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Abstract

As in almost every other branch of science, the major advances in data science and machine learn-
ing have also resulted in significant improvements regarding the modeling and simulation of nonlinear
dynamical systems. It is nowadays possible to make accurate medium to long-term predictions of
highly complex systems such as the weather, the dynamics within a nuclear fusion reactor, of dis-
ease models or the stock market in a very efficient manner. In many cases, predictive methods are
advertised to ultimately be useful for control, as the control of high-dimensional nonlinear systems
is an engineering grand challenge with huge potential in areas such as clean and efficient energy
production, or the development of advanced medical devices. However, the question of how to use
a predictive model for control is often left unanswered due to the associated challenges, namely a
significantly higher system complexity, the requirement of much larger data sets and an increased
and often problem-specific modeling effort. To solve these issues, we present a universal framework
(which we call QuaSiModO: Quantization-Simulation-Modeling-Optimization) to transform arbitrary
predictive models into control systems and use them for feedback control. The advantages of our ap-
proach are a linear increase in data requirements with respect to the control dimension, performance
guarantees that rely exclusively on the accuracy of the predictive model, and only little prior knowl-
edge requirements in control theory to solve complex control problems. In particular the latter point
is of key importance to enable a large number of researchers and practitioners to exploit the ever
increasing capabilities of predictive models for control in a straight-forward and systematic fashion.

Many challenges of our modern society could be addressed by significantly improving the control
performance for highly complex systems in real-time, one example being the ever increasing demand for
energy and the associated question of how it can be met in a cost-efficient and sustainable manner. The
World Energy Outlook 2018 [1] suggests that – assuming current policies remain unchanged and that
the efficiency can be increased as expected – the total demand in energy will increase by 25% until 2040.
Consequently, a further increase in efficiency of conventional processes for producing electrical energy (e.g.,
turbomachinery, combustion, wind energy and tidal energy) is required as well as the development of new
concepts – nuclear fusion being a prominent and very promising example [2]. Furthermore, the efficiency
of complex systems such as aircraft needs to be increased in order to limit the energy requirements. All
the above-mentioned applications are governed by high-dimensional nonlinear dynamics, which exhibit
complex multi-scale phenomena and are thus extremely difficult to control. Similar challenges arise in
other areas such as the health sector, where complex dynamics govern our breathing [3], the flow of blood
within arteries [4] or of cerebrospinal fluid within the brain [5], and – more recently – the dynamics of
pandemics such as COVID-19 [6].

The efficient prediction of complex systems such as the ones mentioned above is often hindered by
the fact that the system dynamics are either very expensive to simulate or even unknown. Researchers
have been investigating ways to accelerate the solution by using data for decades, the Proper Orthogonal
Decomposition (POD) being an early and very prominent example [7]. Therein, the original system is
projected onto a linear subspace spanned by modes that have been computed from simulation data of
the full system state. More recently, the major advances in data science and machine learning have
lead to a plethora of new possibilities to overcome the shortcomings of projection-based methods like
POD, such as the required knowledge of the system dynamics and the quickly growing model dimension
with increasing complexity. Important examples are different artificial neural network architectures such
as Long Short-Term Memory (LSTM) Networks [8, 9] or Reservoir Computers / Echo State Networks
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[10, 11], regression-based frameworks for the identification of nonlinear dynamics [12, 13], or numerical
approximations of the Koopman operator [14, 15, 16], which describes the linear dynamics of observable
functions. These methods facilitate the efficient simulation and prediction of high-dimensional spatio-
temporal dynamics using measurement data, without requiring prior system knowledge. One important
application is, among many others, the prediction of rare events [17], for instance in nuclear fusion reactors
[18].

The large success of data-driven modeling has also attracted the attention of the control community,
where many approaches have been presented over the past decades. They can be categorized into the
direct learning of feedback signals using, e.g., feed-forward neural networks [19] or reinforcement learning
[20, 21, 22], and into MPC methods using either intrusive approaches (i.e., the equations need to be
known) such as POD [23] or black-box methods, for instance specific neural network architectures [24].
MPC allows for a particularly easy implementation of both control and state constraints. However, a
drawback is that the construction of surrogate models with inputs is often very tedious and in addition
highly problem-specific. For instance, in the case of POD, multiple modeling steps and several simulations
with different boundary conditions are required [25]. In pure black-box methods, a straight-forward
approach to avoid this tedious effort is to transform control inputs via state augmentation [26], by which
the system is autonomized, and then use “off-the-shelf” methods for autonomous systems. However, this
results in significantly increased data requirements due to (a) the increased dimension of the augmented
state space and (b) the fact that the dynamics of the control system is not necessarily restricted to
a low-dimensional manifold any longer, which is a key enabler for efficient data-driven modeling [27].
Recently, an alternative was presented in [28], where the key observation was that instead of adapting
the surrogate model according to the control problem requirements, it can be advantageous to modify
the control problem and use a finite set of autonomous systems. This results in a mixed-integer optimal
control problem which is considerably harder to solve, and additional favorable properties of the surrogate
model (such as the linearity of the Koopman operator [29]) are required to facilitate an efficient solution.

The framework we present in this article – QuaSiModO – makes use of the above-mentioned benefits
of modifying the control problem. It consists of four main steps (cf. also Figure 1). In these, Problem
(I) (which is an optimal control problem with continuous inputs) is successively transformed into related
control problems that – as long as the predictive surrogate model is sufficiently accurate – yield optimal
trajectories y∗ that are close to one another.

(i) Quantization of the the admissible control U (for instance by replacing the interval U = [umin, umax]

by the bounds V = {umin, umax});

(ii) Simulation of the individual autonomous systems (e.g., Φumin(y) = Φ(y, umin) and Φumax(y) =
Φ(y, umax)); Note that this step can also be replaced by collecting measurement data from ex-
periments;

(iii) Modeling of the individual systems – using either the full state y or some observable z = f(y)
– via an arbitrary “off-the-shelf” surrogate modeling technique (POD, neural network, Koopman
operator, etc.);

(iv) Optimization using the resulting set of autonomous surrogate models and relaxation techniques.

This complex interplay between continuous and integer control modeling as well as between the full
system state and observed quantities (e.g., measurements) allows us to utilize the best of both worlds:

• integer controls for efficient data-driven modeling using arbitrary predictive models,

• continuous control inputs for real-time control, and

• existing error bounds for predictive models.

After introducing the respective steps in detail in the next section, we give a detailed derivation as well
as numerical verification of the derived performance guarantees in Section 2. We then present control
results on a large variety of complex systems, surrogate modeling techniques and observable types in
Section 3.
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Figure 1: The QuaSiModO framework consisting of the four steps Quantization, Simulation, Modeling
and Optimization.

1. QuaSiModO steps

The overarching goal of QuaSiModO is real-time control of complex systems using “off-the shelf” data-
driven surrogate modeling techniques and their respective error bounds. In the problems we consider, the
state of such a complex dynamical system, denoted by y, is a function of time t and – in the case of partial
differential equations (PDEs) – of space x. For ordinary differential equations (ODEs) and PDEs, the
dynamics is described by the right-hand side g, e.g., ẏ = g(y(t), u(t)) in the ODE case, with u being the
control input. As most surrogate modeling techniques yield discrete-time systems, we directly introduce
a time discretization using the time-T-map Φ with constant time step ∆t = ti+1 − ti, i = 0, 1, . . ., i.e.,

Φ(yi, ui) = yi +

∫ ti+1

ti

g(y(t), ui) dt = yi+1,

where u(t) = ui ∈ U is constant over the interval [ti, ti+1), and U is the admissible set for the control.
A popular example for U are box constraints: U = [umin, umax]. In the case of PDEs, we use a spatial
discretization (such as finite elements), which then yields high-dimensional ODEs. Thus, we will only
consider ODEs from now on. Using the above considerations, the overall goal can be formalized in an
optimal control problem of the following form:

min
u∈Up

J(y) = min
u∈Up

p−1∑
i=0

P (yi+1)

s.t. yi+1 = Φ(yi, ui), i = 0, 1, 2, . . . ,

(I)

where J is the overall objective function over the time horizon T = p∆t, and P is the objective function
at a particular time instant, e.g., a tracking term P (yi) = ‖yi − yrefi ‖2. Note that P does not explicitly
depend on u, as this is favorable for the error bounds that we will derive. However, such penalty terms
could be included as well.

