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A NOVEL W%~ APPROACH TO SHAPE OPTIMISATION WITH
LIPSCHITZ DOMAINS

KLAUS DECKELNICK, PHILIP J. HERBERT, AND MICHAEL HINZE

ABSTRACT. This article introduces a novel method for the implementation
of shape optimisation with Lipschitz domains. We propose to use the shape
derivative to determine deformation fields which represent steepest descent
directions of the shape functional in the W1:°— topology. The idea of our
approach is demonstrated for shape optimisation of n-dimensional star-shaped
domains, which we represent as functions defined on the unit (n—1)-sphere. In
this setting we provide the specific form of the shape derivative and prove the
existence of solutions to the underlying shape optimisation problem. Moreover,
we show the existence of a direction of steepest descent in the W1:°° — topology.
We also note that shape optimisation in this context is closely related to the
oo—Laplacian, and to optimal transport, where we highlight the latter in the
numerics section. We present several numerical experiments illustrating that
our approach seems to be superior over existing Hilbert space methods, in
particular in developing optimal shapes with corners.

1. INTRODUCTION

In the present work we are interested in the numerical solution of a certain class
of shape optimisation problems

min J(2), Q € S,

where § denotes the set of admissible shapes to be specified in the respective appli-
cation. A common approach in order to calculate at least local minima of 7 consists
in applying the steepest descent method to the shape derivative of J. More pre-
cisely, given a shape ) € S, one determines a descent vector field V* : R™ — R"
satisfying J'(Q)(V*) < 0 and sets Qnew := (id + aV*)(Q) for a suitable step size
a > 0. A common approach in order to determine a descent direction V* employs
a Hilbert space setting. Let H be a Hilbert space with scalar product a(-,-), then
V is determined by minimising

Vs a(V,V)+ T(Q)V),V € H.

A nice discussion of the pros and cons of this approach can be found in Section
5.2 of | ]. Typical choices of H are the Sobolev spaces H™(R™;R™), where
one however needs to choose m sufficiently large in order to obtain a Lipschitz
transformation. A way around this restriction is to leave the Hilbertian framework
and to consider for p > 2 the regularisation
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as well as the limit p — co. A problem of this type has been studied by Ishii and

Loreti in | | starting from the the p-Laplace relaxed problem
1
v, = argmax Ip( /f — —|Vou(z)|Pdx.
vEW,P(Q) p

Here f € C(Q) is given. It is shown that under certain conditions the sequence
(vp)p>1 converges uniformly to a solution v* € WO1 "°°(Q) of the variational problem

vt = arg max Io(v) := /f(x)v(x)dx
Q

{veWy = (9Q), Vol <1}

In addition, [ , Theorem 2.1] gives an explicit formula for v* in the case Q =
(0,a) C R. Our aim is to apply the above ideas and results in the context of shape
optimisation in order to determine descent directions in the W > —topology. To do
so, we shall focus on the case that the admissible domains 2 C R™ are starshaped
with respect to the origin so that shapes and their perturbations can be described
in terms of scalar functions f : S"~! = {x € R"||z| = 1} — R. In this setting we
consider the following model problem

(1) inf 7(Q / lug — z|*dx,

Qes

where ug € H}(Q) is the unique weak solution of

(2) Vu-Vnder= | Fnde V€ Hy(Q)
Q Q

and z € HY(D), F € L?(D) are given functions on some hold-all domain D. In
Section 2 we reformulate (1), (2) as a minimisation problem on a suitable subset
of W1°°(S"~1) and calculate the shape derivative in terms of the solution of the
state and adjoint equation. Furthermore, we prove the existence of an optimal
Lipschitz—continuous descent direction, for which we derive an explicit formula in
the case n = 2. Using a discrete version of this formula together with finite ele-
ment discretisations of the state and adjoint equation we obtain an appoximation
of the optimal descent direction which is used in the steepest descent method. The
numerical experiments shown in Section 4 demonstrate that this novel approach
performs better than methods relying on H'-regularisation. Let us also mention
that our approach is related to optimal transport, see | ]

There exists a vast amount of literature related to shape optimisation problems. We
first mention the seminal works of Delfour and Zolésio | ], of Sokolowski and
Zolésio | ], and the recent overview article | | by Allaire, Dapogny, and
Jouve, where also a comprehensive bibliography on the topic can be found. The
mathematical and numerical analysis of shape optimisation problems has a long
history, see e.g. | ; ; ; ]. With increasing computing power,
shape optimisation has experienced a renaissance in recent years | ; ;
1, espemally in fluid mechanical applications | ;

; ; ; ]. A steepest descent method for the
numerlcal bOluthD utlhslng a Hilbert-space framework for PDE constrained shape
optimisation is investigated in [ ]. A comparison of numerical approximations
of Hilbertian shape gradients in boundary and volume form is presented in | ]
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Finally we recall that an extensive summary of the state of the art in numerical
approaches to shape and topology optimisation is given in [ , Chapter 6-9].

