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RISK-NEUTRAL PDE-CONSTRAINED GENERALIZED NASH
EQUILIBRIUM PROBLEMS

D. B. GAHURURU(1), M. HINTERMÜLLER(2),(3), AND T. M. SUROWIEC(4)

Abstract. A class of risk-neutral PDE-constrained generalized Nash equilibrium problems
is introduced in which the feasible strategy set of each player is subject to a common linear
elliptic partial differential equation with random inputs. In addition, each player’s actions
are taken from a bounded, closed, and convex set on the individual strategies and a bound
constraint on the common state variable. Existence of Nash equilibria and first-order optimality
conditions are derived by exploiting higher integrability and regularity of the random field state
variables and a specially tailored constraint qualification for GNEPs with the assumed structure.
A relaxation scheme based on the Moreau-Yosida approximation of the bound constraint is
proposed, which ultimately leads to numerical algorithms for the individual player problems as
well as the GNEP as a whole. The relaxation scheme is related to probability constraints and
the viability of the proposed numerical algorithms are demonstrated via several examples.

Keywords: PDE with Random Inputs, PDE-Constrained Optimization, Generalized Nash
Equilibrium Problems, Stochastic Optimization, Sample Average Approximation, Semismooth
Newton Method.
AMS: 49J20, 49J55, 49K20, 49K45, 90C15, 65K10, 91A06, 91A10.

1. Introduction

Whether it be a consequence of noisy measurements, estimated parameter values, or model
ambiguity, uncertainty is omnipresent in just about every mathematical model of real-world
phenomena. Whenever the uncertainty is untreatable by deterministic quantities, it is best to
assimilate it into our mathematical models via random variables, vectors, or elements. This
allows us to find more robust solutions in the face of future uncertainty and guard against
outlier events. Since many models in engineering and the natural sciences are defined by partial
differential equations (PDEs), the inclusion of random inputs leads us to consider parametric or
random PDEs as part of our optimization problems, cf. [9, 18,49,60,62].

PDE-constrained optimization under uncertainty is a challenging area of mathematical opti-
mization with many relevant applications in the engineering sciences. It is a growing field with
many recent of contributions in theory and algorithms, see e.g. [3,11–14,20,22,39–41,43–45,57,
58, 63]. However, many practical problems require the simultaneous minimization of multiple
objectives. By pitting these objectives against each other, i.e., treating the problem as a nonco-
operative game with each objective and separate control representing a player and its individual
strategy, we naturally come to study PDE-constrained Nash equilibrium problems under un-
certainty. In the deterministic setting, we mention here the pioneering works [16, 26, 51–54, 61].
It is important to note, however, that the models in these papers do not consider bound con-
straints, in particular there are no state constraints. This is an important distinction, as it
makes the difference between modeling the game via a coupled PDEs (no bound constraints)
versus a variational inequality (no state constraints) versus a quasivariational inequality (with
state constraints).
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As with their deterministic counterparts, it is often necessary to look for a control that forces
the state (solution of the PDE) to satisfy certain bound constraints, e.g., below a maximum
temperature threshold or above a physical obstacle. When uncertain inputs are involved, this
problem of state constraints becomes much more challenging. This is due in part to a lack
of smoothness with respect to the random parameters and missing compactness properties,
which we would expect in a deterministic setting. In particular, a standard adjoint equation is
not available. The inclusion of state constraints leads in fact to generalized Nash equilibrium
problems in Banach spaces. For recent work in the deterministic setting, we refer the reader
to [33,34,37,38] and the references therein.

Summarizing the discussions above, we thus consider a class of risk-neutral PDE-constrained
GNEPs under uncertainty subject to state constraints. In an abstract sense, this amounts to
considering an N -player GNEP in which the ith player’s problem takes the form

min
zi∈Ziad

{EP[Ji(zi, z−i, ·)] |S(zi, z−i, ω) ∈ K P-a.s.} .

Here, S(z) is the z-dependent random field solution of a linear elliptic PDE with uncertain
inputs, Ziad and K are closed convex sets and Ji is an appropriate convex (dis)utility function
for player i. We will make the appropriate data assumptions below. The term “risk-neutral”
arises due to the fact that only the expected (dis)utility is considered. Letting z be a Nash
equilibrium for this problem, player i would expect zi to be the best response to z−i on average,
i.e., if the game were played repeatedly. Since the literature is rather scarce on the treatment of
state constraints in PDE-constrained optimization under uncertainty, see e.g., [19, 23] and the
recent preprint [21], we pay special attention to the case where N = 1, as well. We comment
further on the studies [19,23] below, which make use of probability constraints. In contrast, the
abstract results in [22] can be used for state constraints as considered in this paper. However,
these results require a different kind of constraint qualification that may be difficult to verify in
general.

The contributions of our paper are as follows:
(1) We exploit existing results on elliptic regularity theory to prove higher integrability and

regularity of the random field solutions S(z).
(2) Under appropriate constraint qualifications, we prove existence of solutions/equilibria

and derive optimality conditions for the optimization problem and GNEP.
(3) We extend the well-known Moreau-Yosida approach for state constraints to the stochastic

case and rigorously prove that the approximations converge to the original GNEP.
(4) The link between the Moreau-Yosida regularization technique and probability constraints

is established using concentration inequalities.
(5) We propose and demonstrate the viability of numerical algorithms for the optimization

problem and GNEP.
The first contribution is crucial, as we need at least essential boundedness of the random field
solutions in order to use techniques of convex optimization in Banach spaces to develop the
optimality theory. In (2), we require a Slater-type condition for the optimization problem and the
strict uniform feasible response (SUFR) condition introduced in [33] for the GNEP. The SUFR
condition imposes a kind of hidden symmetry on the GNEP model. Although Moreau-Yosida
regularization has been used successfully in deterministic settings, the stochastic setting poses
additional pitfalls. Nevertheless, passing to the limit in the relaxation parameter is crucial for the
justification of the numerical methods in the fully continuous setting. The link to probability
constraints in (4) is interesting in its own right, since the approximating problems are much
easier to solve than a similar problem with probability conditions. In addition, we obtain a kind
of probabilistic rate of convergence for the Moreau-Yosida relaxations, which is reflected in the
properties of the out-of-sample controlled states in (5); even after solving with relatively small
increasing batches and modest values of the relaxation parameter. The encouraging results in
our numerical study (5) motivate a number of future research directions.

The rest of the paper is structured as follows. In Section 2, we pose a number of basic assump-
tions along with an analysis of the forward problem. In addition, the optimization problems and
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GNEP are introduced. Following this, we derive existence and optimality conditions in Section
3; using the underlying structure and basic constraint qualifications. Due to the low multiplier
regularity in the optimality conditions and a lack of adjoint equation in the traditional sense,
we propose a Moreau-Yosida technique in Section 4. This allows us to formulate function-space-
based numerical algorithms for both the optimization problems and the GNEP in Section 5. The
potential of the algorithms is demonstrated via several numerical examples. In particular, we
provide a brief, post-optimal analysis using the performance of the computed controls to derive
a statistic on the violation of the state constraint.

2. Problem Formulation

2.1. Notation, Standing Assumptions, and Preliminary Results. We start by defining
the necessary function spaces. We assume that the physical domain D ⊂ Rd with d = 1, 2,
or 3 is an open bounded set such that D is either a convex polyhedron or the boundary of D,
denoted by ∂D, is of class C1,1.

The triple (Ω,F ,P) denotes a complete probability space, where Ω is the sample space of
possible outcomes, F the Borel σ-alegra of Ω for a fixed topology on Ω and P is a probability
measure.

Given a real-valued Banach space (V, ‖·‖V ), Borel measure µ, and p ∈ [1,∞] we denote the
usual Lebesgue-Bochner space Lpµ(Ω;V ) of all strongly F-measurable V -valued functions by

Lpµ(Ω;V ) = {u : Ω→ V : u strongly F−measurable and ‖u‖Lpµ(Ω;V ) <∞}

where

‖u‖Lpµ(Ω;V ) =


(∫

Ω ‖u(ω)‖pV dµ(ω)
)1/p

, p <∞
µ− ess sup

ω∈Ω
‖u(ω)‖V , p =∞.

When V = R, we set Lpµ(Ω;R) = Lpµ(Ω) the usual Lebesgue space with underlying measure
µ. When the Lebesgue measure µ = L is considered, we omit the subscript L and simply
write Lp(Ω). We denote by FL the σ-algebra of Lebesgue measurable sets. We recall here
that for 1 ≤ p, q ≤ ∞ such that 1/p + 1/q = 1, it is known that the topological dual fulfills
LpP(Ω;V )∗ ' LqP(Ω;V ∗). If V is reflexive, then so is LpP(Ω;V ) for 1 < p < ∞. For further
information see [28, Chapter III].

We show in the sections below that the multipliers for the stochastic state constraints are of
very low regularity, i.e., bounded additive measures. We will need the space ba, which we recall
here for ease of reference, cf. [27, 20.27 Definition] or [17].

Definition 2.1. Let (Ξ,B, µ) be a σ-finite measure space. The space ba(Ξ,B, µ) denotes the set
of all real-valued set-functions τ : B → R such that

(i) sup{|τ(A)| : A ∈ B} <∞,
(ii) τ(A ∪B) = τ(A) + τ(B) for A,B ∈ B with A ∩B = ∅ and
(iii) τ(A) = 0 if A ∈ B is µ-null, i.e. τ << µ.

The norm of τ ∈ ba(Ξ,B, µ) is given by |τ |(Ξ), the total variation of τ on B.

The key result for our analysis related to this space is the existence of an isometric isomorphism
between (L∞π (Ξ))∗ and ba(Ξ,B, π), cf. [17, Thm. IV.8.16], where we use

Ξ = Ω×D, B = F ⊗ FL, π = P× L.

Finally, we fix several notational conventions. For a (real) Banach space V we denote the
expectation of a random element X : Ω→ V by

EP[X] =

∫
Ω
X(ω) dP(ω) ∈ V.

For some nonempty subset C ⊂ V , IC : V → R ∪ {∞} represents the standard indicator
function, which satisfies IC(x) = 0 if x ∈ C and +∞ otherwise. For an arbitrary convex set K,
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we define the standard convex normal cone by

NK(x) =

{
{x∗ ∈ V ∗ | 〈x∗, y − x〉 ≤ 0, ∀y ∈ K } , if x ∈ K,

∅, otherwise.

The (set-theoretic) characteristic function associated with some subset A is denoted by χ or χA,
where χA(x) = 1 if x ∈ A and 0 otherwise. Strong convergence of a sequence is denoted by
→, weak-convergence by ⇀, and weak-*-convergence by ∗

⇀. The closed ε-ball with center x in
some normed space is denoted Bε(x). The superscript ∗ is used to denote the adjoint operator
or dual space. As usual C . D means that C is bounded by D up to an independent constant.
For two Banach spaces V and W , the set of all bounded linear operators from V to W will be
denoted by L(V,W ). We use the typical convention from game theory for a vector u with N
components for emphasizing the ith component by writing u = (ui, u−i) = (u−i, ui).

2.2. Risk-Neutral PDE-Constrained Equilibrium Problems.

2.2.1. PDE-Constrained Equilibrium Problems as Strategic Games. As mentioned above, our
results apply to both PDE-constrained optimization problems under uncertainty as well as sto-
chastic equilibrium problems with PDE-constraints. Whereas the solution concept for PDE-
constrained optimization is obvious, there are several possibilities for equilibrium problems from
the perspective of game theory. The notation in this brief section is chosen to reflect the refer-
ences to the game theory literature.

We recall that a strategic game comprises a set of N players or agents, their sets of actions
Ai, and a unique preference relation for each player over all possible profiles of actions a ∈
A :=×N

i=1A
i. In many cases, the preference relation can be described by the values of utility

functions ui : A → R and the preferred solution concept for noncooperative behavior is often
taken to be a Nash equilibrium; cf. [47]. The latter states that ā ∈ A is a (pure strategy) Nash
equilibrium provided for all i = 1, . . . , N we have

(2.1) ui(ā) ≥ ui(ā−i, ai) ∀ai ∈ Ai,

see, e.g., [48] for more details. We will refer to games in which the solution concept is a Nash
equilibrium as Nash Equilibrium Problems or NEPs.

