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Abstract This work deals with the numerical characterization of Pareto sta-
tionary fronts for multiobjective optimal control problems with moderately
many cost functionals with a mildly nonsmooth, elliptic, semilinear PDE con-
straint. We extend known stationarity conditions for ample controls to weaker
conditions in the case where the controls are taken from a finite dimensional
space and thus not “ample”. The conditions associated with strong station-
arity remain meaningful when numerically characterizing the fronts. We com-
pare the performance of the weighted-sum and the (Euclidean) reference point
method for this application using quantifiable measures for approximation
quality of the fronts. The subproblems of either method are solved with a line
search globalized pseudo semismooth Newton method that seems to remove
the degenerate behavior of the local version employed previously. When solv-
ing the subproblems of the reference point method, memory and computation
complexity related issues appear and are tackled using a matrix-free, iterative
approach and comparing multiple preconditioning tactics.
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1 Problem Formulation

The aim of this paper is the numerical characterization of the Pareto fronts of
nonsmooth bicriterial optimal control problems of the form

min
(y,u)
J (y, u) =

(
J1(y, u)

J2(y, u)

)
=

j1(y) +
σ1

2
‖u‖2U

j2(y) +
σ2

2
‖u‖2U


s.t. (y, u) ∈ V × U satisfies −∆y + κmax{0, y} = B(u) in V ′

(P)

based on generalized stationarity conditions and the comparison of the per-
formance of a weighted-sum approach and a reference point method in terms
of quantifiable discretization quality. In (P), the symbols y and u denote the
state and control variables in the corresponding state space V and (possibly
finite dimensional) control space U , respectively, the ji denote suitably well
behaved scalar cost functionals, the σi are nonnegative regularization param-
eters and B : U → L2(Ω) denotes a control-to-right-hand-side mapping. For
the detailed assumptions on the problem, we refer to Assumption 11. Note
that we restrict ourselves to two objective functions in this work for ease of
presentation, especially with respect to the reference point method, however
the scope of this paper can readily be extended to moderately many objective
functions using hierarchical approaches, see [3,5,19].

Multicriterial optimization problems with nonsmooth PDE constraints like
(P) arise in various physical applications with conflicting objectives, see, e.g.,
[17,21,25,27]. The combination of generally only (Hadamard) directionally
differentiable Nemytski operators in the constraint and the inherently nons-
mooth structure of multiobjective optimization makes sensitivity and station-
arity analysis and the numerical solution of these problems rather delicate and
requires specialized stationarity concepts and approaches that do not follow
standard procedure for Gateaux differentiable problems, cf. the detailed intro-
duction in [10]. The particular case of the PDE constraint in (P) is rather well
understood in terms of existence and regularity of solutions and differentiabil-
ity properties of the solution operator and has previously been addressed as
a constraint in optimization problems in, e.g., [9,10]. The specific structure of
the PDE even allows for the derivation of strong stationarity systems when the
control space is sufficiently rich, which has been considered in both scalar and
multiobjective optimization with an arbitrary number of objectives, see [9,10].
Stationarity conditions of intermediate strength based on the characterization
of the subdifferentials of the solution operator to the constraining PDE have
been addressed in [9] and the considerations in [10] show that C-stationarity
and strong stationarity in fact coincide for ample controls. Numerically, the
Pareto front of the problem (P) has been characterized for two and three cost
functionals and L2(Ω) controls [10] by using a first-optimize-then-discretize
approach and a pseudo semismooth Newton (PSN) method and by using a
regularization approach. Especially in the multiobjective case, computation
times can quickly become large with increased fineness of discretizations of
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the domain and the Pareto front. In [7], the authors discussed a standard of-
fline/online greedy based reduced basis approach for (P) with a single scalar
objective function and both low and high dimensional control/parameter space
and compared the results to an adaptive way of generating the reduced basis
along the solution process of the PSN.

In this paper, we will build mostly on the results in [10] with the goal of
characterizing the Pareto front of the bicriterial problem (P) using a weighted-
sum and a reference point approach, which we will compare in terms of ap-
proximation quality of the front using quantifiable quality measures. Since our
setting includes finite dimensional controls (with specific structure), we have
to extend the strong stationarity systems used in [10] to conditions that will
turn out to be weaker, as is well known to be expected for controls that are
not ample. We show that the numerical procedure in [10] based on the strong
stationarity system for the multiobjective setting corresponds to solving sta-
tionarity systems for the weighted-sum method and that the subproblems ap-
pearing in the reference point method have similar structure that can also be
treated by the PSN. Additionally, we will see that the systems solved in the
PSN remain usable in the numerical approximation even when the controls
are finite dimensional. We further show that the rare, mesh-dependent non-
convergence issue for some subproblems observed for the undamped PSN in
[7,10] can be effectively eliminated using a line search globalization strategy.

The structure of this paper is as follows: We will shortly comment on the
assumptions for this paper in Subsection 1.1. Then, we recall the required
notions of Pareto optimality and Pareto stationarity and state the respective
first order stationarity systems for (non-)ample controls in Section 2. In the
case U = H the analytical results are analogous to those in [10] and the strong
stationarity results are simply recalled. The case U = Rp requires additional
considerations and yields weaker stationarity conditions. We will further show
that the system of strong stationarity conditions remains a viable system to
solve numerically when characterizing the Pareto stationary front for either
control space. In Section 3, we will recall the weighted-sum method and the
reference point method and address their roles in characterizing the Pareto
front. The numerical implementation is explained in detail in Section 4, where
we present a matrix-free preconditioned limited-memory generalized minimal
residual (L-GMRES) method for the line search globalized pseudo semismooth
Newton (gPSN) method that will be used to handle the density of the dis-
cretization matrices in the reference point method and the convergence issues
arising from the nonsmoothness of the PDE-constraint, respectively. We fur-
ther present two numerical examples – one with (FE-discretized) L2-controls
and one with inherently finite dimensional controls in Section 5. The interpre-
tation of the numerical results is specifically focused on the effects of different
preconditioning strategies for the reference point method. We introduce two
quantities to measure the approximation quality of the two methods and use
them as a basis for a performance comparison of the two scalarization ap-
proaches.
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1.1 Notation and Assumptions on the Data

We endow V = H1
0 (Ω) with the inner product 〈ϕ, φ〉V =

∫
Ω
∇ϕ · ∇φ+ ϕφ dx

for ϕ, φ ∈ V and the induced norm ‖ · ‖V = 〈· , ·〉1/2V . Its topological dual space
is written as V ′ = H−1(Ω). The space Y denotes V ∩H2(Ω) with topological
dual space Y ′. We also set H = L2(Ω). For functions in Y , the Laplacian is
understood in the non-variational sense and the Dirichlet Laplacian ∆ : H →
Y ′ is understood in the very weak sense (see [16], Section 1.9). Our assumptions
on the data are as follows:

Assumption 11 1. Ω ⊂ Rd for d ∈ N \ {0} is a bounded domain that is
either convex or possesses a C1,1-boundary (cf. [14, Section 6.2]),

2. j1, j2 : Y → R are weakly lower semicontinuous, twice continuously Fréchet-
differentiable and bounded from below,

3. σ1 ≥ 0, σ2 > 0, κ ≥ 0,
4. U = Rp for p ∈ N \ {0} and ‖ · ‖U denotes the Euclidean norm or U = H

and ‖ · ‖U denotes the L2-norm,
5. B : U → H possesses the following property:

(a) If U = Rp the operator B : U → H is linear and bounded and the
pairwise intersection of the sets {bi 6= 0} ⊂ Ω of bi B B(ei) ∈ H, where
ei, i = 1, . . . , p denote the unit vectors in U , are Lebesgue nullsets and
none of the bi are zero.

(b) If U = H the operator B : U → H is unitary.

2 Stationarity Conditions

Structurally, this section follows [10] closely, where the case U = H = L2(Ω)
carries over immediately, but the results for the case U = Rp are novel. Note
that stationarity concepts of intermediate strength for the scalar optimization
case have been presented in [9].

The results in this section will be the basis for showing that the strong sta-
tionarity system obtained for the infinite dimensional controls remains a mean-
ingful system to treat numerically for the case of finite dimensional controls.
The main issue in the analysis is the well-known fact that strong stationarity
conditions typically require ample controls. Note that the results presented in
this section can readily be generalized to an arbitrary finite number of objec-
tive functionals.

We start by summarizing the main properties of the solution operator S to
the PDE-constraint in the next lemma as a slight extension to [10, Lemma 4.2].
Note that, since we will mostly focus on the case U = Rp, we do not obtain
all results compared to the case U = H, where further results are possible.
Again, see [10, Lemma 4.2].