2. ANALYSIS OF A MODEL PROBLEM

2.1. Reformulation and existence of a minimum. Let us begin by introducing
some notation: a bounded domain 2 C R"™ is called star-shaped with respect to
the origin if [0,2] C Q for every x € €. Furthermore, Q is called star-shaped
with respect to B.(0) if [y,z] C Q for every y € B.(0) and every z € Q. For a
bounded domain €2 that is star—shaped with respect to the origin we denote by
fa : S = Ry its radial function given by

(3) fo) :=sup{A >0 weQ}, wesS L

It is shown in | , Lemma 2, Section 3.2] that  is star—shaped with respect
to a ball B.(0) if and only if fq is Lipschitz—continuous on S"~!. Conversely, a
positive, Lipschitz—continuous function f : S~! — R defines a bounded domain
that is star—shaped with respect to the origin via

(4) Qpi={zeR"|z=0o0r |z| < flw,),z #0}, wherew, = %

We will be using Lebesgue and Sobolev spaces on S" !, equipped with the (n — 1)-
dimensional Hausdorff measure on S"~!. Since C%1(S"~1) = Whee(S*~1) the
tangential gradient Vr f is defined almost everywhere on S"~!. We give the explicit
definition of the tangential gradient by its definition on charts. Let © C R*~! be
open and bounded and X: ® — S"! be a C?-diffeomorphism onto its image,
U := X(0). Then, for almost every w € U,

n—1
LO(foX)0X _
Vrse) = | 3 AR ) o x ),
ij=1 J J

where {0;}7=" are an orthonormal coordinate frame on © and g% is the 45 element of
the inverse matrix of GG, which has elements g;; = % . % fori,j=1,....,.n—1. For
more details on this parametric representation, see | ], in particular equation
(2.14). We note that this definition is independent of the paramaterisation X as

well as

(5) VrfeL®S "), Vif(w)-w=0ae onS" !

Lemma 2.1. Let f € WHoo(S"1) with fo := Héin J(w) >0and L := ||V7 [l Lo gn-1y-
wE n—1

Then:

2
(i) Qy is star—shaped with respect to B.(0), where € = % Jo

(i1) Let @5 : R™ — R™ be defined by

. ooy {1607 125

Then @ is bi-Lipschitz with ®¢(B) = Qf, where B = {x € R"||z| < 1}. In
addition

(7) D®y¢(z) = fwe)l + wy ® Vrf(wy) and det D®s(x) = f(wz)" a.e. in B,

where (a ® b);; == a;b; for vectors a,b € R".
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Proof. (i) Clearly, f is the radial function for Q. Let wi,ws € S"" ! and 7 : [0,1] —
S"~1 a curve with 7(0) = wq,n(1) = wy and fol |7’ (t)| dt = d(wy,w2), where d(-, ")
denotes the spherical metric on S*~1. Assuming that f € C*(S"~!) for a moment
we have

) = el =1 [ G omOatl = | [ Frfo0) - (0] < Lar, ).

Applying this estimate to a suitable regularisation of f yields the same bound in
the general case. The fact that Qy is star-shaped with respect to B¢(0) with € as
given above now follows from the proof of | , Lemma 2, Section 3.2], see in
particular p. 97.

(ii) Since f(w) > fo,w € S"~! it is straightforward to verify that @ is bi-Lipschitz
with ®(B) = Qy. Furthermore,

D(I)f(x) = f(wac)] +ws ® P(x)va(wm)a

where P(z) := I — w; ® wy. Observing that Vi f(wy,) -z = 0 by (5) gives that
P(z)Vrf(wg) = Vrf(ws) to conclude the form of D® ;. Using that w, @ Vr f(w,)
is a rank 1 term with vanishing trace, we deduce (7). O

Using (7) together with the transformation rule we infer that
1
1
(8) |9] = / |detD® ¢ (x)|dax = / f(w)"do,r"tdr = f/ f(w)"do,,.
B 0 Jsn-1 n Jgn-t
Let us fix p > 0, L > 0 and v > 0 with v > p"|S"~1|. We define
(9) Fi={fewh>E"H|f>pns"
IV fllimeey L [ Fw)do, =),

Note that if f € F, then there exists @ € S"~! such that f(©)"|S""!| = ~. Hence
we obtain for every w € S*~! that

f@) € (@) + Ld(w,@) < (8"'7'9) " +7L = R,

so that all sets 0 given by (4) are contained in the hold-all domain D = Bg(0).
We now define

JiF SR, If) = TQ) = %/ﬂ lu— 2[2da,
f

where u € H}(Qy) solves

(10) Vu-Vr]dxz/ Fndx V€ Hy(Q).

Hence we consider the optimisation problem (1), (2) in the class S = {Qy | f € F}.

In view of Lemma 2.1 and (8) the class of admissible domains comprises of bounded

domains of fixed volume, which contain B,(0) and which are star-shaped with
— 2 ? : .

respect to B((0), where ¢ = 2 \/L’;sz. Let us next establish the existence of a

™

solution of the resulting optimisation problem.

Theorem 2.2. There exists f. € F such that J(fy) = mingecr J(f).
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Proof. Since v > p"|S"~1|, the function f = (|S”‘1|‘17)% belongs to F, so that F
is non-empty. Let (fi)ren C F be a sequence such that J(fx) N\, infrer J(f). By
standard compactness results there exists a subsequence, again denoted by (f)ren
and f, € Who(S"~1) such that
fi = fo in C(S" 1) and Vrfy = Vg f, in L®(S"71).