We will take an analogous perspective for our PDE-constrained equilibrium problems. How-
ever, due to the presence of state constraints, the sets of actions are set-valued mappings Ai(a−i)
that also depend on a−i for each i. This leads to a natural extension, first introduced by De-
breu [15], see also [6]: ā ∈ A is a (generalized) Nash equilibrium provided for all i = 1, . . . , N
we have āi ∈ Ai(ā−i) and

(2.2) ui(ā) ≥ ui(ā−i, ai) ∀ai ∈ Ai(ā−i).

These games are significantly more difficult from both a theoretical as well as numerical per-
spective due to the embedded fixed point relation. We refer to games of this type as Generalized
Nash Equilibrium Problems of GNEPs.

2.2.2. Linear Elliptic Random PDEs. Returning now to the context of PDE-constrained opti-
mization, we introduce a class of linear elliptic random PDEs as our state system. Let

U := L2
P(Ω;H1

0 (D)).

Given z ∈ L2(D), we consider the following problem: Find u ∈ U such that

(2.3) EP

[∫
D
A(x, ·)∇u(x, ·) · ∇v(x, ·) dx

]
= EP

[∫
D

((B(·)z)(x) + f(x, ·))v(x, ·) dx

]
,

for all test functions v ∈ U . Note that (2.3) can be equivalently written in a semi-weak form.
Let u solve (2.3). Then using v(x, ω) = χA(ω)ϕ(x) such that A ∈ F and ϕ ∈ H1

0 (D) (or
ϕ ∈ C∞0 (D)) we have

(2.4)
∫
A

∫
D
A(x, ω)∇u(x, ω) · ∇ϕ(x) dxdP(ω) =

∫
A

∫
D

((B(ω)z)(x) + f(x, ω))ϕ(x) dxdP(ω),
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for every ϕ ∈ H1
0 (D) and consequently

(2.5)
∫
D
A(x, ω)∇u(x, ω) · ∇ϕ(x) dx =

∫
D

((B(ω)z)(x) + f(x, ω))ϕ(x) dx, P−a.s.

for every ϕ ∈ H1
0 (D) . The reverse direction (from P-pointwise weak solutions to a solution

of (2.3)) can be easily adapted from the nonlinear setting in [42]. The key components of the
argument are: Prove the existence of a solution for P-a.e. ω, demonstrate measurability in ω
using Fillipov’s theorem for measurable selections, and obtain integrability using standard a
priori estimates for elliptic PDEs. It is sometimes more convenient to work with one form versus
the other as we will see below. For z = 0, we denote the solution of (2.3) by uf and for f ≡ 0
we set u = S(z). Hence, any solution u of (2.3) can be written

(2.6) u = S(z) + uf .

We will demonstrate below that S(z) is a bounded linear operator in z between appropriate
function spaces.

In order to ensure well-defined solutions and derive higher regularity results, we make the
following additional assumptions on the problem data.

Assumption 2.2. In addition to the standing assumptions on D, ∂D, and (Ω,F ,P), the fol-
lowing sets of assumptions will be necessary below.

(i) (Minimum Regularity) The coefficient mapping A : D×Ω→ R is (L×P)-measurable
and there exist constants 0 < A < A such that

A ≤ A(x, ω) ≤ A (L × P)-a.e. (x, ω) ∈ D × Ω

The fixed bulk term f satisfies

f ∈ L∞P (Ω;L2(D))

(ii) (Higher Regularity) In addition to (i), A ∈ L∞P (Ω;C0,1(D̄)).
(iii) (Control Mapping) The control mapping B : Ω → L(L2(D)N , L2(D)) is measurable

and essentially bounded, i.e. B ∈ L∞P (Ω,L(L2(D)N , L2(D)). Moreover, as a mapping
from Ω to L(L2(D), H−1(D)), B is completely continuous in the sense that for P-a.e.
ω ∈ Ω we have

zk ⇀ z in L2(D)N =⇒ B(ω)z → B(ω)z in H−1(D).

Some remarks are in order. Assumption 2.2.(i) can be slightly weakened to allow for un-
bounded coefficients and still obtain the existence of solutions, cf. e.g., [24]. It is also possible
to choose f and/or B(ω)z that is unbounded in ω. However, weakening these assumptions
would mean that the solutions u to (2.3) are also not bounded. The latter property is essential
for our treatment of state constraints. The Lipschitz continuity of A(ω, ·) : D̄ → R in As-
sumption 2.2.(ii) will be used to ensure boundedness of u in x. This along with the regularity
assumption on the boundary ∂D can be slightly weakened to the extent that we can guarantee
u ∈ L∞P×L(Ω×D), e.g., we could relax Lipschitz to Hölder and work with u(·, ω) inW 1,p(D) with
p > d. The properties in Assumption 2.2.(iii) are the weakest possible for our analysis. Using
Assumption 2.2, we gather several essential properties of the mapping z 7→ u in the following
result.

Proposition 2.3. Let Assumption 2.2 hold. For any z ∈ L2(D), there exists a unique solution
u ∈ U of (2.3). Moreover, u ∈ L∞P (Ω;H2(D) ∩H1

0 (D)) and the following a priori bound holds

(2.7) ‖u‖L∞P (Ω;H2(D)∩H1
0 (D)) ≤ C

(
‖f‖L∞P (Ω;L2(D)) + ‖B(·)z‖L∞P (Ω;L2(D))

)
Here, C is independent of ω.

Proof. Defining the bilinear form b : U × U → R by

b(u, v) := EP

[∫
D
A(x, ·)∇u(x, ·) · ∇v(x, ·) dx

]
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and z-dependent linear form L(·; z) : U → R by

L(v; z) := EP

[∫
D

((B(·)z)(x) + f(x, ·))v(x, ·) dx

]
,

we can view (2.3), as the variational problem: Find u ∈ U such that

b(u, v) = L(v; z) ∀v ∈ U .

It readily follows from Assumption 2.2 that b is a U-coercive bilinear form. Then by the Lax-
Milgram Lemma there exists a unique solution u ∈ U . In light of the equivalence to (2.5), we
immediately deduce from the standard a priori bound:

(2.8) ‖u(·, ω)‖H1
0 (D) ≤ C1‖B(ω)z + f(·, ω)‖H−1(D)

that u : Ω→ H1
0 (D) is P-essentially bounded. Due to the assumptions on A, C1 does not depend

on ω.
For the a priori bound (2.7), we need to consider two cases. We once again appeal to the

equivalence between (2.3) and (2.5). If ∂D is of type C1,1, then it follows from Assumption 2.2
along with Friedrichs’ theorem, see e.g., [5, A12.2 Theorem], that for P-a.e. ω ∈ Ω we have

(2.9) ‖u(·, ω)‖H2(D) ≤ C(ω)
(
‖u(·, ω)‖H1

0 (D) + ‖B(ω)z‖L2(D) + ‖f(·, ω)‖L2(D)

)
.

Here, C(ω) = C
(
∂D, d,A, ‖A(·, ω)‖C0,1(D̄)

)
. The same estimate also holds when ∂D is non-

smooth, but D is a convex polyhedron, see Remark 2.4 below. The “constant” C(ω) is indeed a
bounded and measurable function in ω. This follows from the fact that the term ‖A(·, ω)‖C0,1(D̄)

is measurable, uniformly bounded away from zero, and C(ω) is a sum of rational functions of
‖A(·, ω)‖C0,1(D̄), where it appears in a numerator and a denominator. Continuing, for P-a.e.
ω ∈ Ω, we have

‖u(ω, ·)‖H2(D)∩H1
0 (D) = max

{
‖u(ω, ·)‖H2(D), ‖u(ω, ·)‖H1

0 (D)

}
≤ ‖u(ω, ·)‖H2(D) + ‖u(ω, ·)‖H1

0 (D)

≤ C(ω)
(
‖u(ω, ·)‖H1

0 (D) + ‖B(ω)z‖L2(D) + ‖f(ω, ·)‖L2(D)

)
+ C1

(
‖B(ω)z‖H−1(D) + ‖f(ω, ·)‖H−1(D)

)
.

Furthermore, we obtain

‖u(ω, ·)‖H2(D)∩H1
0 (D) ≤ C(ω)C1

(
‖B(ω)z‖H−1(D) + ‖f(ω, ·)‖H−1(D)

)
+ C(ω)

(
‖B(ω)z‖L2(D) + ‖f(ω, ·)‖L2(D)

)
+ C1

(
‖B(ω)z‖H−1(D) + ‖f(ω, ·)‖H−1(D)

)
.

Finally, due to the Gelfand triple H1
0 (D) ↪→ L2(D) ↪→ H−1(D), we have

‖u(ω, ·)‖H2(D)∩H1
0 (D) ≤ Ĉ(ω)

(
‖B(ω)z‖L2(D) + ‖f(ω, ·)‖L2(D)

)
,

where
Ĉ(ω) := 3 max {C(ω), C1, Cemb}3

and Cemb is the embedding constant for L2(D) into H−1(D). Passing to the P-essential supre-
mum yields

ess sup
ω∈Ω

‖u(ω, ·)‖H2(D)∩H1
0 (D) . ess sup

ω∈Ω
‖B(ω)z‖L2(D) + ess sup

ω∈Ω
‖f(ω, ·)‖L2(D) <∞.

Thus, u ∈ L∞P (Ω;H1
0 (D) ∩H2(D)) and (2.7) follows. �

Remark 2.4. For details on the well-known regularity results for deterministic elliptic PDEs on
nonsmooth domains, we refer to [25, Thm. 3.2.1.2 ] and especially to [25, Thm. 3.1.3.3, Lem.
3.1.3.2, Thm. 3.1.3.1] for the estimation bounds.
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Proposition 2.3 justifies the decomposition in (2.6). In particular, we see that S is a bounded
linear operator and uf ∈ L∞P (Ω;H1

0 (D) ∩ H2(D)). We deduce several additional properties in
the following corollary.

Corollary 2.5. Under the hypotheses of Proposition 2.3 we have:
(i) As a mapping from L2(D) to LqP(Ω;H1

0 (D)) with q ∈ [1,∞), S is completely continuous,
bounded, and linear.

(ii) As a mapping from L2(D) to L∞P (Ω;H1
0 (D) ∩H2(D))), S is bounded and linear.

Proof. Case (i) is a special case of [42, Prop 2.3]. In case (ii) linearity follows trivially from the
definition of S(z) whereas boundedness is a consequence of (2.7) and Assumption 2.2.(iii). �

We end this section by introducing a convenient P-pointwise notation that will aid in the
derivation of optimality conditions below. We define

A : Ω→ L(H1
0 (D) ∩H2(D), L2(D)) and B : Ω→ L(L2(D))

to be the operators given by

〈A(ω)u, v〉 =

∫
D
A(x, ω)∇u(x) · ∇v(x) dx

for u, v ∈ H1
0 (D) ∩H2(D) and

〈B(ω)z, v〉 =

∫
D

((B(ω)z)(x)v(x) dx,

respectively. Note that A(ω) is a linear isomorphism due to the regularity results above. Given
A,B we can understand S(z) + uf P-pointwise as

(2.10) S(z)(ω) + uf (ω) = A−1(ω)B(ω)z +A−1(ω)B(ω)f(ω)

whenever we need to work with higher regularity.

2.2.3. A Class of Risk-Neutral PDE-Constrained Optimization Problems. In this section, we
introduce a class of optimization problems that will serve as a template for the individual player
problems in the PDE-constrained GNEP.