Lemma 1 (Properties of the solution operator S) Let u ∈ U be a control
with associated state y = S(u). Then:
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1. There is a solution operator S : U → Y that is Lipschitz continuous and
Hadamard directionally differentiable, where the derivative S ′[u](h) = w ∈
Y for given direction h ∈ U is the unique solution to

−∆w + κ1{y=0}max{0, w}+ κ1{y>0}w = B(h) in V ′. (1)

This especially implies the Y -regularity of the state variable y.
2. If U = Rp, then the map

B̃−` : H → U, v 7→ ν = (νi)1≤i≤p with νi =
〈v, bi〉H
‖bi‖2H

(2)

is a linear and bounded left inverse of B : U → H.
3. The map S ′[u] : U → Y is Lipschitz continuous and allows for a Lipschitz

continuous left inverse given by

S ′[u]−` : Y → U, w 7→ B−`[u]
(
−∆w + κ1{y=0}max{0, w}+ κ1{y>0}w︸ ︷︷ ︸

∈H

)
,

where B−`[u] is any linear, bounded left inverse of B that may depend on
u.

4. There exists a linear and bounded left inverse B−` of B that does not depend
on u such that〈

u,S ′[u]−`(w)
〉
U

=
〈
(−∆+ κ1{y>0})B−`,∗(u), w

〉
Y ′,Y

for every w ∈ Y , where B−`,∗ : U → H is the Hilbert adjoint of the left
inverse B−`.

Proof Let u ∈ U be arbitrarily given and y = S(u) ∈ Y . Notice that the
Y -regularity also follows from Proposition 2.1 in [9].

1 The linearity and boundedness of B imply Lipschitz continuity and Hadamard
differentiability analogously to Proposition 2.1 and Theorem 2.2 in [9] and
due to the chain rule, the directional derivative of the solution operator
w = S ′[u](h) solves

−∆w + κ1{y=0}max{0, w}+ κ1{y>0}w = B(h) in V ′.

2 Note that the operator B̃−` is well defined due to Assumption 11-5. Clearly,
the operator is linear and bounded. The left inverse quality remains to
be proved. Let ũ ∈ U = Rp and v = Bũ =

∑p
j=1 bj ũj ∈ H. For every

i ∈ {1, . . . , p}, we have that

(
B̃−`(v)

)
i

=
〈v, bi〉H
‖bi‖2H

=

p∑
j=1

ũj
〈bj , bi〉H
‖bi‖2H

= ũi
〈bi, bi〉H
‖bi‖2H

= ũi,

where the second to last equality holds due to the H-orthogonality of the
bi induced by Assumption 11-5.
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3 The Lipschitz continuity of the linearized solution operator is implied by
the form of the linearization (1). Existence of a left inverse is clear due to
part 2 if U = Rp and since B is unitary if U = H. Thus existence of a left
inverse of S ′[u] and its Lipschitz continuity are obvious from the explicit
definition.

4 First assume that U = H and that B is a unitary operator. Then, B−1

exists, and we choose B−` = B−1. Thus we have

B−`,∗ = (B−1)∗ = (B∗)∗ = B.

Consequently, for u ∈ U and y = S(u),

〈B−`,∗(u), κ1{y=0}max{0, w}〉
H

= 〈B(u), κ1{y=0}max{0, w}〉
H

= 〈−∆y + κmax{0, y}︸ ︷︷ ︸
=0 a.e. on {y=0}

, κ1{y=0}max{0, w}〉H = 0,

where ∆y = 0 a.e. on {y = 0} is a consequence of [10, Lemma 4.1]). Thus,
using part 3), we find that〈
u,S ′[u]−`(w)

〉
U

=
〈
u,B−`

(
−∆w + κ1{y=0}max{0, w}+ κ1{y>0}w

)〉
U

=
〈
B−`,∗(u),

(
−∆+ κ1{y>0}

)
w
〉
H

+
〈
B−`,∗(u), κ1{y=0}max{0, w}

〉
H

=
〈
B−`,∗(u),

(
−∆+ κ1{y>0}

)
w
〉
H

=
〈(
−∆+ κ1{y>0}

)
B−`,∗(u), w

〉
Y ′,Y

for every w ∈ Y , where the last line follows due to the definition of the
very weak Dirichlet Laplacian.
Now assume that U = Rp. We show that B̃−` is the desired left inverse. For
u ∈ U , y = S(u) and any i ∈ {1, . . . , p}, we have that {y = 0} ∩ {biui 6= 0}
is a nullset, because

{biui 6= 0} ∩ {y = 0} ⊂ {biui 6= 0} ∩ {B(u) = 0} ⊂ {biui 6= 0} ∩ {biui = 0},

where the first inclusion is again a consequence of [10, Lemma 4.1]) and the
second inclusion is due to Assumption 11-5. Thus, for any i ∈ {1, . . . , p},
we infer

〈1{y=0}max{0, w}, biui〉H
‖bi‖2H

= 0.

Due to part 2), we obtain that〈
u, B̃−`

(
κ1{y=0}max{0, w}

)〉
U

=

p∑
i=1

ui
〈κ1{y=0}max{0, w}, bi〉H

‖bi‖2H
= κ

p∑
i=1

〈1{y=0}max{0, w}, uibi〉H
‖bi‖2H

= 0
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for every w ∈ Y . Consequently,

〈u,S ′[u]−`(w)〉U =
〈
u, B̃−`

(
−∆w + κ1{y=0}max{0, w}+ κ1{y>0}w

)〉
U

=
〈(
−∆+ κ1{y>0}

)
B̃−`,∗(u), w

〉
Y ′,Y

,

for every w ∈ Y . �

As usual, we denote the reduced cost functional as Ĵ : U → R2, Ĵ (u) =
J (S(u), u). Having established the properties of the solution operator, we are
ready to review the different notions of Pareto optimality and the optimality
conditions that will play a role later on.

Definition 1 (Pareto Optimality) Let ȳ, ū with ȳ = S(ū) and ū ∈ U . The
control ū is called:

1) a local weak Pareto optimal point of (P) if an r > 0 exists such that there
is no u ∈ U satisfying

‖u− ū‖U < r, Ji (S(u), u) < Ji (ȳ, ū) for i = 1, 2;

the set of all local weak Pareto optimal points and the corresponding Pareto
front are denoted Plws and Plwf , respectively;

2) a local Pareto optimal point of (P) if an r > 0 exists such that there is no
u ∈ U satisfying

‖u− ū‖U < r, Ji (S(u), u) ≤ Ji (ȳ, ū) for i = 1, 2,

where the latter inequality is strict for at least one i; the set of all local
Pareto optimal points and the corresponding Pareto front are denoted Pls
and Plf , respectively;

3) a local proper Pareto optimal point of (P) if there are r, C > 0 such that
for every u ∈ U satisfying ‖u − ū‖U < r and Ji (S(u), u) ≤ Ji (ȳ, ū) for
some index i ∈ {1, 2}, there exists an index m ∈ {1, 2} \ {i} with

Ji(ȳ, ū)− Ji(S(u), u) ≤ C(Jm(S(u), u)− Jm(ȳ, ū));

the set of all local proper Pareto optimal points and the corresponding
Pareto front are denoted Plps and P

lp
f , respectively;

4) a global (weak/proper) Pareto optimal point of (P) if the previous con-
ditions hold with r = ∞; the corresponding Pareto fronts and sets are
denoted using the letter g instead of l in the superscript.

Analogously to [10], we obtain the following corresponding primal optimality
conditions.

Theorem 1 (Optimality Conditions – Primal Form)

1) If ū ∈ U with associated state ȳ = S(ū) is a local weak Pareto optimal
point of (P), then there exists no direction h ∈ U satisfying

〈j′i(ȳ),S ′[ū](h)〉Y ′,Y + σi 〈ū, h〉U < 0 for i = 1, 2. (3)
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2) If ū ∈ U with associated state ȳ = S(ū) is a local proper Pareto opti-
mal point of (P) with constants r, C > 0, then for every h ∈ U with
〈j′i(ȳ),S ′[ū](h)〉Y ′,Y + σi〈ū, h〉U < 0 for some i ∈ {1, 2}, there exists an
m ∈ {1, 2} \ {i} with

−
(
〈j′i(ȳ),S ′[ū](h)〉Y ′,Y + σi 〈ū, h〉U

)
≤ C

(
〈j′m(ȳ),S ′[ū](h)〉Y ′,Y + σm 〈ū, h〉U

)
.

Proof See [10, Theorem 3.1]. �

Analogously, we have the corresponding notions of Pareto stationarity.

