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Abstract

We develop a globalized Proximal Newton method for composite and possibly non-
convex minimization problems in Hilbert spaces. Additionally, we impose less restrictive
assumptions on the composite objective functional considering differentiability and con-
vexity than in existing theory. As far as differentiability of the smooth part of the ob-
jective function is concerned, we introduce the notion of second order semi-smoothness
and discuss why it constitutes an adequate framework for our Proximal Newton method.
However, both global convergence as well as local acceleration still pertain to hold in our
scenario. Eventually, the convergence properties of our algorithm are displayed by solving
a toy model problem in function space.

1 Introduction

Subject of this work is to generalize the idea of Proximal Newton methods for composite
objective functions to a Hilbert space setting, aiming for the efficient solution of non-convex,
non-smooth variational problems. The optimization problem reads

min
x∈X

F (x) := f(x) + g(x) (1.1)

where f : X → R is assumed to be smooth in some adequate sense and g : X → R is possibly
not. The domain of both f and g is given by a subset of an arbitrary Hilbert space X.

Originally, Fukushima and Mine introduced the Proximal Gradient method in the Eu-
clidean Rn for optimization problems of the above form, cf. [8]. More specifically, this early
version of the Proximal Gradient method constitutes a special case of a procedure studied by
Tseng and Yun, cf. [26]. Further research showed that variously defined line search techniques
lead to global convergence of the algorithm even under appropriate inexactness conditions for
the solutions of the subproblem for step computation, cf. for example [3, 7, 9, 20, 21, 23]. Ad-
ditionally, local acceleration results have been achieved by utilizing second order information
of the smooth part close to optimal solutions of the original minimization problem.

Obviously, further assumptions on the form of the composite objective functional open
the door to more specific adaptions of the solution algorithm. For example in [16, 24, 6],
the authors assume convexity and self-concordance of the smooth part f in order to employ
damped Proximal Newton methods. Alternatively, reformulations of the original minimization
∗Department of Mathematics, University of Bayreuth, Germany
†Department of Mathematics, TU Dresden, Germany
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problem can be useful. As a consequence, methods which have been proven to work for other
problem classes can also be applied in our case, for example in [4, 5, 17] fixed point algorithms
were employed or consider [1] for a reformulation of (1.1) as a constrained problem.

A different point of view onto this class of problems was taken by Milzarek and Ulbrich in
[19]. For g(x) := λ

∥∥x∥∥
1
with λ > 0, they considered a semi-smooth Newton method with filter

globalization which Milzarek later on generalized to work also for arbitrary convex functions
for g, cf. [18].

Recently, Kanzow and Lechner discussed a globalized, inexact and possibly non-convex
Proximal Newton-type method in Euclidean space Rn, cf. [13]. There, the algorithm resorted
to Proximal Gradient steps in the case of insufficient descent together with a line-search pro-
cedure in order to achieve global convergence and cope with lacking convexity of the objective
functional.

The work of Lee and Saunders [15] gives an instructive overview of a generic version of the
Proximal Newton method as well as several convergence results. Our contributions beyond [15]
can be summarized as follows: Most obviously, we generalize the Euclidean space setting to a
Hilbert space one. Additionally, in [15] only elliptic bilinear forms for the second order model
are considered and the non-smooth part g is required to be convex. We use a more general
framework of convexity assumptions for the composite objective function F . Furthermore, we
do not demand second order differentiability with Lipschitz-continuous second order derivative
of the smooth part f but instead settle for adequate semi-smoothness assumptions. We replace
the simple line-search approach for globalization with a more sophisticated proximal arc-search
method which additionally softens the convexity assumptions on the objective functional.
Eventually, we establish a more refined version of the global convergence proof and also give
a dual interpretation for the stopping criterion of the algorithm. To our knowledge, also the
notion of second order semi-smoothness for f is yet to appear in literature. On the other hand,
our work here covers neither inexact nor Proximal Quasi-Newton methods.

An important practical aspect of splitting methods, such as Proximal Newton, is that the
non-smooth part g of the composite objective functional F yields a proximity operator proxg
that can be evaluated easily. This is, for example, the case, if g and also the employed scalar
product have diagonal structure. Then the solution of the subproblem within the proximity
operator can be computed cheaply in a componentwise fashion. In function space problems,
in particular if Sobolev spaces are involved, it is known that instead of a diagonal structure, a
multi-level structure should be used in order to reflect the topology of the function space prop-
erly. Diagonal proximal operators would suffer from mesh-dependent condition numbers. In
our numerical computations we therefore employ non-smooth multi-grid techniques to compute
the Proximal Newton steps, in particular Truncated Non-smooth Newton Multigrid Methods,
cf. [10].

Let us first specify the setting in which we will discuss the convergence properties of
Proximal Newton methods in a real Hilbert space (X, 〈·, ·〉X) with corresponding norm ‖v‖X =√
〈v, v〉X and dual space X∗. The Hilbert space structure of X also gives us access to the

Riesz-Isomorphism R : X → X∗, defined by Rx = 〈x, ·〉X , which satisfies
∥∥Rx∥∥

X∗
=
∥∥x∥∥

X
for

every x ∈ X. Since R is non-trivial in general, we will not identify X and X∗.
We will assume the smooth part of our objective functional f : X → R to be continuously

differentiable with Lipschitz-continuous derivative f ′ : X → X∗, i.e., we can find some constant
Lf > 0 such that for every x, y ∈ X the estimate∥∥f ′(x)− f ′(y)

∥∥
X∗
≤ Lf

∥∥x− y∥∥
X

(1.2)
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holds.
Next we will specify our assumptions on the second order model for f . In what follows, we

will notationally identify the linear operators Hx ∈ L(X,X∗) with the corresponding symmet-
ric bilinear form Hx : X × X → R, and write (Hxv)(w) = Hx(v, w), using the abbreviation
Hx(v)2 = Hx(v, v). We will assume uniform boundedness of Hx along the sequence xk of
iterates:

∃M ∈ R : ‖Hxk‖L(X,X∗) ≤M.

In addition, along the sequence of iterates xk we assume a uniform bound of the form

∃κ1 ∈ R : Hxk(v)2 := Hxk(v, v) ≥ κ1

∥∥v∥∥2

X
∀v ∈ X. (1.3)

For κ1 > 0 estimate (1.3) represents ellipticity ofHx with constant κ1. When considering exact
(and smooth) Proximal Newton methods, where Hx is given by the second-order derivative of
f at some point x ∈ X, (1.3) is equivalent to κ1-strong convexity of f . In the case κ1 > 0 we
may also define an energy-norm and write:∥∥v∥∥2

Hx
:= Hx(v, v).

For most of the paper we may choose Hx freely in the above framework. For fast local
convergence, however, we will impose a semi-smoothness assumption. Semi-smooth Newton
methods in function space have been discussed, for example, in [27, 28, 12, 22]. Furthermore,
to guarantee transition of our globalization scheme to fast local convergence we suppose f to
suffice the notion of second order semi-smoothness (cf. Section 5) which generalizes second
order differentiability in our setting and the definition of which slightly differs from semi-
smoothness of f ′ in (3.4).

We assume that the non-smooth part g is lower semi-continuous and satisfies a bound of
the form

g(sx+ (1− s)y) ≤ sg(x) + (1− s)g(y)− κ2

2
s(1− s)

∥∥x− y∥∥2

X
(1.4)

for all x, y ∈ X and all s ∈ [0, 1] for some κ2 ∈ R. For κ2 > 0 estimate (1.4) represents κ2-
strong convexity of g. It is known that κ2-strong convexity of g implies that g is bounded from
below, its level-sets Lαg bounded for all α ∈ R and their diameter shrinks to 0, if α→ infx∈X g.
In the case of κ2 < 0, g is allowed to be non-convex in a limited way.

The theory behind Proximal Newton methods and the respective convergence properties
evolves around the convexity estimates stated in (1.3) and (1.4). We will assign particular
importance to the interplay of the convexity properties of f and g, i.e., the sum κ1 + κ2 will
continue to play an important part over the course of the present treatise.

Let us now shortly outline the structure of our work: In Section 3 we will consider un-
damped update steps computed as the solution of an adequately formulated subproblem. These
can also be represented using (scaled) proximal mappings the definition and key properties of
which we shortly address. Afterwards, local superlinear convergence of the Proximal Newton
method is shown. In Section 4 we present a modification of the aforementioned subproblem
in order to damp update steps and globalize the Proximal Newton method. This enables the
proof of optimality of all limit points of the sequence of iterates generated by our method.
Section 5 concerns the introduction of second order semi-smoothness for f and showcases how
it helps to verify the admissibility of both full and damped update steps sufficiently close to
optimal solutions in Section 6. This in turn enables local fast convergence of our globalized
method. In Section 7 the performance of our algorithm is substantiated by numerical results.
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As a start, we want to introduce the definition of undamped update steps and investigate
the behavior of the ensuing Proximal Newton method close to optimal solutions of problem
(1.1).

2 General Dual Proximal Mappings

We compute a full step for the Proximal Newton method at a current iterate x ∈ X by solving
the subproblem

∆x := argmin
δx∈X

f ′(x)δx+
1

2
Hx(δx, δx) + g(x+ δx)− g(x). (2.1)

In this section Hx denotes a general bilinear form, as introduced above. If a minimizer exists,
we determine the next iterate via x+ := x + ∆x. We will consider this update scheme and
investigate its convergence properties close to optimal solutions, and in particular fast local
convergence, if Hx is adequately chosen as a Newton derivative.

Proposition 2.1. If κ1 + κ2 > 0, then (2.1) admits a unique solution.