Assumption 2.6. We assume that
(i) (Control Constraints) Zad ⊂ L2(D) is a nonempty, closed, bounded, and convex set.
(ii) (Objective) The cost parameter ν ≥ 0, ud ∈ L2(D), T ∈ L(L2(D)), and

J : L2(D)× L2(D)→ R is defined by

(2.11) J(u, z) :=
1

2
‖Tu− ud‖2L2(D) +

ν

2
‖z‖2L2(D).

(iii) (State Constraint) Given ψ ∈ C(Ω×D) for which there exists ε > 0 such that

ψ|∂D(ω) ≤ −ε P-a.s.,
we define the state constraint by

(2.12) S(z) + uf ≥ ψ for (L × P)-a.e. (x, ω) ∈ D × Ω.

(iv) (Feasibility) There exists z ∈ Zad such that (2.12) holds.

The boundedness in Assumption 2.6.(i) is only needed in the optimization setting if ν = 0.
However, it is unclear how to extend the existence proof for the GNEP, as the latter follows
from an application of the Kakutani-Fan-Glicksberg theorem, which includes a compactness
condition. It is not necessary for our analysis to restrict ourselves to the tracking-type objective
in Assumption 2.6.(ii). We could proceed in a more general manner as suggested in [44] under
appropriate convexity, continuity, and growth conditions. This would require further technical
assumptions that we believe would detract from the main purpose of the text. The nonemptiness
of the feasible set in our setting is assumed in Assumption 2.6.(iv). Provided Zad admits a z > 0
with sufficiently large L∞(D)-norm, then the existence of a feasible point can be guaranteed by
the maximum principle in light of the regularity result in Proposition 2.3.
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The inclusion of state constraints in PDE-constrained optimization in the form of (2.12) is
new. An alternative way of interpreting (2.12) would be to consider either

P(S(z)(x, ·) + uf (x, ·)− ψ(x, ·) ≥ 0) = 1 for L-a.e. x ∈ D

or

P(S(z)(x, ·) + uf (x, ·)− ψ(x, ·) ≥ 0 for L-a.e. x ∈ D) = 1.

From the perspective of stochastic programming, this is rather restrictive and in general settings
(beyond PDE-constrained optimization), may lead to empty feasible sets. Typically one remedies
this by selecting a minimum probability level α ∈ (0, 1) and considering instead:

(2.13) P(S(z)(x, ·) + uf (x, ·)− ψ(x, ·) ≥ 0 for L-a.e. x ∈ D) ≥ α.

Several recent studies have considered this perspective, see [19, 23]. However, these approaches
do not circumvent the fundamental difficulties encountered with state constraints in regards to
multiplier regularity and mesh-independent numerical approaches. In addition, the functional

φ(z) := P(S(z)(x, ·) + uf (x, ·)− ψ(x, ·) ≥ 0 for L-a.e. x ∈ D)

is nontrivial to analyze and use in numerical algorithms. This usually requires P to admit a
log-concave density and for S(z)(x, ω) to have a very specific structure with respect to ω. For
more on probability constraints, we refer the reader to [50,59] and the related references therein.

We may now formulate the optimization problem

(2.14) min
z∈Zad

{EP [J(S(z) + uf , z)] | S(z) + uf ≥ ψ for (L × P)-a.e. (x, ω) ∈ D × Ω} .

2.2.4. A Class of Risk-Neutral PDE-Constrained GNEPs. We now introduce a noncooperative
game with N players by using the results of the previous section. The individual ith player is
assumed to solve the following optimization problem

min EP

[
1

2
‖Tiu− uid‖2L2(D)

]
+
νi
2
‖zi‖2L2(D) over (zi, u) ∈ Ziad × U

s.t. A(ω)u = B(ω)(zi, z−i) + f(ω) P-a.s.
u ≥ ψ for (L × P)-a.e. (x, ω) ∈ D × Ω.

Here, the quantities Ziad, Ti, νi, and uid are defined analogously to those in the standard
optimization setting, where we again require Assumption 2.2 and Assumption 2.6 for each i =
1, . . . , N . In what follows, we denote the collective admissible set of controls by Zad = Z1

ad ×
· · · × ZNad. The main difference for the individual player problems lies in the definition of the
control mapping B. For the sake of reference, we make the following assumption.

Assumption 2.7. The operator B has the additive representation

B(ω)(zi, z−i) = B1(ω)z1 + · · ·+B1(ω)zN , P-a.s.

where Bi satisfies Assumption 2.2 for i = 1, . . . , N .

In light of the assumptions, we may also formulate the PDE-constrained GNEP in terms of
the following reduced space problems.

(2.15) min
zi∈Ziad

{EP [Ji(S(zi, z−i) + uf , (zi, z−i))] | S(zi, z−i) + uf ≥ ψ for (L × P)-a.e.} .
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3. Existence and Optimality Conditions

We first prove existence of optimal solutions of (2.14) and provide optimality conditions.
Then, by extending the arguments used in [34], we prove the existence of generalized Nash
equilibria for (2.15). Optimality conditions for a certain type of equilibria are also derived.
We will use the concept of variational equilibria, which is strongly related to the notion of
normalized equilibrium due to Rosen [56]; although Rosen’s concept of normalized equilibrium
was formulated using Lagrange multipliers. This is a specific class of Nash equilibria that can
in many cases be computed numerically.

3.1. Risk-Neutral PDE-Constrained Optimization Problems. For the risk-neutral PDE-
constrained optimization problems the existence and optimality conditions are formulated as
follows.

Theorem 3.1. Let Assumption 2.2 and Assumption 2.6 hold. Then (2.14) admits a solution z̄.
If ν > 0, then z̄ is unique. Moreover, if there exists a z0 ∈ Zad and a constant κ > 0 such that

(3.1) S(z0) + uf − ψ > κ

then there exists a measure µ̄ ∈ ba(Ξ,B, π) such that
(i) (Nonpositivity) µ̄ satisfies∫

Ξ
g(x, ω) dµ̄(x, ω) ≤ 0, ∀ g ∈ L∞π (Ξ)+.

(ii) (Complementarity) µ̄ fulfills∫
Ξ
G(z̄)(x, ω) dµ̄(x, ω) = 0,

where
G(z) = ιA−1Bz + ιuf − ψ

and
ι : L∞P (Ω;H1

0 (D) ∩H2(D)))→ L∞π (Ξ)

is the continuous embedding.
(iii) (Subgradient Condition) The general inclusion holds

0 ∈ EP[B∗A−∗T ∗(TSz̄ + Tuf − ud)] + νz̄ +NZad(z̄) +B∗A−∗ι∗µ̄.

Here, the latter term must be understood

〈B∗A−∗ι∗µ̄, δz〉 =

∫
Ξ

(A−1(ω)B(ω)δz)(x) dµ̄(x, ω)

for an arbitrary test function δz ∈ L2(D).
Conversely, if there exists a pair (z̄, µ̄) such that (i)-(iii) hold, then z̄ is an optimal solution of
(2.14).

Proof. To prove existence, we need to argue that the feasible set is weakly sequentially closed
and F (z) := E[J(S(z) + uf , z)] is weakly sequentially lower semicontinuous on L2(D). Since
the assumptions on J imply F is convex and the latter component of J is deterministic and
continuous, we concentrate on the properties of S and their relation to the first argument of J .

By Assumption 2.6, (2.14) admits a feasible point and consequently a minimizing sequence
{zk} ⊂ Zad such that (2.12) holds. Since Zad is bounded, closed, and convex, {zk} admits a
weakly convergent subsequence {zkl}. For each l, we have

S(zkl) + uf ≥ ψ for (L × P)-a.e. (x, ω) ∈ D × Ω.

Since S is completely continuous as a mapping into L2
P(Ω;H1

0 (D)), we have S(zkl) → S(z̄)
strongly. Moreover, the Sobolev embedding theorem (see e.g. [2, 4.12 Theorem]) and the fact
that Lp(Ω;X) ↪→ Lq(Ω;Y ) if X ↪→ Y for 1 ≤ q ≤ p < ∞ plus the equivalence of L1

P(Ω;L1(D))
and L1

π(Ξ) (see e.g. [36, Proposition 1.2.24]) imply that S(zkl) → S(z̄) in L1
π(Ξ). Therefore,
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there exists a subsequence {zklm} such that S(zklm )→ S(z̄) π-pointwise almost everywhere. It
follows that

S(z̄) + uf ≥ ψ for (L × P)-a.e. (x, ω) ∈ D × Ω.

Continuing, the integrand J induces a superposition operator that is continuous from the product
space L2

P(Ω;H1
0 (D))×L2(D) to L1

P(Ω), see e.g., [44, Ex. 3.2]. Then by combining the properties
of S with this continuity result, we deduce the weakly lower semicontinuity of F . It follows
from the direct method that z̄ is an optimal solution, which is of course unique if ν > 0 as the
objective would be strictly convex.

In order to derive first order optimality conditions for (2.14), we write

min
z∈Zad

{
EP
[
J(A−1Bz + uf , z)

]
| G(z) ∈ K

}
and appeal to the general Lagrangian formalism in [10, Chap. 3]. Here, we set

G(z) = ιA−1Bz + ιuf − ψ and K = L∞π (Ξ)+,

where ι : L∞P (Ω;H1
0 (D) ∩H2(D)))→ L∞π (Ξ) is the continuous embedding and K is the convex

cone of all positive essentially bounded strongly B-measurable functions. Note that we first
use the continuous embedding of L∞P (Ω;H1

0 (D) ∩ H2(D)) into L∞P (Ω;L∞(D)) and then the
continuous embedding of L∞P (Ω;L∞(D)) into L∞π (Ξ) to define ι. The latter two spaces are not
equivalent.

Since K has a nonempty interior and G is clearly convex with respect to the partial order
induced by (−K), (3.1) is equivalent to the constraint qualification 0 ∈ int {G(Zad)−K} (and
therefore Robinson’s CQ), cf. [10, Prop. 2.106]. It follows from [10, Thm. 3.6] that

0 ∈ ∂zL(z̄, µ̄) +NZad
(z̄) and µ̄ ∈ NK(G(z̄)),

where L(z, µ) = F (z) + 〈G(z), µ〉. Due to convexity, these are both necessary and sufficient for
optimality. It remains to make the conditions more explicit.

Since K is a closed, convex cone, µ̄ ∈ NK(G(z̄)) yields assertions (i) and (ii). To obtain the
form in (iii), we first note that

F ′(z̄)(δz) = EP[(TA−1Bz̄ + Tuf − ud, TA−1Bδz)] + ν(z̄, δz)

and
〈G(·), µ̄〉′(z̄; δz) = 〈ιA−1B(δz), µ̄〉.

For the objective function F , we can exploit the equivalence with the pointwise adjoints and
write

EP[(B∗A−∗T ∗(TA−1Bz̄ + Tuf − ud), δz)] + ν(z̄, δz).

Furthermore, the uniform integrability of the operators A,B, i.e. B∗,A−∗ allows us to write
via [28, Thm. 3.7.12]

(3.2) F ′(z̄)δz = (EP[(B∗A−∗T ∗(TA−1Bz̄ + Tuf − ud)] + νz̄, δz).

This concludes the proof.
�

We caution the reader that the form of the duality pairing used for the µ-multiplier initially
does not include the expectation with respect to P. However, if µ is σ-finite and σ-additive,
then by the Radon-Nikodym theorem, there exists a density ρµ such that

µ(A×B) =

∫
A×B

ρµdπ =

∫
A×B

ρµd(L × P) =

∫
A

∫
B
ρµ dxdP.

In other words, we would have dµ = ρµd(L×P). Furthermore, The sign condition on µ carries
over to ρµ, in which case |ρµ| = −ρµ. This would indicate that ρµ ∈ L1

π(Ξ). We could then write∫
Ξ

(A−1(ω)B(ω)δz)(x) dµ̄(x, ω) = EP[(A−1(ω)B(ω)δz, ρµ)]

by Fubini’s theorem.
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Furthermore, note that [28, Theorem 3.8.1] together with [42, Lemma 2.1] ensures that B∗ is
a bounded linear operator from U into LpP(Ω;L2(D)). This would then allow us to incorporate
the density into the adjoint equation, which is formulated in a very weak sense. This is essential,
as otherwise the dual pairing with ρµ and the test functions would not be defined.

