary vector w ∈ Rn, we de�ne pI(w) ∈ Rn via

pIi (w) :=

{
P[`i,ui](wi) if i ∈ I,
0 otherwise

∀i = 1, . . . , n.

It remains to characterize those index sets I which ensure that pI(w) is a projection
of w onto D. To this end, we de�ne an auxiliary vector d(w) ∈ Rn via

di(w) := w2
i −

(
P[`i,ui](wi)− wi

)2 ∀i = 1, . . . , n.

Note that this de�nition directly yields

‖pI(w)− w‖2 = ‖w‖2 −
∑
i∈I

di(w). (5.8)

We state the following simple observation.

Lemma 5.3. Fix w ∈ Rn and assume that (5.6) is valid. Then the following state-
ments hold:

(a) di(w) ≥ 0 for all i = 1, . . . , n,

(b) di(w) = 0⇐⇒ P[`i,ui](wi) = 0.

Proof: (a) Since 0 ∈ [`i, ui], we obtain

di(w) = (wi − 0)2 −
(
wi − P[`i,ui](wi)

)2 ≥ 0
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by de�nition of the (one-dimensional) projection.
(b) If P[`i,ui](wi) = 0 holds, we immediately obtain di(w) = 0. Conversely, let di(w) =
0. Then

0 = w2
i −

(
wi − P[`i,ui](wi)

)2
= P[`i,ui](wi)

(
2wi − P[`i,ui](wi)

)
.

Hence, we �nd P[`i,ui](wi) = 0 or P[`i,ui](wi) = 2wi. In the �rst case, we are done.
In the second case, we have {0, 2wi} ⊂ [`i, ui]. By convexity, this gives wi ∈ [`i, ui].
Consequently, wi = P[`i,ui](wi) = 2wi. This implies P[`i,ui](wi) = 0. �

Observe that the second assertion of the above lemma implies

‖pI(w)‖0 =
∣∣{i ∈ I | P[`i,ui](wi) 6= 0}

∣∣ =
∣∣{i ∈ I | di(w) 6= 0}

∣∣ ∀w ∈ Rn. (5.9)

This can be used to characterize the set of projections onto the set D from (5.5).

Proposition 5.4. Let D be the set from (5.5) and assume that (5.6) holds. Then, for
each w ∈ Rn, y ∈ ΠD(w) holds if and only if there exists an index set I ⊂ {1, . . . , n}
with |I| = κ such that

di(w) ≥ dj(w) ∀i ∈ I, ∀j 6∈ I (5.10)

and y = pI(w) hold.

Proof: If y ∈ ΠD(w) holds, then y = pJ(w) is valid for some index set J , see
Lemma 5.2. Thus, it remains to check that pJ(w) is a projection onto D if and only
if pJ(w) = pI(w) holds for some index set I satisfying |I| = κ and (5.10).

Note that pJ(w) is a projection if and only if J minimizes ‖pI(w) − w‖ over all
I ⊂ {1, . . . , n} satisfying ‖pI(w)‖0 ≤ κ. This can be reformulated via d(w) by using
(5.8) and (5.9). In particular, pJ(w) is a projection if and only if J solves

max
I

∑
i∈I

di(w) s.t. I ⊂ {1, . . . , n},
∣∣{i ∈ I | di(w) 6= 0}

∣∣ ≤ κ. (5.11)

It is clear that index sets I with |I| = κ and (5.10) are solutions of this problem. This
shows the direction ⇐=.

To prove the converse direction =⇒, let pJ(w) be a projection. Thus, J solves
(5.11). We note that the solutions of this problem are invariant under addition and
removal of indices i with di(w) = 0. Due to Lemma 5.3 (b), these operations also
do not alter the associated pI(w). Thus, for each projection pJ(w), we can add or
remove indices i with di(w) = 0, to obtain a set I with pI(w) = pJ(w) and |I| = κ.
It is also clear that (5.10) holds for such a choice of I. �

Below, we comment on the result of Proposition 5.4.

Remark 5.5. (a) Let y = pI(w) be a projection of w ∈ Rn onto D from (5.5) such
that (5.6) holds. Observe that yi = 0 may also hold for some indices i /∈ I.
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(b) In the unconstrained case [`, u] = Rn, we �nd di(w) = w2
i for each w ∈ Rn and

all i = 1, . . . , n. Thus, Proposition 5.4 recovers the well-known characterization
of the projection onto the set Sκ which can be found in [9, Proposition 3.6].

We want to close this section with some brief remarks regarding the variational
geometry of D from (5.5). Observing that the sets Sκ and [`, u] are both polyhedral
in the sense that they can be represented as the union of �nitely many polyhedrons,
the normal cone intersection rule

N lim
D (w) = N lim

Sκ∩[`,u](w) ⊂ N lim
Sκ (w) +N lim

[`,u](w) = N lim
Sκ (w) +N[`,u](w)

applies for each w ∈ D by means of [34, Corollary 4.2] and [56, Proposition 1].
While the evaluation of N[`,u](w) is standard, a formula for N lim

Sκ
(w) can be found in

[9, Theorem 3.9].