Proof. By assumption, the functional to be minimized is lower semi-sontinuous, and κ1+κ2 > 0
implies that it is strictly convex and radially unbounded. Since X is a Hilber space a minimizer
exists and is unique.

For the following discussion we keep the assumption κ1 +κ2 > 0. To introduce an adequate
definition of a proximal mapping in Hilbert space we reformulate (2.1) directly for the updated
iterate x+ via

x+ = argmin
y∈X

f ′(x)(y − x) +
1

2
Hx(y − x, y − x) + g(y)− g(x) . (2.2)

In the literature existence of a continuous inverse H−1
x : X∗ → X is frequently assumed, giving

rise to a mapping H−1
x f ′ : X → X. Then (2.2) can be rearranged to

x+ = argmin
y∈X

g(y) +
1

2
Hx(y −

(
x−H−1

x f ′(x)
)
)2 . (2.3)

In [15], this form of the updated iterate is considered and the notion of a proximal mapping
is introduced by

proxHg (x) := argmin
y∈Rn

g(y) +
1

2
(y − x)TH(y − x) = argmin

y∈Rn
g(y) +

1

2

∥∥y − x∥∥2

H

such that there (2.3) takes the form x+ = proxHg
(
x−H−1

x f ′(x)
)
.

However, in this work we want to follow a different, more direct approach towards proximal
mappings which allows us to use the structure of the dual space X∗ more accurately and
dispense with an invertibility assumption on Hx. In [24] (scaled) proximal mappings are
introduced for X = Rn according to

PHg : Rn → Rn , PHg (x) := argmin
y∈Rn

g(y) +
1

2
yTHy − xT y .
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Observing that xT represents a dual element in Rn here, we generalize this notion to the
setting of Hilbert spaces and consider

PHg : X∗ → X , PHg (ϕ) := argmin
y∈X

g(y) +
1

2
H(y, y)− ϕ(y), (2.4)

obtaining a mapping from the dual space, back to the primal space.
With this definition in mind, (2.2) can directly be rewritten as

x+ = argmin
y∈X

g(y) +
1

2
Hx(y)2 −

(
Hx(x)− f ′(x)

)
(y) = PHx

g (Hx(x)− f ′(x)) . (2.5)

Our notion allows us to dispense with the use of the inverse H−1
x , which would require in

addition κ1 > 0. We will refer to (2.4) as the direct or dual formulation of scaled proximal
mappings.

First order conditions for the minimization problem posed in (2.5) yield the equation

η +Hx(x+ − x) + f ′(x) = 0

in the dual space X∗ for some (Frechét-)subderivative η ∈ ∂F g(x+) (if g is convex, ∂F g
coincides with the convex subdifferential ∂g, cf. [14]). As we rearrange this identity, one could
formally write:

x+ = (Hx + ∂F g)−1 (Hx − f ′
)
x .

If Hx is additionally invertible, this is equivalent to

x+ =
(
Id +H−1

x ∂F g
)−1 (

Id−H−1
x f ′

)
x

which once again substantiates the interpretation of proximal-type methods as forward-backward
splitting algorithms. Note that in particular the subdifferential of g is evaluated at the updated
point x+.

We can shift convexity properties of the respective parts of the composite objective func-
tional by inserting adequate bilinear form terms. However, this procedure does not affect the
sequence of iterates generated by the update formula from above:

Lemma 2.2. Let q : X → R be a continuous quadratic function and denote its second deriva-
tive (which is independent of x) by Q := q′′(x) : X → X∗. Consider the modified (but obviously
equivalent) minimization problem

min
x∈X

F̃ (x) := f̃(x) + g̃(x) (2.6)

f̃(x) := f(x)− q(x), g̃(x) := g(x) + q(x). (2.7)

Then, the update steps computed via (2.5) are identical for both problems (1.1) and (2.6) if we
choose H̃x = Hx −Q as the corresponding bilinear form.

Remark. If we choose q(x) := κ
2

∥∥x∥∥2

X
for some κ ∈ R, the modified quantities H̃x and g̃ suffice

estimates (1.3) and (1.4) for κ̃1 = κ1 − κ and κ̃2 = κ2 + κ. In particular, κ1 + κ2 = κ̃1 + κ̃2

remains unchanged and g̃ is (κ+ κ2)-strongly convex for κ > −κ2.
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Proof. The only claim which is not apparent is the identity of update steps. To this end, we
consider the fundamental definition of the update step for problem (2.6) at some x ∈ X given
by

∆x̃ = argmin
δx∈X

f̃ ′(x)δx+
1

2
H̃x(δx)2 + g̃(x+ δx)− g̃(x)

and consequently for q(y) = 1
2Q(y)2 + ly + c and c ∈ R constant

x̃+ = argmin
y∈X

(
f ′(x)− q′(x)

)
(y − x) +

1

2

(
Hx − q′′(x)

)
(y − x)2 + g(y) + q(y)

= argmin
y∈X

(
f ′(x)− (Qx+ l)

)
(y − x) +

1

2

(
Hx −Q

)
(y − x)2 + g(y) +

1

2
Q(y)2 + ly

= argmin
y∈X

g(y) +
1

2
Hx(y)2 −

(
(Hx −Qx)− (f ′(x)−Qx)

)
y

= PHx
g (Hx(x)− f ′(x)) = x+

which directly shows the asserted identity of update steps.

Remark. If the bilinear form for update step computation is chosen as Hx = ∂Nf
′(x) and

thereby as H̃x = ∂N f̃
′(x) in the modified case, we have H̃x = Hx −Q, automatically.

3 Regularity and Fast Local Convergence

The representation of the updated iterate as the image of a scaled proximal mapping in (2.5)
will turn out to be very useful in what follows which is why we dedicate the next two propo-
sitions to the properties of scaled proximal mappings in our scenario. The first proposition
generalizes the assertions of the so called second prox theorem, cf. e.g. [2], to our notion of
proximal mappings.

Proposition 3.1. Let H and g satisfy the assumptions (1.3) and (1.4) with κ1 + κ2 > 0.
Then for any ϕ ∈ X∗ the image of the corresponding proximal mapping u := PHg (ϕ) satisfies
the estimate [

ϕ−H(u)
]
(ξ − u) ≤ g(ξ)− g(u)− κ2

2

∥∥ξ − u∥∥2

X

for all ξ ∈ X.

Proof. The proof of the estimate above is an easy consequence of the characterization of the
convex subdifferential of gH := g+ 1

2H(·, ·) and (1.4). First order conditions of the minimization
problem in (2.4) yield

ϕ ∈ ∂
(
g +

1

2
H(·, ·)

)
(u) = ∂gH(u)

where ∂ denotes the convex subdifferential since in particular gH is convex due to the positivity
of the sum κ1 + κ2. This inclusion directly implies the estimate

ϕ(y − u) + g(u) +
1

2
H(u, u) ≤ g(y) +

1

2
H(y, y)
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for arbitrary y ∈ X which is equivalent to[
ϕ− 1

2
H(y + u)

]
(y − u) ≤ g(y)− g(u) .

As pointed out before, now we want to take advantage of the convexity assumptions on g
according to (1.4). To this end, we insert y = y(s) := sξ + (1− s)u above for s ∈]0, 1] and use
(1.4) on the right-hand side. This yields

s
[
ϕ−H(u)− s

2
H(ξ − u)

]
(ξ − u) ≤ s

[
g(ξ)− g(u)− κ2

2
(1− s)

∥∥ξ − u∥∥2

X

]
where we now divide by s 6= 0 and subsequently evaluate the limit of s to zero. This procedure
provides us with the asserted estimate for ξ, ϕ and u as specified above.

The inequality from Proposition 3.1 can be used in order to prove several useful continuity
results for general scaled proximal mappings in Hilbert spaces. However, for our purposes it
suffices to assert and verify the following result, which generalizes non-expansivity of proximal
mappings in Euclidean space to our setting. It plays a similar role as boundedness of the
inverse of the derivative in Newton’s method.

Corollary 3.2 (Regularity of the Prox-Mapping). Let H and g satisfy the assumptions (1.3)
and (1.4) with κ1 + κ2 > 0. Then, for all ϕ1, ϕ2 ∈ X∗ the following Lipschitz-estimate holds:∥∥PHg (ϕ1)− PHg (ϕ2)

∥∥
X
≤ 1

κ1 + κ2

∥∥ϕ1 − ϕ2

∥∥
X∗

Proof. Let us choose H and ϕ1, ϕ2 as stated above. According to Proposition 3.1, the first
order conditions for the respective minimization problems yield the inequalities

(ϕ1 −H(u1))(u2 − u1) ≤ g(u2)− g(u1)− κ2

2

∥∥u2 − u1

∥∥2

X
(3.1)

(ϕ2 −H(u2))(u1 − u2) ≤ g(u1)− g(u2)− κ2

2

∥∥u1 − u2

∥∥2

X
(3.2)

since we can choose ξ := u2 or ξ := u1 respectively. Now, we add (3.1) and (3.2) which yields

(ϕ2 − ϕ1 +H(u1 − u2))(u1 − u2) ≤ −κ2

∥∥u1 − u2

∥∥2

X
.

As we rearrange this inequality we obtain

H(u1 − u2)2 + κ2

∥∥u1 − u2

∥∥2

X
≤ (ϕ1 − ϕ2)(u1 − u2) ≤

∥∥ϕ1 − ϕ2

∥∥
X∗

∥∥u1 − u2

∥∥
X

and eventually assumption (1.3) on H yields the assertion of the proposition.

Even though the above continuity result for proximal mappings will turn out to be an
important tool for the proof of local acceleration of the Proximal Newton method, we still
have to deduce some crucial properties of the full update step ∆x. These will help us to
characterize optimal solutions of (1.1) as fixed points of the method and then verify local
acceleration afterwards.