Definition 2 (Pareto Stationarity) Let ū ∈ U and ȳ = S(ū). The control
ū is called:

1) a weak Pareto stationary point of (P) if there is no h ∈ U satisfying

〈j′i(ȳ),S ′[ū](h)〉Y ′,Y + σi 〈ū, h〉U < 0 for i = 1, 2;

the set of all weak Pareto stationary points and the corresponding Pareto
front are denoted Psws and Pswf , respectively;

2) a Pareto stationary point of (P) if there is no h ∈ U satisfying

〈j′i(ȳ),S ′[ū](h)〉Y ′,Y + σi 〈ū, h〉U ≤ 0 for i = 1, 2,

where the latter inequality is strict for at least one i; the set of all Pareto
stationary points and the corresponding Pareto front are denoted Pss and
Psf , respectively;

3) a proper Pareto stationary point of (P) if there is a C > 0 such that for all
h ∈ U with 〈j′i(ȳ),S ′[ū](h)〉Y ′,Y + σi〈ū, h〉U < 0 for some i ∈ {1, 2}, there
exists an m ∈ {1, 2} \ {i} with

−
(
〈j′i(ȳ),S ′[ū](h)〉Y ′,Y + σi 〈ū, h〉U

)
≤ C

(
〈j′m(ȳ),S ′[ū](h)〉Y ′,Y + σm 〈ū, h〉U

)
.

The set of all proper Pareto stationary points and the corresponding Pareto
front are denoted Psps and P

sp
f , respectively.

Remark 1 We want to mention some of the connections between the intro-
duced sets.

1) By definition, we have that Plps ⊂ Pls ⊂ Plws . The same holds for the global
Pareto optima and for the Pareto fronts.

2) As a consequence of Theorem 1, weak Pareto stationarity is a necessary
condition for local weak Pareto optimality, i.e., Plws ⊂ Psws , and proper
Pareto stationarity is a necessary condition for local proper Pareto opti-
mality, i.e., Plps ⊂ Psps . Corresponding results hold for the Pareto fronts.
However, Pareto stationarity is generally not necessary for local Pareto
optimality.

For more details we refer to [10]. ♦
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Next we derive adjoint-based necessary optimality conditions. We will ex-
tend a version of the infinite dimensional case of Tucker’s/Motzkin’s theorem
of the alternative (see [12, Theorem 3.22] for the finite dimensional case and
[10, Lemma 4.4] for a general Hilbert space setting) to subsets of Hilbert
spaces. The proof is an adaptation of the proof of [10, Lemma 4.4] to the case
of subsets. Note that in the latter result the equivalence between the positivity
of the multipliers and (4) is stated, whereas in the following lemma there is
only an implication.

Lemma 2 Suppose W is a nonempty subset of a real Hilbert space V and
v′1, . . . , v

′
N ∈ V′ are given. Then the following are equivalent:

1. There exists no z ∈W such that

〈v′i, z〉V < 0 for all i = 1, . . . , N.

2. There exists λ ∈ RN with λi ≥ 0 for i = 1, . . . , N such that

N∑
i=1

λi = 1 and

N∑
i=1

λi 〈v′i, w〉V ≥ 0 for all w ∈W.

Furthermore, if λi > 0 for all i = 1, . . . , N in 2, then there exists no z ∈ W

such that

〈v′i, z〉V ≤ 0 for all i = 1, . . . , N, (4)

with the inequality holding strictly for at least one i.

Proof First, we show that part 2 implies part 1:
Assume that part 2 holds but there exists a z ∈ W with 〈v′i, z〉V < 0 for all
i = 1, . . . , N . This would imply that

N∑
i=1

λi 〈v′i, z〉V < 0,

which is a contradiction to 2. Analogously, if λi > 0 for all i = 1, . . . , N , then
there exists no z ∈ W such that 〈v′i, z〉V ≤ 0 for all i = 1, . . . , N with the
inequality holding strictly for at least one i, which shows the claim.
Now we show that part 1 implies part 2: Note that part 1 is equivalent to

max
{
〈v′1, w〉V, . . . , 〈v

′
N , w〉V

}
≥ 0 for all w ∈W. (5)

We introduce

g : RN → R, g(x1, . . . , xN ) B max{x1, . . . , xN},
F : V→ RN , F (v) B

(
〈v′i, v〉V

)
i=1,...,N

.

Then we can rewrite (5) as (g ◦ F )(w) ≥ 0 for all w ∈ W and the chain rule
for Hadamard differentiable functions implies

(g ◦ F )′[0](w) ≥ 0 for all w ∈W,
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since both g and F are Hadamard differentiable (see Example 2.2.8 in [11]
for the directional derivative of g) and since (5) equivalently holds for all
v ∈ {tw : w ∈W, t ≥ 0}. Note that g ◦ F is also convex, since F is linear and
g convex. Thus [11, Proposition 2.27] and [22, Example 8.26] imply

∂(g ◦ F )[0] = ∂c(g ◦ F )[0]

= F ∗
{
λ ∈ RN : λi ≥ 0 for i = 1, . . . , N,

N∑
i=1

λi = 1

}
,

where F ∗ denotes the Hilbert adjoint of the linear, bounded mapping F , ∂
denotes the generalized gradient (in the sense of Clarke) and ∂c denotes the
convex subdifferential. Proposition 2.2.2 in [11] implies that (g ◦F )′[0] ∈ ∂(g ◦
F )[0]. This proves existence of a multiplier λ with the desired properties. �

Modifying the result and the proof in [10, Theorem 4.5], we now obtain the
following stationarity conditions that are strong in the sense that we obtain
an adjoint based system that is equivalent to the primal stationarity defined
above.

Theorem 2 (Strong Stationarity Conditions)

1. The following are equivalent:
(a) A control ū ∈ U with associated state ȳ = S(ū) ∈ Y is a weak Pareto

stationary point of (P), i.e. satisfies (3).
(b) There exists an adjoint state p̄ and a multiplier ᾱ such that ū, ȳ, p̄, ᾱ

satisfy the system

ū ∈ U, ȳ ∈ Y, p̄ ∈ H, ᾱ ∈ R2, (6a)

ᾱi ≥ 0 for i = 1, 2,

2∑
i=1

ᾱi = 1, (6b)

−∆ȳ + κmax{0, ȳ} = B(ū) in V ′, (6c)〈
−∆p̄+ κ1{ȳ>0}p̄, w

〉
Y ′,Y

≤
2∑
i=1

ᾱi〈j′i(ȳ), w〉Y ′,Y

for all w ∈ Im(S ′[ū]), (6d)

p̄+

2∑
i=1

ᾱiσiB−`,∗(ū) = 0 in H. (6e)

2. Assume that ū, ȳ, p̄, ᾱ satisfy the system (6), where the inequality in (6b)
is strict, i.e. ᾱi > 0 for i = 1, 2. Then ū is a proper Pareto stationary point
of (P) (and thus also a Pareto stationary point).

Proof As the image of S ′[ū]−` is U , weak Pareto stationarity is equivalent to

(〈j′i(ȳ),S ′[ū](S ′[ū]−`(w))〉)Y ′,Y + σi 〈ū,S ′[ū]−`(w)〉U < 0 for i = 1, 2
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being valid for no w ∈ Im(S ′[ū]) ⊂ Y . Note that S ′[ū](S ′[ū]−`(w)) = w for all
w ∈ Im(S ′[ū]). This, together with the explicit definition of S ′[ū]−` in Lemma
1-4, gives the equivalent reformulation of

〈j′i(ȳ), w〉Y ′,Y + σi 〈(−∆+ κ1{ȳ>0})B−`,∗(ū), w〉
Y ′,Y

< 0

being valid for no w ∈ Im(S ′[ū]). Due to Lemma 2-1, this is equivalent to the

existence of ᾱ = (ᾱ1, ᾱ2) ∈ R2 with ᾱi ≥ 0,
∑2
i=1 ᾱi = 1 and

2∑
i=1

ᾱi 〈j′i(ȳ) + σi(−∆+ κ1{ȳ>0})B−`,∗(ū), w〉
Y ′,Y

≥ 0 for all w ∈ Im(S ′[ū]).

If we now define p̄ = −
∑2
i=1 ᾱiσiB−`,∗(ū), part 1 follows immediately.

The proof of part 2 can be found in [10], Theorem 4.5-iii). The only difference
is that one equality needs to be replaced by an inequality. �

As already mentioned above, system (6) can be tightened for the case of U =
H.

Remark 2 If U = H and B is unitary, then because of surjectivity of S ′[ū],
(6d) becomes an equality in V ′ and (6e) is equivalent to

B∗(p̄) +

2∑
i=1

ᾱiσiū = 0 in U. (7)

In this case, the reverse implication in Theorem 2, part 2 is true as well. This
is essentially the result in [10, Theorem 4.5]. ♦

Additionally, we make the following observations.

