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Abstract— This article is concerned with a recently propo-
sed switching cost aware rounding (SCARP) strategy in the
combinatorial integral decomposition for mixed-integer optimal
control problems (MIOCPs). We consider the case of a control
variable that is discrete-valued and distributed on a two-
dimensional domain.

While the theoretical results from the one-dimensional case
directly apply to the multidimensional setting, the structure of
the cost function in the graph-based rounding computation is
significantly more involved in the two-dimensional case.

We describe a set up of the computational graph and the
traversal algorithm underlying the SCARP strategy that enable
a transfer to the two-dimensional setting. We demonstrate
the SCARP strategy in this two-dimensional setting using the
example of a MIOCP from topology optimization. We compare
the graph-based approach to a ground truth computation using
an integer linear programming (ILP) solver. The graph-based
approach becomes computationally intractable for medium grid
sizes. We show that the one-dimensional SCARP algorithm
can be employed on a serialization of the grid cells in these
cases and still provides an efficient heuristic that yields superior
performance compared with that of other rounding heuristics
such as sum-up rounding (SUR).

I. INTRODUCTION

Mixed-integer optimal control problems (MIOCPs) have a
wide range of applications, including optimization for supply
chain or traffic networks [10], [18], gear shifts [9], [17], and
chemical engineering [5], [11].

One approach to treating MIOCPs that has been advanced
recently is combinatorial integral decomposition [25], [26],
[28], where the process of solving the MIOCP is decomposed
into two steps:

1) Solve a (discretization of the) continuous relaxation of
the MIOCP.

2) Approximate the resulting continuously valued control
with a discrete-valued one using a so-called rounding
algorithm.

By choosing sufficiently fine grids for the involved compu-
tations, the approximation error of this procedure can be
made arbitrarily small under certain assumptions about the
underlying dynamical system [16].

Taking advantage of these approximation principles, re-
searchers have recently used the MIOCP point of view
also for topology optimization; see, for example, [12], [19],

[22]. Moreover, the focus on the rounding algorithms in the
second step of the combinatorial integral decomposition has
shifted from fast algorithms such as sum-up rounding (SUR)
and next-forced rounding (NFR), which offer only a certain
approximation quality [14], [15], [24], [25], to optimization-
based algorithms [2], [3], [26], [27] that can incorporate
multiple criteria into the rounding step, an important example
being switching costs of the resulting control.

The switching cost aware rounding problem (SCARP) [2]
allows computing a discrete-valued control with minimum
possible switching costs for a given continuously valued
control and a given accuracy by solving an integer linear
program (ILP). The approach can be implemented efficiently
for problems where the control is distributed in the time
domain only, because the problem can be reformulated as a
shortest path search in a directed acyclic graph (DAG) [3].

A. Contribution

For control functions that are defined on multidimensional
domains, the natural ordering of the grid cells that is used
to construct the DAG is not available anymore. We derive
a multidimensional SCARP formulation for switching costs
on discretizations of multidimensional domains, which are
serialized into the DAG structure such that the desired
approximation properties still hold.

We evaluate the approach computationally on a topology
optimization problem adapted from [13], [19] that is governed
by a Helmholtz equation. We compare the graph-based
solution of SCARP with the solution obtained by an off-
the-shelf IP solver and the SUR algorithm, which tends
to produce control functions with high switching costs.
We also demonstrate that the graph-based solution can be
accelerated significantly and with only a moderate increase
in switching costs by using the shortest path approach from
one-dimensional problems instead.

B. Structure of the paper

In Section II we present the investigated problem class, our
assumptions, and a summary of the approximation framework.
In Section III we provide the multidimensional SCARP
formulation as an IP and transfer it to the DAG formulation.
We describe our computational example and experimental

https://orcid.org/0000-0001-6339-2193
https://orcid.org/0000-0003-3948-9344
https://orcid.org/0000-0002-3441-8822
https://orcid.org/0000-0003-0654-6613


setup in IV. We present our results in Section V and close
with concluding remarks in Section VI.

II. THE PROBLEM CLASS

We consider the following class of MIOCPs,

inf
y,w

J(y) +R(w) s. t.