Clearly, f. € F. Let us write Qi = 0y, and Q. = Q.. We claim that £, — €,
in the Hausdorff complementary metric, i.e. dgg, — dpg, in C(D), where da
denotes the distance function to the set A and CA its complement. In order to
prove the claim we fix € D and choose z € (€2, such that dg,,_(2) = |2 —z|. Then
R > |z| > fu(w:) > p. For 2z, = (14 p7 | fr — fil Lo (sn-1)) z we have w,, = w, and

z
|2k = |2| +|p||fk—f*||Loo(8n—1) > fulwz) + e = fell Lo sn-1) = fr(w:z) = fr(wz,)-
Therefore, zj, € CQy so that

dog,, (x) —dgg, (z) < |z — 2| — |2 — 2| < |2 — 2] =

z R
— |p|||fk - f*”LOC(Snfl) S ;ka - f*HLOC(S"*I)-

By exchanging the roles of fr and f. and taking the maximum with respect to x
we obtain
R
gleagldmk () = dgg, (x)] < ;ka = fillzoegn-1) = 0, k — oo,

which has shown Q; — Q. in the Hausdorff complementary metric. Furthermore,
according to | , Lemma 3, Section 3.2] the set €. satisfies the cone condition
and hence is locally Lipschitz. We may therefore deduce from Theorem 4.1 in Chap-
ter 6 of | ] that ug, — uq, in HY(D). As a result J(fi) = limj_ oo J(fr) =
inf ;e 7 J(f) which completes the proof. O

2.2. Calculating the shape derivative. Let F € L? (R"),z € H. (R"), and
let us fix

f e whe(s" 1) with min_ f(w) > 0.
wes™

Before we calculate a formula for the directional derivative of J at f we transform
the state equation to the reference domain B. To do so, define u(z) := u(®s(x)),
where u € H}(Qy) denotes the solution of (10) and ®; is given by (6). Clearly,
Vu(®s(x)) = DP¢(z)~" Vi(x), where we think of the gradient as a column vector.
Therefore, (10) translates into

1) [ A Vi) - Vita)de = [ Fy@i) fw)de Vi€ HY(B).
In the above Fy(z) = F(®;(x)) and Aj(w,) = f(we)" D®s(x) "' D®s(x)~*. Using

the fact that
1 V w
Dq)f(.’l,‘)_l - )(l Wz®4Tf( I))

f(wz f(wm)
we find that
(12)
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In order to calculate (J'(f), g) for a given direction g € W>°(S"~1) we define the
vector-field V € C%1(R™;R™) by

9(wy)
0, y=0.
Then, (id +tV)(Qy) = (id +tV) o ®4(B). For every z € B we have

(f(wz) +tg(we))z, x#0,
0, z=0,

By(2) + OV (@f(2) = {

so that (id +tV)(Qf) = Q4.
Observing that

(14) (J(f).g) = lim 2 1) =T _

t—0 t
T V(@) - T(@))
t—0 t

=J'(25)(V),

allows us to apply formulae for J'(Q)(V) that are available in the literature.
By adapting the proof of | , Proposition 4.5] to our situation we obtain the
volume form of the shape derivative as

T Q) = /(DV+DVt—divVI)Vu~Vpdx
Qs

(15) +/Q (%(u—z)2diVV—(u—z)Vz-V)dx—/Q FV -Vpda.

The boundary form of the shape derivative — under appropriate regularity assump-
tions on u and p — can be written down in the form

(16) J’(Qf)(V):/aQ <;(uz)2+gzgy)‘/«l/d5,

where v is almost everywhere the outward unit normal to €y, compare | ,
Theorem 4.6]. Here p € H{ () is the solution of the adjoint problem

(17) Vp-Vndx = / (u—2z)ndz vn € Hy(Qf).
Sy Qs

Transforming the volume form (15) to the reference domain B. By (14)
we have

(J'(f),9) = /B(Dq)f)—1 (DV +DV*' — (divV)I) 0o @ (D®5) 'V - VP f(w,)" dz
+/ (%(a — 27)? (divV) o @5 — (4 — 27)V25 - (DPy) 'V 0 &) f(w,)" da
B

(1) = [ Fy(DR)) Vo T )" da,

where Z¢(x) = 2(®s(z)). In the same way as above we obtain from (17) that
p(x) = p(®s(x)) satisfies

(19) /B Ap(wn) Vi) Vi(x) de = /B (i) — 2p(2))i(e) flwn)" do Vi € HO(B).
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Differentiating the relation V(®;(x)) = g(w,)x we obtain
DV (®f(2))DP () = g(wa)] 4+ ws @ Vrg(ws)

and hence

DVod; = (gI +w, ® Vrg)(D®;) ™! = — (g — %wx ® Vo f +we ®Vrg).

1
f
In particular we deduce that

(divV) o @5 = trace DV o &y = n%

as well as
DVOCI)erDVto(I)f—diVVo(I)fI

1 1
g(2 —n)l — iwm QVrf— %VTJC@%C + }ww ®Vrg+ ?ng®ww-

f f?

A long, but straightforward calculation then shows that

(D®;) " (DV o®; 4+ DV'o®; —divV o ®;I)(DPy)~"

— %(2 —n) +(n— 3)%(% QVrf+Vrf@uw,) + %(wx ®Vrg+ Vg ®wy)
+((4 =) 2 S =275 (Vrf - Vrg))s Do

Note also that

1
(DPf) "Wod;=—(I-w,® VTTf)gx = Iy = |a:|gwm.

f f f

If we insert the above identities into (18) and transform to polar coordinates we
obtain

@) )= [ (g Hy-Fagda = [ (ot iy Vrg)do,.

where hy: B — R and Hy : B — R" are defined by

@Ohy = 2=n)f"*Va-Vp+ (4 —n)f" Vo f(Vii- we) (VP wy)
+(n = 3)f (Vo f - Vi) (ws - VB) + (Vo f - Vi) (ws - Vir))
NG = 200 = el = 2) V2 o — [al Ey V- w,);

(22)H; = (VD wa)Vii+ (Vi we)VP) — 2" Vit~ we) (V- wa) Vo f,

while iLf (St SR, I;Tf : S - R” are given by

1 1
hf(w):/o s" Thy(sw)ds, f{f(w):/o s" " H (sw)ds.