Corollary 1 Consider Theorem 2 and the case where U = Rp.

1) If (6e) is replaced by (7) in Theorem 2-1), then the resulting system is
necessary (but generally not sufficient) for weak Pareto stationarity.

2) If (6e) is replaced by (7) in Theorem 2-1) or -2) and the sign condition

〈1{ȳ=0}max{0, w}, p̄〉
H
≤ 0 for all w ∈ Im(S ′[ū]), (8)

is added, then the resulting system is sufficient (but generally not necessary)
for weak/proper Pareto stationarity.

Proof Part 1 is easy to see because the adjoint of a left inverse is a right inverse
of the adjoint, so (6e) implies (7). For part 1, assume that ū, ȳ, p̄, ᾱ satisfy the
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system (6a)-(6d), (7) and (8) with ᾱi ≥ 0 for i = 1, 2. For arbitrary h ∈ U set
w = S ′[ū](h). It follows that

−
2∑
i=1

ᾱiσi〈ū, h〉U = 〈B∗(p̄), h〉U = 〈p̄,B(h)〉H

= 〈−∆w + κ1{ȳ>0}w + κ1{ȳ=0}max{0, w}, p̄〉
H

≤ 〈−∆w + κ1{ȳ>0}w, p̄〉H = 〈−∆p̄+ κ1{ȳ>0}p̄, w〉Y ′,Y

≤
2∑
i=1

ᾱi 〈j′i(ȳ), w〉Y ′,Y .

Thus since ᾱi ≥ 0 and
2∑
i=1

ᾱi = 1 the inequality

〈j′i(ȳ), w〉Y ′,Y + σi 〈ū, h〉U < 0

cannot be true for all i = 1, 2. This implies the desired weak Pareto station-
arity. (Proper) Pareto stationarity can be shown analogously. �

3 Scalarization Methods

As shown in Section 2, Pareto stationarity can be equivalently described by
(strong) stationarity conditions. We want to characterize the Pareto stationary
points and the corresponding front numerically. Therefore, we explain briefly
how two well-known scalarization methods – the weighted-sum method (cf.,
e.g., [12]) and the reference-point method (cf., e.g., [18,23]) – can be used to
that end.

3.1 Weighted-Sum Method (WSM)

For weights α1, α2 ≥ 0 with α1 + α2 = 1, the optimization problem

min
(y,u)

α1J1(y, u) + α2J2(y, u)

s.t. (y, u) ∈ V × U satisfies −∆y + κmax{0, y} = B(u) in V ′,
(Pα)

is called the weighted-sum problem (with non-negative weights α1, α2) corre-
sponding to (P). We will employ the following notation:

Wg≥
s := {u ∈ U : u glob. sol. to (Pα), α ≥ 0, α1 + α2 = 1}, W

g≥
f := Ĵ (Wg≥

s ),

Wg>
s := {u ∈ U : u glob. sol. to (Pα), α > 0, α1 + α2 = 1}, W

g>
f := Ĵ (Wg>

s ),

Wl≥
s := {u ∈ U : u loc. sol. to (Pα), α ≥ 0, α1 + α2 = 1}, W

l≥
f := Ĵ (Wl≥

s ),

Wl>
s := {u ∈ U : u loc. sol. to (Pα), α > 0, α1 + α2 = 1}, Wl>

f := Ĵ (Wl>
s ),
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where the subscripts s and f stand for “set” and “front”, respectively, as for the
Pareto optimal/stationary sets in the previous section. The primal optimality
conditions for the WSM are given in the following theorem.

Theorem 3 Let the control ū ∈ U be locally optimal for (P) with associated
state ȳ = S(ū) ∈ Y . Then

2∑
i=1

αi
(
〈j′i(ȳ),S ′[ū](h)〉Y ′,Y + σi〈u, h〉U

)
≥ 0 for all h ∈ U. (9)

Proof The claim follows analogously to [10, Theorem 3.1]. �

Definition 3 A control ū ∈ U with associated ȳ = S(ū) is called a stationary
point of (Pα) if (9) is satisfied. We set

Ws≥
s := {u ∈ U : u stat. pt. of (Pα), α ≥ 0, α1 + α2 = 1}, W

s≥
f := Ĵ (Ws≥

s ),

Ws>
s := {u ∈ U : u stat. pt. of (Pα), α > 0, α1 + α2 = 1}, Ws>

f := Ĵ (Ws>
s ).

Corollary 2 Let α1, α2 ≥ 0 with α1 + α2 = 1 and denote α = (α1, α2). Then
the following statements are equivalent:

1. A control ū ∈ U with associated state ȳ = S(ū) ∈ Y is a stationary point
of (Pα).

2. There exists p̄ such that ū, ȳ, p̄ satisfy the system (6) with ᾱ = α.

Proof The corollary follows analogously to the proof of Theorem 2. �

Remark 3 1) Corollary 2 especially implies that Ws≥
s = Psws and Ws>

s ⊂ Pss.
This means that the WSM is a good choice to characterize (weakly) Pareto
stationary points.

1. 2)] For the sets of optimal points, only the inclusions Wl>
s ⊂ Pls, W

l≥
s ⊂

Plws , Wg>
s ⊂ Pgs and Wg≥

s ⊂ Pgws hold. The proof of this result is the same
as for the finite dimensional case shown in [12]. ♦

In the algorithm, we can now set α1 = 1−α2 and solve the stationarity system
of the WSM for varying α2 ∈ [0, 1], where α2 6= 0 for solvability requirements.
Specifically, we introduce an additional small parameter αtol > 0 and choose
α2 in [αtol, 1− αtol]. The procedure of the WSM is summarized in Algorithm
1.

Algorithm 1: Weighted-sum method (WSM)

Require: Number kmax ∈ N of discretization points, αtol > 0;

Return : Discrete approximations P̃sws and P̃swf of Psws and Pswf ;

for i = 1, . . . , kmax do
Set α2 = αtol + (1− 2αtol)

i−1
kmax−1 ;

Solve (6) with weight (1− α2, α2) and save a solution as ui;

Set P̃sws = P̃sws ∪ {ui}, P̃swf = P̃swf ∪ {Ĵ (ui)};
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The result of Algorithm 1 is a discrete approximation of the set of weakly
Pareto stationary points Psws and the corresponding front Pswf . However, sys-
tem (6) may have multiple solutions and (in the case of the finite dimensional
controls) we cannot solve it numerically because of the variational inequality
(6d) on the possibly unknown and nonlinear set Im(S ′[ū]). In practice, we
therefore modify (6d)-(6e) and instead consider the system

ū ∈ U, ȳ ∈ Y, p̄ ∈ H, ᾱ ∈ R2 (10a)

ᾱi ≥ 0 for i = 1, 2,

2∑
i=1

ᾱi = 1, (10b)

−∆ȳ + κmax{0, ȳ} = B(ū) in V ′, (10c)

−∆p̄+ κ1{ȳ>0}p̄ =

2∑
i=1

ᾱij
′
i(ȳ) in V ′, (10d)

B∗(p̄) +

2∑
i=1

ᾱiσiū = 0 in U, (10e)

which coincides with the strong stationarity system in the case U = H; cf.
Remark 2. If U = Rp, then ū satisfying (10) is generally only stationary in a
weaker sense. In that case, we additionally check the sign condition

p̄ ≤ 0 a.e. in {ȳ = 0} (11)

for p̄ a posteriori. If it is satisfied, the solution is still strongly stationary and
therefore a weak Pareto stationary point, see Corollaries 1 and 2.

3.2 Reference Point Method (RPM)

In this section, we will show that the same favourable set inclusions mentioned
in Remark 3 for the WSM hold for the RPM, which is well known to yield
higher approximation qualities than the WSM for smooth, convex problems,
see, e.g., [4]. The reference point problem with Euclidean norm ‖·‖2 for a
reference point z ∈ R2 is given by

min
(y,u)
Fz(y, u) =

1

2
‖J (y, u)− z‖22

s.t. (y, u) ∈ V × U satisfies −∆y + κmax{0, y} = B(u) in V ′.