{
y = S(w), and
w is a binary control,

(P)

where a binary control is a measurable function w : Ω →
{0, 1}M such that

∑M
j=1 wj(x) = 1 for a.a. x ∈ Ω, cf. [22],

where Ω ⊂ Rd is a bounded domain on which the dynamical
system is defined. This can be interpreted as a one-hot
encoding of the different discrete modes and is also known
as partial outer convexification [25]. The function S denotes
the solution operator of the underlying dynamical system that
maps control inputs w to the resulting state vectors y. The
function J assigns a cost value to the resulting state vector,
and the function R is intended to regularize the control input.

Problem (P) can be relaxed by dropping the binary
constraint and admitting [0, 1]M -valued control functions.
We then have

min
y,a

J(y) +R(a) s. t.

{
y = S(a), and
a is a relaxed control,

(R)

where a relaxed control is a measurable function a : Ω →
[0, 1]M such that

∑M
j=1 aj(x) = 1 for a.a. x ∈ Ω, cf. [22].

A. Underlying Approximation Principle

For sake of brevity, we omit a detailed description of the
assumptions and involved function spaces that are required.
We summarize the key result of the literature as follows.

Proposition 2.1: Under appropriate assumptions on S, J ,
and R, the problem (R) admits a minimizer and

inf
w,y feas. for (P)

J(y) +R(w) = min
a,y feas. for (R)

J(y) +R(a).

For a rigorous analysis of possible choices of S, J , and R,
we refer the reader to [16], [21].

Proposition 2.1 gives rise to the following approximation
method for the infimum of (P), the combinatorial integral
decomposition.

1) Compute a relaxed control a that approximates the
minimum of (R).

2) Compute a binary control w from a using a so-called
rounding algorithm.

The rounding algorithms to compute w from a operate on
grids – discretizations of Ω – that, when refining them
appropriately, allow to obtain J(y) +R(w)→ J(y) +R(a).
Suitable assumptions on the grids and admissible refinement
strategies are detailed in [22]. We explicitly note, however,
that the assumptions can be satisfied by uniform refinements
of uniform grids.

B. Integrating Switching Costs into Rounding Algorithms

As mentioned above, the binary controls computed with
rounding algorithms usually exhibit high-frequency switching.
This is often undesirable because implementation or manufac-
turing may become increasingly difficult. This phenomenon
is unavoidable in the combinatorial integral decomposition
approach for high accuracies.

However, a possible remedy has been proposed and
evaluated for problems with control functions that vary only
in time [2]. Therein, the rounding algorithm is replaced by
solving an ILP that minimizes the switching cost while being
constrained by a given approximation quality and the current
discretization grid.

This article contributes a transfer of this approach to the
multidimensional setting. To this end, we need the discretized
perspective on binary control functions. For a given set of
grid cells T = {T1, . . . , TN} that decompose the domain Ω,
we consider the binary control functions

w(x) :=

N∑
t=1

χTt(x)

M∑
j=1

ωt,jej


that are possible outputs of a rounding algorithm operating
on the grid T [22]. Here ω ∈ {0, 1}N×M is a matrix such
that in every row exactly one entry is set to 1, and ej are
the canonical unit basis vectors of RM . The function χTt(x)
denotes the {0, 1}-valued indicator function of the set Tt.

As in [2], we adapt the total variation for our definition
of switching costs between the different modes. and denote
the set of numbers {1, . . . ,K} for K ∈ N as [K]. For a grid
cell indexed by t ∈ [N ], let Nt ∈ 2{1,...,N} denote the set
of indices of the adjacent grid cells of Tt, specifically those
grid cells that connect to T through a set of dimension d− 1
(an edge in 2D, a surface in 3D). For two indices of adjacent
grid cells t and s with different discrete modes i, j ∈ [M ],
in other words, ωt,i 6= ωs,i, we account for a switching cost
cij ∈ R that is scaled with the length (area) of the shared
interface between the grid cells, which we denote by `t,s. We
choose cij = cji for consistency and cii = 0 for all i and j:

C2D(w) = C2D(ω) :=
1

2

N∑
t=1

M∑
i=1

C2D(t, i, ω), (1)

C2D(t, i, ω) :=
∑
s∈Nt

∑
j 6=i

ωt,iωs,jcij`s,t. (2)

The expression in (2) means that for an adjacent cell s of t
the switching cost cij`s,t occurs if the i-th control mode is
switched on in cell t and the j-th control mode is switched
on in cell s.