Lemma 3.3. The undamped update steps computed via (2.1) are descent directions of the
composite objective functional, i.e., the following estimate holds:

F (x+ s∆x) ≤ F (x)− s(κ1 + κ2)
∥∥∆x

∥∥2

X
+O(s2) .
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Proof. Since f is assumed to be continuously differentiable and g suffices the estimate (1.4),
we can deduce the following bound on the composite objective functional:

F (x+ s∆x) ≤ f(x) + sf ′(x)∆x+O(s2) + sg(x+ ∆x) + (1− s)g(x)− κ2

2
s(1− s)

∥∥∆x
∥∥2

X

≤ F (x) + s(f ′(x)∆x+ g(x+ ∆x)− g(x)− κ2

2

∥∥∆x
∥∥2

X
) +O(s2) (3.3)

Let us now deduce an estimate for the term in brackets on the right-hand side of (3.3). To
this end, we remember the proximal mapping representation of updated iterates in (2.5) and
consider the corresponding estimate from Proposition 3.1 for ξ := x which is given by[

Hx(x)− f ′(x)−Hx(x+)
]
(x− x+) ≤ g(x)− g(x+)− κ2

2

∥∥x+ − x
∥∥2

X

or equivalently

f ′(x)∆x+ g(x+ ∆x)− g(x)− κ2

2

∥∥∆x
∥∥2

X
≤ −Hx(∆x)2 − κ2

∥∥∆x
∥∥2

X
≤ −(κ1 + κ2)

∥∥∆x
∥∥2

X

which we insert into (3.3) and directly obtain the asserted inequality. Note that over the course
of this section we assume the positivity of the sum κ1 + κ2 which indeed implies from above
that ∆x is a descent direction.

As mentioned beforehand, this directly enables a more insightful characterization of optimal
solutions of the composite minimization problem.

Proposition 3.4. Under the assumptions stated above, the search direction ∆x∗ according to
(2.1) is zero at every local minimizer x∗ of problem (1.1). The identity

x∗ = PHg
(
H(x∗)− f ′(x∗)

)
holds for every H ∈ L(X,X∗) which satisfies (1.3) with κ1 + κ2 > 0 and κ2 from (1.4) for g.

Proof. If x∗ is a local minimizer, F (x∗ + s∆x) ≤ F (x∗) for sufficiently small s > 0. By
Lemma 3.3 this implies ∆x = 0.

Having in mind these properties of update steps and optimal solutions in addition to the
continuity result for scaled proximal mappings from Proposition 3.2, we can now prove the
local acceleration result for our Proximal Newton method with undamped steps near optimal
solutions.

For the following we require f ′ to be semismooth near an optimal solution x∗ of our problem
(1.1) with respect to Hx, i.e., the following approximation property holds:∥∥f ′(x∗)− f ′(x)−Hx(x∗ − x)

∥∥
X∗

= o
(∥∥x− x∗∥∥X) . (3.4)

Adequate definitions of Hx can be given via the Newton derivative Hx ∈ ∂Nf ′(x) for Lipschitz-
continuous operators in finite dimension, and for corresponding superposition operators.

Theorem 3.5 (Fast Local Convergence). Suppose that x∗ is an optimal solution of problem
(1.1) and that x, x+ ∈ X are two consecutive iterates generated by the update scheme from
above. Additionally, assume that (3.4) holds and κ1 + κ2 > 0. Then we obtain:∥∥x+ − x∗

∥∥
X

= o
(∥∥x− x∗∥∥X) .
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Proof. Consider the proximal mapping representations deduced above for both the updated
iterate x+ in (2.5) and for the optimal solution x∗ in Proposition 3.4 via

x+ = x+ ∆x = PHx
g

(
Hx(x)− f ′(x)

)
and x∗ = PHx

g

(
Hx(x∗)− f ′(x∗)

)
.

Next, we directly take advantage of these identities together with the continuity result for
scaled proximal mappings from Proposition 3.2 in order to deduce the estimate∥∥x+ − x∗

∥∥
X

=
∥∥PHx

g

(
Hx(x)− f ′(x)

)
− PHx

g

(
Hx(x∗)− f ′(x∗)

)∥∥
X

≤ 1

κ1 + κ2

∥∥Hx(x)− f ′(x)− (Hx(x∗)− f ′(x∗))
∥∥
X∗

=
1

κ1 + κ2

∥∥Hx(x− x∗)− (f ′(x)− f ′(x∗))
∥∥
X∗

= o
(∥∥x− x∗∥∥X)

where in the last step also the semi-smoothness of f ′ played a crucial role. This directly verifies
the asserted local acceleration result.

In particular, this implies local superlinear convergence of our Proximal Newton method
if we can additionally verify global convergence to an optimal solution. Note that even for
the local acceleration result, ellipticity of Hx = ∂Nf

′(x) does not necessarily have to be
demanded. Also here, all that matters is strong convexity of the composite functional. This
might be surprising since what actually accelerates the method is the second order information
on the (possibly non-convex) but differentiable part f with semi-smooth derivative f ′. As a
consequence, this means that the (strong) convexity of g can not only contribute to the well-
definedness of update steps as solutions of (2.1) but also to the local acceleration of our
algorithm.

The main reason for this generalization of the local acceleration result is our slightly gener-
alized notion of proximal mappings. In particular, we did not deduce (firm) non-expansivity in
the scaled norm as for example in [15] but also there took advantage of the strong convexity of
the composite objective functional in the form of assumptions (1.3) and (1.4) with κ1 +κ2 > 0.

Note that for the above results to hold it was crucial that the current iterate x is already
close to an optimal solution of problem (1.1) which is why over the course of the next section
we want to address one possibility to globalize our Proximal Newton method. We will see that
eventually we will be in the position to use undamped update steps for the computation of
iterates and thereby benefit from the local acceleration result in Theorem 3.5.

4 Globalization via an additional norm term

Let us consider the following modification of (2.1) and define the damped update step at a
current iterate x as minimizer of the following modified model functional:

λω(δx) := f ′(x)δx+
1

2
Hx(δx, δx) +

ω

2

∥∥δx∥∥2

X
+g(x+ δx)− g(x) .

This means, we define

∆x(ω) := argmin
δx∈X

λω(δx) . (4.1)
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Here ω > 0 is an algorithmic parameter that can be used to achieve global convergence.
Setting H̃ := Hx + ωR with the Riesz-isomorphism R : X → X∗ we observe that (4.1) is of
the form (2.1) with κ̃1 = κ1 + ω, so that the existence and regularity results of the previous
sections apply.

The updated iterate then takes the form x+(ω) := x+∆x(ω). Apparently, the update step
in (4.1) is well defined if ω + κ1 + κ2 > 0. Consequently, for what follows, we only consider
ω > −(κ1 + κ2) in order to guarantee unique solvability of the update step subproblem. The
full update steps from (2.1) are here damped along a curve in X which is parametrized by the
regularization parameter ω ∈]− (κ1 + κ2),∞[.

However, note that up until now the Hilbert space structure of X was also important for
the strong convexity of functions of the form g+ ω

2

∥∥·∥∥2

X
with g as in (1.4) for arbitrary κ2 ∈ R.

In a general Banach space setting, we can not assume additional norm terms to compensate
disadvantageous convexity assumptions, cf. [2], Remark 5.18].

Let us now take a look at how we can rearrange the subproblem for finding an updated
iterate by using the scalar product 〈·, ·〉X as well as the Riesz-Isomorphism R:

x+(ω) = argmin
y∈X

f ′(x)(y − x) +
1

2
Hx(y − x, y − x) + g(y)− g(x) +

ω

2

∥∥y − x∥∥2

X

= argmin
y∈X

f ′(x)y +
1

2
Hx(y)2 −Hx(x, y) +

ω

2

∥∥y∥∥2

X
−ω〈x, y〉X

= argmin
y∈X

g(y) +
1

2

(
Hx + ωR

)
(y)2 −

(
Hx(x) + ωRx− f ′(x)

)
y

= PHx+ωR
g

(
Hx(x) + ωRx− f ′(x)

)
.

(4.2)

Note thatHx+ωR : X×X → R satisfies (1.3) with constant (κ1+ω) such that the combination
of g and Hx + ωR still suffices the requirements for the results from Proposition 3.1 for all
ω > −(κ1 +κ2). Additionally, the results of Lemma 2.2 apparently also hold in the globalized
case.

The formulation of updated iterates via the above scaled proximal mapping enables us to
establish some helpful properties of the damped update steps ∆x(ω).

Proposition 4.1. Under the assumptions (1.3) for Hx and (1.4) for h the inequality

f ′(x)∆x(ω) + g(x+ ∆x(ω))− g(x) ≤ −
(κ2

2
+ ω

)∥∥∆x(ω)
∥∥2

X
−Hx(∆x(ω))2

holds for the update step ∆x(ω) as defined in (4.1) and arbitrary −(κ1 + κ2) < ω <∞.

Proof. The proof here follows along the same lines as the derivation of the auxiliary estimate
for the bracket term in the proof of Lemma 3.3. Due to the structure of the update formula in
(4.2) we can take advantage of the estimate from Proposition 3.1 with ϕ = Hx(x)+ωRx−f ′(x),
H = Hx + ωR and ξ = x which yields u = PHg (x) = x+ and thereby

Hx(∆x(ω))2 + ω
∥∥∆x(ω)

∥∥2

X
+f ′(x)∆x(ω) ≤ g(x)− g(x+(ω))− κ2

2

∥∥∆x(ω)
∥∥2

X

which is equivalent to the asserted estimate.