(Pz)

Analogously to the previous subsection, we employ the following notation:

Rg≥s := {u ∈ U : u glob. sol. to (Pz), z ∈ R2, 0 6= Ĵ (u)− z ≥ 0},
Rg>s := {u ∈ U : u glob. sol. to (Pz), z ∈ R2, Ĵ (u)− z > 0},
Rl≥s := {u ∈ U : u loc. sol. to (Pz), z ∈ R2, 0 6= Ĵ (u)− z ≥ 0},
Rl>s := {u ∈ U : u loc. sol. to (Pz), z ∈ R2, Ĵ (u)− z > 0},

R
g≥
f := Ĵ (Rg≥s ), R

g>
f := Ĵ (Rg>s ), R

l≥
f := Ĵ (Rl≥s ), Rl>f := Ĵ (Rl>s ).
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Theorem 4 We have that Rl>s ⊂ Pls and Rg>s ⊂ Pgs.

Proof We assume that ū ∈ Rl>s with ȳ = S(ū), i.e., there exists an r1 > 0 such
that for all u ∈ U with ‖ū − u‖U < r1 the inequality Fz(ȳ, ū) ≤ Fz(S(u), u)
is satisfied. Now, we assume that ū /∈ Pls, which implies that for every r2 > 0
there exists uend ∈ U with ‖uend − ū‖ < r2 and Ji(S(uend), uend) ≤ Ji(ȳ, ū)
for i = 1, 2, where the latter inequality is strict for at least one i. Since we can
choose r2 arbitrarily small and since S and Ji are continuous and Ji(ȳ, ū)−zi >
0 for i = 1, 2 by assumption, this implies that

zi ≤ Ji(S(uend), uend) ≤ Ji(ȳ, ū), i = 1, 2,

where the second inequality is strict for at least one i. Since the Euclidean
norm is strictly monotone [12, Definition 4.19], this implies the contradiction
Fz(S(uend), uend) < Fz(ȳ, ū) and proves the first inclusion. The second inclu-
sion now immediately follows from the first by choosing r1 =∞. �

Next we introduce primal stationarity conditions for (Pz).

Theorem 5 Let the control ū ∈ U with associated state ȳ = S(ū) ∈ Y be
locally optimal for (Pz). Then, we have for all h ∈ U

2∑
i=1

(Ji(ȳ, ū)− zi) (〈j′i(ȳ),S ′[ū](h)〉Y ′,Y + σi〈ū, h〉U ) ≥ 0. (12)

Proof Due to the chain rule for Hadamard differentiable functions, this follows
analogously to [10, Theorem 3.1]. �

Definition 4 A control ū ∈ U with associated state ȳ = S(ū) is called a
stationary point of (Pz) for z ∈ R2 if (12) is satisfied. We set

Rs≥s := {u ∈ U : u stat. pt. of (Pz), z ∈ R2, 0 6= Ĵ (u)− z ≥ 0},
Rs>s := {u ∈ U : u stat. pt. of (Pz), z ∈ R2, Ĵ (u)− z > 0},

R
s≥
f := Ĵ (Rs≥s ), Rs>f := Ĵ (Rs>s ).

Corollary 3 Let the control ū ∈ U with associated state ȳ = S(ū) be given.

1) The following are equivalent:
(a) The control ū is a stationary point of (Pz).
(b) There exists an adjoint state p̄ such that ū, ȳ, p̄ satisfy

ū ∈ U, ȳ ∈ Y, p̄ ∈ H (13a)

−∆ȳ + κmax{0, ȳ} = B(ū) in V ′, (13b)

〈−∆p̄+ κ1{ȳ>0}p̄, w〉Y ′,Y ≤
2∑
i=1

(Ji(ȳ, ū)− zi) 〈j′i(ȳ), w〉Y ′,Y

for all w ∈ Im(S ′[ū]), (13c)

p̄+

2∑
i=1

(Ji(ȳ, ū)− zi)σiB−`,∗(ū) = 0 in H. (13d)
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2) The following are equivalent:
(a) There exists z ∈ R2 such that the control ū is a stationary point of (Pz)

with 0 6= J (ȳ, ū)− z ≥ 0 (or J (ȳ, ū)− z > 0).
(b) There exists α ∈ R2 with α ≥ 0 for i = 1, 2 (or α > 0) and α1 +α2 = 1

such that the control ū is a stationary point of (Pα).

Proof Part 1) follows analogously to the proof of Theorem 2 executed for one
cost functional.
To show part 2), let ū be a stationary point of (Pz) with associated state
ȳ = S(ū) such that 0 6= J (ȳ, ū)− z ≥ 0. Then part 3 implies that there exists
an adjoint state p̄ such that ū, ȳ, p̄ solve (13). Accordingly, with normalized
weight α and adjoint p̃ given by

αi = α̃i
/ 2∑
j=1

α̃j with α̃i = Ji(ȳ, ū)− zi ≥ 0, p̃ = p̄
/ 2∑
i=1

α̃i,

system (6) is also satisfied. Thus Corollary 2 implies that ū is a stationary
point of (Pα) with α ≥ 0 and α1 +α2 = 1. The other implication follows anal-
ogously without normalization by choosing the reference point z = J (ȳ, ū)−α,
since then 0 6= J (ȳ, ū) − z = α ≥ 0. The cases with strict inequalities follow
analogously. �

Remark 4 As a direct consequence of Corollaries 2 and 3, we get Rs>s = Ws>
s ⊂

Pss and Rs≥s = Ws≥
s = Psws , which means that the RPM is also a reasonable

choice to characterize (weak) Pareto stationary points. ♦

A central question for the RPM is how suitable reference points can be
chosen in the numerical implementation. To this end, we follow the approach
presented in [2]. Let kmax denote the maximal number of Pareto stationary
points in the numerical implementation and let (y1, u1) denote an initial start-
ing point with u1 being a stationary point of the weighted-sum problem with
weights α1 = 1 − αtol and α2 = αtol � 1. Then the first reference point z2

(corresponding to the second point on the front) is chosen as

z2 = J (y1, u1)−
(
h⊥

h‖

)
, (14)

where h⊥, h‖ > 0 are scaling parameters. For i = 2, . . . , kmax− 2 the reference
point zi+1 is chosen as

zi+1 = J (yi, ui) + h‖ · ϕ‖

‖ϕ‖‖
+ h⊥ · ϕ⊥

‖ϕ⊥‖
, (15)

with ϕ⊥ = zi − J (yi, ui) and ϕ‖ = (−ϕ⊥2 , ϕ⊥1 )T . Note that due to the strong
weighting of J1 at (y1, u1), the Pareto front is approximately vertical in the
area of the first reference point. This motivates the initial choice ϕ‖ = (0,−1)T

and ϕ⊥ = (−1, 0)T . Now, we can formulate the reference point method in
Algorithm 2.
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Algorithm 2: Reference point method (RPM)

Require: Maximal number kmax ∈ N of Pareto stationary points,
recursive parameters h‖, h⊥ > 0, weighted-sum
parameter 0 < αtol � 1;

Return : Discrete approximations P̃sws and P̃swf of Psws and Pswf ;

Compute solution (y1, u1) to (6) with (1− αtol, αtol);
Compute solution (yend, uend) to (6) with (αtol, 1− αtol);

Set P̃sws = {u1}, P̃swf = {Ĵ (u1)} and i = 2;

Compute reference point zi using (14);

while zi+1
1 < J1(yend, uend) and i ≤ kmax − 1 do

Compute solution (yi, ui) to (13) with reference point zi;

Set i = i+ 1, P̃sws = P̃sws ∪ {ui−1}, P̃swf = P̃swf ∪ {Ĵ (ui−1)};
Compute reference point zi using (15);

Set P̃sws = P̃sws ∪ {uend} and P̃swf = P̃swf ∪ {Ĵ (uend)};

Note that the stopping criterion implies that if kmax is large enough, then
the upper left as well as the lower right corner points of the Pareto front
coincide with those of the WSM. If 0 6= J (S(ū), ū) − z ≥ 0 holds for all
ū ∈ P̃sws , then the result of Algorithm 2 is a discrete approximation of the
set of weak Pareto stationary points Psws with the corresponding Pareto front
Pswf . If one wants to ensure this condition a priori, it is possible to, e.g., choose
fixed reference points on shifted coordinate axes. The shift has to be performed
such that all reference points are below the lower bounds on Ji, cf. [3].

It should be pointed out that in both Algorithm 1 and Algorithm 2, there
might be multiple solutions to (6) for one weight α = (α1, α2) or to (13) for
one reference point z. Numerically, the gPSN method that we use to solve
these systems later on can only produce one of these solutions, which can
generally depend on the initial value, which in turn will typically be chosen
as the previous subproblem’s solution. This means that even if the number of
used weights / reference points is large, the algorithms might struggle to give
a good approximation of the Pareto front. Again, we generally cannot solve
(13) directly in the implementation when U = Rp because of the variational
inequality on an possibly unknown and nonlinear image set. Therefore, we will
proceed as for the WSM and solve the following system.