3.2. Risk-Neutral PDE-Constrained GNEPs. In order to prove existence of at least one
generalized Nash equilibrium and link the proof to a function-space-based numerical algorithm,
we restrict ourselves to a variational reformulation as mentioned earlier. The variational refor-
mulation is based on the so-called Nikaido-Isoda function Ψ : L2(D)N × L2(D)N → R. For our
GNEP the Nikaido-Isoda function is given by

Ψ(z, v) =
N∑
i=1

EP [Ji(S(zi, z−i) + uf , (zi, z−i))]− EP [Ji(S(vi, z−i) + uf , (vi, z−i))] .

We then introduce the potentially set-valued function R̂ : Zad ⇒ Zad given by

R̂(z) = arg max {Ψ(z, v) | v ∈ Zad such that S(vi, v−i) + uf ≥ ψ} .
This mapping acts as a collective best-response function to a strategy vector z ∈ Zad for all play-
ers simultaneously. Next, we define variational equilibria by their characterization as fixed points
of the best-response function R̂ . The nomenclature diverges somewhat from the literature, but
it should be clear in context what is meant below.

Definition 3.2. A strategy vector z̄ with z ∈ Zad and S(z̄i, z̄−i)+uf ≥ ψ for (L×P)-a.e. (x, ω) ∈
D × Ω is a variational equilibrium if and only if z̄ ∈ R̂(z̄).

Note that for jointly convex GNEPs, every variational equilibrium is also a Nash equilibrium
[34, Theorem 3.2]. This characterization converts the proof of the existence of Nash Equilibria
to a fixed point problem. The essential ingredient is the fixed point theorem of Kakutani-Fan-
Glicksberg, see e.g. [4, Corollary 17.55].

Theorem 3.3. Let Assumption 2.2 and Assumption 2.7 hold. The set of variational equilibria
of the jointly convex GNEP (2.15) is weakly compact and nonempty.

Proof. We proceed as in [34, Theorem 3.2], in order to apply the fixed point theorem of Kakutani-
Fan-Glicksberg on R̂. By adapting the proof to the current setting, it follows from Theorem 3.1
that R̂ has nonempty and convex images.

To ensure compactness, we recast the problem in the space Xi, where Xi is L2(D) endowed
with the weak topology. Note that X is a real locally convex topological space. The equivalence
of weak and strong closure for convex sets in reflexive Banach spaces implies that Ziad is closed
in Xi. Moreover, the weak compactness of closed and bounded convex subsets in reflexive
Banach spaces implies that each set Ziad is convex and compact in Xi or equivalently sequentially
compact (see [65, Satz VIII.6.1(Satz von Eberlein-Shmulyan)]). Consequently, if we take Zad =
Z1
ad × · · · × ZNad and X = X1 × · · · ×XN , then Zad ⊂ X, where Zad is also nonempty, convex

and compact in X. Due to the latter property, the weak topology is metrizable on Zad (see [65,
Lemma VIII.6.2]).

In order to see the closedness of the graph of R̂, we introduce the set

M = {v ∈ Zad such that S(vi, v−i) + uf ≥ ψ} .

Now, we consider a closed subspace C ⊂ M and a sequence {zn}n∈N ⊂ R̂−1(C) with zn → z̄

in X (i.e. zn ⇀ z̄ in L2(D)N ). For every zn we choose vn ∈ C ∩ R̂(zn). By a slight adaptation
of the arguments in the proof of Theorem 3.1, we can show that M is sequentially compact.
Hence, there exists a convergent subsequence vnk X→ v̄ with v̄ ∈ C.

For some arbitrary w ∈M it holds that
N∑
i=1

EP
[
Ji(S(vnki , znk−i) + uf , (v

nk
i , znk−i))

]
≤

N∑
i=1

EP
[
Ji(S(wi, z

nk
−i) + uf , (wi, z

nk
−i))

]
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By adapting the proof of Theorem 3.1, we can argue that
N∑
i=1

EP [Ji(S(v̄i, z̄−i) + uf , (v̄i, z̄−i))] ≤ lim inf
k→∞

N∑
i=1

EP
[
Ji(S(vnki , znk−i) + uf , (v

nk
i , znk−i))

]
≤ lim inf

k→∞

N∑
i=1

EP
[
Ji(S(wi, z

nk
−i) + uf , (wi, z

nk
−i))

]
.

This is a consequence of the properties of the expectation, the objectives Ji and the solution
operator S. In particular, it is essential that S is completely continuous into L1

P(Ω;H1
0 (D)).

Using again the complete continuity, we have
N∑
i=1

EP [Ji(S(v̄i, z̄−i) + uf , (v̄i, z̄−i))] ≤ lim inf
k→∞

N∑
i=1

EP
[
Ji(S(wi, z

nk
−i) + uf , (wi, z

nk
−i))

]
≤

N∑
i=1

EP [Ji(S(wi, z̄−i) + uf , (wi, z̄−i))] .

It follows that v̄ ∈ R̂(z̄), which proves the sequential closedness of the graph of R̂ or equivalently
the closedness in X ( [65, Theorem B.1.2]). We now apply Kakutani-Fan-Glicksberg’s fixed point
theorem. The set of Nash equilibria of the GNEP is nonempty and compact in X and thus,
weakly compact in L2(D)N . �

The optimality conditions for a generalized Nash equilibria reads as follow. We adapt the
same notation as Theorem 3.1.

Theorem 3.4. Let Assumption 2.2 and Assumption 2.7 hold. If there exists a (z0
i , z

0
−i) ∈ Zad

and a constant κ > 0 such that

(3.3) S(z0
i , z

0
−i) + uf − ψ > κ

then there exists a measure µ̄ ∈ ba(Ξ,B, π) such that
(i) (Nonpositivity) µ̄ is an element of the polar cone of L∞π (Ξ)+.
(ii) (Complementarity) µ̄ fulfills∫

Ξ
G(z̄i, z̄−i)(x, ω) dµ̄(x, ω) = 0.

(iii) (Subgradient Conditions) For i = 1, . . . , N the general inclusion holds

0 ∈ EP[B∗iA
−∗T ∗i (TiS(z̄i, z̄−i) + Tiuf − uid)] + νiz̄i +NZiad(z̄i) +B∗i (A−∗ι∗µ̄).

Conversely, if there exists a pair (z̄, µ̄) such that (i)-(iii) hold, then z̄ is generalized Nash equi-
librium of (2.15).

Proof. Similiar to the proof of Theorem 3.1, we work with the general Lagrangian formalism.
We first note that z̄ ∈ R̂(z̄). This is equivalent to

z̄ ∈ arg max
v∈Zad

{Ψ(z̄, v) |S(vi, v−i) + uf ≥ ψ}

= arg min
v∈Zad

{
N∑
i=1

EP
[
Ji(A

−1B(vi, z̄−i) + uf , (vi, z̄−i))
]
|S(vi, v−i) + uf ≥ ψ

}
In order to derive first order optimality conditions for variational equilibria of (2.15), we recall

some of the notation from the proof of Theorem 3.1 We again set

G(vi, v−i) = ιA−1B(vi, v−i) + ιuf − ψ and K = L∞π (Ξ)+,

and define the continuous embedding ι : L∞P (Ω;H1
0 (D) ∩ H2(D))) → L∞π (Ξ). In the notation

of [10], we set

Fz̄(vi, v−i) :=
N∑
i=1

EP
[
Ji(A

−1B(vi, z̄−i) + uf , (vi, z̄−i))
]
,
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which yields the parametric Lagrangian

Lz̄(vi, v−i, µ) = Fz̄(vi, v−i) + 〈G(vi, v−i), µ〉 .

Since (3.3) is equivalent to the constraint qualification 0 ∈ int {G(Zad)−K}, it follows from [10,
Thm. 3.6] that

0 ∈ ∂zLz̄(z̄i, z̄−i, µ̄) +NZad
(z̄i, z̄−i) and µ̄ ∈ NK(G(z̄i, z̄−i)).

Assertions (i) and (ii) are implied by µ̄ ∈ NK(G(z̄i, z̄−i)) since K is a closed, convex cone. To
obtain the subgradient conditions in (iii), we first note that

〈G(·), µ̄〉′(z̄; δz) = 〈ιA−1B(δz), µ̄〉.

For the objective function, it holds that

∂Fz̄(z̄i, z̄−i) = ∂

(
N∑
i=1

EP
[
Ji(A

−1B((·)i, z̄−i) + uf , ((·)i, z̄−i))
])

(z̄)

=
N∑
i=1

∂
(
EP
[
Ji(A

−1B((·)i, z̄−i) + uf , ((·)i, z̄−i))
])

(z̄)

=
N∏
i=1

(
∂i EP

[
Ji(A

−1B(·, z̄−i) + uf , (·, z̄−i))
])

(z̄i).(3.4)

In order to see that the sum of the subdifferentials equals the product in (3.4), we refer to the
proof of [34, Theorem 3.7]. Analogously to (3.2), we can write

F ′z̄(z̄i, z̄−i)δzi = (EP[(B∗iA
−∗T ∗i (TiA

−1B(z̄i, z̄−i) + Tiuf − uid)] + νiz̄i, δzi).

Moreover, [8, section 4.6] enables us to write the normal cones as

NZad
(z̄i, z̄−i) = N∏N

i=1 Z
i
ad

(z̄i, z̄−i) =
N∏
i=1

NZiad(z̄i).

For i = 1, . . . , N , we have the componentwise subgradient condition

0 ∈ EP[B∗iA
−∗T ∗i (TiS(z̄i, z̄−i) + Tiuf − uid)] + νiz̄i +NZiad(z̄i) +B∗i (A−∗ι∗µ̄).

�

4. A Moreau-Yosida Regularization Technique

The optimality conditions derived in Theorem 3.1 and Theorem 3.4 are not suitable for the
development of algorithms. This is mainly due to the low regularity of the multiplier µ̄ for
the state constraint. To remedy this issue, we propose a Moreau-Yosida (MY) regularization
technique, similar to the studies [1, 30,31,34].

From the perspective of risk aversion, the MY-regularization can be seen as a measure of regret,
e.g., as in [55], for the state constraint. We will also use several concentration inequalities below,
which link MY-regularization to probability constraints. This further justifies the viability of the
approach and provides a modeling solution for cases in which either the constraint qualification
is hard to verify and/or it is not known if a feasible point for the original problem actually
exists. To the best of our knowledge, this is the first time that such concentration inequalities
have been used in the context of MY-regularization for infinite dimensional optimization under
uncertainty.
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4.1. Approximation of the Risk-Neutral PDE-Constrained GNEPs. More specifically,
the γ-dependent regularized problem of player i in the risk-neutral PDE-constrained GNEP
(2.15) reads as

(4.1) min
z∈Ziad

{
EP

[
Ji(S(zi, z−i) + uf , (zi, z−i)) +

γ

2
‖(ψ − (S(zi, z−i) + uf ))+‖2L2(D)

]}
,

where γ > 0. The usage of MY-regularization amounts to approximating the original GNEP by
a more numerically tractable NEP. We will refer to this γ-dependent strategic game as NEPγ .

4.2. Existence and Optimality Conditions. The existence of a Nash equilibrium for every
γ > 0 follows by using almost identical arguments to those in Theorem 3.3. Moreover, the first-
order conditions have a similar, but numerically more workable form. We state the following
theorem for ease of reference.

Theorem 4.1. Let Assumption 2.2 and Assumption 2.7 hold. The set of variational equilibria
of the jointly convex NEPγ (4.1) is weakly compact and nonempty. If zγ ∈ Zad is a Nash
equilibrium, then we have the following necessary and sufficient optimality conditions: For each
i = 1, . . . , N

(4.2) 0 ∈ EP[B∗iA
−∗T ∗i (TiS(z̄γi , z̄

γ
−i) + Tiuf − uid)] + νiz̄

γ
i +NZiad(z̄

γ
i ) + EP[B∗i (A−∗µ̄γ)],

where
µ̄γ = −γ(ψ − (S(z̄γi , z̄

γ
−i) + uf ))+.