With the above estimate for damped update steps at hand, let us now formulate a criterion
for sufficient decrease which will help us to verify a global convergence result of our Proximal
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Newton method. We call a value of the regularization parameter ω > −(κ1 + κ2) admissible
for sufficient decrease if the inequality

F (x+(ω)) ≤ F (x) + γλω(∆x(ω)) (4.3)

for some prescribed γ ∈]0, 1[ is satisfied. We may interpret λω(∆x(ω)) as a predicted decrease
and rewrite the condition (4.3) as follows:

F (x+(ω))− F (x)

λω(∆x(ω))
≥ γ ,

which is the classical ratio of actual decrease and predicted decrease, used in trust-region
algorithms. Before now trying to verify that the descent criterion in (4.3) is fulfilled for
sufficiently large values of ω we note that the assertion in Proposition 4.1 implies the insightful
estimate

λω(∆x(ω)) ≤ −
(κ2

2
+ ω

)∥∥∆x(ω)
∥∥2

X
−1

2
Hx

(
∆x(ω)

)2
+
ω

2
‖∆x(ω)‖2X

≤ −1

2

(
ω + κ1 + κ2

)∥∥∆x(ω)
∥∥2

X

(4.4)

which yields that once the criterion is satisfied, update steps unequal to zero provide real
descent in the composite objective function F according to

F (x+(ω))− F (x) ≤ −γ
2

(
ω + κ1 + κ2

)∥∥∆x(ω)
∥∥2

X
. (4.5)

Let us now take a look at the existence of sufficiently large values of the regularization param-
eter ω. Here, the Lipschitz-continuity of f ′ comes into play for the first time.

Lemma 4.2. For f , Hx and g as above the criterion for sufficient descent introduced via (4.3)
is satisfied for γ ∈]0, 1[ if ω satisfies

ω ≥
Lf − κ1

1− γ
− (κ1 + κ2) .

Proof. By our lower bound on on ω and (4.4) we obtain:

Lf − κ1

2
‖∆x(ω)‖2X ≤

1− γ
2

(ω + κ1 + κ2)‖∆x(ω)‖2X ≤ −(1− γ)λω(∆x(ω)) .

The Lipschitz-continuity of f ′ directly yields the estimate

f(x+(ω)) = f(x+ ∆x(ω)) ≤ f(x) + f ′(x)∆x(ω) +
Lf
2

∥∥∆x(ω)
∥∥2

X

from where we immediately obtain an estimate for the descent in the composite objective
functional via

F (x+(ω))− F (x) ≤ f ′(x)∆x(ω) +
Lf
2

∥∥∆x(ω)
∥∥2

X
+g(x+(ω))− g(x)

≤ λω(∆x(ω)) +
Lf − κ1

2

∥∥∆x(ω)
∥∥2

X

≤ λω(∆x(ω))− (1− γ)λω(∆x(ω)) = γλω(∆x(ω)) .

This estimate is equivalent to (4.3) and thereby concludes the proof of the assertion.

11



Additionally, for global convergence, it turns out that we have to guarantee that

λωk
(∆x(ωk))→ 0 implies ‖∆x(ωk)‖X → 0.

A simple way to achieve this is to impose the following restriction:

‖∆x(ωk)‖2X ≤ −Mλωk
(∆x(ωk)) (4.6)

for some prescribed upper bound M . Due to (4.4) this can be achieved for a sufficiently large
choice of ωk. All in all, this results in the following algorithm:

Data: Starting point x0 ∈ X, sufficient decrease parameter γ ∈]0, 1[, ε > 0 for
stopping criterion

Initialization: k = 0;
while (1 + ωk)

∥∥∆xk(ωk)
∥∥
X
≥ ε do

Compute a trial step ∆xk(ωk) according to (4.1);
if bound (4.6) and sufficient descent criterion (4.3) are satisfied then

Update current iterate to xk+1 ← xk + ∆xk(ωk);
Decrease ωk to some ωk+1 < ωk for next iteration;
Update k ← k + 1 ;

else
Increase ωk appropriately;

end
end

Algorithm 1: Second order semi-smooth Proximal Newton algorithm damped according
to (4.1)
Now that we have formulated the algorithm and can be sure that we can always damp

update steps sufficiently such that they yield descent according to (4.3), we will verify the
stationarity of limit points of the sequence of iterates generated by Algorithm 1. To this end,
we will first prove that the norm of the corresponding update steps converges to zero along
the sequence of iterates.

Lemma 4.3. Let (xk) ⊂ X be the sequence generated by the Proximal Newton method glob-
alized via (4.1) for admissible values of the regularization parameter ωk starting at any x0 ∈
domg. Then either F (xk) → −∞ or λωk

(∆x(ωk)) and
∥∥∆xk(ωk)

∥∥
X

converge to zero for
k →∞.

Proof. By (4.5) the sequence F (xk) is monotonically decreasing. Thus, either F (xk) → −∞
or F (xk)→ F for some F ∈ R and thus in particular F (xk)−F (xk+1)→ 0. Since γ > 0, also
λωk

(∆x(ω))→ 0. Since, by assumption, ωk + κ1 + κ2 > 0 this implies
∥∥∆xk(ωk)

∥∥
X
→ 0.

If we take a look at the optimality conditions for the step computation in (4.1) at x+(ω),
we obtain

(Hx + ωR)x− f ′(x) ∈ ∂F gHx
ω (x+(ω))

with the Frechét-subdifferential of gHx
ω : X → R, y 7→ g(y) + 1

2Hx(y)2 + ω
2

∥∥y∥∥2

X
on the right-

hand side. This directly yields the existence of some η ∈ ∂F g(x+(ω)) such that

η + f ′(x+(ω)) = rx(∆x(ω)) with rx(v) := f ′(x+ v)− f ′(x)−
(
Hx + ωR

)
v . (4.7)
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This implies the estimate:

dist(∂FF (xk), 0) = dist(f ′(xk) + ∂F g(xk), 0) ≤
∥∥rxk(∆xk(ωk))

∥∥
X∗

Thus, by Lemma 4.3 and

‖rxk(∆xk(ωk))‖X∗ ≤
(
Lf +

∥∥Hxk

∥∥
L(X,X∗)

+ωk
)∥∥∆xk(ωk)

∥∥
X

we obtain
dist(∂FF (xk), 0)→ 0

as long as Lf <∞ exists,
∥∥Hxk

∥∥
L(X,X∗)

≤ M is bounded, and ωk is bounded. The latter can
be guaranteed via Lemma 4.2 if the “appropriate increase” of ωk is done by no more than a
fixed factor ρ > 1.

Remark. With some additional technical effort, the assumption on Lipschitz continuity of f ′

could be relaxed to a uniform continuity assumption.

Observe that we can indeed interpret
∥∥∆xk(ωk)

∥∥
X
≤ ε as a condition for the optimality

of our the subsequent iterate up to some prescribed accuracy. However, small step norms∥∥∆xk(ωk)
∥∥
X

can also occur due to very large values of the damping parameter ωk as a con-
sequence of which the algorithm would stop even though the sequence of iterates is not even
close to an optimal solution of the problem. In order to rule out this inconvenient case, we
consider the scaled version (1 + ωk)

∥∥∆xk(ωk)
∥∥
X

as the stopping criterion in Algorithm 1.
Now we are in the position to discuss subsequential convergence of our algorithm to a

stationary point. In the following, we will assume throughout that F (xk) is bounded from
below. We start with the case of convergence in norm:

Theorem 4.4. Under the assumptions stated above, all accumulation points x̄ (in norm) of
the sequence of iterates (xk) generated by the Proximal Newton method globalized via (4.1) are
stationary points of problem (1.1).

Proof. Let us consider a modified version of our minimization problem as in (2.6) in Lemma 2.2
and choose q(x) = 1

2Q(x)2 for Q : X ×X → R such that g̃ = g + q is (strongly) convex on its
domain. This is always possible by (1.4). According to Lemma 2.2, the sequence of iterates
remains unchanged and step computation takes the form

xk+1 = x̃k+1 = argmin
y∈X

g̃(y) +
1

2

(
Hxk −Q+ ωR

)
(y)2 −

(
(Hxk + ωkR)xk − f ′(xk)

)
y

with first order optimality conditions

Hxk(xk) + ωkRxk − f ′(xk) ∈ ∂g̃(xk+1) +
(
Hxk −Q+ ωR

)
(xk+1)

where ∂g̃(xk) denotes the convex subdifferential of g̃ at xk. Consequently, we know that there
exists some η̃k ∈ ∂g̃(xk) such that

η̃k +
(
f ′(xk+1)−Qxk+1

)
= r̃xk

(
∆xk(ωk)

)
with r̃x(v) := f ′(x+ v)− f ′(x)−

(
Hx + ωR

)
v

holds. As before, the remainder term r̃xk
(
∆xk(ωk)

)
= rxk

(
∆xk(ωk)

)
tends to zero for k →∞,

i.e., we have η̃ := limk→∞ η̃k = −f ′(x̄) + Qx̄. The definition of the convex subdifferential ∂g̃
together with the lower semi-continuity of g̃ directly yields

g̃(u)− g̃(x̄) ≥ g(u)− lim inf
k→∞

g(xk) = lim inf
k→∞

g(u)− g(xk) ≥ lim
k→∞

η̃k(u− xk) = η̃(u− x̄).
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which proves the inclusion η̃ ∈ ∂g̃(x̄). The evaluation of the latter limit expression can easily
be retraced by splitting

ηk(u− xk) = ηk(u− x̄) + (ηk − η)(x̄− xk) + η(x̄− xk) . (4.8)

In particular, we recognize η̃ ∈ ∂g̃(x̄) as−f ′(x̄)+Qx̄ ∈ ∂g̃(x̄) and equivalently−f ′(x̄) ∈ ∂F g(x̄)
for the Frechét-subdifferential ∂F . This implies 0 ∈ ∂FF (x̄), i.e., the stationarity of our limit
point x̄.