1.1. Quantization:

In the first step of QuaSiModO, we quantize the control set U such that only a finite subset V =
{u1, . . . , um} ⊆ U is feasible. This allows us to replace the control system Φ(y, u) by a finite set of
autonomous systems Φuj (y), which yields the following mixed-integer optimal control problem:

min
u∈V p

J(y) = min
u∈V p

p−1∑
i=0

P (yi+1)

s.t. yi+1 = Φui
(yi), i = 0, 1, 2, . . . .

(II)
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The choice of the entries of V is problem-specific and has an influence on the control performance and
on the numerical effort. In addition, as we will see later, the reachable set corresponding to U has to be
contained in the convex hull of the reachable set corresponding to V if we want to guarantee similarity
between the optimal values of Problems (I) and (II).

1.2. Simulation & Modeling:

Problem (II) allows for the straightforward introduction of surrogate models, as we can simply replace
the individual autonomous systems Φuj (y) by respective reduced systems Φruj (z) (or – in continuous
time – replace g by gr) that predict the dynamics of a reduced quantity z = f(y). Here, f is called an
observable that takes arbitrary measurements from the full state. These range from full-state observation
(i.e., z = y) over partial observations or point-wise measurements to arbitrary nonlinear functions of the
state. In many applications – in particular in experimental setups – the choice of f is determined by
which measurements are feasible or accessible. For instance, in the case of fluid dynamics, it is highly
unrealistic to measure the full state or even take measurements from the interior of the flow domain.

The quantization also simplifies the process of simulation (or, more generally, data collection). Here, we
can either collect data from one long time series Z = [z1, . . . , zN ] with random actuation u1, . . . , uN ∈ V
(which we than have to split into data sets for the individual systems), or we can use individual time
series for each system:

Zj = [zj1, . . . , z
j
N ] with uj1 = . . . = ujN = uj ∈ V, j = 1, . . . ,m.

The fact that we need to construct surrogate models for a set of autonomous systems allows us to use
arbitrary predictive models for z, thus giving us straightforward access to a highly active area of research
with new techniques being proposed very frequently. These surrogate models then simply replace the full
system in Problem (II), yielding:

min
u∈V p

Jr(z) = min
u∈V p

p−1∑
i=0

P r(zi+1)

s.t. zi+1 = Φrui
(zi), i = 0, 1, 2, . . . .

(III)

Note that the objective function has to be altered as well, as it is now a function of z and not of the full
state y. However, this is not a strong limitation, as objective function evaluations are usually based on
observable quantities. That is, we assume

P r(f(y)) = P (y) for all y ∈ Y. (1)

1.2.1. Surrogate model error

Regarding the quantification of the modeling error, researchers have made significant advances over the
past decades, starting with Proper Orthogonal Decomposition [7]. With the increasing interest in data-
driven methods, the effort invested in deriving bounds for entirely data-based models has significantly
increased in recent years. For instance, convergence of Extended Dynamic Mode Decomposition towards
the Koopman operator in the infinite data limit was shown in [30], bounds for the prediction error
of models based on Dynamic Mode Decomposition using finite data were presented in [31, 32], and
probabilistic error bounds for the approximation of linear systems via finite data in [33]. Seeing the ever
increasing effort, it is likely that more progress will be made in the near future, and one of the main goals
of QuaSiModO is to exploit these advances for control in a systematic way. To this end, we assume in
the following that an error bound for the deviation over a time step ∆t of the following form is known:

‖f(Φuj (y0))− Φruj (z̄0)‖∞ ≤ E(‖f(y0)− z̄0‖ ,∆t).

Thus, we obtain the time-dependent model error Emodel:

Emodel(t0) = ‖f(y0)− z̄0‖ , Emodel(ti) ≤ E(Emodel(ti−1),∆t). (2)

Remark 1.1. In the numerical experiments regarding the error bound (Sec. 2.4), we will give a more
explicit formula for the specific case of full state observables.
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1.3. Optimization:

We now have three opportunities to calculate the solution of the surrogate-based Problem (III). First, we
can directly solve it (for instance, using Dynamic Programming) which – due to the combinatorial nature
– is only viable for a small number of control parameters. For larger problems, it is much more advisable
to use a relaxation approach, which yields another continuous problem that can be solved efficiently
using methods from nonlinear constrained optimization [35]. The second and third approach thus rely
on relaxation, and we can either directly apply the obtained solution to the real system or – as this is
only viable for control affine systems – we can use the sum up rounding algorithm from [34]. This way, a
control corresponding to one of the quantized inputs is applied to the real system. On the one hand, this
limits the control freedom (which – as we show in Section 2 – is acceptable for a wide range of problems).
On the other hand, the real system is exclusively actuated by inputs that are already contained in V ,
which allows for a very easy implementation of online learning of the individual surrogate models. This
can be extremely beneficial for the control performance, cf., e.g., [24].

In the relaxation approach, we first introduce a new control variable ω that yields a formulation
equivalent to (III):

min
ω∈({0,1}m)p

Jr(z) = min
ω∈({0,1}m)p

p−1∑
i=0

P r(zi+1)

s.t. zi+1 = Φr(zi, ωi) =

m∑
j=1

ωi,jΦ
r
uj (zi), and

m∑
j=1

ωi,j = 1, i = 0, 1, 2, . . . .

(III-ω)

The last condition ensures that exactly one of the right-hand sides is applied in each time step, i.e.,∑m
j=1 ωi,ju

j = ui ∈ V for i = 0, . . . , p− 1.
Problem (III-ω) can now be relaxed by replacing ωi ∈ {0, 1} with αi ∈ [0, 1], which is again a continuous

optimal control problem:

min
α∈([0,1]m)p

Jr(z) = min
α∈([0,1]m)p

p−1∑
i=0

P r(zi+1)

s.t. zi+1 = Φr(zi, αi) =

m∑
j=1

αi,jΦ
r
uj (zi) and

m∑
j=1

αi,j = 1, i = 0, 1, 2, . . . .

(IV)

The main differences to Problem (I) are the additional condition on α and the fact that the dimension of
the control variable is changed by a factor of (m−1)/dim(U) (the last entry of αi can always be computed
from the condition

∑m
j=1 αi,j = 1). To solve (IV), efficient methods from nonlinear optimization such as

gradient descent or BFGS methods [35] can be used.
The final step of the optimization is now to construct the control u∗ from the optimal solution α∗. To

this end, we proceed according to the SUR procedure for mixed integer problems as proposed in [34],
where α∗ is transformed back to ω∗ while taking past rounding decisions into account:

ω̂i,j =

i∑
k=0

α∗k,j −
i−1∑
k=0

ω∗k,j (3a)

ω∗i,j =

{
1, ω̂i,j ≥ ω̂i,l ∀ l 6= j and j < l ∀ l with ω̂i,j = ω̂i,l,

0, else.
(3b)

u∗i =

m∑
j=1

ω∗i,ju
j , i = 0, 1, 2, . . . . (3c)

For control-affine systems and convex sets U , an alternative, straightforward approach is to simply cal-
culate the convex combination of the individual uj ∈ V :

u∗i =

m∑
j=1

α∗i,ju
j , i = 0, 1, 2, . . . .

A comparison between both approaches is made for the Lorenz system as well as for the cylinder flow.
Not surprisingly – and as we will discuss in depth in the following section – the two solutions are very
close to one another in the control-affine case.
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As the focus of this article is not to efficiently solve the resulting optimization problems, we simply
use the standard optimizer from the SciPy library, i.e., “SLSQP” [36] or “trust-constr” [37] with finite
difference approximations of the derivatives. We note that significant speedups are very likely possible by
using more efficient solvers tailored to the problems, as well as by providing explicit derivative information.
However, the latter requires the derivative of the flow map Φr and thus, model-specific knowledge. For
neural networks, for instance, these gradients are often easily accessible via algorithmic differentiation.