5.3 Low-Rank Approximation

5.3.1 General Low-Rank Approximations

For natural numbers m,n ∈ N with m,n ≥ 2, we �x W := Rm×n. Equipped with
the standard Frobenius inner product, W indeed is a Euclidean space. Now, for �xed
κ ∈ N satisfying 1 ≤ κ ≤ min(m,n)− 1, let us investigate the set

D := {W ∈W | rankW ≤ κ}.

Constraint systems involving rank constraints of type W ∈ D can be used to model
numerous practically relevant problems in computer vision, machine learning, com-
puter algebra, signal processing, or model order reduction, see [46, Section 1.3] for
an overview. Nowadays, one of the most popular applications behind low-rank
constraints is the so-called low-rank matrix completion, particularly, the �Net�ix-
problem�, see [19] for details.

Observe that the variational geometry of D has been explored recently in [36].
Particularly, a formula for the limiting normal cone to this set can be found in [36,
Theorem 3.1]. Using the singular value decomposition of a given matrix W ∈W, one
can easily construct an element of ΠD(W ) by means of the so-called Eckart�Young�
Mirsky theorem, see e.g. [46, Theorem 2.23].

Proposition 5.6. For a given matrix W ∈ W, let W = UΣV > be its singular
value decomposition with orthogonal matrices U ∈ Rm×m and V ∈ Rn×n as well as a
diagonal matrix Σ ∈ Rm×n whose diagonal entries are in non-increasing order. Let
Û ∈ Rm×κ and V̂ ∈ Rn×κ be the matrices resulting from U and V by deleting the last
m − κ and n − κ columns, respectively. Furthermore, let Σ̂ ∈ Rκ×κ be the top left
κ× κ block of Σ. Then we have ÛΣ̂V̂ > ∈ ΠD(W ).

Note that the projection formulas from the previous sections allow a very e�cient
computation of the corresponding projections, which is in contrast to the projection
provided by Proposition 5.6. Though the formula given there is conceptually very
simple, its realization requires to compute the singular value decomposition of the
given matrix.
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5.3.2 Symmetric Low-Rank Approximation

Given n ∈ N with n ≥ 2, we consider the set of symmetric matrices W := Rn×n
sym ,

still equipped with the Frobenius inner product. Now, for �xed κ ∈ N satisfying
1 ≤ κ ≤ n, let us investigate the set

D := {W ∈W | W � 0, rankW ≤ κ}.

Above, the constraintW � 0 is used to abbreviate thatW has to be positive semidef-
inite. Constraint systems involving rank constraints of type W ∈ D arise frequently
in several di�erent mathematical models of data science, see [44] for an overview,
and Section 6.3 for an application. Note that κ := n covers the setting of pure
semide�niteness constraints.

Exploiting the eigenvalue decomposition of a given matrix W ∈W, one can easily
construct an element of ΠD(W ).

Proposition 5.7. For a given matrix W ∈ W, we denote by W =
∑n

i=1 λiviv
>
i

its (orthonormal) eigenvalue decomposition with non-increasingly ordered eigenvalues
λ1 ≥ λ2 ≥ . . . ≥ λn and associated pairwise orthonormal eigenvectors v1, . . . , vn.
Then we have Ŵ :=

∑κ
i=1 max(λi, 0)viv

>
i ∈ ΠD(W ).

Proof: We de�ne the positive and negative part W
±

:=
∑n

i=1 max(±λi, 0)viv
>
i . This

yields W = W
+ −W−

and 〈W+
,W

−〉 = trace(W
+
W
−

) = 0. Thus, for each positive
semide�nite B ∈W, we have

‖W −B‖2 = ‖W+ −B‖2 + ‖W−‖2 + 2〈W−
, B〉 ≥ ‖W+ −B‖2 + ‖W−‖2.

Since the singular value decomposition ofW
+
coincides with the eigenvalue decompo-

sition, the right-hand side is minimized by B = Ŵ , see Proposition 5.6 while noting
that we have Ŵ = W

+
in case κ = n. Due to 〈W−

, Ŵ 〉 = 0, B = Ŵ also minimizes
the left-hand side. �

It is clear that the computation of the κ largest eigenvalues of W ∈ W is su�cient
to compute an element from the projection ΠD(W ). This can be done particularly
e�cient for small κ (note that κ = 1 holds in our application from Section 6.3).