ū ∈ U, ȳ ∈ Y, p̄ ∈ H, (16a)

−∆ȳ + κmax{0, ȳ} = B(ū) in V ′, (16b)

−∆p̄+ κ1{ȳ>0}p̄ =

2∑
i=1

(Ji(ȳ, ū)− zi) j′i(ȳ) in V ′, (16c)

B∗(p̄) +

2∑
i=1

(Ji(ȳ, ū)− zi)σiū = 0 in U, (16d)
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cf. the modified system (10) for the WSM. For U = L2(Ω), this again coincides
with the strong stationarity system from [10], see Remark 2. For U = Rp we
test for the sign condition

p̄ ≤ 0 a.e. in {ȳ = 0}, (17)

a posteriori. By exactly the same arguments as in Corollary 3 and as a conse-
quence of Corollary 1, the control ū solving (16) generally satisfies a somewhat
weaker stationarity system. When (17) is satisfied as well, ū is strongly sta-
tionary and therefore a weak Pareto stationary point of (P).

4 Numerical Implementation

For the numerical realization and tests of the algorithms, we will assume that
j1(y) = 1

2‖y− y
d‖2H , j2(y) = 0 and σ1 = 0. We fix the domain Ω = (0, 1)2 and

consider P1-type finite elements (FE) on a Friedrichs-Keller triangulation of
the domain. The measure of fineness of the grids will be h > 0, which denotes
the inverse number of square cells per dimension – i.e., the grid will have 2/h2

triangles. We write the coefficient vector of the piecewise linear interpolant of
a function w : Ω → R on the grid vertices in typewriter font (i.e., w ∈ RN )
and use the same font for the matrices in the discretized settings. We resort
to mass lumping for the nonlinear max-term in order to be able to evaluate it
componentwisely. Inevitably, this introduces a numerical discretization error.
Its effects decrease with increasing fineness of the discretization but increase
with the coefficient κ that scales the nonlinearity. The corresponding stiffness
matrix K ∈ RN×N , mass matrix M ∈ RN×N and lumped mass matrix M̃ ∈
RN×N are given from the FE ansatz functions ϕi, i = 1, . . . , N as

Kij = 〈∇ϕi,∇ϕj〉H , Mij = 〈ϕi, ϕj〉H , M̃ = diag

(
|supp(ϕi)|

3
: i = 1, . . . , N

)
.

Thus the FE approximation of (10c)-(10e) introduced for the WSM is Kȳh + κM̃max{0, ȳh} − Bū

Kp̄h + κM̃Θ(ȳh)p̄h − α1M(ȳh − yd)
BT p̄h + α2σ2Aū

 = 0 (18)

for some given α ∈ R2 that satisfies (10a)-(10b), where B is the FE-discretized
version of the linear operator B and Θ B Θ0 where Θx : RN → RN×N maps a
vector to the diagonal matrix that takes the Heaviside function with functional
value x at 0 evaluated for each entry of the vector as its diagonal entries.
The matrix A = Ip ∈ Rp×p is the idendity if U = Rp, and A = M is the
mass matrix if U = H. Note that this means that, depending on the space
U , sometimes typewrite notation would be appropriate for the (discretized)
control u. To avoid any misunderstandings, we will always denote u without
typewriter style. These finite dimensional systems are solved with a globalized
version of a pseudo semismooth Newton (PSN) method. For more details on
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the PSN without globalization, we refer to [8,10]. The FE system matrix at
iterates (yh, ph, u) reads as:K + κM̃Θ(yh) 0 −B

−α1M K + κM̃Θ(yh) 0
0 BT α2σ2A

 . (19)

We proceed analogously for the RPM and discretize (16b)-(16d) using finite
elements, which yields Kȳh + κM̃max{0, ȳh} − Bū

Kp̄h + κM̃Θ(ȳh)p̄h −
(

1
2 (ȳh − yd)TM(ȳh − yd)− z1

)
M(ȳh − yd)

BT p̄h +
(
σ2

2 ū
TAū− z2

)
σ2Aū

 = 0.

(20)

These discretized systems are solved with a PSN method as well. The FE
system matrix at iterates (yh, ph, u) reads as:K + κM̃Θ(yh) 0 −B

C(yh) K + κM̃Θ(yh) 0
0 BT D(u)

 (21)

with

C(yh) B (M(yd − yh))(M(yh − yd))T −
(

1
2 (yh − yd)TM(yh − yd)− z1

)
M, (22)

D(u) B (σ2Au)(σ2Au)T +
(σ2

2
uTAu− z2

)
σ2A. (23)

Remark 5 We again point out that, for both methods, the sign conditions (11)
and (17) are not added into the discretized stationarity system. Instead, they
are verified a posteriori if U = Rp. ♦

Compared to the system matrix of the single objective case presented in
[8], especially the system matrix of the RPM is more complicated and pos-
sesses a non-sparse substructure. This is due to the matrices C(yh) and D(u),
which posses the dense terms M(yh − yd)(M(yh − yd))T and (σ2Au)(σ2Au)T .
These can cause severe memory and runtime problems when the reference
point problem is solved on fine finite element grids with a linear solver. Due
to these restrictions, the reference point method’s subproblems will generally
take longer to solve than the WSM, also on coarser grids.

One thing to keep in mind when applying the PSN method is that there
is no guarantee of convergence and as seen in the numerical examples in [10].
The method in fact shows failure to converge in practice, with the rate of failed
attempts over the subproblems decaying as the grid discretization’s fineness
is increased. This suggest some sort of degeneration of the undamped search
directions that could be countered with a globalization mechanism.

Accordingly, the two questions that we will address in the remainder of
this section are the following:
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1) Can the non-convergence issue of the PSN method itself be removed?
2) Is it possible to reduce computation times and memory problems of the

(linear) PSN steps in the reference point method to make it competitive
in terms of computation times?

4.1 Globalized PSN

The numerical experiments in [10] indicate that non-convergence of the PSN
is an issue that strongly depends on (insufficiently fine) discretizations. As a
stabilization approach independently of the grid fineness, we will present and
test a line search globalization of the PSN based on results for semismooth
Newton methods as in, e.g., [13] and [15], which will be referred to as the gPSN
method. Let us assume that we want to find a root of a function F : R2N+p →
R2N+p with system matrix G : R2N+p → R(2N+p)×(2N+p). This will either be
(18) with system matrix (19) for the subproblems in the WSM or (20) with
system matrix (21) for the subproblems in the RPM. We will employ a line
search globalization with the merit function Λ : R2N+p → R, x 7→ 1

2‖F (x)‖2.

Remark 6 Note that the norm in the merit function Λ is the discrete equiva-
lence of the norm in V ′ × V ′ ×U . Hence it is generally expensive to evaluate,
since we need to compute a Riesz representative. However, we will precompute
the necessary factorizations to speed-up the computations to some extend. ♦

The gPSN method is summarized in the following algorithm. Note that we
cannot conclude – e.g., from theory on globalized semismooth Newton methods
– that the algorithm converges without introducing a maximum number kmax

of PSN steps and a minimum step length ε2 > 0.

Algorithm 3: Globalized PSN Method (gPSN)

Require: Initial point x0 ∈ R2N+p, tolerances ε1, ε2 > 0,
maximum number of iterations kmax ∈ N and line
search parameters β ∈ (0, 1), γ ∈ (0, 1

2 );

Return : Approximated root x̄ ∈ R2N+p;
Set i = 0;

while
√

2Λ(xi) > ε1 and i < kmax do
Compute line search direction di by solving
G(xi)di = −F (xi);

Set ki = 0;

while Λ(xi + βkidi) > (1− 2γβki)Λ(xi) and βki+1 > ε2 do
Set ki = ki + 1;

Set xi+1 = xi + βkidi and i = i+ 1;

It turns out that there are examples, where Algorithm 3 converges while a
refinement of the grid does not yield convergence, see Section 5. However, it
can still happen that the gPSN method does not converge. Obviously, it would
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not be a good idea to add the final iterate of the gPSN method to the Pareto
set nonetheless. Instead, if within the RPM the PSN does not converge, we
update the reference point as follows: If no previous solution to the reference
point problem is available, we choose

zi+1 = zi −
(

0
h‖

)
.

If previous solutions to the reference point problem are available, we choose

zi+1 = zi + h‖
ϕ‖

‖ϕ‖‖
.

Essentially, previous information is used repeatedly to find a new reference
point by going into the same parallel direction. If the gPSN is used within the
WSM and does not converge, we can simply proceed to the next discretized
weight.