2. Performance guarantees

In this section, we derive an error bound for the QuaSiModO approach which is composed of the quanti-
zation error, the model error and the error caused by the SUR procedure. Since the model error depends
on the chosen model, we will assume that Emodel (cf. Eq. (2)) is known and concentrate on the quanti-
zation error which needs to be combined with the model error afterwards. Note that even though we
have introduced discrete-time systems, we will derive the bounds for continuous-time systems for ease of
notation and in accordance with [34]. The discrete-time version follows as a special case.

2.1. Similarity of trajectories

We begin with the observation that the optimal solutions of (I) and (II) can get arbitrarily close. Obvi-
ously, the optimal value J∗(I) of (I) is always at least as small as the optimal value J∗(II) of (II). For the

other direction, we will show that for each continuous control u, u(t) ∈ U , we can construct a sequence of
discrete controls vn, vn(t) ∈ V , which leads to trajectories converging to the trajectory induced by u. In
[38] it was already stated that this holds if the set of points in the state space that can be reached with
control inputs from U is a subset of the convex hull of the points reachable with control inputs in V . We
will prove the same, but in a constructive way in order to obtain concrete error bounds if this condition
is not satisfied. Additionally – and more importantly – we are not in the limit case, i.e., a discretization
error is introduced which depends on the switching time ∆t in (II).

To estimate the distance between the trajectories given by different time-T-maps and different controls,
the following result will be useful. A similar idea is used, for instance, in [34, 39] to derive error bounds
for the SUR algorithm. Unless otherwise specified, we denote by ‖·‖ the maximum norm ‖·‖∞ in the
following.

Lemma 2.1. Let g, ḡ : Y × U → Y and u, ū : [0, T ] → U be measurable functions with Y ⊆ Rny and
U ⊆ Rnu . Furthermore, g(y(·), u(·)) and ḡ(ȳ(·), ū(·)) ∈ L1((0, T ), Y ), where y(·) and ȳ(·) are given by

y(t) = y0 +

∫ t

0

g(y(τ), u(τ)) dτ and ȳ(t) = ȳ0 +

∫ t

0

ḡ(ȳ(τ), ū(τ)) dτ,

with y0, ȳ0 ∈ Y . Assume that ḡ is Lipschitz continuous in the first argument with Lipschitz constant Lḡ.
If

sup
t∈[0,T ]

∥∥∥∥∫ t

0

g(y(τ), u(τ))− ḡ(y(τ), ū(τ)) dτ

∥∥∥∥ ≤M
then

‖y(t)− ȳ(t)‖ ≤ (M + ‖y0 − ȳ0‖)eLḡt ∀t ∈ [0, T ].

Proof. Let t be in [0, T ]. Then,

‖y(t)− ȳ(t)‖ =

∥∥∥∥y0 − ȳ0 +

∫ t

0

g(y(τ), u(τ))− ḡ(ȳ(τ), ū(τ)) dτ

∥∥∥∥
≤ ‖y0 − ȳ0‖+

∥∥∥∥∫ t

0

g(y(τ), u(τ))− ḡ(y(τ), ū(τ)) dτ

∥∥∥∥
+

∥∥∥∥∫ t

0

ḡ(y(τ), ū(τ))− ḡ(ȳ(τ), ū(τ)) dτ

∥∥∥∥
≤ ‖y0 − ȳ0‖+M +

∫ t

0

‖ḡ(y(τ), ū(τ))− ḡ(ȳ(τ), ū(τ))‖ dτ

≤ ‖y0 − ȳ0‖+M + Lḡ

∫ t

0

‖y(τ)− ȳ(τ)‖ dτ.
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We can now apply Grönwall’s lemma and obtain

‖y(t)− ȳ(t)‖ ≤ (M + ‖y0 − ȳ0‖) · eLḡt ∀t ∈ [0, T ].

In the MPC context, y0 = ȳ0 is the current state and we obtain a bound for the distance between two
trajectories corresponding to the two MPC problems (I) and (II). Note, that the given bound M only
has to hold for the optimal trajectory of the original MPC problem (I), not over the entire space.

In order to prove an error bound between the solutions of (I) and (II), according to Lemma 2.1, we
need to construct a control v with v(t) ∈ V for the optimal solution u∗ of (I) and derive the following
bound:

sup
t∈[0,T ]

∥∥∥∥∫ t

0

g(y∗(τ), u∗(τ))− g(y∗(τ), v(τ)) dτ

∥∥∥∥ ≤M.

To this end, we will use the idea of relaxation and SUR mentioned before, cf. Eqs. (III-ω) and (IV).

2.2. Bound without model error

We begin without using a surrogate model, i.e., z = f(y) = y and Φr = Φ, and the error bound is
derived in two steps. First, we prove that for every feasible solution of our original problem (I), a feasible
solution of the relaxed convexification problem (IV) exists that leads to the same trajectory under some
assumptions on the chosen subset V . If these assumptions do not hold, we can give an error bound
instead. Second, we use results from [34] to show that we obtain a trajectory of the convexified binary
problem (III-ω) (which is equivalent to (II) in this setting) that is arbitrarily close to the solution of (IV)
by using SUR.

Lemma 2.2. Let U ⊆ Rnu be bounded and V = {u1, . . . , um} ⊆ U a finite subset. Furthermore, let
g : Y × U → Y and y : [0, T ] → Y be continuous and u : [0, T ] → U be measurable. Then, there exists a
measurable function α : [0, T ]→ [0, 1]m such that

∑m
j=1 αj(t) = 1 ∀t ∈ [0, T ] and

sup
t∈[0,T ]

∥∥∥∥∥∥
∫ t

0

g(y(τ), u(τ))−
m∑
j=1

g(y(τ), uj)αj(τ) dτ

∥∥∥∥∥∥ ≤ T ·D =: M1,

where D is the maximal distance between the reachable set corresponding to U and the convex hull of the
reachable set corresponding to V , i.e.,

D = sup
t∈[0,T ]

dist(g(y(t), U),Conv(g(y(t), V )).

Proof. For every t ∈ [0, T ], let yc(t) be the element in Conv(g(y(t), V )) which is closest to g(y(t), u(t)).
We can write yc(t) as a convex combination, i.e.,

yc(t) =

m∑
j=1

g(y(t), uj)αj(t),

with α(t) ∈ [0, 1]m and
∑m
j=1 αj(t) = 1. Note, that it is possible to choose yc(t) and α(t) such that

t 7→ α(t) is measurable. Therefore, it holds for every t ∈ [0, T ]

sup
t∈[0,T ]

∥∥∥∥∥∥
∫ t

0

g(y(τ), u(τ))−
m∑
j=1

g(y(τ), uj)αj(τ) dτ

∥∥∥∥∥∥
≤ sup

t∈[0,T ]

∫ t

0

∥∥∥∥∥∥g(y(τ), u(τ))−
m∑
j=1

g(y(τ), uj)αj(τ)

∥∥∥∥∥∥ dτ
≤ T · sup

t∈[0,T ]

∥∥∥∥∥∥g(y(t), u(t))−
m∑
j=1

g(y(t), uj)αj(t)

∥∥∥∥∥∥
≤ T · sup

t∈[0,T ]

dist(g(y(t), U),Conv(g(y(t), V ))︸ ︷︷ ︸
<∞, due to continuity of g and y and the boundedness of U

= M1.

7



This means that if V is chosen such that we can reach the extreme points of the reachable set cor-
responding to U with the controls uj ∈ V , we obtain M1 = 0. Next, we can use the idea of the SUR
algorithm to estimate the error between the relaxed and the discrete control. Therefore, we will use the
following result.

Theorem 2.3. Let g : Y ×U → Y , y : [0, T ]→ Y and u : [0, T ]→ U be measurable functions and assume
that ω : [0, T ] → [0, 1]m is constructed from α via SUR (cf. Eq. (3) or [34] with the time discretization
∆t, i.e., it holds ∥∥∥∥∫ t

0

α(τ)− ω(τ)

∥∥∥∥ ≤ (m− 1)∆t ∀t ∈ [0, T ].

Furthermore, assume that g(y(·), uj) is differentiable for almost all t ∈ [0, T ] and that constants C1 and
C2 ∈ R exist for all uj ∈ V such that for almost all t ∈ [0, T ]:∥∥∥∥ ddtg(y(t), uj)

∥∥∥∥ ≤ C1 and
∥∥g(y(t), uj)

∥∥ ≤ C2.