5.4 Extension to Nonsmooth Objectives

For some lower semicontinuous functional q : W → R, we consider the optimization
problem

min
w

f(w) + q(w) s.t. G(w) ∈ C. (5.12)

Particularly, we do not assume that q is continuous. Exemplary, let us mention the
special cases where q is the indicator function of a closed set, counts the nonzero en-
tries of the argument vector (in case W := Rn), or encodes the rank of the argument
matrix (in case W := Rm×n). In this regard, (5.12) can be used to model real-world
applications from e.g. image restoration or signal processing. Necessary optimality
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conditions and constraint quali�cations addressing (5.12) can be found in [31]. In
[22], the authors suggest to handle (5.12) numerically with the aid of an augmented
Lagrangian method (without safeguarding) based on the (partially) augmented La-
grangian function (4.1) and the subproblems

min
w
Lρk(w, λk) + q(w) s.t. w ∈W

which are solved with a nonmonotone proximal gradient method inspired by [59]. In
this regard, the solution approach to (5.12) described in [22] possesses some parallels
to our strategy for the numerical solution of (P). The authors in [22] were able to
prove convergence of their method to reasonable stationary points of (5.12) under a
variant of the basic constraint quali�cation and RCPLD. Let us mention that the
authors in [22, 31] only considered standard inequality and equality constraints, but
the theory in these papers can be easily extended to the more general constraints
considered in (5.12) doing some nearby adjustments.

We note that (P) can be interpreted as a special instance of (5.12) where q plays the
role of the indicator function of the set D. Then the nonmonotone proximal gradient
method from [22] reduces to the spectral gradient method from Section 3. However,
the authors in [22] did not challenge their method with discontinuous functionals q
and, thus, cut away some of the more reasonable applications behind the model (P).
Furthermore, we would like to mention that (5.12) can be reformulated (by using the
epigraph epi q := {(w, α) | q(w) ≤ α} of q) as

min
w,α

f(w) + α s.t. G(w) ∈ C, (w, α) ∈ epi q (5.13)

which is a problem of type (P). One can easily check that (5.12) and (5.13) are
equivalent in the sense that w̄ ∈W is a local/global minimizer of (5.12) if and only if
(w̄, q(w̄)) is a local/global minimizer of (5.13). Problem (5.13) can be handled with
Algorithm 4.1 as soon as the computation of projections onto D := epi q is possible
in an e�cient way. Our result from Corollary 4.5 shows that Algorithm 4.1 applied
to (5.13) computes M-stationary points of (5.12) under a problem-tailored version of
AM-regularity, i.e., we are in position to �nd points satisfying

0 ∈ ∇f(w̄) + ∂q(w̄) +G′(w̄)∗NC(G(w̄))

under a very mild condition which enhances [22, Theorem 3.1]. Here, we used the
limiting subdi�erential of q given by

∂q(w) := {ξ ∈W | (ξ,−1) ∈ N lim
epi q(w, q(w))}.

6 Numerical Results

We implemented Algorithm 4.1, based on the underlying subproblem solver Algo-
rithm 3.1, in MATLAB and tested it on three classes of di�cult problems which are
discussed in Sections 6.1 to 6.3. All test runs use the following parameters:

τ := 2, σ := 10−4, m := 10, β := 10, η := 0.8.

26



While we use γmin := 10−10 and γmax := 1010 for our experiments in Sections 6.1
and 6.2, γmin := 10−3 and γmax := 103 are exploited in Section 6.3. In iteration k of
Algorithm 4.1, we terminate Algorithm 3.1 at the iteration i if the inner iterates wi

satisfy

‖γi−1(wi−1 − wi) +∇ϕ(wi)−∇ϕ(wi−1)‖∞ ≤
10−4

√
k + 1

,

where ‖·‖∞ stands for the maximum-norm for both W equal to Rn and equal to Rn×n
sym

(other Euclidean spaces do not occur in the subsequent applications), see (3.5). The
outer iteration stops as soon as the infeasibility of the current iterate is less than 10−4

(in the in�nity norm). This is motivated by the fact that a stationary point of the
subproblem, which is also feasible for the given optimization problem, is already a
stationary point of the original problem. Similarly, we use the in�nity norm in the
de�nition (4.2) of Vρ.

Given an arbitrary (possibly random) starting point w0, we note that we �rst
project this point onto the set D and then use this projected point as the true starting
point, so that all iterates wk generated by Algorithm 4.1 belong to D. The choice of
the initial penalty parameter is similar to the rule in [15, p. 153] and given by

ρ0 := P[10−3,103]

(
10

max(1, f(w0))

max
(
1, 1

2
d2
C(G(w0))

)) .
In all our examples, the space Y is given by Rm as in Setting 2.4. This allows us
to choose the safeguarded multiplier estimate uk as the projection of the current
value λk onto a given box [umin, umax], where this box is (in componentwise fashion)
chosen to be [−1020, 1020] for all equality constraints and [0, 1020] for all inequality
constraints. In this way, we basically guarantee that the safeguarded augmented
Lagrangian method from Algorithm 4.1 coincides with the classical approach as long
as bounded multiplier estimates λk are generated.