III. SWITCHING COST AWARE ROUNDING
PROBLEM

Starting from the two-dimensional cost function (1), this
section describes both the ILP formulation and the graph-
based shortest path approach to compute binary controls w
that minimize C2D such that a given approximation quality
is observed.



A. Multidimensional ILP for rounding

Following the combinatorial integral decomposition appro-
ach, we start from a relaxed control a solving (R). Let T be
a grid on which to define the resulting binary control. Then,
a corresponding matrix α can be obtained on the grid T by
averaging,

αt,i :=
1

λ(Tt)

∫
Tt

ai(x) dx

for all t ∈ [N ] and i ∈ [M ], where λ denotes the Lebesgue
measure. Let λ̄ := maxt λ(Tt). Minimizing C2D, we can
constrain the approximation quality as∣∣∣∣ t∑

k=1

λ(Tt)(αk,i − ωk,i)

∣∣∣∣ ≤ θλ̄
for all t ∈ [N ] and all i ∈ [M ] (Slack)

(see [3], [22]), where the parameter θ balances the approx-
imation quality with the switching costs. As in the one-
dimensional case, the term C2D can be modeled with linear
integral inequalities [2], yielding the ILP formulation

min
ω

C2D(ω) (SCARP-ILP-2D)

s. t.
M∑
i=1

ωt,i = 1 for all t ∈ [N ], (SOS1)

(Slack) and ωt,i ∈ {0, 1} for all t ∈ [N ] and i ∈ [M ].

B. Switching cost aware rounding in two dimensions

We propose to derive an optimal solution of
(SCARP-ILP-2D) by reformulating the ILP as a shortest path
problem on a topologically sorted DAG. This is achieved
by introducing a labeling function L for binary controls
ω ∈ {0, 1}t×M :

L(ω) :=

(
t∑

k=1

ωk,1,

t∑
k=1

ωk,2, . . . ,

t∑
k=1

ωk,M

)T

.

In the one-dimensional case, the labeling function suffices
to construct a DAG such that optimal ILP solution can be
obtained by using a shortest path algorithm [3].

The challenge in the multidimensional setting is that for any
grid cell t one cannot immediately determine the switching
value of all neighboring grid cells Nt. We therefore introduce
a prefix vector p ∈ [M ]P , where the size P of this vector
depends on the order in which grid cells are visited. A prefix
vector contains the control choices made in the neighboring
grid cells for the given control ω. We note that an entry in p
can be overwritten as soon as all neighbors of the grid cell
corresponding to the entry have been visited.

Employing the labels together with corresponding prefixes
allows the definition of a DAG for any θ > 0 with vertex set
V =

⋃N
t=1 Vt consisting of sets

Vt(α, θ) :=


(
L(ω), p(ω)

)
∣∣∣∣∣∣∣∣∣∣
ω ∈ {0, 1}t×M satisfies
(Slack) for all i ∈ [M ]

at t ∈ [N ], p(ω) ∈ [M ]P

 .

The associated set of arcs A :=
⋃N−1

t=1 At comprises

At :=



((
L(ωt), p(ωt)

)
,(

L(ωt+1), p(ωt+1)
))

∈ Vt × Vt+1

∣∣∣∣∣∣∣∣∣∣
‖L(ωt+1)− L(ωt)‖1 = 1,

‖p(ωt+1)− p(ωt)‖1 = 0.


In contrast to the one-dimensional case, the worst-case
runtime estimate in the multidimensional case now depends
on the size of the prefix as well as the number of grid cells
and controls.

Proposition 3.1: Let a be a relaxed control, let the grid
be uniform, and let θ ≥ 1. Then the shortest path approach
for (SCARP-ILP-2D) has the worst-case runtime of

|V |+ |A| ∈ O
(
MPN

√
Mb2θ + 3cM−1

)
. (3)

Proof: For t ≤ P the number of prefixes per label
L(ω) is bounded by M t. For any later grid cell t > P at
most MP many different prefixes can exist because previous
information does not influence the switching costs at cell t.

Additionally, we have that any vertex in Vt has at most
M neighbors among Vt+1 because one can switch only one
control from one grid cell to a neighboring grid cell. The
worst-case estimate for the number of vertices in a DAG
without the prefix construction, denoted by |V 1D

t (a, θ)|, is
provided in [3, Thm 33]. This allows us to obtain an estimate
on the number of arcs:

|A| =
N∑
t=1

|At| < M

N∑
t=1

MP |V 1D
t (a, θ)|

∈ O
(
MPN

√
Mb2θ + 3cM−1

)
.