Theorem 4.1 allows us to introduce the adjoint variables λ̄γi ∈ L2
P(Ω;H1

0 (D)) for i = 1, . . . , N
and the associated adjoint equations:

(4.3)
∫
D
A(x, ω)∇λ̄γi (x, ω) · ∇ϕ(x) dx =

∫
D

(T ∗i (Tiū
γ + Tiuf − uid) + µ̄γ))ϕ(x) dx, P-a.s.

ϕ ∈ H1
0 (D) and ū = S(z̄γi , z̄

γ
−i). This simplifies (4.2) to

0 ∈ EP[B∗i λ̄
γ
i ] + νiz̄

γ
i +NZiad(z̄

γ
i ).

4.3. Asymptotic Considerations. We now investigate the behavior of NEPγ as γ → ∞.
This is important for both theoretical as well as numerical considerations. We closely follow the
approach in [33]. In order to ensure consistency of the relaxed problems, we will require the
fulfillment of a constraint qualification as introduced in [33].

Definition 4.2. We say that (2.15) satisfies the strict uniform feasible response constraint qual-
ification (SUFR), if there exists an ε > 0, for all i = 1, . . . , N such that for all z−i ∈ Z−iad there
exists a vi ∈ Ziad such that

S(vi, z−i) + uf ≥ ψ + ε P-a.s., a.e. D.

A few comments are in order. Traditional constraint qualifications such as the existence of
a Slater point or in nonlinear programming the Mangasarian-Fromovitz constraint qualification
(Robinson’s CQ in infinite dimensions) were developed for optimization problems. They provide
not only the existence of Lagrange multipliers, but also, they indicate a certain stability of the
constraint set around the optimal solution. For example, the MFCQ gives us that the Lagrange
multipliers associated with the point in question lie in a convex, compact polytope. In Theorem
3.1, it was enough to assume such a CQ without the need to adapt to the GNEP setting.
However, for issues of approximation, we will see in the following that GNEPs require a much
more robust CQ such as SUFR in order to exhibit the local stability needed to bound the dual
variables; in this case the adjoint states and the constraint multipliers. From a game-theoretic
perspective, we are requiring that each player has a feasible response to any strategy by its
competitors such that the common state constraint is strictly uniformly fulfilled. Finally, as the
current regularity assumptions on the random inputs only provide essential boundedness, we
will need more regularity of the solutions.
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Assumption 4.3 (Higher Parametric Regularity). The set Ω is a compact Polish space. The
solution mapping S(·) + uf is a continuous affine mapping from L2(D)N into C(Ω;H1

0 (D) ∩
H2(D)).

The need for Ω to be a compact Polish space will be evident in the following proof. Under
weaker assumptions, we have already shown that the mapping S(·) + uf is a continuous affine
mapping from L2(D)N into L∞P (Ω;H1

0 (D) ∩ H2(D)). The continuity assumption is actually
weaker than it appears and can be guaranteed under mild assumptions (continuity in ω) on
A(x, ω), B(ω) and f(x, ω), cf. the results in [35, Section 6]. The main idea is to reformulate
the random PDE as a parametric fixed point equation and apply classic results on parametric
dependence of solutions to fixed point equations. We now state the main result of this section.

Theorem 4.4. Suppose the GNEP (2.15) satisfies the Slater condition (3.1) and SUFR. If in
addition Assumption 4.3 holds, then there exist sequences γn →∞ and

• {zγn}n∈N ⊂ L2(D)N ,
• {uγn}n∈N ⊂ L2

P(Ω;H1
0 (D) ∩H2(D)),

• {λγn}n∈N ⊂ L2
P(Ω;H1

0 (D) ∩H2(D))N ,
• {ηγn}n∈N ⊂ L2(D)N ,

such that for each i = 1, . . . , N , (zγni , uγn , λγni , η
γn
i , µγn) satisfies (4.2) as stated in Theorem 4.1.

This sequence admits a limit point

(z∗, u∗,Λ∗, η∗, ρ∗) ∈ L2(D)N × L2
P(Ω;H1

0 (D) ∩H2(D))× L2(D)N × L2(D)N ×M(Ξ),

where, for all i = 1, . . . , N , we have

zγn → z∗ in L2(D)N ,(4.4a)

uγn → u∗ in C(Ω;H1
0 (D) ∩H2(D)),(4.4b)

µγn
∗
⇀ ρ∗ in L1

π(Ξ)∗ ∼=M(Ξ), i.e. ρ ∈M(Ξ),(4.4c)

EP [B∗i λ
γn
i ] ⇀ Λ∗i in L2(D),(4.4d)

ηγni ⇀ η∗i in L2(D).(4.4e)

Moreover, the limit point satisfies

z∗ ∈ Zad(4.5a)
u∗ = S(z∗i , z

∗
−i) + uf and u∗ ≥ ψ(4.5b)

(Λ∗i , ϕ) =
(
EP
[
B∗iA

−∗T ∗i (Ti(u
∗ + uf )− uid)

]
, ϕ
)

+

∫
Ξ
A−1(ω)Bi(ω)ϕdρ∗(x, ω)(4.5c)

0 = (Λ∗i , ϕ) + νi (z∗i , ϕ) + (η∗i , ϕ) and η∗i ∈ NZiad(z∗i )(4.5d)

for an arbitrary test function ϕ ∈ L2(D). Finally, ρ∗ satisfies

〈φ, ρ∗〉 ≤ 0, ∀φ ∈ C(Ξ) : φ ≥ 0.(4.6a)
〈ψ − (u∗ + uf ), ρ∗〉 = 0(4.6b)

Note that (4.5c) and (4.5d) correspond to the subdifferential inclusion in Theorem 3.4. For
readability, we split the proof over several partial results.

Lemma 4.5. Under the assumptions of Theorem 4.4, there exists a sequence of MY parameters
γk → ∞ such that the associated sequence of Nash equilibria {zγk}k→∞ converges weakly to a
feasible strategy of the GNEP, i.e. (4.5a) and (4.5b) hold.

Proof. Fix a sequence γn → ∞ for n → ∞. Since Zad is weakly compact in L2(D)N and
zγn ∈ Zad for all γn, there exists a subsequence, denoted by γk := γnk and some element
z∗ ∈ Zad such that zγk ⇀ z∗ in L2(D)N . According to SUFR, there exists an ε > 0 and a
sequence {vγk}k→∞ ⊂ Zad such that S(vγki , z

γk
−i) + uf ≥ ψ + ε Ξ-a.s. for all i = 1, . . . , N . By
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definition of Zad, {vγk}k→∞ is uniformly bounded in L2(D)N . Then for all γk, the non-negativity
of the MY-term gives us the lower bound:

EP

[
1

2
‖Ti(S(zγki , z

γk
−i) + uf )− uid‖2L2(D)

]
+
νi
2
‖zγki ‖

2
L2(D)

≤ EP

[
1

2
‖Ti(S(zγki , z

γk
−i) + uf )− uid‖2L2(D)

]
+
νi
2
‖zγki ‖

2
L2(D)+

EP

[γk
2
‖(ψ − (S(zγki , z

γk
−i) + uf )+‖2L2(D)

]
.

Since S(vγki , z
γk
−i) + uf ≥ ψ + ε, it holds that

EP

[γk
2
‖(ψ − (S(vγki , z

γk
−i) + uf )+‖2L2(D)

]
= 0.

Furthermore, by definition of a Nash equilibrium we have the simple upper bound

1

2
EP

[
‖Ti(S(zγki , z

γk
−i) + uf )− uid‖2L2(D)

]
+
νi
2
‖zγki ‖

2
L2(D)+

EP

[γk
2
‖(ψ − (S(zγki , z

γk
−i) + uf )+‖2L2(D)

]
≤

EP

[
‖1

2
Ti(S(vγki , z

γk
−i) + uf )− uid‖2L2(D)

]
+
νi
2
‖vγki ‖

2
L2(D)

Using the fact that S is completely continuous into L2
π(Ξ) and each individual feasible set is

bounded, we deduce the existence of a constant M independent of i, γk such that

EP

[
‖1

2
Ti(S(vγki , z

γk
−i) + uf )− uid‖2L2(D)

]
+
νi
2
‖vγki ‖

2
L2(D) ≤M.

Combining these observations yields

EP

[
1

2
‖Ti(S(zγki , z

γk
−i) + uf )− uid‖2L2(D)

]
+
νi
2
‖zγki ‖

2
L2(D) ≤M.

Using the weak lower semicontinuity of the objective functions, it follows that the bound also
holds for the limit

EP

[
1

2
‖Ti(S(z∗i , z

∗
−i) + uf )− uid‖2L2(D)

]
+
νi
2
‖z∗i ‖2L2(D)

≤ lim inf
k→∞

(
EP

[
1

2
‖Ti(S(zγki , z

γk
−i) + uf )− uid‖2L2(D)

]
+
νi
2
‖zγki ‖

2
L2(D)

)
≤M.

As a result, EP

[
γk
2 ‖(ψ − (S(zγki , z

γk
−i) + uf )+‖2L2(D)

]
is bounded. This can only hold if

EP

[
‖(ψ − (S(zγki , z

γk
−i) + uf )+‖2L2(D)

]
→ 0,

since γk →∞. Since S(zγki , z
γk
−i) converges strongly to S(z∗i , z

∗
−i) in L2

π(Ξ), we also have

EP

[
‖(ψ − (S(zγki , z

γk
−i) + uf )+‖2L2(D)

]
→ EP

[
‖(ψ − (S(z∗i , z

∗
−i) + uf )+‖2L2(D)

]
.

We can conclude, that

EP

[
‖(ψ − (S(z∗i , z

∗
−i) + uf )+‖2L2(D)

]
= 0.

Thus, z∗ ∈ Zad such that S(z∗i , z
∗
−i) + uf ≥ ψ π-a.e., i.e. z∗ is a feasible strategy vector for the

GNEP. �

We note that for feasibility of z∗, it is not necessary for ε to be positive in the SUFR condition.
In what follows, we discuss the convergence of the stationary points individually. We start by
showing that z∗ is also a generalized Nash equilibrium.
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Lemma 4.6. Suppose the assumptions of Theorem 4.4 hold. Let {γk} be the sequence of MY
parameters from the proof of Lemma 4.5. Then there exists a subsequence {γl} with γl := γkl →
+∞ such that the weak limit point z∗ is a generalized Nash equilibrium.

Proof. Define Xi = {vi ∈ Z iad : S(vi, z
∗
−i) + uf ≥ ψ π-a.s}. Due to the SUFR condition, Xi is

non-empty. Since for all γk the associated zγk is a Nash equilibrium, it holds that

EP

[
‖Ti(S(zγki , z

γk
−i) + uf )− uid‖2L2(D)

]
+
νi
2
‖zγki ‖

2
L2(D)+

EP

[γk
2
‖(ψ − (S(zγki , z

γk
−i) + uf )+‖2L2(D)

]
≤ 1

2
EP

[
‖Ti(S(vi, z

γk
−i) + uf )− uid‖2L2(D)

]
+
νi
2
‖vi‖2L2(D) + EP

[γk
2
‖(ψ − (S(vi, z

γk
−i) + uf )+‖2L2(D)

]
for all vi ∈ Xi. For any vi ∈ Xi, we want to construct a strongly convergent sequence {vγk}k→∞
so such vγk → vi in L2(D) and S(vγki , z

γk
−i) + uf ≥ ψ.