6.1 MPCC Examples

The speci�cation of Algorithm 4.1 is essentially the method discussed in [29], where
extensive numerical results (including comparisons with other methods) are presented.
We therefore keep this section short and consider only two particular examples in
order to illustrate certain aspects of our method.

Example 6.1. Here, for w := (y, z) ∈ R2, we consider the two-dimensional MPCC
given by

min
w

1
2
(y − 1)2 + 1

2
(z − 1)2 s.t. y + z ≤ 2, y ≥ 0, z ≥ 0, yz = 0,

which is essentially the example from [58] with an additional (inactive) inequality
constraint in order to have at least one standard constraint, so that Algorithm 4.1 does
not automatically reduce to the spectral gradient method. The problem possesses two
global minimizers at (0, 1) and (1, 0) which are M-stationary (in fact, they are even
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strongly stationary in the MPCC-terminology). Moreover, it has a local maximizer at
(0, 0) which is a point of attraction for many MPCC solvers since it can be shown to
be C-stationary, see e.g. [35] for the corresponding de�nitions and some convergence
results to C- and M-stationary points.

In view of our convergence theory, Algorithm 4.1 should not converge to the
origin. To verify this statement numerically, we generated 1000 random starting
points (uniformly distributed) from the box [−10, 10]2 and then applied Algorithm 4.1
to the above example. As expected, the method converges for all 1000 starting points
to one of the two minima. Moreover, we can even start our method at the origin,
and the method still converges to the point (1, 0) or (0, 1). The limit point itself
depends on our choice of the projection which is not unique for iterates (yk, zk) with
yk = zk > 0.

The next example is used to illustrate a limitation of our approach which is based
on the fact that we use the spectral gradient method as a subproblem solver. There
are examples where this spectral gradient method reduces the number of iterations
even for two-dimensional problems from more than 100000 to just a few iterations.
Nevertheless, in the end, the spectral gradient method is a projected gradient method,
which exploits a di�erent stepsize selection, but which eventually reduces to a stan-
dard projected gradient method if there are a number of consecutive iterations with
very small progress. This situation typically happens for problems which are ill-
conditioned, and we illustrate this observation by the following example.

Example 6.2. We consider the optimal control of a discretized obstacle problem as
investigated in [32, Section 7.4]. Using w := (x, y, z), in our notation, the problem is
given by

min
w

f(w) := 1
2
‖x‖2 − e>y + 1

2
‖y‖2

s.t. x ≥ 0, −Ay − x+ z = 0, y ≥ 0, z ≥ 0, y>z = 0.

Here, A is a tridiagonal matrix which arises from a discretization of the Laplace
operator in one dimension, i.e., aii = 2 for all i and aij = −1 for all i = j ± 1.
Furthermore, e denotes the all-one vector of appropriate size. We note that w̄ := 0
is the global minimizer as well as an M-stationary point of this program. Viewing
the constraint x ≥ 0 as a box constraint, taking a moderate discretization with
A ∈ R64×64, and using the all-one vector as a starting point, we obtain the results
from Table 6.1. The method terminates after 12 outer iterations, which is a reasonable
number, especially taking into account that the �nal penalty parameter ρk is relatively
large, so that several subproblems with di�erent values of ρk have to be solved in the
intermediate steps. On the other hand, the number of inner iterations i (at each outer
iteration k) is very large. In the �nal step, the method requires more than one million
inner iterations. This is a typical behavior of gradient-type methods and indicates
that the underlying subproblems are ill-conditioned. This is also re�ected by the fact
that the stepsize tk := 1/γk tends to zero.

Hence, there are two types of di�culties in Example 6.2: there are challenging
constraints (the complementarity constraints), and there is an ill-conditioning. The
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k i f(wk) feasibility tk ρk
0 0 32.0000000000 � � 320
1 4846 -30.2322093464 0.0178853 0.00020734 320
2 2993 -29.5693121774 0.0107722 0.00020962 320
3 2951 -29.1713706474 0.0083671 0.00038935 320
4 2748 -28.8787590641 0.0070769 0.00019331 3200
5 16344 -27.6160748446 0.0038450 0.00002223 3200
6 16170 -26.8702060815 0.0026747 0.00001993 3200
7 17782 -26.4929699435 0.0024367 0.00001961 32000
8 130226 -25.3129109259 0.0023566 0.00000198 320000
9 602944 -13.1312397442 0.0008675 0.00000020 320000
10 755631 -5.3024300847 0.0003160 0.00000020 320000
11 908277 -2.0002209108 0.0001151 0.00000029 320000
12 1084222 -0.7376636823 0.0000419 0.00000020 320000

Table 6.1: Numerical results for Example 6.2.

di�cult constraints are treated by Algorithm 4.1 successfully, but the ill-conditioning
causes some problems when solving the resulting subproblems. In principle, this
di�culty can be circumvented by using another subproblem solver (like a semismooth
Newton method), but then it is no longer guaranteed that we obtain M-stationary
points at the limit.