The claim now follows inductively from the construction,
which states that the inequality |V | =

∑N
t=1 Vt <∑N

t=1M
P |V 1D

t (a, θ)| holds.
Remark 3.2: From Proposition 3.1 we expect exponential

runtime for the shortest path approach because the underlying
rounding problem is already strongly NP-hard and admits no
polynomial time approximation algorithm (already in 1D) [4,
Thm. 6.2, Cor. 6.3]. However, one can omit the prefix in the
two-dimensional case and use the one-dimensional algorithm.
This approach implies that the switching cost is computed
with respect to only two instead of four neighboring cells.

IV. COMPUTATIONAL EXAMPLE

We consider the topological optimization problem of de-
signing cloaks for wave functions governed by the Helmholtz
equation in 2D. We use a scenario similar to [13], [19], see
also Fig. 1.

A. Modeling of the MIOCP

For an incident wave y0 and a design area Ds ⊂ Ω ⊂ R2,
we seek a function v : Ds → {ν1, ν2, ν3}, where ν1 = 0,
ν2 = 0.5, and ν3 = 1 are possible material constants with
v(x) = v1 indicating that no material is placed at x. The goal
is to protect an object in another region Do ⊂ Ω ⊂ R2 from
the incident wave. Using partial outer convexification, we



have the reformulation v(x) =
∑M

i=1 wi(x)νi for a.a. x ∈ Ω,
and the considered optimization problem is

inf
u,w

1

2
‖y + y0‖2L2(Do)

+R(w) (PH )

s. t. −∆y − k20y =
(
k20yq + k20qy0

) M∑
i=1

viwi in Ω,

(∂y/∂n)− ik0y = 0 on ∂Ω,

w ∈ L∞(Ω,R3),

w(x) ∈ {0, 1}3 and
3∑

i=1

wi(x) = 1 for a.a. x ∈ Ds,

w(x) = 0 for a.a. x ∈ D\Ds.

For R we use the relaxed multi-bang regularizer [6], [21].

Fig. 1. Domain Ω = (0, 2)2 with the scatterer design area Ds = (.5, 1.5)2

in light gray and the protected area Do = (0.5, 1.5)× (1.625, 2.) in black.

After transforming, Proposition 2.1 holds for (PH ) as v(x) =∑M
i=1 wi(x)νi with the bangs ν1, ν2, and ν3; the weights

(costs) g1 = 0, g2 = 1, and g3 = 4; and a general scale of
0.05. By combining Theorem 2.12 in [21] and Proposition
2.7 in [19], the claim of Proposition 2.1 holds for (PH ).

B. Discretization and Solution of the Relaxation

The domain is discretized uniformly into 28 × 28 squares,
which are decomposed into 4 triangles each. The discretized
state equation is then solved with the open-source library
FIREDRAKE [23], using PETSC as the backend for numerical
linear algebra [1]. The adjoint equation for the first term of
the reduced objective is computed by using DOLFIN-ADJOINT
[8]. We optimize for a first-order stationary point using a
limited-memory quasi-Newton method with BFGS updates,
blmvm, from the PETSC TAO package [7]. In order to
be able to apply gradient-based methods, the regularizer is
smoothed slightly by using a Moreau envelope with γ = 0.01
as described in [21].

C. Computing Binary from Relaxed Controls

We implement the second step of the combinatorial integral
decomposition in four ways. We use an adapted version of
the shortest path algorithm from [3] for the graph-based
formulation as described in Section III. Moreover, we use
the shortest path algorithm from [3] directly as a heuristic
as described in Remark 3.2. The ILP formulation is solved
by using version 9.1 of the GUROBI optimizer; see [20]. We
also use a C++ implementation of the SUR algorithm.

For the order of the grid cells in (Slack) provided to the dif-
ferent rounding approaches, we use iterates of Hilbert curves

TABLE I
RELATIVE OBJECTIVE ERRORS OF ILP / SCARP-G, SCARP-HG, AND

SUR TO THE CONTINUOUS RELAXATION OVER SUCCESSIVELY REFINED

GRIDS. N(Ds) IS THE NUMBER OF CELLS DECOMPOSING Ds .