Due to the SUFR condition, there exists an ε > 0 and for all k, a vki ∈ Ziad such that
S(vki , z

γk
−i) + uf ≥ ψ + ε, π-a.s. Clearly, {vki }k→∞ is uniformly bounded in L2(D). Since every

admissible set of each player is convex, we have that

(4.7) vki (t) = tvki + (1− t)vi
lies in Z iad for all t ∈ (0, 1). Due to the linearity of the operator A and B, it holds that

S(vki (t), zγk−i) + uf = S(tvki + (1− t)vi, zγk−i) + uf

= t(S(vki , z
γk
−i) + uf ) + (1− t)(S(vi, z

γk
−i) + uf )

≥ t(ψ + ε) + (1− t)(S(vi, z
γk
−i) + uf ).(4.8)

We know, that for P-a.e. ω ∈ Ω the solution operator S(vi, ·)(ω) + uf (ω) maps continuously
from L2(D)N−1 into H1

0 (D)∩H2(D). Due to the Sobolev and Rellich-Kondrachov theorem, the
solution of the state equation can be continuously and compactly embedded into the space of
continuous functions over D̄ P-a.s. Thus, S(vi, ·)(ω) + uf (ω) maps from L2(D)N−1 into C(D̄)
for P-a.e. ω ∈ Ω. Combining this with the regularity assumption on the solution of the state
equation, we have S(vi, z

γk
−i)+uf → S(vi, z

∗
−i)+uf in C(Ω;C(D̄)). Then by virtue of the nature

of convergence in the C(Ω;C(D̄))-norm, we deduce the existence of a subsequence γkl , denoted
by γl, such that

S(vi, z
γl
−i) + uf ≥ ψ − 1/2l

on D for all k. Now, setting

(4.9) tl = (1/2l)/(ε+ 1/2l),

then tl → 0 and tl ∈ (0, 1) for all l. Moreover, substituting (4.9) in (4.7) and due to (4.8), we
have

S(vi(tl), z
γl
−i) + uf ≥ tl(ψ + ε) + (1− tl)(S(vi, z

γl
−i) + uf )

≥ tl(ψ + ε) + (1− tl)(ψ − 1/2l)

= ψ + tl(ε+ 1/2l)− 1/2l

= ψ.

Thus, S(vi(tl), z
γl
−i) + uf ≥ ψ for all l. And finally, since

‖vi(tl)− vi‖L2(D) = ‖tlvli + (1− tl)vi − vi‖L2(D)

= |tl|‖vli − vi‖L2(D)

≤ |tl|
(
‖vli‖L2(D) + ‖vi‖L2(D)

)
Passing to the limit as l → ∞ yields |tl|

(
‖vli‖L2(D) + ‖vi‖L2(D)

)
→ 0 due to the boundedness

of {vi(tl)}l→∞ and that {tl}l→∞ is a null sequence. Thus, we have constructed a sequence
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{vi(tl)}l→∞ such that vi(tl) → vi in L2(D) and S(vi(tl), z
γl
−i) + uf ≥ ψ. Note that vi ∈ Xi was

arbitrary.
Finally, by substitution, we have

1

2
EP

[
‖Ti(S(zγli , z

γl
−i) + uf )− uid‖2L2(D)

]
+
νi
2
‖zγli ‖

2
L2(D)+

EP

[γl
2
‖(ψ − (S(zγli , z

γl
−i) + uf )+‖2L2(D)

]
≤ 1

2
EP

[
‖Ti(S(vi(tl), z

γl
−i) + uf )− uid‖2L2(D)

]
+
νi
2
‖vi(tl)‖2L2(D)+

EP

[γl
2
‖(ψ − (S(vi(tl), z

γl
−i) + uf )+‖2L2(D)

]
.

For all i = 1, . . . , N . passing to the limit inferior yields the following inequality

1

2
EP

[
‖Ti(S(z∗i , z

∗
−i) + uf )− uid‖2L2(D)

]
+
νi
2
‖z∗i ‖2L2(D) ≤

1

2
EP

[
‖Ti(S(vi, z

∗
−i) + uf )− uid‖2L2(D)

]
+
νi
2
‖vi‖2L2(D)

for all vi ∈ Xi. Thus, (z∗i , z
∗
−i) is a generalized Nash equilibrium. �

Here, we see that the uniformity in the SUFR condition is crucial to prove that z∗ is in fact a
Nash equilibrium. In the following result, we obtain a stronger form of convergence to z∗. This
is necessary to derive the adjoint equation in the limit.

Lemma 4.7. Under the assumptions of Theorem 4.4, (4.4a) holds.

Proof. First, we choose z∗i ∈ Xi in the construction of (4.7) with t = tl as in (4.9), then we have

v∗i (tl) = tlv
k
i + (1− tl)z∗i .

Recall that v∗i (tl)→ z∗i in L2(D) and S(v∗i (tl), z
γl
−i) + uf ≥ ψ for all l ∈ N. Then it holds that

1

2
EP

[
‖Ti(S(zγli , z

γl
−i) + uf )− uid‖2L2(D)

]
+
νi
2
‖zγli ‖

2
L2(D)

≤ 1

2
EP

[
‖Ti(S(zγli , z

γl
−i) + uf )− uid‖2L2(D)

]
+
νi
2
‖zγli ‖

2
L2(D)+

EP

[γl
2
‖(ψ − (S(zγli , z

γl
−i) + uf )+‖2L2(D)

]
≤ 1

2
EP

[
‖Ti(S(v∗i (tl), z

γl
−i) + uf )− uid‖2L2(D)

]
+
νi
2
‖v∗i (tl)‖2L2(D).

Passing to the limit superior yields

lim sup
l→∞

1

2
EP

[
‖Ti(S(zγli , z

γl
−i) + uf )− uid‖2L2(D)

]
+
νi
2
‖zγli ‖

2
L2(D)(4.10)

≤ lim sup
l→∞

1

2
EP

[
‖Ti(S(v∗i (tl), z

γl
−i) + uf )− uid‖2L2(D)

]
+
νi
2
‖v∗i (tl)‖2L2(D).

Due to the completely continuity of S, we have

S(zγli , z
γl
−i)→ S(z∗i , z

∗
−i) and S(v∗i (tl), z

γl
−i)→ S(z∗i , z

∗
−i).

Then (4.10) reads as
1

2
EP

[
‖Ti(S(z∗i , z

∗
−i) + uf )− uid‖2L2(D)

]
+
νi
2

lim sup
l→∞

‖zγli ‖
2
L2(D)(4.11)

≤ 1

2
EP

[
‖Ti(S(z∗i , z

∗
−i) + uf )− uid‖2L2(D)

]
+
νi
2
‖z∗i ‖2L2(D).

This implies that
lim sup
l→∞

‖zγli ‖
2
L2(D) ≤ ‖z

∗
i ‖2L2(D).
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Due to the weak convergence of {zγli }l∈N, it holds that lim inf
l→∞

‖zγli ‖2L2(D) ≥ ‖z
∗
i ‖2L2(D). This

implies

lim
l→∞
‖zγli ‖

2
L2(D) = ‖z∗i ‖2L2(D).

Together with the weak convergence, the assertion follows. �

We proceed with the sequence of the state variables.

Lemma 4.8. Under the assumptions of Theorem 4.4, (4.4b) and (4.5b) hold.

Proof. This directly follows from the assumption, that S(·, ·) + uf : L2(D)N → C(Ω;H1
0 (D) ∩

H2(D)) is continuous and the fact the sequencs {zγli }l∈N converges strongly in L2(D) for all
i = 1, . . . , N . �

We note that the continuity in Ω is not really needed to prove a norm convergence result.
Indeed since {zγli }l∈N is bounded, we still have that {uγl}l∈N is bounded in L2

P(Ω;H1
0 (D) ∩

H2(D)). Then uγln ⇀ u∗ in L2
P(Ω;H1

0 (D) ∩ H2(D)). By Corollary 2.5 we even know that
uγln → u∗ in L∞P (Ω;H1

0 (D) ∩H2(D)) holds.
Next, we turn our attention to the sequence of the multipliers µγ for the state constraint.

We will observe that the Slater condition is enough to obtain a bound on µγ . Recall that
µγ = −γ(ψ − (S(z̄γi , z̄

γ
−i) + uf ))+.

Lemma 4.9. Suppose the assumptions of Theorem 4.4 hold. In particular, (3.1) is fulfilled.
Then we have (4.4c).

Proof. We now prove the existence of a constant c0 > 0 such that

(4.12) |(µγ , z)| ≤ c0

for any z ∈ Bε(0) ⊂ L∞π (Ξ) and some fixed ε > 0. For the sake of readability, we set β : L2
π(Ξ)→

R+ such that

u 7→ β(u) := E
[

1

2
‖(ψ − (u+ uf ))+‖2L2(D)

]
.

Unless otherwise noted, (·, ·) denotes the inner product on L2
π(Ξ) throughout the proof.

One readily shows that β is convex and continuously differentiable and therefore, µγ =
γβ′(uγ). Since β is convex, differentiable, and nonnegative, we obtain for any

y ∈
{
w ∈ L2

π(Ξ) : w ≥ ψ − uf π-a.e.
}

the equality

(4.13) 0 = γβ(y) ≥ γβ(uγ) + (µγ , y − uγ) ≥ (µγ , y − uγ) .

By the assumption (3.3) there exists ε > 0 and z0 ∈ Zad such that for all v ∈ Bε(0) ⊂ L∞π (Ξ):
we have

Sz0 + uf − ψ + v ≥ 0.

Since (Ω,F ,P) is a complete probability space and the spatial domain D is bounded, the
Lebesgue spaces are nested, and it holds that v ∈ L2

π(Ξ). Furthermore, Sz0 + uf ∈ L2
π(Ξ).

Fixing an arbitrary v ∈ Bε(0), we have

(µγ , v) =
(
µγ , Sz0 + v − Szγ

)
+
(
µγ , Szγ − Sz0

)
.

Due to (4.13), we have

(µγ , v) ≤
(
µγ , Szγ − Sz0

)
=
(
µγ ,A−1B(zγ − z0)

)
.
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The definition of the multiplier µγ and the operator B yield

(µγ ,A−1B(zγ − z0))

=
N∑
i=1

(T ∗i
(
Tiu

γ + Tiuf − uid
)

+ µγ − T ∗i
(
Tiu

γ + Tiuf − uid
)
,A−1Bi(z

γ
i − z

0
i ))

=
N∑
i=1

(A∗λγi − T
∗
i Tiu

γ − T ∗i Tiuf + T ∗i u
i
d,A

−1Bi(z
γ
i − z

0
i ))

Substituting the adjoint equation and applying the adjoint operator B∗A−∗ yields

(µγ , v) ≤
N∑
i=1

(A∗λγi − T
∗
i Tiu

γ − T ∗i Tiuf + T ∗i u
i
d,A

−1Bi(z
γ
i − z

0
i ))

=

N∑
i=1

EP
[
(B∗i λ

γ
i −B

∗
iA
−∗(T ∗i Tiu

γ + T ∗i Tiuf − T ∗i uid), z
γ
i − z

0
i )L2(D)

]
=

N∑
i=1

EP
[
(B∗i λ

γ
i , z

γ
i − z

0
i )L2(D)

]
− EP

[(
B∗iA

−∗(T ∗i Tiu
γ + T ∗i Tiuf − T ∗i uid), z

γ
i − z

0
i

)
L2(D)

]
Applying [28, Thm. 3.7.12] yields

(µγ , z) ≤
N∑
i=1

(EP [B∗i λ
γ
i ] , zγi − z

0
i )L2(D)

− EP

[(
B∗iA

−∗(T ∗i Tiu
γ + T ∗i Tiuf − T ∗i uid), z

γ
i − z

0
i

)
L2(D)

]
Using 0 = νiz

γ
i + EP [B∗i λ

γ
i ] + ηγi and the fact, that z0

i ∈ Ziad yields
N∑
i=1

(
EP [B∗i λ

γ
i ] , zγi − z

0
i

)
L2(D)

−
N∑
i=1

EP

[(
B∗iA

−∗(T ∗i Tiu
γ + T ∗i Tiuf − T ∗i uid), z

γ
i − z

0
i

)
L2(D)

]
=

N∑
i=1

(
−νizγi − η

γ
i , z

γ
i − z

0
i

)
L2(D)

−
N∑
i=1

EP

[(
B∗iA

−∗(T ∗i Tiu
γ + T ∗i Tiuf − T ∗i uid), z

γ
i − z

0
i

)
L2(D)

]
≤

N∑
i=1

(
−νizγi , z

γ
i − z

0
i

)
L2(D)

−
N∑
i=1

EP

[(
B∗iA

−∗(T ∗i Tiu
γ + T ∗i Tiuf − T ∗i uid), z

γ
i − z

0
i

)
L2(D)

]
≤ c0 <∞.
Here, the existence of c0 is guaranteed, since the mappings

u(z) 7→ EP

[
1

2
‖Tiu(z) + Tiuf − uid‖2L2(D)

]
and zi 7→

νi
2
‖zi‖2L2(D)

are continuously differentiable with uniformly bounded gradients on Zad for all i = 1, . . . , N .
This proves (4.12), since z was arbitrary. Using the fact that the L1-norm is positively ho-
mogeneous, subadditive and continuous, it follows from the Fenchel-Moreau theorem that the
L1-norm is equivalent to the bidual norm

‖µγ‖L1
π(Ξ) =

1

ε
sup

{
〈µγ , z〉L1

π(Ξ)×L∞π (Ξ) : z ∈ Bε(0)
}

=
1

ε
sup

{
(µγ , z)L2

π(Ξ) : z ∈ Bε(0)
}

≤ 1

ε
c0 <∞.