4.2 A Preconditioned Matrix-Free L-GMRES Method

We will now focus on how to speed-up the computation and how to overcome
the difficulties arising from the dense terms in the RPM. Notice that both
dense terms are rank-1-matrices. Therefore it is easy to implement the matrix-
vector-product for some w ∈ RN and v ∈ RN with v = M(yh−yd) or v = σ2Au:(

vvT
)
w =

(
vTw

)
v.

This motivates the use of an iterative solver that only relies on matrix-vector-
products in each PSN step for solving the reference point subproblem. Since the
system is not symmetric positive definite, the CG method is not an alternative
and we will use L-GMRES instead. As the performance heavily depends on
the condition number of the system matrix (see [24]), which might be very
large, especially for very small values of the regularization parameter σ2, we
will precondition the method with one of the following preconditioners:

a The dense terms M(yh−yd)(M(yh−yd))T and (σ2Au)(σ2Au)T are omitted
in an approximated system matrix that is used as a preconditioner.

aBJ A block Jacobi preconditioner is applied with the approximation described
for the preconditioner a.

aBGS A block Gauss-Seidel preconditioner is applied with the approximation
described for the preconditioner a.

aILU An incomplete LU factorization together with the approximation described
for the preconditioner a is applied.

Of course the same iterative, preconditioned approach can be implemented for
the WSM, with the only difference being that no approximation – by ignor-
ing dense terms – is necessary for the preconditioner. Note that also standard
Jacobi, Gauss-Seidel, block Jacobi and block Gauss-Seidel and incomplete LU
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factorization preconditioners were tested. But the first two did not give any
speed-up and the last four were still significantly less effective than the pre-
conditioners above due to the dense terms still remaining. As expected, it is
quite important to use the block structure of the problem as much as possible
and to avoid the dense terms.

Remark 7 As long as σ2

2 u
TAu− z 6= 0, the invertibility of the aBJ precondi-

tioner is ensured for the RPM. In case of the WSM, the invertibility is always
ensured.

For the four different preconditioners above, we propose three different update
strategies. Those strategies are:

Never update Only one preconditioner is generated for the first iteration of the
first subproblem and then this preconditioner is used for all subproblems
and all gPSN iterations.

Update once One preconditioner is generated for each subproblem and then used
for all gPSN iterations.

Always update The preconditioner is generated for each gPSN iteration of each
subproblem.

5 Numerical Examples

In this section, we present numerical results for two examples – one with finite
and one with infinite dimensional control space. First, the focus of our exposi-
tion will be on the performance of the RPM and the different preconditioning
strategies. After the best update strategy is identified, we will compare RPM
and WSM method.

In order to reasonably quantify the quality of the approximation of the
respective Pareto (stationary) fronts, we employ two quality measures. The
maximal distance between neighboring points on the Pareto front

∆max := max
a∈P̃f

min
b∈P̃f\{a}

‖a− b‖2 (24)

will be our first measure. As a second measure of approximation quality, we
will consider

∆clust =
|P̃f |∆max∑

a∈P̃f

min
b∈P̃f\{a}

‖a− b‖2
, (25)

which is the maximum shortest distance between points on the front devided
by the average shortest distance and therefore bounded from below by one. If
this quantity is small, this indicates that the approximation quality is some-
what uniform across the entire Pareto front, while a large value indicates that
some parts of the Pareto front are approximated better than others are, i.e.,
a localized clustering.
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Table 1 Fixed parameters for the two numerical examples

gPSN RPM PDE

β γ ε2 kmax αtol Ω κ

5 · 10−1 10−1 10−3 103 10−2 (0, 1)2 10

x1

0.0
0.2

0.4
0.6

0.8
1.0

x2

0.0
0.2

0.4
0.6

0.8
1.0

1.00
0.75
0.50

0.25

0.00

0.25

0.50

0.75

1.00

Fig. 1 Example 1. Desired state yd(x) for step size 1/h = 100

Note that in all results presented here, the sign condition (see Remark 5) is
satisfied and the gPSN method always converges.
Our code is implemented in Python3 and uses FEniCS [1] for the matrix assem-
bly. Sparse memory management and computations (especially L-GMRES) are
implemented with SciPy [26]. All computations below were run on an Ubuntu
20.04 notebook with 32 GB main memory and an Intel Core i7-8565U CPU.

5.1 The Numerical Examples

First we introduce the two examples. The parameters listed in Table 1 are
fixed for the rest of this work.

Example 1 – Infinite Dimensional Controls

For the first numerical example the desired state is chosen as yd = 1Ω1 − 1Ω2

with

Ω1 =

{
(x1, x2) ∈ Ω : x1, x2 >

1

3

}
, Ω2 =

{
(x1, x2) ∈ Ω : x1, x2 <

2

3

}
.

This desired state is shown in Figure 1. The control space U is chosen as
H = L2(Ω), the operator B as the identity on U and A is the mass matrix.

Example 2 – Finite Dimensional Controls

For the second numerical example, we choose yd(x) =
(

1
2 − x1

)
sin(πx1) sin(πx2).

The space U is chosen as R2, A = I2 is the idendity matrix in R2×2 and the
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Table 2 Example 1. Comparison of average L-GMRES iterations (av. it.) and speed-up
(s.-up) of the RPM for different preconditioning approaches and different step sizes h for
σ2 = 5 · 10−3

1/h a aBJ aBGS aILU none
av. it. s.-up av. it. s.-up av. it. s.-up av. it. s.-up av. it. time [s]

Never update

50 3.61 8.82 3.17 23.51 3.24 16.49 3.57 9.19 83.65 2.55 · 102

100 3.53 14.64 3.36 42.04 3.21 26.53 3.44 17.62 257.46 2.02 · 103

200 3.51 20.65 3.38 63.46 3.23 35.28 3.53 23.07 380.42 1.14 · 104

Update once

50 2.55 10.37 2.92 17.71 2.88 10.01 2.10 7.92
100 2.67 12.01 3.02 30.51 2.92 11.10 2.12 10.27
200 2.85 9.40 3.19 39.75 2.98 8.04 2.34 8.20

Always update

50 2.35 7.75 2.93 15.45 2.95 7.43 2.00 5.58
100 2.43 9.04 3.02 26.94 2.99 8.29 2.03 7.32
200 2.62 7.20 3.15 35.54 3.05 6.29 2.32 6.28

operator B is set to

(B(u)) (x) = 10

{
u1x1x2, for x = (x1, x2) and x1 ≤ 1

2 ,

u2x
2
1x

2
2, otherwise,

where the definition is to be understood as L2-functions mapping x ∈ Ω to R
that are embedded into V ′. For plots of the operator B and the desired state
we refer to [8, Figures 1 and 4].

5.2 Preconditioning the Reference Point Method

In this section, we consider the different preconditioning approaches for the
RPM. Therefore, we additionally choose the parameter σ2 = 5 · 10−3 and the
parameters h⊥ = 10, h‖ = 0.1 in the RPM and ε1 = 1·10−4 for the gPSN. Note
that the arguably large value of ε1 is necessary for the L-GMRES method to
converge without preconditioner, because the (sometimes badly conditioned)
problem is numerically difficult to solve. The results for Example 1 are given
in Table 2. First of all, we can see that the computation time decreases for
all preconditioning approaches. Also the average number of L-GMRES itera-
tions is very small (between 2 and 3.5) and increases only slightly for smaller
step sizes h. The latter observation is in contrast to the performance of the
non-preconditioned solving, which starts out with a large number of aver-
age L-GMRES iterations that nonetheless significantly increases for smaller
step sizes h. Furthermore, we can see that cheaper preconditioners lead to
a larger speed-up if the preconditioner is updated more often, i.e. with the
preconditioning strategy always update the preconditioner aBJ still gives a
significant speed-up of about 35, but all other preconditioners cannot give a
speed-up above 9. Nonetheless, the best preconditioning approach surprisingly
is the never update strategy combined with the preconditioner aBJ. This
indicates that the problem structure does not change significantly with respect
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Table 3 Example 2. Comparison of average L-GMRES iterations (av. it.) and speed-up
(s.-up) of the RPM for different preconditioning approaches and different step sizes h for
σ2 = 5 · 10−3

1/h a aBJ aBGS aILU none
av. it. s.-up av. it. s.-up av. it. s.-up av. it. s.-up av. it. time [s]

Never update

50 2.79 3.43 2.78 4.16 2.95 3.21 2.79 3.37 9.97 1.79 · 101

100 2.78 6.46 2.62 11.18 2.81 5.54 7.00 0.55 40.50 1.91 · 102

200 2.72 14.73 2.38 59.41 2.67 12.83 15.23 0.98 197.35 3.85 · 103

Update once

50 2.10 0.94 2.19 2.87 2.05 1.20 2.04 0.70
100 2.11 0.67 2.20 7.19 2.08 1.00 6.01 0.40
200 2.18 0.53 2.16 30.25 2.12 0.70 12.95 0.74