Then

sup
t∈[0,T ]

∥∥∥∥∥∥
∫ t

0

m∑
j=1

g(y(τ), uj)(αj(τ)− ωj(τ)) dτ

∥∥∥∥∥∥ ≤ (C2 + C1T )(m− 1)∆t =: M2(∆t).

Proof. The proof can be found in [34].

Remark 2.4. A similar result can be found in [39] but with weaker assumptions on g. There, the authors
prove that for g(y(·), v) ∈ L1((0, T ), Y ),

lim
∆t→0

sup
t∈[0,T ]

∥∥∥∥∥∥
∫ t

0

m∑
j=1

g(y(τ), uj)(αj(t)− ωj(τ)) dτ

∥∥∥∥∥∥ = 0 if lim
∆t→0

∥∥∥∥∫ t

0

α(τ)− ω(τ) dτ

∥∥∥∥ = 0.

Furthermore, they show that the statement holds not only for ODEs, but for semilinear PDEs as well.
Here, we will use the result from [34], as we want to use the concrete error bound.

Using the above results, we can now ensure that continuous and discrete inputs yield trajectories that
are close.

Theorem 2.5. Let U ⊆ Rnu be bounded and V = {u1, . . . , um} ⊆ U be a finite subset. Assume
g : Y × U → Y is continuous, u : [0, T ]→ U is measurable and y : [0, T ]→ Y is defined by

y(t) = y0 +

∫ t

0

g(y(τ), u(τ)) dτ, y0 ∈ Y.

Furthermore, let g(y(t), uj) be differentiable with respect to time for almost all t ∈ [0, T ] and assume that
constants C1 and C2 ∈ R exist for all uj ∈ V such that for almost all t ∈ [0, T ]:∥∥∥∥ ddtg(y(t), uj)

∥∥∥∥ ≤ C1 and
∥∥g(y(t), uj)

∥∥ ≤ C2.

In addition, assume that g is Lipschitz continuous in the second argument with Lipschitz constant Lg.
Then, for every ε > 0, there exists a discrete control function ū : [0, T ]→ V , such that for ȳ given by

ȳ(t) = ȳ0 +

∫ t

0

g(ȳ(τ), ū(τ)) dτ, ȳ0 ∈ Y,

it holds

‖y(t)− ȳ(t)‖ ≤ (M1 + ε+ ‖y0 − ȳ0‖) · eLgt ∀t ∈ [0, T ].
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Proof. Lemma 2.2 ensures the existence of a measurable function α : [0, T ] → [0, 1] with
∑m
j=1 αj(t) =

1 ∀t ∈ [0, T ] and

sup
t∈[0,T ]

∥∥∥∥∥∥
∫ t

0

g(y(τ), u(τ))−
m∑
j=1

g(y(τ), uj)αj(τ) dτ

∥∥∥∥∥∥ ≤M1, ∀t ∈ [0, T ].

Using SUR, we can construct (according to Theorem 2.3) a function ω : [0, T ]→ {0, 1} with∑m
j=1 ωj(t) = 1 ∀t ∈ [0, T ] from α, such that

sup
t∈[0,T ]

∥∥∥∥∥∥
∫ t

0

m∑
j=1

g(y(τ), uj)(αj(τ)− ωj(τ)) dτ

∥∥∥∥∥∥ ≤M2(∆t),

with M2(∆t) = (C2 + C1T )(m− 1)∆t. Therefore, we get

sup
t∈[0,T ]

∥∥∥∥∥∥
∫ t

0

g(y(τ), u(τ))−
m∑
j=1

g(y(τ), uj)ωj(τ) dτ

∥∥∥∥∥∥ ≤M1 +M2(∆t).

Since ū(t) :=
∑m
j=1 ωj(τ)uj ∈ V for all t ∈ [0, T ], choosing ∆t sufficiently small yields:

sup
t∈[0,T ]

∥∥∥∥∫ t

0

g(y(τ), u(τ))− g(y(τ), ū(t)) dτ

∥∥∥∥ ≤M1 + ε,

and using Lemma 2.1, we obtain the desired result.

Remark 2.6. The m in M2(t) in Theorem 2.5 can be reduced to the number of elements in V that are
actually required in the convex combinations to represent/approximate u(t) over the prediction horizon
T , i.e., m is at most ny + 1.

Finally, with respect to the control problems (I) and (II), we can derive a relation between the optimal
values of Problems (I) and (II).

Corollary 2.7. Let (y∗, u∗) be an optimal solution of (I) where U ⊆ Rnu is bounded and P : Y → R
Lipschitz continuous with Lipschitz constant LP for a fixed initial value y0 ∈ Y . Assume g : Y × U → Y
and V ⊆ U are of a form such that the requirements of Theorem 2.5 are satisfied. Then, there exists a
tuple (ȳ, ū) with ū(t) ∈ V which is feasible for (II) with the same initial value y0 such that

|J(y∗)− J(ȳ)| ≤ LP (M1 +M2(∆t))
eLg∆t

(
epLg∆t − 1

)
eLg∆t − 1

.

Proof. First, we construct ū. Therefore, α is chosen as in Lemma 2.2 and ω is constructed via SUR from
α, i.e.,

y∗i+1 = Φ(y∗i , u
∗
i ) =

m∑
j=1

αi,jΦuj (y∗i ) and ūi :=

m∑
j=1

ωi,ju
j .

We obtain directly from Theorem 2.5 and the Lipschitz continuity of P :

|J(y∗)− J(ȳ)| ≤
p−1∑
i=0

LP
∥∥y∗i+1 − ȳi+1

∥∥ ≤ p−1∑
i=0

LP (M1 +M2(∆t))eLgti+1

= LP (M1 +M2(∆t))
eLg∆t

(
epLg∆t − 1

)
eLg∆t − 1︸ ︷︷ ︸

EV(V )+EMI(∆t)

.
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Remark 2.8. The errors

EV(V ) = LPM1

eLg∆t
(
epLg∆t − 1

)
eLg∆t − 1

and EMI(∆t) = LPM2(∆t)
eLg∆t

(
epLg∆t − 1

)
eLg∆t − 1

(4)

account for the distance between the reachable sets of V and U and the transformation into a mixed
integer problem and the corresponding relaxation technique, respectively. For an appropriate choice of V ,
we have M1 = 0. Moreover, we have

lim
∆t→0

eLg∆t
(
epLg∆t − 1

)
eLg∆t − 1

= p and lim
∆t→0

M2(∆t) = 0,

such that both errors can become arbitrarily small using the appropriate numerical setup.

Remark 2.9. An error bound can also be obtained if P (and J) explicitly depend on the control u. In
this case, however, an additional term needs to be added that pessimistically bounds the distance between
the optimal controls for the full and surrogate-based problems. This bound also depends on the size of the
control set U .

2.3. Combination with model error

We now consider the additional errors resulting from surrogate models (Eq. (2)), i.e., we solve Problem
(III) with the assumption that J and Jr are equivalent, cf. Eq. (1). To do so, there are several ways in
practice, and depending on the solution strategy, we obtain different error bounds. One can immediately
see (via the triangle inequality) that the different error sources are additive in all cases. For ease of
notation, we introduce the control-to-state operators S : Up → Y p and Sr : Up → f(Y )p which – for
a fixed y0 ∈ Y – map the control inputs (u0, . . . , up−1) to the corresponding states (y1, . . . , yp) and
(z1, . . . , zp), respectively.

2.3.1. Nonlinear observable functions

The obvious approach is to solve problem (III) directly, for instance using Dynamic Programming
or a total evaluation of all possible combinations of control inputs. If we have an appropriate (i.e.,
sufficiently small) set V , this can be very efficient. In this case, we need to bound the difference∣∣∣J(S(u∗(I)))− J(S(u∗(III)))

∣∣∣, where u∗(I) and u∗(III) are the optimal solutions of (I) and (III), respectively.