Also note that in general the above global convergence result does not rely on the strong
convexity of the composite objective function F but yields stationarity of limit points also in
the non-convex case of κ1 + κ2 < 0 and ωk > −(κ1 + κ2) chosen adequately. In particular,
this ensures that also independent of strong convexity assumptions near optimal solutions, the
algorithm approaches the optimal solution and can then benefit from additional convexity at
later iterations.

While bounded sequences in finite dimensional spaces always have convergent subsequences,
we can only expect weak subsequential convergence in general Hilbert spaces in this case. As
one consequence, existence of minimizers of nonconvex functions on Hilbert spaces can usually
only be established in the presence of some compactness. On this count we note that in (4.8)
even weak convergence of xk ⇀ x̄ would be sufficient. Unfortunately, in the latter case we
cannot evaluate f ′(xk)→ f ′(x̄).

In order to extend our proof to this situation, we require some more structure for both of
the parts of our composite objective functional.

Theorem 4.5. Let f be of the form f(x) = f̂(x) + f̌(Kx) where K is a compact operator.
Additionally, assume that g+ f̂ is convex and weakly lower semi-continuous in a neighborhood
of stationary points of (1.1). Then weak convergence of the sequence of iterates xk ⇀ x̄ suffices
for x̄ to be a stationary point of (1.1).

If F is strictly convex and radially unbounded, the whole sequence xk converges weakly to
the unique minimizer x∗ of F . If F is κ-strongly convex, with κ > 0, then xk → x∗ in norm.

Proof. We can employ the same proof as above replacing g by g+ f̂ and using that f̃ ′(Kxk)→
f̌ ′(Kx̄) in norm, by compactness. This then shows finally

(g + f̂)(u)− (g + f̂)(x̄) ≥ η(u− x̄) ,

i.e., η = −f̌ ′(Kx̄)K ∈ ∂(g + f̂)(x̄) = ∂F g(x̄) + {f̂ ′(x̄)} which in particular implies

−f ′(x̄) = −f̌ ′(Kx̄)K − f̂ ′(x̄) ∈ ∂F g(x̄) .

This again constitutes 0 ∈ ∂FF (x̄) and thereby the stationarity of the weak limit point x̄.
Let us now consider the second assertion: F being strictly convex as well as radially

unbounded yields that problem (1.1) has a unique solution x∗. Additionally, we know that our
sequence of iterates is bounded as a consequence of which we can select a weakly convergent
subsequence. The first assertion of the theorem then implies that the limit of each subsequence
we choose is a stationary point of problem (1.1), and thus by convexity to the unique optimal
solution x∗. A standard argument then shows that the whole sequence converges to x∗ weekly.

If F is κ-strongly convex, then as discussed below (1.4) the diameter the level sets LF (xk)

tends to 0 as k →∞, since F (xk)→ F (x∗). This implies ‖xk − x∗‖X → 0.
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5 Second order semi-smoothness

In order to be able to benefit from the local acceleration result in Theorem 3.5, we have to
ensure that under the assumptions on F stated in Section 1 eventually also full steps are
admissible for sufficient descent according to our criterion formulated in (4.3). To this end, we
want to introduce a new notion of differentiability, which we call second order semi-smoothness,
and investigate how it interacts with our Proximal Newton method.

For the smooth part f of our composite objective function F we define a second order
semi-smoothness property at some x∗ ∈ domf by

f(x∗ + ξ) = f(x∗) + f ′(x∗)ξ +
1

2
Hx∗+ξ(ξ, ξ) + o(

∥∥ξ∥∥2

X
) for ξ → 0. (5.1)

for any ξ ∈ X. This will be precisely the assumption that we need to conclude transition to
fast local convergence in the following section.

We give a general definition for operators. Denote by L(2)(X,Y ) the normed space of
bounded vector valued bilinear forms X ×X → Y , equipped with usual norm:

‖B‖L(2)(X,Y ) = sup
ξ1,ξ2 6=0

‖B(ξ1, ξ2)‖Y
‖ξ1‖X‖ξ2‖X

.

Definition 5.1. Let X,Y be normed linear spaces and let D ⊂ X be a neighborhood of x∗.
Consider a continuously differentiable operator T : D → Y , and a bounded mapping

T ′′ : D → L(2)(X,Y ).

We call T second order semi-smooth at x∗ ∈ X with respect to T ′′, if the following estimate
holds:

‖T (x∗ + ξ)− T (x∗)− T ′(x∗)ξ −
1

2
T ′′(x∗ + ξ)(ξ, ξ)‖Y = o(‖ξ‖2X) for ξ → 0

Since T ′′ is evaluated at x∗ + ξ, the choice of T ′′ is far from unique. Twice continuously
differentiable operators apparently are second order semi-smooth:

Proposition 5.2. Assume that T is twice continuously differentiable at x∗. Then T is second
order semi-smooth at x∗ with respect to the ordinary second derivative T ′′.

Proof. This follows by a simple computation:

T (x∗) + T ′(x∗)ξ +
1

2
T ′′(x∗ + ξ)(ξ, ξ)

=
[
T (x∗) + T ′(x∗)ξ +

1

2
T ′′(x∗)(ξ, ξ)

]
+

1

2

[
T ′′(x∗ + ξ)(ξ, ξ)− T ′′(x∗)(ξ, ξ)

]
Both terms in square brackets are o(

∥∥ξ∥∥2

X
). The first by Fréchet differentiability of T , the

second by continuity of T ′′(x).

It is an obvious remark that the sum of two second order semi-smooth functions is second
order semismooth again with linear and quadratic terms defined via sums. Furthermore, the
following chain rule can be shown:
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Theorem 5.3. Suppose that S : DS → Y and T : DT → Z with S(DS) ⊂ DT are second
order semi-smooth at x∗ ∈ DS and y∗ = S(x∗) with respect to S′′ and T ′′, respectively. Then
T ◦ S is second order semi-smooth with respect to (T ◦ S)′′, defined as follows:

(T ◦ S)′′(x)(ξ1, ξ2) := T ′′(y)(S′(x)ξ1, S
′(x)ξ2) + T ′(y)S′′(x)(ξ1, ξ2).

Proof. We introduce the notations y∗ = S(x∗), x = x∗ + ξ, y = S(x), and η = y − y∗. With
these prerequisites we can, as usual for chain rules, split the remainder term:

(T ◦ S)(x)− (T ◦ S)(x∗)− (T ◦ S)′(x∗)ξ −
1

2
(T ◦ S)′′(x)(ξ, ξ)

= T (y)− T (y∗)− T ′(y∗)S′(x∗)ξ −
1

2

(
T ′′(y)(S′(x)ξ, S′(x)ξ) + T ′(y)S′′(x)(ξ, ξ)

)
= T (y)− T (y∗)− T ′(y∗)η −

1

2
T ′′(y)(η, η) (5.2)

+ T ′(y∗)

(
S(x)− S(x∗)− S′(x∗)ξ −

1

2
S′′(x)(ξ, ξ)

)
(5.3)

+
1

2
(T ′(y∗)− T ′(y))S′′(x)(ξ, ξ) (5.4)

+
1

2

(
T ′′(y)(η, η)− T ′′(y)(S′(x)ξ, S′(x)ξ)

)
(5.5)

We will show that each of the expressions (5.2)-(5.5) is o(
∥∥ξ∥∥2

X
). For (5.2) this follows from

second order semi-smoothness of T , while second order semi-smoothness of S implies the
desired result for (5.3). Continuity of T ′ and boundedness of S′′ yield that (5.4) is o(

∥∥ξ∥∥2

X
).

Finally, (5.5) can be reformulated via the third binomial formula:

‖T ′′(y)(η, η)− T ′′(y)(S′(x)ξ, S′(x)ξ)‖Z = ‖T ′′(y)(η + S′(x)ξ, η − S′(x)ξ)‖Z
≤ ‖T ′′(y)‖L(2)(Y,Z)‖η + S′(x)ξ‖Y ‖η − S′(x)ξ‖Y .

By continuous differentiablity of S (which is a prerequisite of second order semi-smoothness
by our definition) we estimate: ∥∥η + S′(x)ξ

∥∥
Y

= O(
∥∥ξ∥∥

X
) (5.6)∥∥η − S′(x)ξ

∥∥
Y
≤
∥∥η − S′(x∗)ξ∥∥Y +

∥∥(S′(x∗)− S′(x))ξ
∥∥
Y

= o(
∥∥ξ∥∥

X
), (5.7)

which finally yields the desired result.

Remark. In the case T ′(y∗) = 0, we observe from (5.3) that S only needs to be continuously
differentiable and we may set S′′ = 0.

Second order semi-smoothness of T and semi-smoothness of T ′ are closely related but are
not equivalent in general. Even in the case of T ′′(x) := ∂NT

′(x) we cannot conclude one
condition from the other, e.g. via the fundamental theorem of calculus, because of the lack
of continuity of ∂NT ′. However, in many cases of practical interest, both conditions can be
shown to hold.

For instance, the function φ(x) = max{0, x}2 is second order semi-smooth at the point
x = 0 with respect to

φ′′(ξ) =

{
0 : ξ < 0
1 : ξ ≥ 0
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and twice Fréchet differentiable (and thus also second-order semi-smooth, cf. Proposition 5.2)
at any other point x 6= 0 with the same φ′′(ξ). By standard techniques we can lift this property
to superposition operators on Lp-spaces for appropriate p.