Despite the fact that the ill-conditioning causes some di�culties, we stress again
that each iteration of the spectral gradient method is extremely cheap. Moreover, for
all test problems in the subsequent sections, we put an upper bound of 50000 inner
iterations (as a safeguard), and this upper bound was not reached in any of these
examples.

6.2 Cardinality-Constrained Problems

We �rst consider an arti�cial example to illustrate the convergence behavior of Algo-
rithm 4.1 for cardinality-constrained problems.

Example 6.3. Consider the example

min
w

f(w) := 1
2
w>Qw + c>w s.t. e>w ≤ 8, ‖w‖0 ≤ 2,

where Q := E + I with E ∈ R5×5 being the all one matrix, I ∈ R5×5 the identity
matrix, and c := −(3, 2, 3, 12, 5)> ∈ R5. This is a minor modi�cation of an example
from [10], to which we added an (inactive) inequality constraint for the same reason
as in Example 6.1. Taking into account that there are

(
5
2

)
possibilities to choose

two possibly nonzero components of w, an elementary calculation shows that there
are exactly 10 M-stationary points w1, . . . , w10 which are given in Table 6.2 together
with the corresponding function values. It follows that w6 is the global minimizer.
The points w3, w8, w10 have function values which are not too far away from f(w6),
whereas all other M-stationary points have signi�cantly larger function values. We
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then took 1000 random starting points from the box [−10, 10]5 (uniformly distributed)
and applied Algorithm 4.1 to this example. Surprisingly, the method converged, for
all 1000 starting points, to the global minimizer w6. We then changed the example
by putting an upper bound u4 := 0 to the fourth component. This excludes the four
most interesting points w3, w6, w8, and w10. Among the remaining points, the three
vectors w4, w7, and w9 have identical function values. Running our program again
using 1000 randomly generated starting points, we obtain convergence to w4 in 609
cases, convergence to w7 in 331 situations, whereas in 60 instances only we observe
convergence to the non-optimal point w2.

wi f(wi) wi f(wi)

w1 :=
(
4/3, 1/3, 0, 0, 0

)> −2.33 w6 :=
(
0,−8/3, 0, 22/3, 0

)> −41.33

w2 :=
(
1, 0, 1, 0, 0

)> −3.00 w7 :=
(
0,−1/3, 0, 0, 8/3

)> −6.33

w3 :=
(
− 2, 0, 0, 7, 0

)> −39.00 w8 :=
(
0, 0,−2, 7, 0

)> −39.00

w4 :=
(
1/3, 0, 0, 0, 7/3

)> −6.33 w9 :=
(
0, 0, 1/3, 0, 7/3

)> −6.33

w5 :=
(
0, 1/3, 4/3, 0, 0

)> −2.33 w10 :=
(
0, 0, 0, 19/3,−2/3

)> −36.33

Table 6.2: M-stationary points and corresponding function values for Example 6.3.

We next consider a class of cardinality-constrained problems of the form

min
w

1
2
w>Qw s.t. µ>w ≥ %, e>w = 1, 0 ≤ w ≤ u, ‖w‖0 ≤ κ. (6.1)

This is a classical portfolio optimization problem, where Q and µ denote the co-
variance matrix and the mean of n possible assets, respectively, while % is some
lower bound for the expected return. Furthermore, u provides an upper bound
for the individual assets within the portfolio. The data Q, µ, %, u were randomly
created by the test problem collection [26], which is available from the webpage
http://www.di.unipi.it/optimize/Data/MV.html. Here, we used all 30 test in-
stances of dimension n := 200 and three di�erent values κ ∈ {5, 10, 20} for each
problem. We apply three di�erent methods:

(a) Algorithm 4.1 with starting point w0 := 0,

(b) a boosted version of Algorithm 4.1, and

(c) a CPLEX solver [37] to a reformulation of the portfolio optimization problem
as a mixed integer quadratic program.

The CPLEX solver is used to (hopefully) identify the global optimum of the opti-
mization problem (6.1). Note that we put a time limit of 0.5 hours for each test
problem. Method (a) applies our augmented Lagrangian method to (6.1) using the
set D := {w ∈ [0, u] | ‖w‖0 ≤ κ}. Projections onto D are computed using the analytic
formula from Proposition 5.4. Finally, the boosted version of Algorithm 4.1 is the
following: We �rst delete the cardinality constraint from the portfolio optimization
problem. The resulting quadratic program is then convex and can therefore be solved
easily. Afterwards, we apply Algorithm 4.1 to a sequence of relaxations of (6.1) in
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which the cardinality is recursively decreased by 10 in each step (starting with n−10)
as long as the desired value κ ∈ {5, 10, 20} is not undercut. For κ := 5, a �nal call of
Algorithm 4.1 with the correct cardinality is necessary. In each outer iteration, the
projection of the solution of the previous iteration onto the set D is used as a starting
point.