Since we already have a bound for
∣∣∣J(S(u∗(I)))− J(S(u∗(II)))

∣∣∣, it is sufficient to determine the error∣∣∣J(S(u∗(II)))− J(S(u∗(III)))
∣∣∣. Therefore, we first consider the error between J(S(u)) and Jr(Sr(u)) for

arbitrary u ∈ V p:

|J(S(u))− Jr(Sr(u))| = |Jr(f(S(u)))− Jr(Sr(u))| =

∣∣∣∣∣
p−1∑
i=0

P r(f((S(u))i))− P r((Sr(u))i)

∣∣∣∣∣
≤

p−1∑
i=0

LP ‖f((S(u))i)− (Sr(u))i‖ =

p−1∑
i=0

LP
∥∥f (Φui(yi))− Φrui

(yri )
∥∥

≤ LP
p∑
i=1

Emodel(ti),

(5)

where the first equality is due to (1). For ease of notation, we do not distinguish between the Lipschitz
constants of P and P r and just use maximum of the two as LP . Now, it holds∣∣∣J(S(u∗(III)))− J(S(u∗(II)))

∣∣∣ = J(S(u∗(III)))− J(S(u∗(II)))

= J(S(u∗(III)))− J
r(Sr(u∗(III)))︸ ︷︷ ︸

≤
∣∣∣J(S(u∗

(III)
)))−Jr(Sr(u∗

(III)
))
∣∣∣

+ (Jr(Sr(u∗(III)))− J
r(Sr(u∗(II)))︸ ︷︷ ︸

≤0, since u∗
(III) is a global Min. of Jr(Sr(·))

+ Jr(Sr(u∗(II)))− J(S(u∗(II)))︸ ︷︷ ︸
≤
∣∣∣Jr(Sr(u∗

(II)
))−J(S(u∗

(II)
)))
∣∣∣

≤ 2LP

p∑
i=0

Emodel(ti),
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where we can neglect the absolute value because u∗(II) is optimal with respect to J . In summary, the error
bound is thus given by∣∣∣J(S(u∗(I)))− J(S(u∗(III)))

∣∣∣ ≤ EV(V ) + EMI(∆t) + 2LP

p∑
i=0

Emodel(ti)︸ ︷︷ ︸
Er(E)

, (E1)

see Eq. (2) for Emodel and Eq. (4) for EV(V ) and EMI(∆t).
In many cases, we will have a finite set V = {u1, . . . , um} ⊆ U which is too large to solve the combi-

natorial problem (III) directly. In this case, we can solve the relaxation (IV) in combination with SUR
instead, where the resulting control is denoted by u∗(IV)−SUR. The error is composed of the error (E1) and∣∣∣J(S(u∗(III)))− J(S(u∗(IV)−SUR))

∣∣∣. Analog to the derivation before, we obtain an error EMIr (∆t) for the

surrogate-based mixed-integer transformation (with variables Mr
2 (∆t) and Lgr if the surrogate model is

given by Φr(yi, ui) = yi+
∫ ti+1

ti
gr(y(t), ui) dt and gr is Lipschitz continuous with Lipschitz constant Lgr ).

Therefore, we get∣∣∣J(S(u∗(I)))− J(S(u∗(IV)−SUR))
∣∣∣ ≤ EV(V ) + EMI(∆t) + 2Er(E) + EMIr (∆t), (E2.a)

where the additional second model error Er(E) is due to the fact that we need to estimate the difference
in terms of the true objective.

2.3.2. Linear observable functions

If f is linear (which is in particular the case when considering the full-state observable), an error bound
can be obtained in a similar way to Eq. (E1). Therefore, we do a similar computation as in (5) for the
relaxed systems, i.e., for the control-to-state operators S̄ : [0, 1]m → Y and S̄r : [0, 1]m → f(Y ), and get
for an arbitrary control α ∣∣J(S̄(α))− Jr(S̄r(α))

∣∣ ≤ LP p∑
i=1

Emodel(ti).

In this case, we obtain the same bound as for (E1):∣∣∣J(S(u∗(I)))− J(S(u∗(IV)−SUR))
∣∣∣ ≤ EV(V ) + EMI(∆t) + Er(E). (E2.b)

Finally, the third option is to solve (IV) and directly apply the relaxed solution to the original system.
Obviously, this is only feasible if Conv(V ) ⊆ U . This way, we introduce an additional error caused by
the linear interpolation if the system is not control affine. Nevertheless, many systems are control affine
and in this case, we have∣∣∣∣∣∣J(S(u∗(I)))− J

S
 m∑
j=1

α∗(IV),ju
j

∣∣∣∣∣∣ ≤ EV(V ) + Er(E). (E3)

The bounds are summarized in Table 1, together with the additional requirements for the control
problem. It should be noted that all errors besides the one for the surrogate model can be made arbitrarily
small. We have EV(V ) = 0 if the convex hull of the reachable set corresponding to V is a subset of the
one corresponding to U , and both EMI(∆t) and EMIr (∆t) vanish as the switching time ∆t tends to zero.

Table 1: Different transformation procedures and corresponding error bounds.

Transformation approach Error bound control f linear Type of
affine optimization

(I) → (II) → (III) Eq. (E1) — — Combinatorial
(I) → (II) → (III) → (IV) → SUR Eq. (E2.a) — — Continuous

Eq. (E2.b) — X Continuous
(I) → (II) → (III) → (IV) Eq. (E3) X X Continuous
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2.4. Example

To study the error bounds numerically, we consider the well-known Duffing oscillator:

ẏ = g(y, u) =

(
y2

−δy2 − αy1 − βy3
1

)
+

(
0
u

)
,

with constants α = −1, β = 1, δ = 0, and u(t) ∈ U = [−4, 4]. To introduce a model error, we add a
constant perturbation in the second equation, i.e., as the surrogate model we use

ẏ = gr(y, u) =

(
y2

−δy2 − αy1 − βy3
1 + ε

)
+

(
0
u

)
,

with a fixed ε = 10−1. As the finite set of controls we choose V = {−4, 4}. To determine the model error
Emodel(ti) in (2) we can use Lemma 2.1 since we use the full-state observable. For an arbitrary control
u(t) and a trajectory y(t), it holds

sup
t∈[0,∆t]

∥∥∥∥∫ t

0

g(y(τ), u(τ))− gr(y(τ), u(τ))

∥∥∥∥ ≤ ε∆t
and according to Lemma 2.1, we can estimate the model error via

Emodel(ti+1) =
∥∥yi+1 − yri+1

∥∥ ≤ (ε∆t+ ‖yi − yri ‖)eLg∆t

= (ε∆t+ Emodel(ti))e
Lg∆t,

where yi and yri are the discrete trajectories defined by g and gr, respectively, for a given starting point
y0 ∈ Y and a control sequence ui ∈ V . The goal is to stabilize the system at yref = (0, 0)>, i.e.,

J(y) =
∑p−1
i=0 ‖yi+1‖, and we solve Problems (I), (IV) and (III) (the latter using SUR) to investigate the

error bounds (E3) and (E2.b). The control horizon is [0, 1], and we use ∆t = 2 ·10−3 for the time-T-maps
Φ and Φr, respectively, as well as for the sum up rounding.

(a) Optimal state y∗ and control u∗ of Problem (I)
(black). The error margins around the solution and
the optimal surrogate-based solutions are shown in
blue and red, respectively.
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(b) The error between the optimal surrogate-based so-
lutions and the solution to (I). The influence of
different values for ∆t on (E2.a) is emphasized by
the yellow and orange lines, respectively.

Figure 2: Error bounds (E3) (blue) and (E2.a) (red). The solid lines denote the component y1 and the
dashed lines y2.

The constants C1 and C2 that enter the calculation of M2 are approximated from data using several
simulations with random initial conditions. We do the same for the Lipschitz constants, which we estimate
via the derivative. As the system is control affine and V consists of umin and umax, we have M1 = 0.
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Figure 2 shows the results for the two approaches. We see that both achieve the control task relatively
well with a small error due to the constant offset ε in the second component. Moreover, we see that
the error bound (E3) is very well suited for the MPC context (where short prediction horizons are very
common), and it is much tighter than the SUR approach. On the other hand, we observe in Figure 2b
that the two errors come closer with decreasing ∆t, as all errors but Emodel can be made arbitrarily small.
Nevertheless, it can be concluded that solving Problem (IV) without rounding is clearly advantageous
for control-affine systems.