It follows that the sequence {µγ}γ→∞ is bounded in L1
π(Ξ). Therefore, by [17, Theorem IV.6.2]

or [7, Corollary 2.4.3], we can extract a subsequence {µγl}l∈N which is weak∗ convergent to some
regular countably additive Borel measure ρ ∈M(Ξ). �
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Next, we discuss the limit of the adjoint equation. We start by investigating the behavior of
the expectation of the adjoint states. This leads to the derivation of a limiting adjoint state Λ∗.

Lemma 4.10. Under the assumptions of Theorem 4.4, for all i = 1, . . . , N , (4.4d) holds.

Proof. We start by constructing a specific test function. Let φ be the solution of the operator
equation

A(ω)φ = Bi(ω)ϕ P-a.e. ω ∈ Ω

for ϕ ∈ L2(D). Then by the assumptions, φ ∈ L∞P (Ω;H1
0 (D)∩H2(D)) and, by Assumption 4.3,

φ ∈ C(Ω;H1
0 (D) ∩H2(D)) holds. Using the adjoint state as a test function, we have

(4.14)

(A∗(ω)λγli (ω), φ(ω)) = (λγli (ω),A(ω)φ(ω))

= (λγli (ω),Bi(ω)ϕ)

= (Bi(ω)∗λγli (ω), ϕ)

Then due to the Cauchy-Schwarz inequality and Hölder-inequality, respectively, we obtain

(A∗(ω)λγi (ω), φ(ω)) =
(
T ∗i Ti(u

γ(ω) + uf (ω))− T ∗i uid, φ(ω)
)

+ (µγ(ω), φ(ω))L2(D)

=
(
T ∗i Ti(u

γ(ω) + uf (ω))− T ∗i uid, φ(ω)
)

+ 〈µγ(ω), φ(ω)〉L1(D)×L∞(D)

≤ ‖T ∗i Ti(uγ(ω) + uf (ω))− T ∗i uid‖L2(D)‖φ(ω)‖L2(D) + ‖µγ(ω)‖L1(D)‖φ(ω)‖L∞(D).

Due to the continuous embedding of H2(D) ∩H1
0 (D) into L2(D) and L∞(D), respectively, we

have

(A∗(ω)λγi (ω), φ(ω))(4.15)

≤ C1‖φ(ω)‖H2(D)∩H1
0 (D)

(
‖T ∗i Ti(uγ(ω) + uf (ω))− T ∗i uid‖L2(D) + ‖µγ(ω)‖L1(D)

)
By the assumptions on the operators A and B, there exists C2 ∈ L∞P (Ω) such that

‖φ(ω)‖H2(D)∩H1
0 (D) ≤ C2(ω)‖ϕ‖L2(D).

Now, combining the latter with (4.15) and (4.14), we obtain

(Bi(ω)∗λγi (ω), ϕ) ≤ C1‖φ(ω)‖H2(D)∩H1
0 (D)

(
‖T ∗i Ti(uγ(ω) + uf (ω))− T ∗i uid‖L2(D) + ‖µγ(ω)‖L1(D)

)
≤ C1C2(ω)‖ϕ‖L2(D)

(
‖T ∗i Ti(uγ(ω) + uf (ω))− T ∗i uid‖L2(D) + ‖µγ(ω)‖L1(D)

)
≤ C1C2(ω)‖ϕ‖L2(D) (C3(ω) + C4(ω))

for all ϕ ∈ L2(D). Here, C3 ∈ L∞P (Ω) and C4 ∈ L1
P(Ω). The existence of C4 follows from the

uniform bound on µγ in the L1
π(Ξ)-norm. Taking the expectation and applying Fubini’s theorem

yield

(EP [B∗i λ
γ
i ] , ϕ) ≤ EP [C1C2C3 + C1C2C4] ‖ϕ‖L2(D) <∞

for all ϕ ∈ L2(D). In other words, the sequence {EP [B∗i λ
γ
i ]}γ→∞ is bounded in L2(D). Thus,

there exists a weakly convergent subsequence {EP [B∗i λ
γl
i ]}l∈N and a Λ∗i ∈ L2(D) such that

EP [B∗i λ
γl
i ] ⇀ Λ∗i in L2(D). �

Remark 4.11. The adjoint state plays an important role in numerical methods. In particular,
P is often replaced by an empirical measure PN , which is associated with an i.i.d. random sample
of size N . Therefore the quantity

1

N

N∑
n=1

B∗i (ωn)λγli (ωn)

is of practical interest. By the (Kolmogorov) strong law of large numbers, we have

1

N

N∑
n=1

(B∗i (ωn)λγli (ωn), ϕ)L2(D) → (EP[B∗i λ
γl
i ], ϕ)L2(D)



22 D. B. GAHURURU(1), M. HINTERMÜLLER(2),(3), AND T. M. SUROWIEC(4)

with probability 1 as N → +∞ for any ϕ ∈ L2(D). For readability, set

XN,l :=
1

N

N∑
n=1

B∗i (ωn)λγli (ωn)

and recall that almost sure convergence implies convergence in probability. Then for fixed l ∈ N
and any ε > 0, there exists Nl,ε ∈ N such that

P
(∣∣(XN,l, ϕ)L2(D) − (EP[B∗i λ

γl
i ], ϕ)L2(D)

∣∣ > ε
)
<

1

2l
∀N ≥ Nl,ε.

On the other hand, the previous lemma gives us EP [B∗i λ
γl
i ] ⇀ Λ∗i in L2(D) as l → +∞. It

follows that for any ϕ ∈ L2(D) we have∣∣(XN,l, ϕ)L2(D) − (Λ∗, ϕ)L2(D)

∣∣ ≤∣∣(XN,l, ϕ)L2(D) − (EP[B∗i λ
γl
i ], ϕ)L2(D)

∣∣+∣∣(EP[B∗i λ
γl
i ], ϕ)L2(D) − (Λ∗, ϕ)L2(D)

∣∣ .
This means that the set of all events for which∣∣(XN,l, ϕ)L2(D) − (Λ∗, ϕ)L2(D)

∣∣ > 3ε/2

is contained in the set of all events for which∣∣(XN,l, ϕ)L2(D) − (EP[B∗i λ
γl
i ], ϕ)L2(D)

∣∣ > 3ε/2−
∣∣(EP[B∗i λ

γl
i ], ϕ)L2(D) − (Λ∗, ϕ)L2(D)

∣∣ .
Therefore, fix ϕ ∈ L2(D) and ε > 0, and choose l such that∣∣(EP[B∗i λ

γl
i ], ϕ)L2(D) − (Λ∗, ϕ)L2(D)

∣∣ < ε/2,

Then for all ε, there exists an l such that

P
(∣∣(XNl,ε,l, ϕ)L2(D) − (Λ∗, ϕ)L2(D)

∣∣ > 3ε/2
)
< 2−l.

Thus, the diagonal sequence of sample averages of the adjoint variables weakly converges in
probability to the limiting adjoint variable Λ∗. For a fully discrete scheme using a finite element
discretization of the underlying deterministic state spaces, in which error estimates for the deter-
ministic adjoint variables were available, we could derive a similar statement. This is part of the
justification for the update heuristic in our algorithm and, in general, for any related numerical
algorithm in which the sample sizes gradually increase with the MY-parameters.

Next, we turn our attention on the adjoint equation in the limit.

Lemma 4.12. Under the assumptions of Theorem 4.4, (4.5c) holds.

Proof. As in the previous proof, we start by constructing a specific test function. In this case,
let w be the solution of the operator equation

A(ω)w = Bi(ω)ϕ P-a.e. ω ∈ Ω

for all ϕ ∈ L2(D), then we know that w ∈ C(Ω;H1
0 (D) ∩H2(D)) holds. It follows that

(A∗(ω)λγli (ω), w(ω)) = (Bi(ω)∗λγli (ω), ϕ)

Taking the expectation on both sides yields

(EP [B∗i λ
γl
i ] , ϕ) = EP

[(
T ∗i Ti(u

γl + uf )− T ∗i uid, w
)]

+ EP [(µγl , w)]

We know that µγl ⇀∗ ρ∗ inM(Ξ). The right hand side reads as

EP
[(
T ∗i Ti(u

γl + uf )− T ∗i uid, w
)]

+ 〈µγl , w〉M(Ξ),C(Ξ) .
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Passing to the limit l→∞ yields

(Λ∗i , ϕ) = EP
[(
T ∗i Ti(u

∗ + uf )− T ∗i uid, w
)]

+

∫
Ξ
w(x, ω) dρ∗(x, ω)

= EP
[(
T ∗i Ti(u

∗ + uf )− T ∗i uid,A−1Biϕ
)]

+

∫
Ξ
A−1(ω)Bi(ω)ϕdρ∗(x, ω)

= EP
[(
B∗iA

−∗T ∗i (Ti(u
∗ + uf )− uid), ϕ

)]
+

∫
Ξ
A−1(ω)Bi(ω)ϕdρ∗(x, ω)

for all ϕ ∈ L2(D). �

Next, we turn to the sequence {ηγ}γ→∞ ⊂ NZiad(zγi ).

Lemma 4.13. Under the assumptions of Theorem 4.4, (4.4e) and (4.5d) hold.

Proof. Due (4.2), we can write

ηγli = −EP [B∗i λ
γl
i ]− νizγli .

Then the boundedness of the sequence {ηγli }l∈N in L2(D) directly follows from

‖ηγli ‖L2(D) = ‖ − EP [B∗i λ
γl
i ]− νizγli ‖L2(D)

≤ ‖EP [B∗i λ
γl
i ] ‖L2(D) + ‖νizγli ‖L2(D) <∞.

Thus, there exists a η∗i ∈ L2(D) and a subsequence {ηγlni }n∈N such that the assertion holds. �

Finally, we derive the complementarity system for the multiplier ρ∗.

Lemma 4.14. Under the assumptions of Theorem 4.4, (4.6a) and (4.6b) hold.

Proof. As used several times above, there exists a subsequence of MY parameters γl → +∞
along which the multipliers {µγl} converge weak∗ inM(Ξ) to some ρ∗ ∈ M(Ξ). For each fixed
l we have π-a.s.:

µγl = −γl(ψ − (S(z̄γli , z̄
γl
−i) + uf ))+ ≤ 0.

Therefore, for any non-negative test function φ ∈ C(Ξ), we have

〈φ, µγl〉 =

∫
Ω

∫
D
φµγldπ ≤ 0.