For convenience, we recapitulate the following lemma, which is a slight generalization of a
standard result on continuity of superposition operators.

Lemma 5.4. Let Ω a measurable subset of Rd, and ψ : R×Ω→ R. For each measurable func-
tion x : Ω→ R assume that the function Ψ(x), defined by Ψ(x)(t) = ψ(x(t), t) is measurable.
Let x∗ ∈ Lp(Ω,R) be given. Then the following assertion holds:

If ψ is continuous with respect to x at (x∗(t), t) for almost all t ∈ Ω, and Ψ maps Lp(Ω,R)
into Ls(Ω,R) for 1 ≤ p, s <∞, then Ψ is continuous at x∗ in the norm topology.

Proof. cf. e.g. [22, Lemma 3.1].

The standard text book result requires ψ to be a Caratheodory function, and thus in
particular continuous in x for all t ∈ Ω. This assumption, is slightly weakened here to the
almost everywhere sense. It is known, for example, that pointwise limits and suprema of
Caratheodory functions yield superposition operators that map measurable functions to mea-
surable functions. φ′′, as defined above is an example. Importantly, this result is not true for
the case p < s =∞.

Proposition 5.5. Consider a real function φ : R → R with globally Lipschitz continuous
derivative φ′ : R → R, which is second order semi-smooth with respect to a bounded function
φ′′ : R→ R. Let Ω ⊂ Rd be a set of finite measure and assume that the composition φ′′ ◦ u is
measurable for any measurable function u : Ω → R. Let p > 2. Then for each x ∈ Lp(Ω) the
superposition operator Φ : Lp(Ω)→ L1(Ω) is second order semi-smooth with respect to Φ′′(x) ∈
L2(Lp(Ω), L1(Ω)) defined by Φ′′(x)(ξ1, ξ2)(ω) = φ′′(x(ω))ξ1(ω)ξ2(ω) almost everywhere.

Proof. Consider a representative of x ∈ Lp(Ω) and the function

rx(ω, t) :=
φ(x(ω) + t)− φ(x(ω))− φ′(x(ω))t− φ′′(x(ω) + t)t2

t2

which is defined for t 6= 0 and rx(ω, t) := 0 for t = 0. By Lipschitz continuity of φ′ and
boundedness of φ′′ we observe that rx is bounded uniformly on Ω×R. Thus, the superposition
operator Rx : Lp(Ω)→ Ls(Ω) : Rx(ξ)(ω) = rx(ω, ξ(ω)) is well defined for any 1 ≤ s ≤ ∞. By
second order semi-smoothness rx(ω, ·) is continuous at t = 0 for almost all ω ∈ Ω. Hence, by
Lemma 5.4 Rx is continuous as an operator at ξ = 0 for any s <∞. By the Hölder inequality
with 1/s+ 2/p = 1 we conclude the desired estimate:

‖Φ(x+ ξ)− Φ(x)− Φ′(x)ξ − Φ′′(x)(ξ, ξ)‖L1(Ω) = ‖Rx(ξ) · ξ · ξ‖L1(Ω)

≤ ‖Rx(ξ)‖Ls(Ω)‖ξ‖2Lp(Ω) = o(‖ξ‖2Lp(Ω)).

Unsurprisingly and in analogy to the theory of semi-smooth superposition operators, there
is a norm gap in the sense that Proposition 5.5 is false for p = 2. This is closely related to the
so call two-norm discrepancy (cf. e.g. [25]).

As in the above example, φ′′(ξ) has a discontinuity at ξ = 0, so we cannot expect that Φ′′

is a continuous mapping on a given open set. However, we can show the following result:
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Proposition 5.6. Let p > 2 and x∗ ∈ Lp(Ω) be fixed. Assume that function (ω, t) →
φ′′(x∗(ω) + t) is continuous in t for almost all ω ∈ Ω. Then the mapping Φ′′ : Lp(Ω) →
L(2)(Lp(Ω), L1(Ω)) is continuous at x∗.

Proof. We apply Lemma 5.4 to the superposition operator Φ̃′′(x)(ω) := φ′′(x(ω)), which maps
Lp(Ω)→ Ls(Ω) and the use the Hölder inequality to conclude:

‖[Φ′′(x)− Φ′′(x∗)](ξ1, ξ2)‖L1(Ω) ≤ ‖Φ̃′′(x)− Φ̃′′(x∗)‖Ls(Ω)‖ξ1‖Lp(Ω)‖ξ2‖Lp(Ω).

In our example φ(x) = max{0, x}2 fulfills the hypothesis of this theorem at x∗ ∈ Lp(Ω),
if x∗(ω) = 0 only on a set of measure 0 in Ω. This kind of regularity assumption can also be
found frequently in the literature (cf. e.g. [11]) on semi-smooth Newton methods.

6 Transition to Fast Local Convergence

Let us now turn our attention back to our Proximal Newton method and consider the ad-
missibility of undamped update steps near optimal solutions of problem (1.1). Both the
semi-smoothness of f ′ from (3.4) and the second order semi-smoothness of f from (5.1) will
contribute a crucial part to the proof of this result. Additionally, the local acceleration result
from Theorem 3.5 will play an important role.

However, an algorithm that tests in every iterate, whether the undamped Newton step
is acceptable is likely to compute many unnecessary trial iterates during the early phase of
globalization. Thus, it is of interest, whether damped Newton steps are acceptable as well
close to the solution.

In order to establish the corresponding proposition of admissibility we will first have to
investigate the relation between damped and undamped steps more closely.

Lemma 6.1. Let Hx be a bilinear form as in (1.3)and assume that g suffices (1.4) where
κ1 +κ2 > 0 holds and x ∈ X is arbitrary. Then the damped update step ∆x(ω) from (4.1) and
the undamped update step ∆x from (2.1) satisfy the estimates∥∥∆x−∆x(ω)

∥∥
X
≤ ω

κ1 + κ2

∥∥∆x(ω)
∥∥
X

(6.1)∥∥∆x(ω)
∥∥
X
≤
∥∥∆x

∥∥
X
≤
( ω

κ1 + κ2
+ 1
)∥∥∆x(ω)

∥∥
X

(6.2)

for any ω ≥ 0.

Proof. The above set of estimates can all be deduced from adequate proximal representations
of the respective update steps. We can characterize the undamped step via ∆x = x+ − x
where the updated iterate is given by

x+ = argmin
y∈X

f ′(x)(y − x) +
1

2
Hx(y − x, y − x) + g(y)− g(x)

= PHx
g

(
Hx(x)− f ′(x)

)
.

Now, consider the corresponding inequality from Proposition 3.1 for ϕ = Hx(x) − f ′(x),
H = Hx and ξ := x+(ω) given by[

Hx(x)− f ′(x)−Hx(x+)
]
(x+(ω)− x+) ≤ g(x+(ω))− g(x+)− κ2

2

∥∥x+(ω)− x+

∥∥2

X
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which can be rearranged to a more useful form via[
Hx(∆x) + f ′(x)

]
(∆x−∆x(ω)) ≤ g(x+(ω))− g(x+)− κ2

2

∥∥∆x−∆x(ω)
∥∥2

X
. (6.3)

For the damped update step we want to consider a different form than in (4.2) and attribute
the additional norm term ω

2

∥∥·∥∥2

X
to the lower argument function g. This results in the proximal

representation

x+(ω) = PHx

g+ω
2

∥∥·∥∥2

X

(
Hx(x) + ωRx− f ′(x)

)
.

The deduction of the respective inequality induced by the first order conditions of the proximal
subproblem will turn out to be slightly more complicated. We use H = Hx and ϕ = Hx(x) +
ωRx − f ′(x) together with ξ = x+ in Proposition 3.1. Note here that the lower argument
function g + ω

2

∥∥·∥∥2

X
satisfies (1.4) with constant κ2 + ω. Thus, we obtain[

−Hx

(
∆x(ω)

)
+ ωRx− f ′(x)

](
∆x−∆x(ω)

)
≤ g(x+)− g(x+(ω)) +

ω

2

(∥∥x+

∥∥2

X
−
∥∥x+(ω)

∥∥2

X

)
− κ2 + ω

2

∥∥∆x−∆x(ω)
∥∥2

X
.

(6.4)

We bring the Riesz-term ωR
(
x,∆x−∆x(ω)

)
to the right-hand side of (6.4) and recognize∥∥x+

∥∥2

X
−
∥∥x+(ω)

∥∥2

X
−2R

(
x,∆x−∆x(ω) =

∥∥∆x
∥∥2

X
−
∥∥∆x(ω)

∥∥2

X

which results in[
−Hx

(
∆x(ω)

)
− f ′(x)

](
∆x−∆x(ω)

)
≤ g(x+)− g(x+(ω)) +

ω

2

(∥∥∆x
∥∥2

X
−
∥∥∆x(ω)

∥∥2

X

)
− κ2 + ω

2

∥∥∆x−∆x(ω)
∥∥2

X
.

(6.5)

This inequality will be of importance once more later on. For now, we estimate the term∥∥∆x
∥∥2

X
−
∥∥∆x(ω)

∥∥2

X
−
∥∥∆x−∆x(ω)

∥∥2

X

=
(∥∥∆x

∥∥
X

+
∥∥∆x(ω)

∥∥
X

)(∥∥∆x
∥∥
X
−
∥∥∆x(ω)

∥∥
X

)
−
∥∥∆x−∆x(ω)

∥∥2

X

≤
∥∥∆x−∆x(ω)

∥∥
X

(∥∥∆x
∥∥
X

+
∥∥∆x(ω)

∥∥
X
−
∥∥∆x−∆x(ω)

∥∥
X

)
≤ 2
∥∥∆x(ω)

∥∥
X

∥∥∆x−∆x(ω)
∥∥
X

such that (6.5) takes the form[
−Hx

(
∆x(ω)

)
− f ′(x)

](
∆x−∆x(ω)

)
≤ g(x+)− g(x+(ω)) + ω

∥∥∆x(ω)
∥∥
X

∥∥∆x−∆x(ω)
∥∥
X
−κ2

2

∥∥∆x−∆x(ω)
∥∥2

X
.