3. Results

We have tested the QuaSiModO framework on a variety of dynamical systems, observable functions and
surrogate modeling techniques, cf. Figure 3, a detailed description of the numerical setup is given in
Appendix A for the surrogate modeling and in Appendix B for the test problems. The systems range
from the chaotic Lorenz system over the stochastic dynamics of the ongoing COVID-19 pandemic and the
dynamics of blood cells (modeled by the Mackey-Glass delay differential equation) to the Navier–Stokes
equations for fluid flows. The observed quantities z range from the full state over partial observations and
delay coordinates to point-wise measurements, and we use surrogate models based on POD, the Koopman
operator and different neural network architectures. For instance, we can control the lift force acting on
a cylinder (determined by the velocity and pressure fields governed by the 2D Navier–Stokes equations)
without any knowledge of the flow field using the standard LSTM framework included in TensorFlow, and
stabilize the Mackey-Glass equation using a sandard echo state network. This highlights the flexibility and
broad applicability of the method and the success of the technique in constructing data-driven feedback
controllers.

Figure 3: MPC using QuaSiModO applied to various combinations of systems and surrogate models.
For the Lorenz and Navier–Stokes example, both the continuous (orange) and the rounded
control (blue) are shown. In the remaining examples, we have applied the continuous solution
of Problem (IV) to the real system.
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4. Conclusion

QuaSiModO is a powerful algorithm for data-driven control of complex systems from many scientific
disciplines that does not require knowledge of the underlying dynamics and avoids problem specific
modeling efforts. Instead, measurement data corresponding to different fixed inputs can be combined
with state-of-the-art surrogate modeling techniques for the prediction of complex dynamical systems in
a straightforward manner. We demonstrate excellent control performance on a variety of dynamical
systems, using different control inputs, observations, and surrogate modeling techniques, thus showing
great flexibility and a wide range of possible applications from problems in engineering, biology, or
life sciences. Furthermore, when error bounds are available for the predictive model, these directly
translate into error bounds for the corresponding control problem. There is a large number of researchers
addressing the issue of error bounds for predictive models constructed from data, see, for instance, [33, 31].
Consequently QuaSiModO will directly benefit from these advancements as well as general improvements
in data-driven modeling in the future, and will thus continue to play an important role in the construction
of data-driven feedback controllers.

Code

The QuaSiModO toolbox can be obtained freely at https://github.com/SebastianPeitz/QuaSiModO.
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Appendix

A. Data-driven modeling

The field of data-driven modeling covers a wide range of algorithms and fields of application. On a very
general level, the aim is to use data – obtained either via numerical simulations or measurements from
experiments – to derive a model that is capable of predicting the future behavior of a system. The list
of surrogate models for dynamical systems is extensive, with additional approaches being presented very
regularly. These can be divided into different methodologies:

• Projection-based surrogate models [7, 40, 41],

• Dynamic Mode Decomposition / Koopman operator and generator [15, 14, 42, 43, 30, 16, 31],

• (Sparse) regression [44, 12, 13, 33],

• Stochastic modeling approaches [45, 46],
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• Feed-forward neural networks [47],

• LSTMs [8, 9],

• Reservoir Computers [10, 11].

We have tested several of the above-mentioned approaches within the QuaSiModO framework. These
will be described in more detail below.

A.1. Koopman operator:

Let g be an autonomous dynamical system defined on the state space Y (e.g., ẏ(t) = g(y(t))), and let

Φt : Y → Y with Φt(y) = y +
∫ t

0
g(y(t)) dt be the associated flow map. Furthermore, let f : Y → Rq be

a real-valued observable of the system. Then the Koopman semigroup of operators {Kt} : F → F with
F = L2(Y ), which describes the evolution of the observable f (see [48, 49, 50, 51]), is defined by

(Ktf)(y) = f(Φt(y)),

and the Koopman semigroup is generated by the Koopman generator L [16, 29]:

Lf = lim
t→0

f ◦ Φt − f
t

.

The Koopman operator and generator are linear yet infinite-dimensional operators acting on the ob-
servable of a system, i.e., on measurements. If we can find a finite-dimensional approximation, then we
obtain an entirely data-driven linear system describing the dynamics of the observed quantities z = f(y).
One method to compute such a numerical approximation from data is Extended Dynamic Mode Decom-
position (EDMD) [49, 52] (see [16] for the generator), which is a generalization of DMD [15, 42]. We
assume that we have either measurement or simulation data, written in matrix form as

Z =
[
z1 z2 · · · zN

]
and Z̃ =

[
z̃1 z̃2 · · · z̃N

]
,

where zi = f(yi) and z̃i = f(Φ∆t(yi)) with a fixed step size ∆t. For a given set of basis functions
{ψ1, ψ2, . . . , ψk} (e.g., polynomials, radial basis functions, etc.), the data matrices are embedded into
the typically higher-dimensional feature space by

ΨZ =
[
ψ(z1) . . . ψ(zm)

]
and ΨZ̃ =

[
ψ(z̃1) . . . ψ(z̃m)

]
,

with ψ being the vector of basis functions. With these data matrices, we then compute a finite-dimensional
approximation of the Koopman operator K ∈ Rk×k by

K> = ΨZ̃Ψ+
Z =

(
ΨZ̃Ψ>Z

)(
ΨZΨ>Z

)−1
,

where + denotes the pseudoinverse. The matrix K now allows us to define a discrete-time update for the
observable z which approximates the true dynamics, thus yielding a linear system for the lifted observable
ẑ = ψ(z):

ẑi+1 ≈ Φr(ẑi) = K>ẑi.

A.2. Proper Orthogonal Decomposition:

Consider a partial differential equation of the general form

ẏ(x, t) = g(y(x, t)), (x, t) ∈ Ω× (t0, te],

a(x, t)
∂y(x, t)

∂n
+ b(x, t)y(x, t) = c(x, t), (x, t) ∈ Γ× (t0, te],

y(x, t0) = y0(x), x ∈ Ω,

(6)

where Ω is the spatial domain of interest with boundary Γ = ∂Ω and corresponding outward normal
vector n. The right-hand side g describes the evolution of the system. For details, the reader is referred
to [53]. Since the state is space dependent, we have to take boundary conditions (BCs) into account, and
the coefficients a(x, t), b(x, t) and c(x, t) are given by the problem definition. Note that this covers both
Dirichlet as well as Neumann BCs by neglecting one of the terms on the left hand side, respectively.
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As a numerical discretization of such PDE systems (e.g., via finite elements) can in general be very
expensive to solve, we want to reduce the model dimension by restricting the dynamics to a finite-
dimensional linear subspace. This is realized by representing y(x, t) in terms of basis functions {ψi(x)}`i=1:

y(x, t) ≈
∑̀
i=1

zi(t)ψi(x),

see [7, 40] for details. If we now insert this expansion into the weak formulation of the PDE, we obtain
a system of nonlinear ODEs in the coefficients z:

ż(t) = gr(z(t)) and zi+1 = Φr(zi) = zi +

∫ ti+1

ti

gr(z(t)) dt.

Note that this requires knowledge of the equations as well as a careful and often tedious treatment
of boundary conditions [25] and nonlinearities [54]. Moreover, in contrast to the other, non-intrusive
modeling techniques, projection-based models predict the full state only.

In order to obtain a small yet informative set of basis functions {ψi(x)}`i=1, snapshot data is collected

from the (spatially discretized) system and stored in a matrix Ŷ = [ŷ(t0), . . . , ŷ(tN )], where the hat
notation denotes the finite-dimensional spatial discretization of y. The singular value decomposition
of Ŷ then yields the orthonormal basis (given by the singular vectors) with the smallest L2 projection
error (equal to the sum of the neglected singular values). This procedure is known as Proper Orthogonal
Decomposition (POD) and has been successfully applied to a wide range of nonlinear systems over the
years, fluid dynamics being the most prominent example [40].

Quite a number of extensions have been presented for the use of POD in PDE-constrained control, see,
for instance, [23] for the Burgers equation, which we use as one of our examples.

A.3. Reservoir Computing / Echo State Networks:

Reservoir Computers (RC) – also referred to as Echo State Networks (ESN) – have become very popular
for time series prediction. This is mainly due to the straightforward and fast training process, which only
consists of solving a linear system. Further details on RC and ESN can be found in the survey [55] or in
[10, 56, 57].