From our assumptions on z and f we deduce that hy € L*(S*~1), Hy € L' (S"~';R").
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Transforming the boundary form of the shape derivative to S"~!. As we
intend to use formula (16) also for numerical purposes we transform it to an integral
over the reference boundary S*~! with the help of the mapping

Ppign1 1S = 00y, wi flw)w.

A calculation shows that

ot (14 F2F@PYY
(23) ds = f(w) <1+ f(w)Q) do,,,
while
. _ (Do) (L [Vrf@PTH Vrfw)
o) = (patii = (1 o) © )
Since (Vuo @¢)(w) = (DPy(w)) *Vi(w) we deduce that
w 2\ — 3
%ocpf (1+|ij2f| > (D®f)~*Va (wfvTTf)
B O | R 3 S 7
_f<1+ f2) (== eV (w-—)
1, IVrf\? o
- f<1+ 2 ) o’

where we have used that Vi -V f =0 on 9B since @ = 0 on dB. For the function
V given by (13) we have (V o ®¢)(w) = g(w)w and hence by (5)

_1
Vo f2 2
IE !

After applying the transformation rule to (16), using (23) as well as the formulae
above we find

(V-y)o<1>f:<1+

1 ou d Vo fI2 2
(2(ﬁ—2f)2—|—(ajjallj)o(bf)(V.V)O(I:,ffn—l (1+ Tf) do,,

(f).g) = / =

S§n—1

= / ilfgdow;
sn—1

where hy : S"~1 — R is given by

»

|va(w)| )@ aw(w)

flw)? 70w
In the case that u and p are regular enough to ensure that iLf € LY(S™ 1) the
existence of an optimal descent direction will be given in Theorem 2.3 with Hy = 0.

(24) hy(w) = %(ﬂ(w) = &) W)" T fw)" (1 (w)

A descent direction in the W — topology. The volume constraint
. (w)"do, =7
S”,

in the definition of F in (9) gives rise to the condition [, , f* " *gdo, = 0 for
feasible perturbations g of f. We therefore introduce the following set of admissible
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directions
Voo(f) = {1} e Wl’oo(Snfl) : / f"’lvdow =0, HVTU”LOC(Sn—l) < 1} .
Sn—l

Theorem 2.3. Let f € Wh*(S"~1) with min J(w) > 0. There exists g € Vo (f)

weSsSn—

such that (J'(f),g) = minyev., () (J'(f), v)-
Proof. In view of (20) we have (J'(f),v) = Io(v) with

Io(v) := /an (ﬁfv + H;y - Vrv)doy.

Step 1: We first prove the result under the stronger condition that h; € L>°(S" 1), H; €
Whoee(sn=L:R™) so that hy — V- Hy + (n — 1)Hp - w — cf"1 € L>=(S"71). We
obtain after integration by parts on S~ ! that

Io(v) = / (ﬁf — V- f{f +(n— 1)ﬁf cw— cf"fl)vdow, v € Voo (f)
Sn—l
where

¢= (/S " do,)”! /S (hy — V- Hy+ (n— Vi -w)do,,

We note that the (n — 1)ﬁf -w term arises from the mean curvature of S"~1, see
[ , Equation (2.16)] for example. If we let gy :=hy — V- -Hf + (n—1)Hy -
w —cf" ! we have

Io(v) :/S B grvdoy,, v € Vy(f), with /S B qrdo, = 0.

By adapting the arguments in | , Section 5] to our setting, a solution g €
Voo (f) with Iso(g) = min,ecy__ () Iso(v) can be obtained as the uniform limit of the
sequence (gp)p>2 solving the variational problems

1
min{f/ |Vrv|Pdo, — / gsudo, |v € Wl’p(S"_l),/ " tudo, = 0}.
D Jgn—1 §n—1 §n—1

The estimate on p. 426 in | ] requires Poincaré’s inequality in W11 (S"~1) which
is available in our case.

Step 2: In the general case there exist sequences (hg)keny C L(S"™1), (Hg)ren C
Wheo(SP=1:R™) such that hy, — hy in LY(S"~') and Hy — Hy in L'(S"~1,R").
Let

I (v) ::/S 71(hkv—|—Hk'VTv)dow, ke N.

It follows from Step 1, that for every k € N there is g € Vio(f) such that
It(gr) = min,cy,_(p) Ix(v). Furthermore, there is a subsequence (gi,)jen and
g € W1oo(S"~1) such that

gk, — g in C(S"") and Vg, A Vrpgin LS.
In particular we have that g € Voo (f). Furthermore, we obtain for any v € V. (f)
Io(g) = lim I(gr) < lim Ix(v) = I (v),
k— o0 k— o0

so that Ioo(g9) = minyey,_(f) Ioo (V). O
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Remark 2.4. With the notation used in Step 1 of the proof of Theorem 2.3 the
constrained minimisation problem may be seen as the (negative of the) dual prob-
lem to the optimal transport problem to find a map which minimises the cost of
transporting mass from q}rdow to q;dow with cost function

S"x 8" 3 (2,y) = d(x,y),

where d is the intrinsic metric on S*~!. We refer the reader to Section 38.1.1 of
/ ], in particular Equation (3.1). This relation will be exploited in Section 3.3
as a method to produce an approximation of a direction of mazimal descent.