The corresponding results are summarized in Figure 6.1 for the three di�erent
values κ ∈ {5, 10, 20}. This �gure compares the optimal function values obtained by
the above three methods for each of the thirty test problems. The optimal function
values produced by CPLEX are used here as a reference value in order to judge the
quality of the results obtained by the other approaches. The main observations are
the following: The optimal function value computed by CPLEX is (not surprisingly)
always the best one. On the other hand, the corresponding values computed by
method (a) are usually not too far away from the optimal ones. Moreover, for all
test problems, the boosted version (b) generates even better function values which
are usually very close to the ones computed by CPLEX. Of course, if κ is taken
smaller, the problems are getting more demanding and are therefore more di�cult
to solve (in general). Hence, the gap between the optimal function values obtained
by CPLEX and the other two methods are usually larger. Nevertheless, also for
κ := 5, especially the boosted algorithm still computes rather good points. In this
context, one should also note that our methods always terminate with a (numerically)
feasible point, hence, the �nal iterate computed by our method can actually be used
as a (good) approximation of the global minimizer. We also would like to mention
that our MATLAB implementation of Algorithm 4.1 typically requires, on a Lenovo
T490s ThinkPad with an Intel Core i7-8565U processor, only a CPU time of about 0.1
seconds for each of the test problems, whereas the boosted version requires slightly
less than a second CPU time in average.

6.3 Maxcut Problems

This section considers the famous Maxcut problem as an application of our algorithm
to problems with rank constraints. To this end, let G = (V,E) be an undirected graph
with vertex set V = {1, . . . , n} and edges eij between vertices i, j ∈ V . We assume
that we have a weighted graph, with aij = aji denoting the nonnegative weights of
the edge eij. Since we allow zero weights, we can assume without loss of generality
that G is a complete graph. Now, given a subset S ⊂ V with complement Sc, the
cut de�ned by S is the set δ(S) := {eij | i ∈ S, j ∈ Sc} of all edges such that one end
point belongs to S and the other one to Sc. The corresponding weight of this cut is
de�ned by

w(S) :=
∑

eij∈δ(S)

aij.

The Maxcut problem looks for the maximum cut, i.e., a cut with maximum weight.
This graph-theoretical problem is known to be NP-hard, thus very di�cult to solve.