The basic idea is to create a large recurrent neural network whose weights are initialized randomly and
cannot be trained. This is called the reservoir. A linear output layer is then added, which can be trained
efficiently via linear regression. The standard equations of an ESN are given by

r(k + 1) = σ(W ini(k) +W resr(k) +W fbo(k)),

o(k + 1) = W outr(k + 1),

where σ is a nonlinear activation function, e.g., σ(x) = tanh(x), W in, W res and W fb are randomly
generated (sparse) matrices and W out is the trainable output matrix. The reservoir state r(k + 1) (for
time step tk+1) is computed based on a time-dependent input i(k), the previous reservoir state r(k) and
the previous output o(k). In the context of time series prediction the output is the (approximated) state
of the system, i.e., o(k) = yk. Since there is no additional time-dependent input in this setting, the term
W ini(k) is omitted.

To train the model, we take – similar to the Koopman operator approach – observed data (from
measurements or simulations) to train our model, i.e., Φt : Y → Y is the flow map which describes the
dynamics of the system and f : Y → Rq is a real-valued observable of the system. As the reservoir has a
“memory” due to the feedback of the reservoir state, the data to train an ESN has to stem from a single
time series:

Z =
[
zt0 zt1 · · · ztN

]
with ztk = f(Φtk(y0)). (7)

The first time steps are usually used to initialize the reservoir and are not used to train the linear output
layer. Furthermore, in the feedback loop the output o(k) is replaced by the true system state from the
training data ztk .

There are many publications on the prediction of chaotic dynamical systems with ESNs, see, e.g.,
[58, 59, 60, 61, 62, 57]. Furthermore, some papers discuss the use of ESN in an MPC context [63, 64].
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Figure 4: Schematic of a reservoir computer with different readout layers corresponding to different au-
tonomous systems.

Therein, the control input uk serves as the input i(k). Due to this, the input space dimension increases,
and therefore, a larger number of neurons is required in the reservoir to maintain a sufficiently accurate
prediction. Moreover, the training will become harder.

By using the QuaSiModO framework, the dimension does no longer increase, since we train an individ-
ual ESN for each control uj ∈ V . Since only the output layer W out contains information corresponding
to the control uj , we can use the same reservoir for every ESN, cf. Fig. 4.

A.4. Long-short-term memory (LSTM) neural networks:

LSTM is a specific architecture for neural networks, more precisely for recurrent neural networks, which
is specifically tailored to sequential data [8], e.g., time series prediction. In [9], the authors successfully
applied the LSTM-approach to forecasting chaotic systems in a reduced order space. Here, we use the
standard tensorflow implementation [65] which coincides with the formulation in [8].

Consider the flow map Φt : Y → Y which describes the dynamics of the system. Furthermore, let
f : Y → Rq be a real-valued observable. We assume that we have training data where one data point is
of the following form:

Zin =
[
ztk−d

ztk−d+1
· · · ztk

]
and Zout = ztk+1

(8)

with ztk = f(Φtk(y0)) for a given y0 ∈ Y , i.e., the LSTM gets the time series Zin as a sequential input
and should predict the behavior of the dynamical system for one time step into the future (Zout ). Note
that in the presented control framework, for training an LSTM model corresponding to control uj , the
delayed time series can be produced by different control inputs, but only the control uk which maps ztk
to ztk+1

has to be equal to uj .

B. Detailed description of the numerical examples

In this section, we give a detailed description of the numerical setup of the examples presented in Figure
3. In all examples, we solve Problem (IV) with a tracking objective:

min
α∈([0,1]m)p

p−1∑
i=0

(zi+1 − zrefi+1)>Q(zi+1 − zrefi+1)

s.t. zi+1 = Φr(zi, αi) =

m∑
j=1

αi,jΦ
r
uj (zi) and

m∑
j=1

αi,j = 1, i = 0, 1, 2, . . . ,

(ÎV)

where the quadratic, positive semidefinite matrix Q is problem-specific.

B.1. Control of the Lorenz system using the Koopman operator:

As a first example, we consider the Lorenz system which is probably the most studied system when it
comes to chaotic dynamics. Despite the chaotic behavior, there are many studies showing that predictions
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Table 2: Lorenz system with EDMD surrogate model.

Parameter Value

System parameters (σ, ρ, β) (10, 28, 8
3

)

Quantization U [−50, 50] or [0, π]
V {−50, 50} or {0, π}
m 2

Training data ∆t 0.0005
Ttrain 100.0
# trajectories 1
Input Piecewise constant, random ui ∈ V

Surrogate model ∆t 0.05
ψ Monomials up to degree 3
observable z = f(y) = y

MPC TMPC 20.0
p 3
Q diag(0, 1, 0)
zrefi zrefi = 1.5 · sin(4π · ti/TMPC)
∆tSUR 0.0005
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Figure 5: Solutions for the control affine (a) and the adapted Lorenz system (b) with EDMD. The solution
of the linearly interpolated problem is shown in orange and the result generated by using SUR
after each optimization step in blue. The reference trajectory is given by the dotted black line.

over time horizons of moderate length are possible using different methods such as neural networks [60]
or sparse regression [12, 66]. The control task in our example is to track a reference trajectory for the
second variable using an additive control input:

d

dt

y1

y2

y3

 =

 σ(y2 − y1)
y1(ρ− y3)− y2

y1y2 − βy3

+

0
u
0

 .

We here use EDMD as the surrogate model with z = f(y) = y. The detailed setting is described in

Table 2. As the control input enters linearly, the solution of (ÎV) can be directly applied to the real
system without an additional error. Therefore, it is not surprising that we achieve a very good control
performance by using the interpolated solution, cf. Figure 5a. The SUR algorithm leads to a slightly
worse solution which is caused by the discretization ∆tSUR.

In order to emphasize the importance of the SUR algorithm, we also study a nonlinear control input,
i.e.,

ẏ2 = y1(ρ− y3)− y2 + 50 · cos(u),

and choose U = [0, π], V = {0, π}. Here, an interpolation error is introduced by applying the linearly
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interpolated control to the system and therefore, the SUR algorithm provides a substantially better
solution, cf. Figure 5b. Except for the different control spaces U and V , the parameters were not changed
with respect to the previous example.

In Figure 3, the results for the same setting but for tracking a piecewise constant trajectory are
presented, i.e.,

zrefi =

 0.0, if ti ≤ 5.0
5.0, if 5.0 < ti ≤ 10.0
−10.0, else.

B.2. Control of the Burgers equation using Proper Orthogonal Decomposition:

Our second example is the one-dimensional viscous Burgers equation:

ẏ(x, t)− 1

Re
∆y(x, t) + y(x, t)∇y(x, t) =

5∑
j=1

vj(t)χj(x), (x, t) ∈ [0, L]× (t0, te],

y(0, t) = y(L, t) = 0, t ∈ (t0, te],

y(x, t0) =

{
1, x ∈ (0, L2 ],

0, x ∈ (L2 , L),

which was also studied by Kunisch and Volkwein in their seminal work on POD-based control of PDEs
[23]. We consider a domain of length L = 1 and a distributed control that is realized via indicator
functions χi with disjoint support:

χj(x) =

{
1, (j−1)L

5 < x ≤ jL
5

0, else
⇒

5∑
j=1

χj(x) = 1 for x ∈ (0, L],

with the aim to stabilize the system at yref(·, t) = 0. For the quantization of the control, we use a
difference-star-like set with u1 = (0, 0, 0, 0, 0) and then two additional points per component, where the
minimal and maximal value are taken, respectively. This results in a total of 11 autonomous systems. As
we use POD as the surrogate model, we have to choose z = y. The detailed setup is described in Table
3.

Table 3: 1D Burgers equation with POD surrogate model.

Parameter Value

System parameters Re 100

Quantization U [−1, 1]5

V



−1
0
...
0

 ,


1
0
...
0

 , . . . ,


0
...
0
1




m 11

Training data ∆t 0.005
Ttrain 50
# trajectories 1
Input Piecewise constant, random ui ∈ V

Surrogate model ∆t 0.025
Basis size ` 12
observable z = f(y) = y

MPC TMPC 5
p 5
Q Id
zrefi 0

B.3. Control of a stochastic COVID-19 model using the Koopman operator:

In order to study the control of stochastic systems, we use the example of a compartment model for the
COVID-19 outbreak in Germany in March 2020. The model was developed and validated using data from
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Table 4: COVID-19 SIDARTHE model with Koopman operator surrogate model.