(6.6)

Now, we add (6.3) and (6.6) which yields

Hx

(
∆x−∆x(ω)

)
≤ ω

∥∥∆x(ω)
∥∥
X

∥∥∆x−∆x(ω)
∥∥
X
−κ2

∥∥∆x−∆x(ω)
∥∥2

X
.

Here we can use assumption (1.3) on Hx and rearrange the resulting estimate to∥∥∆x−∆x(ω)
∥∥2

X
≤ ω

κ1 + κ2

∥∥∆x(ω)
∥∥
X

∥∥∆x−∆x(ω)
∥∥
X
.
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This is exactly the first asserted inequality (6.1) if we divide by
∥∥∆x − ∆x(ω)

∥∥
X

which we
can assume to be non-zero without loss of generality. From here, we can directly deduce the
second part of (6.2), since we can take advantage of (6.1) by∥∥∆x

∥∥
X
−
∥∥∆x(ω)

∥∥
X
≤
∥∥∆x−∆x(ω)

∥∥
X
≤ ω

κ1 + κ2

∥∥∆x(ω)
∥∥
X
.

The first part of (6.2) on the other hand requires some more consideration. We start at (6.5)
but now take another route and directly add it to (6.3) which yields

Hx

(
∆x−∆x(ω)

)2
+
(
κ2 +

ω

2

)∥∥∆x−∆x(ω)
∥∥2

X
≤ ω

2

(∥∥x+

∥∥2

X
−
∥∥x+(ω)

∥∥2

X

)
and thereby

0 ≤
(
κ1 + κ2 +

ω

2

)∥∥∆x−∆x(ω)
∥∥2

X
≤ ω

2

(∥∥x+

∥∥2

X
−
∥∥x+(ω)

∥∥2

X

)
(6.7)

as we use (1.3) for Hx. All prefactors in (6.7) are positive due to our assumptions such that
the first part of (6.2) follows. This completes the proof.

The equivalence result for damped and undamped update steps in the form of (6.2) enables
the proof of the following Corollary which will turn out to be useful for the admissibility of
damped steps close to optimal solutions.

Corollary 6.2. Close to an optimal solution x∗ of (1.1) we can find constants c1, c2 > 0 such
that the following estimates hold:∥∥x+(ω)− x∗

∥∥
X
≤ c1

∥∥x− x∗∥∥X , ∥∥x− x∗∥∥X≤ c2

∥∥∆x(ω)
∥∥
X

Proof. For the deduction of both asserted inequalities, we will take advantage of the local
superlinear convergence stated in Theorem 3.5, i.e.,

∥∥x+ − x∗
∥∥
X

= o
(∥∥x− x∗∥∥X) in the limit

of x→ x∗. Consequently, we can write∥∥x+ − x∗
∥∥
X

= ψ
(∥∥x− x∗∥∥X)∥∥x− x∗∥∥X (6.8)

for some function ψ : [0,∞[→ [0,∞[ with ψ(t)→ 0 for t→ 0. With this helpful representation
at hand, we estimate∥∥x+(ω)− x∗

∥∥
X
≤
∥∥x− x∗∥∥X+

∥∥∆x(ω)
∥∥
X
≤
∥∥x− x∗∥∥X+

∥∥∆x
∥∥
X

≤ 2
∥∥x− x∗∥∥X+

∥∥x+ − x∗
∥∥
X

=
[
2 + ψ

(∥∥x− x∗∥∥X)]∥∥x− x∗∥∥X .
By the definition of ψ above, this directly implies the first asserted inequality. We can deduce
the second one similarly quickly via∥∥x− x∗∥∥X≤ ∥∥x+ − x∗

∥∥
X

+
∥∥∆x

∥∥
X

= ψ
(∥∥x− x∗∥∥X)∥∥x− x∗∥∥X+

∥∥∆x
∥∥
X
.

We can assume ψ
(∥∥x− x∗∥∥X) < 1 close to the optimal solution x∗ and thereby deduce∥∥x− x∗∥∥X ≤ [1− ψ(∥∥x− x∗∥∥X)]−1∥∥∆x

∥∥
X

≤
[
1− ψ

(∥∥x− x∗∥∥X)]−1( ω

κ1 + κ2
+ 1
)∥∥∆x(ω)

∥∥
X

with the additional help of (6.2). Taking into account that ω remains bounded completes the
proof of the second asserted inequality.
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Now we are in the position to prove the admissibility of both undamped and damped
steps close to optimal solutions of the composite minimization problem (1.1). We will see that
undamped steps will generally be admissible whereas for the admissibility of damped steps we
will have to assume an additional property of the second order model bilinear forms Hx.

Proposition 6.3. Let x∗ ∈ X be an optimal solution of (1.1) and let Hx := ∂Nf
′(x) suffice

(1.3) as well as g suffice (1.4) with κ1 +κ2 > 0 in a neighborhood of x∗. Additionally, suppose
that (5.1) holds for f as well as (3.4) holds for f ′ at x∗.

Steps as in (4.1) for any ω ≥ 0 are admissible for sufficient descent according to (4.3) for
any γ < 1 if the second order bilinear forms Hx satisfy a bound of the form

(Hx+(ω) −Hx)(x+(ω)− x∗)2 = o
(∥∥x− x∗∥∥2

X

)
for x→ x∗. (6.9)

In particular:

i) full steps ∆x as defined in (2.1) are eventually admissible.

ii) if the mapping x→ Hx is continuous at x = x∗, then eventually all steps are admissible.

Proof. Let us take a look at the descent in the composite objective function F when performing
an update step and see which estimates we can deduce with the help of the assumptions and
results preceding this proposition.

We will denote the update by ∆x(ω) or x+(ω) = x+∆x(ω) respectively for some arbitrary
ω ≥ 0 such that the notation comprises both the damped and undamped case for the update
step. Now, we write

F (x+ ∆x(ω))− F (x) = f(x+ ∆x(ω))− f(x) + g(x+ ∆x(ω))− g(x)

and estimate the descent in the smooth part of the objective function f(x + ∆x(ω)) − f(x).
By telescoping we obtain the following identity:

f(x+(ω))− f(x)− f ′(x)∆x(ω)− 1

2
Hx(∆x(ω))2

= f(x+(ω))− f(x∗)− f ′(x∗)(x+(ω)− x∗)−
1

2
Hx+(ω)(x+(ω)− x∗)2

+ f(x∗) + f ′(x∗)(x− x∗) +
1

2
(Hx+(ω) −Hx)(x+(ω)− x∗)2

− f(x)−Hx(∆x(ω))2 +
1

2
(Hx(x∗ − x+(ω))2 +Hx(∆x(ω))2)

− f ′(x)∆x(ω) + f ′(x∗)∆x(ω) +Hx(x− x∗,∆x(ω)) +Hx(x∗ − x+(ω) + ∆x(ω),∆x(ω))

=

[
f(x+(ω))− f(x∗)− f ′(x∗)(x+(ω)− x∗)−

1

2
Hx+(ω)(x+(ω)− x∗)2

]
−
[
f(x)− f(x∗)− f ′(x∗)(x− x∗)−

1

2
Hx(x− x∗)2

]
−
[
(f ′(x)− f ′(x∗))∆x(ω)−Hx(x− x∗,∆x(ω))

]
+

1

2
(Hx+(ω) −Hx)(x+(ω)− x∗)2

= o(‖x+(ω)− x∗‖2) + o(‖x− x∗‖2X) + o(‖x− x∗‖X)‖∆x(ω)‖X

+
1

2
(Hx+(ω) −Hx)(x+(ω)− x∗)2.

(6.10)

In the last step we used second order semi-smoothness of f and semi-smoothness of f ′ at x∗.
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We observe that the only critical term is

ρ :=
1

2
(Hx+(ω) −Hx)(x+(ω)− x∗)2.

We conclude

f(x+ ∆x(ω))− f(x) = f ′(x)∆x(ω) +
1

2
Hx

(
∆x(ω)

)2
+ ρ+ o

(∥∥∆x(ω)
∥∥2

X

)
by Corollary 6.2 and then directly deduce

F (x+(ω))− F (x) = λω(∆x(ω))− ω

2
‖∆x(ω)‖2X + ρ+ o(‖∆x(ω)‖2X)) .

Now, we have to consider an estimate for the critical term ρ defined as above. We can define
a prefactor function γ : X × [0,∞[→ R for the admissibility criterion (4.3) by

γ(x, ω) :=
F (x+(ω))− F (x)

λω(∆x(ω))

= 1 +
−ω

2 ‖∆x(ω)‖2X + ρ+ o(‖∆x(ω)‖2X)

λω(∆x(ω))

= 1 +
ω
2 ‖∆x(ω)‖2X + o(‖∆x(ω)‖2X)− ρ

|λω(∆x(ω))|
which should be larger than some γ̃ ∈]0, 1[. We may assume that the numerator of the latter
expression is non-positive, otherwise this inequality is trivially fulfilled. Thus, by decreasing
the positive denominator via (4.4) we obtain that for any ε > 0 there is a neigbourhood of x∗,
such that for any iterate x in this neighbourhood

γ(x, ω) ≥ 1 +
ω
2 ‖∆x(ω)‖2X − ρ+ o(‖∆x(ω)‖2X)

1
2(ω + κ1 + κ2)‖∆x(ω)‖2X

= 1 +
ω

ω + κ1 + κ2
−

(Hx+(ω) −Hx)(x+(ω)− x∗)2

(ω + κ1 + κ2)‖∆x(ω)‖2X
− ε

where the latter ε-term arises from o(‖∆x(ω)‖2X)/‖∆x(ω)‖2X and can be chosen arbitrarily
small for ‖∆x(ω)‖X → 0 which holds by the estimate∥∥∆x(ω)

∥∥
X
≤
∥∥∆x

∥∥
X
≤
∥∥x+ − x∗

∥∥
X

+
∥∥x− x∗∥∥X .