2.3. Steepest descent for n = 2. The determination of the minimiser g in Theo-
rem 2.3 is by no means straightforward. In what follows we shall focus on the case
n = 2 and write f(¢) = f(e'?) for f € WH°(S!). Since Vrf(e'?) = f'(¢)ie’® we
obtain the following form of (20):

(25) (J'(f),v) =/0 W(hf(¢)v(¢) + Hp(9)v'(9)) dg, v € Wi (0,2m).

Here, hy(p) = hy(e), Hp(¢p) = H(e') - ie’?, ¢ € [0,27]. The boundary form
of the shape derivative can be treated in the same way by using (24) and setting
]fff =0.

In this setting the set of admissible directions becomes

27
Voo (f) = {v € Wpier (0,27) | fvdd =0, [v'[|Leo(0,27) < 1}
0

In order to proceed and motivate our numerical approach we assume the situa-
tion in Step 1 of the proof of Theorem 2.3, namely that Hy € W11(0,27) with
H;(0) = Hf(2m). Then we obtain after integration by parts and using the condi-

tion fo% fodp=0

, o) — o T —cf v werec—M
(J'(f), >_/0 (hf(¢) Hf(¢) f(¢))v(d)do, h - 027f ]F(Qb)déb

If we let g := hy —H’} — ¢f we have

<fuw»=4”wwwwM¢ v € Vaelf),

as well as
27

27 27
/'www=/ hi(@)dé —c [ F(@)do — Hy(2m) + Hy(0) = 0
0 0 0

by the choice of ¢. We can now apply the results of Section 3 in [IL05] (for the
case of homogeneous Dirichlet boundary conditions) in order to obtain a function
g € Wy™(0,2m) with [|§[| o (0,27 < 1 satisfying

(26) A”wwwwM¢= max AﬂWWWWM¢

vEW ™ (0,2),]|v" || oo 0,271y <1
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The function g is obtained as the uniform limit of the sequence (g,)p>2, where g,
solves

d _ .
—lgp(2)"2g,(2)) = gy in (0,2m)
9p(0) = gp(2m) = 0.
By calculating g, and passing to the limit p — oo, | | derive an explicit formula
for g. In order to describe this formula we define
®
1) Go)i= [ artoyi,
0
as well as
28)M(r) = |{pe€l[0,2m):G(p) <r},reR; B:=sup{reR: M(r) <m};
(29) O+ := {o€]0,2m):G(¢) = B}, Og:={¢ €10,27) : G(¢) = B};
Oa |OO| = 03
(30) k= { \O+‘|O*o|‘o;‘7 otherwise.

Note that since ¢y is integrable there are r¢,r; € R such that M(r) = 0,7 < ro and
M(r) = 2m,r > r1. The function g then is given explicitly by

¢
(31) 3(0) = / (xo_ (1) — xo. (1) + kxo, (B)dt.

Let us use g in order to obtain an explicit direction of steepest descent in our
periodic setting.

Proposition 2.5. Let g : [0,27] — R be defined by g(¢) :== —§(¢) + o= Jo~ fgdt.
Then g € Voo (f) and (J'(f),g) = min,ev, (5 (J'(f),v).

Proof. Tt is obvious that g belongs to Voo (f). If v € Vo (f), then v(0) — v €
Wy (0, 27) with ||(v(0) — v)'|| L (0.2x) < 1 s0 that (26) implies

2 2 2
(g = /0 <BffH}>gd¢:/o qudqs:—/o 0556

IN

27 2T
~ [ a0 = vyas = [T apodo = )0
0 0
where we have used that fo% qrde = 0. O

3. DISCRETISATION

3.1. Approximation of the shape derivative. We use the above ideas in order
to set up numerical schemes in two space dimensions. To do so, we approximate
both the radial function and the solutions of the state and ajoint equations with
the help of continuous, piecewise linear finite elements, but on grids that are inde-
pendent of each other. Let T, be a quasi-uniform triangulation of (a subset of) the
unit ball B, where By, := (Uper, T)O C B and the vertices on 0By, lie on 0B. We
define Sj, to be

Sp :={An € C(By) | = 0 on OBy, fpr € PH(T), T € Ta}.
Next, given N € N, we set ¢; = 27%,2’ =0,...,N as well as
SN = {1_) € C([O,Qﬂ']) : ﬁl[‘bi—lﬂbi] € Pl([¢i—1a¢ibvi =1,... ,N,’T)(O) = 1_)(27)}7
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the set of continuous, piecewise linear, periodic functions on [0, 27].
Given f € SV, we set f(w) = f(¢) if w = €!® and define 4y, p, € Sy, as the unique
solutions of

(32) Af(wz)Vﬁh . Vﬁh dz = / Ffﬁh f(wz)g dz; Vﬁh S Sh,
By, By,
(33) / Af(wz)Vﬁh . Vf]h dr = / (ﬂh — éf)ﬁh f(w$)2 dx Vﬁh S Sh,
Bh Bh

where the integrals are calculated with quadrature. Let us use 4y and pp in order
to define discrete versions of (21), (22) as well as (24):

Volume form of the shape derivative Let hyp : By, —+ R, Hyp : B, — R be defined
by

(34)  hpn = 2'ij3f E (Vi - ) (V- )
55 (Vs - Vi) eos - Vi) + (V2f - Vi) s - Vi)
+f((an — 25)? = |e|(@n — 20)V2f - wy — || Ey Vip - we);
() Hpn = (Vhn-wn)Vin + (Vi) V)
— 75 (Vin ) (Vi) Vi .