Parameter Value

System parameters (β, ε, ζ, λ, µ, κ, σ, τ) (0.0084, 0, 0.079, 0.0566, 0.013, 0.0563,
0.044, 0.0288)

Quantization U = V {0.0422, 0.1360, 0.1756, 0.3614}
m 4

Training data ∆t 1
12

(day)
Ttrain 200
# trajectories 40
Input 10 Sim. per input ui ∈ V

Surrogate model ∆t 7 (days)
ψ Identity (→ DMD)
observable z = f(y) = (I,D,A,R, T )

MPC TMPC 700
p 4
d1 107

d2 0.03

Italy in [6], and adapted to Germany and used for optimal control in [67]. The model consists of the eight
compartments Susceptible, Infected (asymptomatic, undetected), Diagnosed (asymptomatic, detected),
Ailing (symptomatic, undetected), Recognized (symptomatic, detected), Threatened (symptomatic with
life-threatening symptoms, detected), Healed (immune after prior infection, detected or undetected), and
Extinct (dead, detected), and the dynamics are described by an eight-dimensional ODE:

d

dt



S
I
D
A
R
T
H
E


=



−S(αI + βD + γA+ βR)
S(αI + βD + γA+ βR)− (ε+ ζ + λ)I

εI − (ζ + λ)D
ζI − (θ + µ+ κ)A
ζD + θA− (µ+ κ)R
µA+ µR− (σ + τ)T

λI + λD + κA+ κR+ σT
τT


.

The coefficients α, β, γ, ε, ζ, λ, µ, κ, σ, τ denote the transfer rates between the various compartments and
are fitted using measurement data. In our case, we use the values given in [67] to match the dynamics of
the COVID-19 outbreak in Germany in March 2020.

As each individual is contained in exactly one compartment, the sum over all compartments is 1 at all
times. To account for uncertainties in the number of infections, we add a normally distributed random
variable N ∼ N (0, 1) to the number of infections that is scaled by I:

İ = S(αI + βD + γA+ βR)− (ε+ ζ + λ)I +
I

3
N.

We use the standard Euler Maruyama method for the numerical time integration, and in order to maintain
a constant number of individuals, we calculate S = 1− (I +D+A+R+ T +H +E) in every time step.

The system can be controlled by adapting the values for α and γ (with α = γ for simplicity), which
can take four different values corresponding to different counter-measures such as social distancing or the
lock-down of restaurants and businesses.

We want to minimize the current number of infectious individuals, i.e., the sum of I, D, A, R and T .
Furthermore, the number of threatened individuals should not exceed the number of free beds in intensive
care units, which is why we penalize large values of T . Finally, counter-measures can potentially result
in economic and social damage, which is why we want to minimize the use of these measures as well. In
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summary, we obtain the following mixed-integer optimal control problem:

min
u∈{α1,...,α4}

p−1∑
i=0

(I2
i +D2

i +A2
i +R2

i + T 2
i )+d1 max{0, (T − Tmax)2}

+d2 max
{

10−4, 10−1−
√
I0 +D0 +A0 +R0 + T0 · ui

}
s.t. (Ii+1, Di+1, Ai+1, Ri+1, Ti+1, Hi+1, Ei+1)> = Φ(Ii, Di, Ai, Ri, Ti, Hi, Ei, Ni, ui),

Si+1 = 1− (Ii+1 +Di+1 +Ai+1 +Ri+1 + Ti+1 +Hi+1 + Ei+1),

(S0, I0, D0, A0, R0, T0, H0, E0) = (S0, I0, D0, A0, R0, T 0, H0, E0).

As the surrogate model, we use again the Koopman operator, which yields a linear system for the
expected value [52]. As the objective function does not depend on S, H and E, we exclude these from
the observable z = (I,D,A,R, T ). The detailed setup is described in Table 4.

B.4. Control of the flow around a cylinder using an LSTM neural network:

Next, we want to control the flow around a cylinder – governed by the two-dimensional incompressible
Navier–Stokes equations – which exhibits periodic vortex shedding at Re = 100 [68]. Our aim is not to
control the flow field, but the forces acting on the cylinder (the lift CL and the drag CD) without any
knowledge of the flow field itself.

As the surrogate model we use an LSTM neural network. The control aim is to force the lift to follow
a predefined trajectory. This was already done in [24] but there the control input was continuous and a
different RNN architecture was used to build the surrogate model. For detailed parameters of the setting
see Table 5.

Table 5: 2D Cylinder flow with LSTM surrogate model.

Parameter Value

System parameters Re 100

Quantization U [−5, 5]
V {−5, 0, 5}
m 3

Training data ∆t 0.05
Ttrain (2 *) 500
# trajectories 2
Input Piecewise constant, random ui ∈ V

Surrogate model ∆t 0.1
neurons per LSTM-cell 500
observable z = f(y) = (CD, CL)
delay coordinates 15

MPC TMPC 20.0
p 5

Q

[
0 0
0 1

]
zrefi sin( ti

2
)

∆tSUR 0.05

B.5. Control of the Mackey-Glass delay differential equation for blood cell reproduction using
Reservoir Computing (ESN):

The last example is the control of the Mackey-Glass equation which is a delay differential equation
modeling blood cell reproduction [69, 70]:

ẏ(t) = β
y(t− τ)

1 + y(t− τ)η
− γy(t) + u(t) with β, γ, η > 0. (9)

The uncontrolled system (i.e., u(t) = 0) was studied for different parameters and chaotic behavior was
proven for certain parameter values, for instance β = 2, γ = 1 and η = 9.65 [70]. Since this system has
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Table 6: Mackey-Glass DDE with ESN surrogate model.

Parameter Value

System paramters (β, γ, η, τ) (2, 1, 9.65, 2)

Quantization U [−0.2, 1.0]
V {−0.2, 0.0, 1.0}
m 3

Training data ∆t 0.05
Ttrain 1000.0
# trajectories 1
Input Piecewise constant, random ui ∈ V

Surrogate model ∆t 0.25
size residuum 200
spectral radius (W res) 0.75
sparsity (W res) 0.9
σ 0.99
β 0.0001
observable z = f(y) = y

MPC TMPC 20.0
p 5
Q 1
zrefi 1.0

become a benchmark for predicting chaotic delay systems, there are several studies on data-based models,
and many different methods were used such as local linear approximation [71], genetic algorithms [72]
and different forms of neural networks [73, 74, 75, 76]. Another approach is via Echo State Networks
(ESN), which were studied in [57, 77, 78].

The additive term to control the system represents – in the context of blood reproduction – an increase
in the number of blood cells caused by, e.g., a transfusion. The same control problem was already studied
in [79, 80], where the authors derived different feedback laws in order to stabilize the systems.

Here, we use a ESN as surrogate model. As mentioned in Appendix A.3 we can use a single reservoir
for all possible controls, i.e., only the output layer W out differs. For the detailed setting see Table 6.
Note, that we do not need delay coordinates although the state depends on y(t) and y(t − τ) since the
ESN is able to capture the past dynamics by the feedback of the reservoir state. Since the control enters
linearly – similar to the Lorenz system – the interpolated solution is exact (EV(V ) = 0). The results in
Figure 3 show that the system can be stabilized at 1.0.

24


	QuaSiModO steps
	Quantization:
	Simulation & Modeling:
	Surrogate model error

	Optimization:

	Performance guarantees
	Similarity of trajectories
	Bound without model error
	Combination with model error
	Nonlinear observable functions
	Linear observable functions

	Example

	Results
	Conclusion
	Data-driven modeling
	Koopman operator:
	Proper Orthogonal Decomposition:
	Reservoir Computing / Echo State Networks:
	Long-short-term memory (LSTM) neural networks:

	Detailed description of the numerical examples
	Control of the Lorenz system using the Koopman operator:
	Control of the Burgers equation using Proper Orthogonal Decomposition:
	Control of a stochastic COVID-19 model using the Koopman operator:
	Control of the flow around a cylinder using an LSTM neural network:
	Control of the Mackey-Glass delay differential equation for blood cell reproduction using Reservoir Computing (ESN):