The ρ-term then vanishes by assumption (6.9), which is implied by i) or ii) in the following
way:

i) ⇒ |(Hx+(ω)−Hx)(x+(ω)− x∗)2| = |(Hx+ −Hx)(x+ − x∗)2|

≤ (‖Hx+‖+ ‖Hx‖)‖x+ − x∗‖2X = o
(∥∥x− x∗∥∥2

X

)
ii) ⇒ |(Hx+(ω)−Hx)(x+(ω)− x∗)2|

≤ (‖Hx+(ω) −Hx∗‖+ ‖Hx∗ −Hx‖)‖x+(ω)− x∗‖2X = o
(∥∥x− x∗∥∥2

X

)
.

The seemingly paradoxical behavior that full Newton steps yield a better model approx-
imation than damped Newton steps comes from the fact that f ′ is not Fréchet differentiable
in general. The only prerequisite that we can take advantage of is (5.1) at fixed x∗.

The continuity assumption ii) on Hx can be verified for superposition operators via Propo-
sition 5.6, it holds, for example, for max(0, t)2, if x∗(ω) = 0 only on a set of zero measure.
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7 Numerical Results

We consider the following problem on Ω = [0, 1]2 ⊂ R2: Find u ∈ H1
0 (Ω,R) that minimizes

the composite objective functional F defined via

F (u) :=

∫
Ω

1

2

∥∥∇u∥∥2

R2+αmax{
∥∥∇u∥∥R2−1, 0}2 + βu3 + c |u|+ ρ · udx . (7.1)

with parameters c > 0 and α, β ∈ R as well as a force field ρ : Ω → R. The norm
∥∥·∥∥R2

denotes the Euclidean 2-norm on R2. In the sense of the theory of the preceding sections we
can identify the smooth part of F as f : H1

0 (Ω,R)→ R given by

f(u) :=

∫
Ω

1

2

∥∥∇u∥∥2

R2+αmax{
∥∥∇u∥∥R2−1, 0}2 + βu3 + ρ · udx .

We have to note here that f technically does not satisfy the assumptions made on the smooth
part of the composite objective functional specified above in the case α > 0 due to the lack
of semi-smoothness of the corresponding squared max-term. The use of the derivative ∇u
instead of function values u creates a norm-gap which cannot be, as usual, compensated by
Sobolev-embeddings and hinders the proof of semi-smoothness of the respective superposition
operator. However, we think that slightly going beyond the framework of theoretical results
for numerical investigations can be instructive.

For our implementation of the solution algorithm we chose the force field ρ to be constant
on its domain and equal to some so called load-factor ρ̃ > 0 which we will from now on
refer to as simply ρ. Consequently, the non-smooth part of the objective functional g only
consists of the scaled integral over the absolute value term which apparently also satisfies the
specifications made on g before.

In the following we will dive deeper into the specifics of our implementation of the algo-
rithm: In order to differentiate the smooth part of the composite objective functional and
create a second order model of it around some current iterate, we take advantage of the auto-
matic differentiation software package adol-C, cf. [29]. With the second order model at hand
we can then consider subproblem (4.1) which has to be solved in order to obtain a candidate
for the update of the current iterate. For the latter endeavor we employ a so called Truncated
Non-smooth Newton Multigrid Method with a direct linear solver. We can summarize this
method as a mixture of exact, non-smooth Gauß-Seidel steps for each component and global
truncated Newton steps enhanced with a line-search procedure. The scheme is analytically
proven to converge for convex and coercitive problems; for a more detailed description of the
algorithm and its convergence properties consider [10].

However, the most delicate issue concerning the implementation of our algorithm and its
application to the problem described above is the choice of the regularization parameter ω ≥ 0
along the sequence of iterates (xk) ⊂ X. For now, we want to confine ourselves to displaying
the convergence properties of the class of Proximal Newton methods in the scenario presented
above and not attach too much value to algorithmic technicalities. As a consequence, we
took the rather heuristic approach of simply doubling ω in the case that the sufficient descent
criterion (4.3) (for γ = 1

2) is not satisfied by the current update step candidate and on the other
hand multiplying ω by

(
1
2

)n where n ∈ N denotes the number of consecutive accepted update
steps. The latter feature ensures that local fast convergence is recognized by the algorithm and
the regularization parameter quickly decreases once the iterates come close to the minimizer.
For the superlinear convergence demonstrated in Theorem 3.5 to arise, undamped update
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h
α 0 40 80 120 160 200 240

2−4 5 9 13 16 14 14 14

2−5 5 11 21 19 20 24 30

2−6 7 18 22 23 29 29 30

2−7 9 17 26 30 36 39 38

2−8 7 20 27 31 38 43 44

Table 1: Number of total iterations N for different grid sizes h and prefactor values α for fixed
parameters β = 40 and c = 80.

steps have to be conducted, i.e., the regularization parameter has to be zero and not merely
sufficiently small. For this reason we set ω = 0 once it reaches a threshold value ω0 following
the procedure described beforehand. On the contrary, if a full update step is not accepted by
the sufficient descent criterion, we set ω = ω0 and from there on proceed as usual.

Even though the choice of ω considered here is rather heuristic and not problem-specific at
all, it stands in perfect conformity with the theory established over the course of the previous
sections and also successfully displays the global convergence and local acceleration of our
Proximal Newton method for the model problem of minimizing (7.1) over H1

0 (Ω,R).
Figure 1 constitutes a logarithmic plot of correction norms

∥∥∆xk(ωk)
∥∥
H1 for constant

values of c = 80, β = 40 and ρ = −100 while α is equidistantly increased from 80 to 240. Quite
predictably from the structure of the functional, increasing values of α make the minimization
problem more and more difficult to solve for our method but eventually the local superlinear
convergence is evident also for larger values of α. Figure 2 shows the corresponding values of
the regularization parameter ω which were used along the accepted steps on the way to the
minimizer.

Furthermore, Table 1 displays the total number of iterations required in order to reach
the minimizer of (1.1) considering different grid sizes for the discretization of the objective
function for the values of the prefactor α investigated beforehand. In the case α > 0 we
observe some moderate increase in iteration numbers, which is attributed to the presence of a
norm-gap in the corresponding term.

8 Conclusion

Now that we have sufficiently displayed the global and local convergence properties of our
Proximal Newton method, it is time to both reflect on what we have achieved here as well
as discuss some possible improvements on the algorithm and its implementation which are a
topic of future research:

We developed a globally convergent and locally accelerated Proximal Newton method in
a Hilbert space setting which demands neither second order differentiability of the smooth
part nor convexity of either part of the composite objective function. Concerning differentia-
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Figure 1: Correction norms
∥∥∆xk(ωk)

∥∥
H1 for c = 80, β = 40, ρ = −100 and α ∈

{80, 120, 160, 200, 240} with six uniform grid refinements.

bility, we introduced the notion of second order semi-smoothness. Concerning non-convexity,
our theoretical framework uses quantified information on lacking convexity instead of simply
resorting to a different first order update scheme in the non-convex case. The globalization
scheme takes advantage of a proximal arc search procedure and thereby establishes stationarity
of all limit points of the sequence of iterates. Additional convexity close to optimal solutions
of the original problem leads to local acceleration of our method which in particular does not
rely on strong convexity of the smooth part, but only on the strong convexity of the composite
functional thanks to a well-thought definition of proximal mappings within the theoretical
framework. The application of our method to actual function space problems is enabled by
using an efficient solver for the step computation subproblem, the Truncated Non-smooth
Newton Multigrid Method. We have displayed global convergence and local acceleration of
our algorithm by considering a toy model problem in function space.

As we have already mentioned beforehand, the choice of the regularization parameter we
employed here is rather heuristic and not problem-specific at all. This issue can be addressed by
using an estimate for the residual term of the quadratic model established in subproblem (4.1),
as seen in [30] for adaptive affine conjugate Newton methods where non-convex but smooth
minimization problems for nonlinear elastomechanics have been thoroughly investigated. The
idea behind the procedure is to evaluate actual residual terms for formerly computed correction
candidates and then use them as a regularization parameter for the computation of the next
update step candidate.

Another focal concern of our future work is taking into account inexactness in the com-
putation of update steps. Inexact solutions of subproblem (4.1) are then required to at least
satisfy certain inexactness criteria which still give access to similar global and local conver-
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Figure 2: Regularization parameters employed for c = 80, β = 40, ρ = −100 and α ∈
{80, 120, 160, 200, 240} with six uniform grid refinements.

gence properties of the ensuing algorithm as the exact version discussed throughout the present
treatise.

Additionally, these inexactness criteria should be sufficiently simple to evaluate since they
have to be considered within every iteration of solving the subproblem for update step com-
putation. However, the discussion of inexact Proximal Newton methods then opens up the
possibility of considering more challenging real-world applications like energetic formulations
of finite strain plasticity.
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