Next, let by, Hyp € SV be given by

27
/ hyn(0)o(p)de / hin(x)o(w,)de, VoeSY;
0 Bh

2m

Hyn(9)v(¢)dg = Hyp() - v(w,)wy dz, Vo e SV,
0 By,

where, as above v(w) = 9(¢) if w = €'® and (a1,a2)* = (—ag,ay).

Boundary form of the shape derivative Let Bf,h : 0B, — R be defined by

Lo o, 1 Ve f|?

Slin = 2)°f + ?(1 T

where wy, is the outer unit normal to dBy,. Let hyj, € SV be given by

hyn = ) (Van - wn)(Vn - wn),

2

/ Bf,h(¢)6(¢>d¢ = hf,hv(wm)doau Vo € SN-
0 dBn

The functions hyy, and Hyp, (Hyy = 0 for the boundary form) are approximations

to those that appear in the formula (25). We therefore define I, (f) : SV — R by

36)  n(f)0) = / " (Rya(@)5(6) + Hyn(@)7(9)do, 5 e S

as an approximation to (J'(f),v).

Based on (36) the construction of a nearly optimal descent direction g € S is
given by one of the methods described below: a) a discrete version of the approach
of Section 2.3 (see 3.2), b) an application of the Sinkhorn Algorithm from optimal
transport (see 3.3), or ¢) a Hilbertian method (see 3.4).
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Remark 3.1. An inspection of our discrete approach yields that we also could
choose the function f € W1 (S!) instead of f € SN, and to consider I,(f) in
(36) as a linear functional on W1°°(SY), which would correspond to variational
discretisation [ | of our shape optimisation problem. However, the evaluation
of integrals through the appearance of the functions f and Vr f in general requires
quadrature rules. In the variational discretisation approach this could be accom-
plished with replacing f by its Lagrange interpolation, thus leading to the approach

proposed in the present section.

3.2. Lipschitz formula. Since Hyj € Wh*(0,2r) with Hy,(0) = Hyp(27) we
may use a discrete version of the approach described in Section 2.3 in order to
produce an approximate direction of steepest descent g € SN as follows: Fix € > 0
and define G € SN by

_ _ bi _ f027r Bf’hdt
G(¢i) == Hysp(0) — Hy p(¢s) —|—/ (kg —cf)dt, where ¢ = ="
0 Jo fdt
Fori=1,...,N and G; = G(¢;) we let
N 27
M, = ;Wxgjggi, Bi=max{G;: M; <m:i=1,...N}
Or = {ie{l,...,N}:G;208=xe€},0p:={1,...,N}\ (0L UO_),
P 0, O =10,
T %, otherwise.

Finally, let § € SV be defined by

i
Z Xjeo_ TXj-1€0_ —Xje0, —Xj—1e0, Tk (Xje0, + Xj-1€0,) -
j=1

127
37) 9(¢i) = =—
(37) 3(00) = 5
Motivated by Propostion 2.5 our approximate steepest descent direction g € SV is
then given by
1 27 _
-9+ 5= fgdo.

(38) 7 o J,

We now make some remarks on this discretisation:
e The sets Oy, O_ and Ogy are not necessarily the natural discrete version
of their counterparts in (29), this is chosen to avoid the need to find the
points which are identically equal to § and allow us to give the function g
as a discrete function in SV.
e It may be preferable to choose the € > 0 to depend on the discretisation
and current state. For our experiments we take

T 9N \u=1...N =1,

3.3. Sinkhorn algorithm. Motivated by Remark 2.4, the appropriate problem
is the transport of mass from the measure (hy — H} — cf)*td¢ to the measure

€ 3 (max G; — min Gi>

(Bf — ﬁ} — cf)~d¢, where the cost of transportation of mass between two points
is given by the intrinsic distance, i.e.

d(¢, ¢) = arccos(cos(¢ — ¢)), ¢, € [0, 27].
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In order to discretise this transport problem we abbreviate gf.j, := by, — H} ), —cf
and approximate the measures q?’ nd¢ and ay, »,d¢ by atoms with appropriate strictly
positive weights as follows. Denoting by {1, ...,¢n} the standard nodal basis of
SN we set

27
ai::/ grapids, i=1,... N
0

as well as N* := {i € {1,...,N}|a; = 0}. Then, }_,_y+ a;0, approximates the
measure q}thd@ while >, - (—a;)dy, is an approximation of ¢; ;,d¢. With this,

IN*xINT|
RJr

the discrete optimal transport problem is to find P € which maximises

> > CyPy,
IENT jEN-
subject to > - Pij = a;,i € Nt and 37,y Pij = —a;,j € N™, where Cj; =
d(¢;, ¢;). We will use the Sinkhorn algorithm to approximate a minimiser. For
0 > 0, the Sinkhorn algorithm minimises the regularised quantity
Z Z CijPij + 6Pij(10g(f)ij> - 1).
iENT jEN-
Letting K;; = exp(f%Cij), u) =1 and v? =0fori e NT,j € N™, the Sinkhorn
iteration is given by
1 % + 1 T4y . -
IR i ENT, T = eN
T ERR ST

for [ > 0. The vectors (§log(ul));en+ and (8 log(vé«))jeNf are the dual variables in
this iteration.