Let A := (aij) and de�ne L := diag(Ae)−A. Then it is well known, see e.g. [27],

31



or
l20
0-0
5-a

or
l20
0-0
5-b

or
l20
0-0
5-c

or
l20
0-0
5-d

or
l20
0-0
5-e

or
l20
0-0
5-f

or
l20
0-0
5-g

or
l20
0-0
5-h

or
l20
0-0
5-i

or
l20
0-0
5-j

or
l20
0-0
05
-a

or
l20
0-0
05
-b

or
l20
0-0
05
-c

or
l20
0-0
05
-d

or
l20
0-0
05
-e

or
l20
0-0
05
-f

or
l20
0-0
05
-g

or
l20
0-0
05
-h

or
l20
0-0
05
-i

or
l20
0-0
05
-j

pa
rd
20
0_
a

pa
rd
20
0_
b

pa
rd
20
0_
c

pa
rd
20
0_
d

pa
rd
20
0_
e

pa
rd
20
0_
f

pa
rd
20
0_
g

pa
rd
20
0_
h

pa
rd
20
0_
i

pa
rd
20
0_
j

20

40

60

ob
je
ct
iv
e
fu
nc
ti
on

va
lu
e

or
l20
0-0
5-a

or
l20
0-0
5-b

or
l20
0-0
5-c

or
l20
0-0
5-d

or
l20
0-0
5-e

or
l20
0-0
5-f

or
l20
0-0
5-g

or
l20
0-0
5-h

or
l20
0-0
5-i

or
l20
0-0
5-j

or
l20
0-0
05
-a

or
l20
0-0
05
-b

or
l20
0-0
05
-c

or
l20
0-0
05
-d

or
l20
0-0
05
-e

or
l20
0-0
05
-f

or
l20
0-0
05
-g

or
l20
0-0
05
-h

or
l20
0-0
05
-i

or
l20
0-0
05
-j

pa
rd
20
0_
a

pa
rd
20
0_
b

pa
rd
20
0_
c

pa
rd
20
0_
d

pa
rd
20
0_
e

pa
rd
20
0_
f

pa
rd
20
0_
g

pa
rd
20
0_
h

pa
rd
20
0_
i

pa
rd
20
0_
j

50

100

150

ob
je
ct
iv
e
fu
nc
ti
on

va
lu
e

or
l20
0-0
5-a

or
l20
0-0
5-b

or
l20
0-0
5-c

or
l20
0-0
5-d

or
l20
0-0
5-e

or
l20
0-0
5-f

or
l20
0-0
5-g

or
l20
0-0
5-h

or
l20
0-0
5-i

or
l20
0-0
5-j

or
l20
0-0
05
-a

or
l20
0-0
05
-b

or
l20
0-0
05
-c

or
l20
0-0
05
-d

or
l20
0-0
05
-e

or
l20
0-0
05
-f

or
l20
0-0
05
-g

or
l20
0-0
05
-h

or
l20
0-0
05
-i

or
l20
0-0
05
-j

pa
rd
20
0_
a

pa
rd
20
0_
b

pa
rd
20
0_
c

pa
rd
20
0_
d

pa
rd
20
0_
e

pa
rd
20
0_
f

pa
rd
20
0_
g

pa
rd
20
0_
h

pa
rd
20
0_
i

pa
rd
20
0_
j

100

200

300

ob
je
ct
iv
e
fu
nc
ti
on

va
lu
e

Figure 6.1: Optimal function values obtained by Algorithm 4.1 (red), Algorithm 4.1
with boosting technique (yellow), and CPLEX (blue), applied to the portfolio opti-
mization problem (6.1) with cardinality κ = 20, κ = 10, and κ = 5 (top to bottom).
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that the Maxcut problem can be reformulated as

max
W

1
4

trace(LW ) s.t. diagW = e, W � 0, rankW = 1, (6.2)

where the variable W is chosen from the space W := Rn×n
sym . Due to the linear con-

straint diagW = e, it follows that this problem is equivalent to

max
W

1
4

trace(LW ) s.t. diagW = e, W � 0, rankW ≤ 1. (6.3)

Deleting the di�cult rank constraint, one gets the (convex) relaxation

max
W

1
4

trace(LW ) s.t. diagW = e, W � 0, (6.4)

which is a famous test problem for semide�nite programs.
Here, we directly deal with (6.3) by taking D := {W ∈W |W � 0, rankW ≤ 1}

as the complicated set. Projections onto D can be calculated via Proposition 5.7: Let
W ∈W denote an arbitrary symmetric matrix with maximum eigenvalue λ and cor-
responding (normalized) eigenvector v (note that λ and v are not necessarily unique),
then max(λ, 0)vv> is a projection ofW onto D. In particular, the computation of this
projection does not require the full spectral decomposition. Note that it is not clear
whether a projection onto C can be computed e�ciently. Consequently, we penalize
the linear constraint diagW = e by the augmented Lagrangian approach.

Throughout this section, we take the zero matrix as the starting point. In order
to illustrate the performance of our method, we begin with the simple graph from
Figure 6.2. Algorithm 4.1 applied to this example using the reformulation (6.3)
(more precisely, the corresponding minimization problem) together with the previous
speci�cations yields the iterations shown in Table 6.3.
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Figure 6.2: Example of a complete graph for the Maxcut problem.

The number of (outer) iterations is denoted by k, i is the number of inner iter-
ations, icum the accumulated number of inner iterations, f -ev. provides the number
of function evaluations (note that, due to the Armijo rule, we might have several
function evaluations in a single inner iteration, hence, f -ev. is always an upper bound
for icum), f(W k) denotes the current function value, the column titled �feasibility� is
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k i icum f -ev. f(W k) feasibility tk ρk
0 0 0 1 0.00000000 � � 4
1 10 10 14 19.66916669 0.839204 0.68928 4
2 8 18 24 12.03958568 0.027375 1.24551 4
3 5 23 31 12.00975494 0.006357 1.25001 4
4 3 26 35 12.00238060 0.001553 0.62522 4
5 3 29 39 12.00054208 0.000382 0.62504 4
6 3 32 43 12.00015307 0.000097 0.62502 4

Table 6.3: Numerical results for Maxcut associated to the graph from Figure 6.2.

the feasibility measure (in the current situation, this is ‖ diagW k − e‖∞), tk := 1/γk
is the stepsize, and ρk denotes the penalty parameter at iteration k. Note that this
penalty parameter stays constant for this example. The feasibility measure tends to
zero, and we terminate at iteration k = 6 since this measure becomes less than 10−4,
i.e., we stop successfully. The associated function value is (approximately) 12 which
actually corresponds to the maximum cut S := {1, 3} for the graph from Figure 6.2,
i.e., our method is able to solve the Maxcut problem for this particular instance.

We next apply our method to two test problem collections that can be downloaded
from http://biqmac.uni-klu.ac.at/biqmaclib.html, namely the rudy and the
ising collection. The �rst class of problems consists of 130 instances, whereas the
second one includes 48 problems. The optimal function value fopt of all these examples
is known. The details of the corresponding results obtained by our method are given
in [39]. Here, we summarize the main observations.