Always update

50 2.05 0.67 2.17 2.36 2.05 0.88 2.17 0.48
100 2.09 0.52 2.20 6.08 2.07 0.74 5.99 0.35
200 2.15 0.41 2.16 25.44 2.11 0.53 12.95 0.65

to the current reference point and thus a computationally expensive update
of the preconditioner is unnecessary.
Next, we consider the results for Example 2, which can be found in Table
3. We basically observe the same behavior as previously and again never
update and aBJ is the best preconditioning approach. Note that this finite
dimensional example is inherently better conditioned and thus combinations
of more expensive preconditioners such as a, aBGS and aILU and expensive
preconditioning strategies such as update once and always update often
lead to larger computation times compared to the performance in the absence
of a preconditioner. Furthermore, the preconditioner aILU seems to behave
unstably, since the number of average L-GMRES iterations increases signif-
icantly for smaller step sizes h. Note that aILU includes some parameters
which could be varied and might improve this behavior, but we will not go
into details here.
Next we consider a fixed step size h = 1/100 and investigate the behavior
of the different preconditioning approaches for varying σ2. We expect larger
condition numbers for smaller values of σ2 and therefore problems which are
harder to solve numerically. Since the strategies update once and always
update and the preconditioner aILU did not prove useful, they are excluded
from this considerations. The results can be found in Table 4 for Example 1
and in Table 5 for Example 2. In both examples the average number of L-
GMRES iterations increases slightly for smaller values of σ2. This increase is
stronger for the first example. If, on the other hand, no preconditioner is used,
there is a significant increase for smaller values of σ2. This is especially true for
the first example, which starts with an average number of 18.75 iterations for
σ2 = 1 and ends with an average number of 501.07 iterations for σ2 = 10−3. In
the second example there is only an increase from 10.48 to 52.10. Nonetheless
in both examples preconditioning pays off and again the preconditioner aBJ
is the best. It results in a speed-up of 62.84 in the first example and a speed-up
of 12.64 in the second example for σ2 = 10−3.
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Table 4 Example 1. Comparison of average L-GMRES iterations (av. it.) and speed-up
(s.-up) of the RPM for different preconditioning approaches and different values of σ2 for
fixed step size h = 1/100

σ2 a aBJ aBGS none
av. it. s.-up av. it. s.-up av. it. s.-up av. it. time [s]

100 2.50 2.95 2.50 6.60 2.86 3.57 18.75 6.44 · 10−1

10−1 3.47 5.82 2.98 14.46 3.12 8.59 57.65 2.34 · 100

10−2 3.37 15.08 3.27 40.73 3.12 25.18 201.42 8.92 · 100

10−3 3.53 19.46 3.46 62.84 3.28 40.75 501.07 1.73 · 101

Table 5 Example 2. Comparison of average L-GMRES iterations (av. it.) and speed-up
(s.-up) of the RPM for different preconditioning approaches and different values of σ2 for
fixed step size h = 1/100

σ2 a aBJ aBGS none
av. it. s.-up av. it. s.-up av. it. s.-up av. it. time [s]

100 2.53 1.35 2.30 3.71 2.63 1.61 10.48 2.46 · 10−1

10−1 2.61 2.03 2.21 5.30 2.11 2.90 13.41 4.50 · 10−1

10−2 2.75 5.13 2.59 9.24 2.71 4.60 28.12 8.91 · 10−1

10−3 2.68 9.68 2.88 12.64 2.93 6.78 52.10 1.41 · 100

5.3 Comparison of the RPM and the WSM

In this section, we want to compare the performance of the reference point
method and the weighted-sum method both in terms of computation times
and discretization quality. We choose a step size of h = 1/100, a tolerance
ε1 = 10−5 in the gPSN and h⊥ = 1, h‖ = 0.2 in the RPM. We will consider
σ2 = 1 for both examples. This means that the problems are relatively well
conditioned, but the Pareto fronts are harder to approximate than for smaller
values of σ2.
In order to make the results of the RPM and the WSM qualitatively compara-
ble, we first run the RPM, which yields a number of discretization points on the
front. Afterwards we run the WSM with kmax (the number of Pareto points)
chosen as the number of discretization points generated by the RPM. At this
point we have the same number of discretization points on the respective
approximated fronts. However, the WSM tends to cluster the discretization
points. In order to obtain comparable approximation quality, we then double
the number of points in the WSM until the maximal distance for points on
the Pareto front (see (24)) is below the maximal distance for the RPM. After-
wards, the parameter h‖ is halved as often as kmax in the WSM was doubled
before to compare the evolution of the quality measures ∆max and ∆clust for
an increasing size of the approximated Pareto front.
The Pareto fronts are shown in Figure 2. We can see that both methods ap-
proximate the same curve. But the WSM shows a clustering behavior in the
lower right corner whilst giving only a poor approximation in the remainder of
the Pareto front. This already indicates that some refinement of the weights’



Stationarity Conditions and Scalarization in Multiobjective Optimal Control 27

0.309 0.312 0.315 0.318 0.321
1

0.00

0.15

0.30

0.45

0.60

2

Example 1
WSM
RPM

0.388 0.392 0.396 0.400 0.404 0.408
1

0.0

0.2

0.4

0.6

0.8

1.0

2

Example 2
WSM
RPM

Fig. 2 Pareto fronts from WSM and RPM for step size 1/h = 100 and σ2 = 1
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Fig. 3 Evolution of measures of approximation quality (∆max and ∆clust) for the WSM
with respect to doubling the number of discretization points on the Pareto front and for the
RPM with respect to halving h‖ with σ2 = 1 and step size 1/h = 100

distribution is generally well advised for the WSM. In Figure 3, the evolution
of the quality measures for the WSM and RPM for the procedure described
above is shown. In the left figures, we can see that for the WSM the number of
points on the Pareto front needs to be doubled seven times in order to reach
a maximal distance of points on the Pareto front that is smaller than that
of the RPM. Furthermore the approximation quality decreases every time the
size of the Pareto front is doubled. This is due to the clustering behavior in
the lower right corner. As a result, an unnecessarily large number of points on
the Pareto front is needed to reach a desired maximal distance ∆max. On the
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Table 6 Comparison of computation time and approximation quality for RPM and WSM
with σ2 = 1. WSM (first) indicates WSM with the size of RPM. WSM (last) indicates WSM
after doubling the size until a maximal distance on the Pareto front below that of RPM is
reached. The step size is chosen as h = 1/100

time [s] ∆max ∆clust |P̃f |

RPM 2.42 · 100 1.90 · 10−1 3.62 · 100 13
Ex 1 WSM (first) 1.41 · 100 6.83 · 10−1 1.28 · 101 13

WSM (last) 6.99 · 101 1.34 · 10−1 1.62 · 102 832

RPM 1.61 · 100 1.97 · 10−1 2.78 · 100 14
Ex 2 WSM (first) 1.04 · 100 9.88 · 10−1 1.38 · 101 14

WSM (last) 4.49 · 101 1.81 · 10−1 1.62 · 102 896

other hand, with the RPM, the approximation quality even decreases whilst
h‖ is halved. This behavior can be seen in the right figures and is even better
than expected. Note that the size of the Pareto front is approximately doubled
when h‖ is halved.
The question remains, which method performs better in terms of computa-
tional cost. A comparison of the results from the RPM and the first and last
result from the WSM in the procedure of doubling the number of discretization
points is shown in Table 6.

The observation for both examples are similar with respect to sizes of
the Pareto fronts and the measures of approximation quality. Also whilst the
RPM is slightly slower than the WSM if the same size for the Pareto front is
used, it is about 28 times faster than the WSM when an at least equally good
approximation quality is desired.

6 Conclusion

If the controls on the right-hand-side of the constraining PDE to (P) are fi-
nite dimensional, then stationarity conditions that are equivalent to primal
stationarity can be found. They are, however, not usable numerically because
they contain unknown nonlinearities in the spaces that the conditions are for-
mulated in. Modifying the conditions, we end up with linear systems as in the
case of ample controls and a weaker stationarity sense that can be useful in
numerical computation. We have shown that both WSM and RPM can be ap-
plied to characterize the front of Pareto stationary points for this nonsmooth
problem. The reference point method performs significantly better when both
approximation quality and computation time are considered, as long as pre-
conditioning is used intelligently in GMRES. In our tests, the preconditioning
strategy aBJ without updates performs the best. We also saw that the line
search globalized version of the PSN method leads to better performance and
convergence of the method. A reduction of the step size does not seem to
guarantee this numerically.
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