We set § = 0.05 and stop the iterations when either [ = 2000 or ﬁ D ien+t lai—
ZjeN, uﬁ»Kijvﬂ <1079 and ﬁ ZjeN, | —aj = ient uiK”vﬂ < 1076.
We finally define g € SV by assigning the following values at the vertices ¢;:

9(o:) = g}f (—510g(v§) +Cij), ieNT,
JoN-
g(¢;) = sup (g(¢i) —Ciy), jENT,
iEN+
9(¢i) = jérjl\f_ (—0log(vh) +d(¢i,0;)), i€{l,..., N} \(NTUNT).

It is again necessary to remove a constant to ensure that fo% fgde = 0. We note
that this method to assign g at the vertices is not the typical way to identify the
dual variable in the Sinkhorn algorithm, however it was found to give preferable
results for g both in terms of the shape and of the evaluation of fOQW qr,ngde.

3.4. H' minimising direction. According to | , Theorem 2.1], our Lipschitz
direction g from Proposition 2.5 can be obtained as the uniform p-limit of the
rescaled minimisers v* of

27
1 _ _
UESN»—>/ §|v/\p+hfv+va’d¢
0

o
LP(0,27)
done so that g, is a direction in the topology induced by the W!P-seminorm. In

this setting the approaches commonly used in the literature so far correspond to

such that fo% vf = 0, where we rescale Ip = Ty The rescaling is
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the Hilbert space case p = 2, see | , Section 5.2] for a detailed discussion,
and also | : : ; ; ; ; ], which we here
consider as a reference case for comparison of our approach.

4. NUMERICAL EXPERIMENTS

The numerical experiments carried out in this section combine the following
Armijo—type descent method with one of the choices for a descent direction de-
scribed in the previous section:

Algorithm 1: Our implemented Armijo algorithm
Given f € SV;
Solve for p;
Set E = 3 [, (@n — 2¢)2 1%
for j =1,...,maxIt do
Solve for pp;
Construct descent g;
set fOld = f;
for o€ {1/16,1/32,1/64,...}, and 0 > 10~% do
Set f = fOld + o§;
Solve for dy;
if %th (i, — 24)%f* < E+107%0(I4(f), g) then
set B =3 [ (@n — 2f)%
break;

We set maxIt = 250, we will also terminate the algorithm if we require o < 1078,
In our numerical implementation, whenever we set f, we rescale it to have the same
square integral as the original domain. The images of the grids are created with
ParaView | ] and our finite element methods for state and costate equations
are performed with DUNE | ]. The boundary has discretisation with N =
512 and the triangulation By is shown in Figure 1.

In order to plot the graphs for the energy throughout the iterations of the ex-
periments in a meaningful way we use a log scale. When the energy is not expected
to vanish, as in the experiments in Sections 4.0.1 and 4.0.2, we take away lowest
energy value attained by any of the experiments from all of the data, this value
appears in the y axis label of the graphs.

4.0.1. An experiment with F' = 0. For this experiment, we set F(z1,22) = 0 and
z(x1,22) = |21 + 22| + |21 — x2|. Since F = 0 it follows that u = 0, therefore when
considering the boundary form of the shape derivative which appears in (16), we
see that when the boundary of the domain is in a level-set of 22, the energy will be
critical. When starting with f = 1, we expect the final domain to be the square

2
(—@, @) . After 250 iterations, the method with optimal transport direction
with boundary form of derivative gives the domain on the left of Figure 2. The
method using the Lipschitz formula with boundary form of derivative terminated

after 103 iterations, the domain at this point is given in the middle of Figure 2.
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FIGURE 1. Triangulation of the computational domain.

FIGURE 2. Final domains for the experiment in Section 4.0.1 with

Lipschitz optimal transport descent (left), Lipschitz formula de-

scent (middle) and H! descent (right).

The result of 250 iterations of the H! method is given on the right of Figure 2. A

graph of energy throughout the iterat

The Lipschitz formula method with boundary form terminated after 103 steps
because it had achieved very close to the shape we expected to be minimal. Whereas

the Lipschitz formula method with volume form term

bly related to a poor choice of parameters. For the L

possi

method with volume form of derivative terminated after 121 steps, where we see

that this energy has already become very low. One may see that the corners from

the Lipschitz methods are highly developed, whereas they are rather curved for the

H' method, this is highlighted in Figure 4 which g

of Figure 2.

4.0.2. An experiment with —Az

and z(ry,79) =1 — 22 —x3. We not

t ball. We start this experimen

which is shown in Figure 5.

unit
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1071 5 —— Lipschitz Sinkhorn Bulk
—— Lipschitz Sinkhorn Boundary
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—— Lipschitz Formula Boundary
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Q H1 Boundary
D
©
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Yol
B 10-3
8 1077
<
oi
>
<
2
w 1074
10—5 4
0 50 100 150 200 250
Iterations

F1cURE 3. Graph of the energy for the iterates in the experiment
in Section 4.0.1

FIGURE 4. Zoom in on the top right ’corners’ of the final domains
for the experiment in Section 4.0.1 with Lipschitz optimal trans-
port descent (left), Lipschitz formula descent (middle) and H! de-
scent (right).

In this experiment we provide the domain after 15 iterations, this appears in Fig-
ure 6. We provide this as such comparisons are of interest in practical applications,
where computation time is a limiting factor. We see that even after only 15 itera-
tions that the shapes are close to a circle, with the Lipschitz methods outperforming
the H' methods significantly.