All 130 + 48 test problems were solved successfully by our method since the stan-
dard termination criterion was satis�ed after �nitely many iterations, i.e., we stop
with an iterate W k which is feasible (within the given tolerance). Hence, the corre-
sponding optimal function value fALM is a lower bound for the optimal value fopt.
For the sake of completeness, we also solved the (convex) relaxed problem from (6.4),
using again our augmented Lagrangian method with D := {W ∈ W |W � 0}. The
corresponding function value is denoted by fSDP. Since the feasible set of (6.4) is
larger than the one of (6.3), we have the inequalities fALM ≤ fopt ≤ fSDP. The cor-
responding details for the solution of the SDP-relaxation are provided in [39] for the
rudy collection.

The bar charts from Figures 6.3 and 6.4 summarize the results for the rudy and
ising collections, respectively, in a very condensed way. They basically show that
the function value fALM obtained by our method is very close to the optimal value
fopt. More precisely, the interpretation is as follows: For each test problem, we take
the quotient fALM/fopt ∈ [0, 1]. If this quotient is equal to, say, 0.91, we count
this example as one where we reach 91% of the optimal function value. Figure 6.3
then says that all 130 test problems were solved with at least 88% of the optimal
function value. There are still 101 test examples which are solved with a precision of
at least 95%. One third of the test examples, namely 44 problems, are even solved
with an accuracy of at least 99%. For three examples (pm1d_80.9, pm1s_100.6, and
pw01_100.8), we actually get the exact global maximum.
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Figure 6.4 has a similar meaning for the ising collection: Though there is no
example which is solved exactly, one half of the problems reaches an accuracy of at
least 99%, and even in the worst case, we obtain a precision of 95%.
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Figure 6.3: Summary of the results from the rudy collection.
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Figure 6.4: Summary of the results from the ising collection.

Altogether, this shows that we obtain a very good lower bound for the optimal
function value. Moreover, since we are always feasible (in particular, all iterates are
matrices of rank one), the �nal matrix can be used to create a cut through the given
graph, i.e., the method provides a constructive way to create cuts which seem to be
close to the optimal cuts. Note that this is in contrast to the semide�nite relaxation
(6.4) which gives an upper bound, but the solution associated with this upper bound is
usually not feasible for the Maxcut problem since the rank constraint is violated (the
results in [39] show that the solutions of the relaxed programs for the rudy collection
are matrices of rank between 4 and 7). In particular, these matrices can, in general,
not be used to compute a cut for the graph and, therefore, are less constructive than
the outputs of our method. Moreover, it is interesting to observe that fALM is usually
much closer to fopt than fSDP. In any case, both techniques together might be useful
tools in a branch-and-bound-type method for solving Maxcut problems.
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7 Concluding Remarks

In this paper, we demonstrated how M-stationary points of optimization problems
with structured geometric constraints can be computed with the aid of an augmented
Lagrangian method. The fundamental idea was to keep the complicated constraints
out of the augmented Lagrangian function and to treat them directly in the associ-
ated subproblems which are solved by means of a nonmonotone projected gradient
method. This way, the handling of challenging variational structures is encapsulated
within the e�cient computation of projections. This also puts a natural limit for the
applicability. In contrast to several other approaches from the literature, the conver-
gence guarantees for our method, which are valid in the presence of a comparatively
weak asymptotic constraint quali�cation, remain true if the appearing subproblems
are solved inexactly. Extensive numerical experiments visualized the quantitative
qualities of this approach.

Despite our observations in Example 6.2, it might be interesting to think about
extensions of these ideas to in�nite-dimensional situations. In [17], an augmented
Lagrangian method for the numerical solution of (P) in the context of Banach spaces
has been considered where the set D was assumed to be convex, and the subproblems
in the resulting algorithm are of the same type as in our paper. Furthermore, conver-
gence of the method to KKT points was shown under validity of a problem-tailored
version of asymptotic regularity. As soon as D becomes nonconvex, one has to face
some uncomfortable properties of the appearing limiting normal cone which turns out
to be comparatively large since weak-∗-convergence is used for its de�nition as a set
limit in the dual space, see [33,51]. That it why the associated M-stationarity condi-
tions are, in general, too weak in order to yield a reasonable stationarity condition.
However, this issue might be surpassed by investigating the smaller strong limiting
normal cone which is based on strong convergence in the dual space but possesses
very limited calculus. It remains open whether reasonable asymptotic regularity con-
ditions w.r.t. this variational object can be formulated. Furthermore, in order to
exploit the smallness of the strong limiting normal cone in the resulting algorithm,
one has to make sure (amongst others) that the (primal) sequence {wk} possesses
strong accumulation points while the (dual) measures of inexactness {εk} need to be
strongly convergent as well. This might be restrictive. Furthermore, it has to be
clari�ed how the subproblems can be solved to approximate strong M-stationarity.
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