N(Ds) ILP / SCARP-G SCARP-HG SUR

41 4.02 · 100 3.72 · 100 4.62 · 100

42 4.02 · 100 4.02 · 100 3.98 · 100

43 2.14 · 100 2.61 · 100 1.76 · 100

44 5.01 · 10−1 5.69 · 10−1 6.01 · 10−1

45 9.70 · 10−2 1.22 · 10−1 1.66 · 10−1

46 2.78 · 10−2 3.05 · 10−2 4.67 · 10−2

as in [22] to satisfy the requirements of the decomposition
approach.

V. COMPUTATIONAL RESULTS

To record and evaluate the behavior of runtime, approxima-
tion error, and switching costs for refined grids, we solve the
ILP formulation ILP, the graph-based algorithm SCARP-G,
the heuristic graph-based algorithm SCARP-HG, and sum-up
rounding SUR on uniformly refined grids of square cells that
decompose Ds for the solution of the continuous relaxation.

All experiments were conducted on a workstation with an
AMD Epic 7742 CPU and 96 GB RAM.

The computed relaxed control a exhibits values such that∑M
i=1 aivi is close to the bangs 0, 0.5, and 1 in large parts

of the domain. We are able to compute the resulting binary
controls for SCARP-HG, SUR, and ILP for N = 4 to N =
4096 squares that decompose Ds. For finer grids, SCARP-HG
and SUR can still be executed but the memory demand of
ILP exceeds the installed memory of our workstation. The
memory demand of SCARP-G exceeds the installed memory
of our workstation starting from N = 256.

Figure 2 shows state and control vectors for the continuous
relaxation as well as for SUR, SCARP-HG, SCARP-G, and
ILP on the finest grid. Differences in the tracking term
y + y0 are hardly visible. Blue indicates a value close to
zero, indicating that a protection of the region Do can be
established.

For the refined grids on which the roundings are computed,
we obtain convergence of the objective values. This can be
observed from the resulting objective values in Table I. The
switching costs of the design obtained with SUR are higher
than the ones obtained with SCARP-HG, which in turn are
higher than the ones obtained with SCARP-G, and ILP.
These results can be observed from the objective values in
Table II and the control designs shown in Fig. 3. Jittering in
the design is almost eliminated in the designs produced by
SCARP-G and ILP. Notably, the switching costs produced
by SCARP-HG are only moderately higher than the optimal
ones produced by SCARP-G and ILP (6.1 % for N = 1024
and 4.5 % for N = 4096).

VI. CONCLUSION

We have given an ILP formulation for switching cost aware
rounding in the second step of the combinatorial integral



Fig. 2. Resulting amplitude of y + y0 (left) and controls (right) of the Helmholtz cloaking problem.

Fig. 3. Control designs for grids 2 to 6 for SUR (top row), SCARP-HG (center row), and SCARP-G / ILP (bottom row).

TABLE II
SWITCHING COSTS OF ILP, SCARP-G, SCARP-HG, AND SUR. N(Ds) IS

THE NUMBER OF CELLS DECOMPOSING Ds .

N(Ds) ILP / SCARP-G SCARP-HG SUR

41 1 1 1

42 2 2 3

43 4.75 5.13 5.88

44 7.25 7.88 9.38

45 10.13 10.75 13.34

46 12.47 13.03 16.09

decomposition approach and shown that the DAG construction
from the one-dimensional setting can be transferred to the
multidimensional one.

The theoretical properties of an improved approximation
quality for refined grids and reduced switching over heuristic
approaches are validated computationally on a topology opti-
mization problem. Using the relaxed multi-bang regularization

TABLE III
COMPUTATIONAL EFFORT FOR ILP, SCARP-G, SCARP-HG, AND SUR IN

SECONDS. N(Ds) IS THE NUMBER OF CELLS DECOMPOSING Ds .

N(Ds) ILP SCARP-G SCARP-HG SUR

41 0.09 1.07 · 10−05 2.73 · 10−06 4.84 · 10−06

42 0.03 9.19 · 10−05 1.77 · 10−05 5.43 · 10−06

43 0.06 344.25 9.92 · 10−05 7.85 · 10−04

44 0.70 – 8.61 · 10−04 2.20 · 10−05

45 6.85 – 9.95 · 10−03 6.29 · 10−05

46 78.87 – 1.24 · 10−01 2.35 · 10−04

in the relaxation yields a relaxed control that is already close
to a binary control.