After 250 iterations, the Lipschitz optimal transport method with volume form
of the shape derivative gives the domain on the left of Figure 7. The H! method
with volume form of shape derivative terminated after 31 iterations and the domain
at this point is shown on the right of Figure 7. A graph of energy throughout the
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FIGURE 5. Initial domain for the experiment in Section 4.0.2.

iterations is given in Figure 8. We note that both of the H' methods terminate

early, the boundary method after 110 iterations and the volume method after 31.
We suggest that this termination happens because they are struggling to remove

the corners.

We also see that both of the Lipschitz methods with the boundary

form of the shape derivative terminate early, the method with formula after 28
steps and the optimal transport method after 14. One might attribute this to the
Lipschitz methods are struggling with the boundary form of shape derivative.

It is seen that the corners appearing in the H'! method, which are artefacts of the
original grid, cause difficulties for the H' method, whereas the Lipschitz methods
were able to remove them. These artefact corners also make an appearance in

[

, Figure 2] when starting with an initial guess of a square and target of a

circle.

=F

). We notice that —Az
0 for all z1,2o0 € R. An immediate

2
2

)

F. For this experiment we set F(x1,x9) =

(m — 4a?) (7 — 4a

VT/2

T2

)

+

(

4.0.3. An experiment with —Az
167 — 3223 — 3223 and 2(z1, x2)
and that z(x1,+/7/2) = z

the Lipschitz optimal transport method method with volume form of shape deriva-
tive gives the domain on the left of Figure 9 and after 250 iterations the H'! method
with volume form of shape derivative gives the domain on the right of Figure 9.

consequence of these facts is that there is a domain which attains zero energy, the
2
square (—g, @) . The experiment is started with f = 1. After 250 iterations,

A graph of energy throughout the iterations is given in Figure 10. It is seen
that the method using the Lipschitz method with formula with the boundary form

of the derivative terminates early,

after 19 iterations. We note that this method,

Here we see that none of the methods perform particularly well, however it is
clear that the Lipschitz methods are outperforming the H' methods in terms of

despite early termination, has a lower energy than all but one other method and
energy minimisation and in terms of the sharpness of the corners.

we attribute the early termination to the fact that its energy has become so low.
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FIGURE 6. Domains after 15 iterations for the experiment in Sec-
tion 4.0.2 with Lipschitz formula descent (left) and H' descent
(right) with the volume form (top) of the shape derivative and the

boundary form (bottom).

4.0.4. An experiment with known minimum which is not a Lipschitz domain. For
this experiment we set F(z1,22) =1 and
( oLl 1 1)° L1 2 Lo
z(x1,29) == —-min | (1 — — | ,lz1+ — — —x5.
1, %2 3 1 1 /2 1 2

NG 1

We see that away from z; = 0, —Az = F. Therefore it is expected that the double
ball, B(y+, %) U B(y-, %) for yy = (:I:%,O)T is a minimising domain. Notice
that this double ball is not a Lipschitz domain and that the f which represents the
domain has zeroes. After 73 iterations, the Lipschitz formula method with volume
form of the derivative gives the domain on the left of Figure 11 and the H' method
with volume form of the shape derivative gives the domain on the right of Figure

11.
A graph of energy throughout the iterations is given in Figure 12. We note
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F1cURE 7. Final domains for the experiment in Section 4.0.2 with
Lipschitz optimal transport descent (left) and H! descent (right)
with the volume form of the shape derivative.
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FIGURE 8. Graph of the energy for the iterates in the experiment
in Section 4.0.2

that the Lipschitz formula method with volume form of derivative terminates after
73 iterations, where one might attribute this to how close to the optimal shape it
appears to have attained.

We see that both methods seem to cope relatively well. The Lipschitz method
appears to perform much better at forming the cusp and the domain appears more
circular. We note that it is also possible to (under certain regularity conditions)
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F1cURE 9. Final domains for the experiment in Section 4.0.3 with
Lipschitz optimal transport descent (left) and H! descent (right)
with the volume form of the shape derivative.
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FI1GURE 10. Graph of the energy for the iterates in the experiment
in Section 4.0.3

consider an analogous direction of maximal descent over Holder functions, rather
than Lipschitz functions, this is done in [Jyl15].

4.1. Comments on experiments. Over all of the experiments, we see that the
Lipschitz methods outperform the H!' method. Regularly the formula approach
appears better than the optimal transport method, but lacks the capability to be
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FI1GURE 12. Graph of the energy for the iterates in the experiment
in Section 4.0.4

generalised to higher dimensions. We also note that the formula is significantly
quicker to arrive at the direction (in a very naive sequential implementation). We
note that many more algorithms for solving the optimal transport are available and
perhaps others may be better suited to this problem. For the moment we note that
the Sinkhorn algorithm experiences very efficient speedup from parallel processing.
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5. CONCLUSION

In this article we introduce a novel method for the implementation of shape op-
timsiation with Lipschitz domains. We propose to use the shape derivative to de-
termine deformation fields which represent steepest descent directions of the shape
functional in the W1 topology. The idea of our approach is demonstrated for
shape optimisation of 2-dimensional star-shaped domains. We also highlight the
connections to optimal transport, for which discretisation methods are available.
We present several numerical experiments illustrating that our approach seems to
be superior over existing Hilbert space methods, in particular in developing optimal
shapes with corners and in providing a quicker energy descent.
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