The computational efforts of the shortest path approach and
the ILP solve impose a prohibitive computational demand that
limits the number of possible grid refinements. In particular,
the exact shortest path approach we presented is expensive in
the two-dimensional setting. The exponential growth in the



number of vertices that is introduced by the prefix vector fills
the memory too quickly. A reduction in the size of the graph
thus seems to be inevitable for a useful shortest path approach.
Further research is necessary to alleviate this problem and
find computationally feasible graph-based solution strategies.

However, the results also show that using the one-
dimensional shortest path algorithm for the two-dimensional
problem—implying that switching costs are considered only
with respect to two neighboring grid cells instead of four—
may yield a satisfactory result at relatively low computational
cost.
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[18] C. Kirchner, M. Herty, S. Göttlich, and S. Klar. Optimal control for
continuous supply network models. Networks and hetegenerous media,
1:675–688, 2006.

[19] S. Leyffer, P. Manns, and M. Winckler. Convergence of sum-up
rounding schemes for cloaking problems governed by the helmholtz
equation. Computational Optimization and Applications, pages 1–29,
2021.

[20] Gurobi Optimization LLC. Gurobi optimizer reference manual, 2018.
[21] P. Manns. Relaxed multibang regularization for the combinatorial

integral approximation. arXiv preprint arXiv:2011.00205, 2020.
[22] P. Manns and C. Kirches. Multidimensional sum-up rounding for elliptic

control systems. SIAM Journal on Numerical Analysis, 58(6):3427–
3447, 2020.

[23] F. Rathgeber, D. A. Ham, D. Mitchell, M. Lange, F. Luporini, A. T. T.
McRae, G.-T. Bercea, G. R. Markall, and Paul H. J. Kelly. Firedrake:
automating the finite element method by composing abstractions. ACM
Trans. Math. Softw., 43(3):24:1–24:27, 2016.

[24] S. Sager. Numerical Methods for Mixed-Integer Optimal Control
Problems. Der Andere Verlag, 2005.

[25] S. Sager, H.G. Bock, and M. Diehl. The integer approximation error
in mixed-integer optimal control. Mathematical Programming, 133(1–
2):1–23, 2012.

[26] S. Sager, M. Jung, and C. Kirches. Combinatorial Integral Approxima-
tion. Mathematical Methods of Operations Research, 73(3):363–380,
2011.

[27] S. Sager and C. Zeile. On mixed-integer optimal control with
constrained total variation of the integer control. Computational
Optimization and Applications, pages 1–49, 2020.

[28] C. Zeile, N. Robuschi, and S. Sager. Mixed-integer optimal control
under minimum dwell time constraints. Mathematical Programming,
pages 1–42, 2020.

The submitted manuscript has been created by UChicago
Argonne, LLC, Operator of Argonne National Laboratory
(“Argonne”). Argonne, a U.S. Department of Energy
Office of Science laboratory, is operated under Con-
tract No. DE-AC02-06CH11357. The U.S. Government
retains for itself, and others acting on its behalf, a
paid-up nonexclusive, irrevocable worldwide license
in said article to reproduce, prepare derivative works,
distribute copies to the public, and perform publicly and
display publicly, by or on behalf of the Government. The
Department of Energy will provide public access to these
results of federally sponsored research in accordance
with the DOE Public Access Plan http://energy.
gov/downloads/doe-public-access-plan.

http://www.optimization-online.org/DB_FILE/2020/01/7589.pdf
http://www.optimization-online.org/DB_FILE/2020/01/7589.pdf
http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan

	Introduction
	Contribution
	Structure of the paper

	THE PROBLEM CLASS
	Underlying Approximation Principle
	Integrating Switching Costs into Rounding Algorithms

	SWITCHING COST AWARE ROUNDING PROBLEM
	Multidimensional ILP for rounding
	Switching cost aware rounding in two dimensions

	COMPUTATIONAL EXAMPLE
	Modeling of the MIOCP
	Discretization and Solution of the Relaxation
	Computing Binary from Relaxed Controls

	COMPUTATIONAL RESULTS
	CONCLUSION
	References