By definition, 〈φ, µγl〉 → 〈φ, ρ∗〉 as l→ +∞. Hence, ρ∗ is a negatively signed measure. Moreover,
setting

φl := ψ − (S(z̄γli , z̄
γl
−i) + uf ),

which is continuous and converges strongly in C(Ξ) (by assumption) to

φ∗ := ψ − (S(z̄∗i , z̄
∗
−i) + uf ) ≤ 0,

we have

〈φ∗, ρ∗〉 ≥ 0.

Furthermore, for each l, we have 〈φl, µγl〉 ≤ 0 and 〈φl, µγl〉 → 〈φ∗, ρ∗〉. Whence we have the
complementarity condition.

�

This completes the derivation of Theorem 4.4.
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4.4. Probability Constraints and Moreau-Yosida Regularization. In this final theoreti-
cal section, we wish to draw the link between Moreau-Yosida regularization and probability con-
straints. We do so only for the the risk-neutral PDE-constrained optimization problem (2.14),
as the treatment of the GNEP would require further technical assumptions and somewhat ob-
fuscate our main point. The main tools are basic concentration inequalities from probability
theory. We recall again the γ-dependent optimization problem:

(4.16) min
z∈Zad

{
EP

[
J(S(z) + uf , z) +

γ

2
‖(ψ − (S(z) + uf ))+‖2L2(D)

]}
,

where γ > 0. We note that yet another way of formulating the original state constraint is

P
(
‖(ψ − (S(z) + uf ))+‖2L2(D) ≤ 0

)
= 1.

Ideally, we would use the L∞(D)-norm as opposed to the L2(D)-norm, since the latter allows
strong violation of the constraint on small subsets of positive measure for the weaker constraint

P
(
‖(ψ − (S(z) + uf ))+‖2L2(D) ≤ ε

)
= 1,

for ε > 0, but arbitrarily small. However, in order to derive a result of the type in the following
theorem with the L∞(D)-norm, we would need a careful analysis similar to [32]. This goes
beyond the scope of the current paper.

Proposition 4.15. Let zγ be the unique minimizer of (4.16). Then for any ε > 0, we have

P
(
‖(ψ − (S(zγ) + uf ))+‖2L2(D) < ε

)
≥ 1− 2M

γε
,

where M = EP [J(S(z), z)] and z is the unique minimizer of (2.14).

Proof. Using Markov’s inequality, we have

P
(
‖(ψ − (S(zγ) + uf ))+‖2L2(D) ≥ ε

)
≤

EP

[
‖(ψ − (S(zγ) + uf ))+‖2L2(D)

]
ε

.

We use zγ to obtain a simpler upper bound. By definition of zγ , it holds that

EP [J(S(zγ) + uf , zγ)] +
γ

2
EP

[
‖(ψ − (S(zγ) + uf ))+‖2L2(D)

]
≤ EP [J(S(v) + uf , v)] +

γ

2
EP

[
‖(ψ − (S(v) + uf ))+‖2L2(D)

]
.

for all v ∈ Zad. In particular, we obtain the bound

EP [J(S(zγ) + uf , zγ)] +
γ

2
EP

[
‖(ψ − (S(zγ) + uf ))+‖2L2(D)

]
≤ EP [J(S(v) + uf , v)] .

for all v ∈ Zad such that S(v) + uf ≥ ψ for (L× P)-a.e. (x, ω) ∈ D ×Ω. Using the minimizer z
of (2.14) leads to

γ

2
EP

[
‖(ψ − (S(zγ) + uf ))+‖2L2(D)

]
≤ EP [J(S(z) + uf , z)]− EP [J(S(zγ) + uf , zγ)]︸ ︷︷ ︸

≥0

≤ EP [J(S(z) + uf , z)] =: M.

From this we obtain EP

[
‖(ψ − (S(zγ) + uf ))+‖2L2(D)

]
≤ 2M

γ . Then returning to Markov’s in-
equality, we now have

P
(
‖(ψ − (S(zγ) + uf ))+‖2L2(D) ≥ ε

)
≤ 2M

γε
.

Finally, the complementary event is given by

(4.17) P
(
‖(ψ − (S(zγ) + uf ))+‖2L2(D) < ε

)
≥ 1− 2M

γε
.

�
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Remark 4.16. Using the analysis from the previous sections, we know that there exists a se-
quence γn → +∞ such that the random variable

Xn := ‖(ψ − (S(zγn) + uf ))+‖2L2(D)

converges strongly in L1(Ω,F ,P) to

X∗ := ‖(ψ − (S(z∗) + uf ))+‖2L2(D).

Since z∗ is feasible, the state constraint holds and X∗ ≡ 0. Therefore, there exists a subsequence
γk := γnk along which Xk := Xnk converges almost surely to 0; and consequently in distribution
as well. For each k, we can set εk = 1/

√
γk and treat Yk := εk as a degenerate random variable,

which clearly converges in distribution to 0. It follows from Slutsky’s theorem that Xk + Yk
converges in distribution to ‖(ψ − (S(z∗) + uf ))+‖2L2(D), i.e., 0 and since

P
(
‖(ψ − (S(zγ) + uf ))+‖2L2(D) < ε

)
≤ P

(
‖(ψ − (S(zγ) + uf ))+‖2L2(D) ≤ ε

)
,

the Portmanteau lemma yields

P
(
‖(ψ − (S(z∗) + uf ))+‖2L2(D) ≤ 0

)
≥

lim sup
k→+∞

P
(
‖(ψ − (S(zγk) + uf ))+‖2L2(D) − εk ≤ 0

)
≥ lim sup

k→∞
1− 2M
√
γk

= 1.

In this sense, Proposition 4.15 provides us with a probabilistic rate of convergence from Moreau-
Yosida to feasibility for the original problem. We observe in the out-of-sample experiments in
Section 5 almost exactly this behavior, i.e., for γk = 1000, the percent of out-of-sample states is
between one and three percent.

5. Numerical Experiments

In this final section, we provide a numerical study to indicate how stochastic PDE-constrained
optimization problems subject to pointwise state constraints and PDE-constrained GNEPs under
uncertainty might best be solved. To the best of our knowledge, this is the first attempt to
solve such problems numerically. As a result, the focus will be on the numerical solution of
the individual optimization problems. For the GNEP, a Krasnoselskii-Mann-type alternating
method is employed in which the dueling agents use the solver from Section 5.1.

5.1. Solving the individual problems. The basic idea behind this algorithm derives from the
success of semismooth Newton methods for solving deterministic PDE-constrained optimization
problems subject to state constraints using Moreau-Yosida regularization and path-following for
the parameter updates; see e.g., [30, 31]. Indeed, given γ > 0 and an iid sample of size M ,
we can replace the underlying probability distribution with the associated empirical probability
measure PM and consider

(5.1)

min
z∈Zad

{
1

M

M∑
m=1

[
J(S(z)(ωm) + uf (ωm), z) +

γ

2
‖(ψ(ωm)− (S(z)(ωm) + uf (ωm)))+‖2L2(D)

]}
.

This is now a deterministic problem. In order to solve (5.1) with a semismooth Newton solver,
we rewrite the first order optimality system as a single nonsmooth equation in z.

(5.2) zγ,M = ProjZad

[
− 1

νM

M∑
m=1

B∗(ωm)λγm

]
,

where for each m = 1, . . . ,M , λγm ∈ H1
0 (D) solves

(5.3)
∫
D
A(x, ωm)∇λγm(x) · ∇ϕ(x) dx =

∫
D

(T ∗(Tuγm + Tuf (ωm)− ud) + µγm))ϕ(x) dx,
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for all ϕ ∈ H1
0 (D), uγm = S(zγ,M )(ωm) ∈ H1

0 (D) solves

(5.4)
∫
D
A(x, ωm)∇uγm(x) · ∇ϕ(x) dx =

∫
D

(B(ωm)zγ,M )(x)ϕ(x) dx,

with the same test functions ϕ, and

µγm = −γ(ψ(ωm)− (uγm + uf (ωm)))+.

The fixed random terms uf (ωm) are defined analogously to uγm. For readability, we denote the
mapping z 7→ B∗λγ as Λ(z) or Λ(z, ω) to indicate the dependence on ω. Moreover, we set

F γM (z) := z − ProjZad

[
− 1

νM

M∑
m=1

Λ(z, ωm)

]
.

In the current setting, F γM : L2(D)→ L2(D) admits a Newton derivative GγM (z) of the form

GγM (z)dz =

[
I +

1

νM

M∑
i=1

G [Λ(z, ωm)] Λ′(z, ωm)

]
dz,

where G is the Newton derivative of the projection operator. This allows us to apply a semis-
mooth Newton method in L2(D) [29,64], which is known to be locally superlinearly convergent
for each M and γ > 0.

However, since γ must be taken to +∞, such an algorithm would not be computationally
efficient if M were chosen large for comparatively small γ. If M were to remain fixed, then
we could use a strategy as in [1, 30, 31]. On the other hand, M should be ideally as large as
possible or also treated as a parameter going to +∞. To remedy this issue, we set a maximum
allowable sample size Mmax > 0 and penalty parameter γmax > 0 and, starting with M0 ∈ N
and γ0 > 0, we add samples to Mk every time γk passes a certain threshold. For our numerical
experiments, we consider a heuristic, which is motivated by the previous section; in particular
the convergence statements in the fully continuous setting along with Remarks 4.11 and 4.16. A
full convergence analysis linking sampling, approximation and smoothing error goes beyond the
scope of this paper. The full algorithm is given in Algorithm 1. A few comments are in order.

The operator GγkMk
(zkl ) is not explicitly given. Thus, it is necessary to use an iterative method

to solve for the Newton steps dzkl , for which we use the tolerance tolnewt ≥ 0. Since we are
using a semismooth Newton iteration for pointwise bound constraints, the components of dzkl
are fixed on the estimated active sets for each l and we only need to solve the linear systems
on the potentially smaller inactive set. Here, it is important to note that each evaluation of
GγkMk

(zkl )dzkl requires the solution of the forward equation and two adjoint equations for every
sample mk = 1, . . . ,Mk. In our implementation, we employ a preconditioned conjugate gradient
method. Therefore, the computational complexity of each Hessian-vector product involved must
also be multiplied byMk and take into account the cost of applying the preconditioner. Similarly,
the evaluation of the residual F γMk

(zkl ) requires a forward and adjoint solve for each sample. For
our numerical examples, we use a direct solver for the linear elliptic PDEs.

Due to these facts, we suggest starting with a relatively small M0 and increasing slowly with
γk. Moreover, we suggest a relatively large tolres

0 > 0 and ρres close to 1. In step 13: of
Algorithm 1, we simply set γk+1 = φ(γk) = γk + 1. More aggressive strategies may be possible,
but empirical evidence suggests that this is not necessary and may even cause the Newton
iteration to cycle. Finally, in step 15: of Algorithm 1, we link the increases of the sample sizes
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Mk to γk. For our implementation, we start with γ0 and M0 and increase Mk by 10 every time
γk is divisible by 100.
Algorithm 1: SSN for Stochastic PDE-Constrained Optimization with State Constraints

1: Input (Data): ud ∈ L2(D); ν > 0; a, b ∈ L∞(D) a < b; ψ ∈ C(Ξ); f ∈ L∞P (Ω;L2(D))
2: Input (Parameters): k := 0, γ0 > 0, γmax ≥ γ0 > 0, M0 ∈ N, Mmax ≥M0, φ : R+ → R+,

tolres
0 > 0, ρres ∈ (0, 1), tolnewt ≥ 0

3: Input (Initial Values): z0 ∈ L2(D), dz0 ≡ 0 ∈ L2(D)
4: while γk < γmax do
5: Set l := 0
6: Set zkl := zk
7: while ‖F γkMk

(zkl )‖ > tolres
k do

8: Find dzkl ∈ L2(D) such that

(5.5) ‖GγkMk
(zkl )dzkl + F γkMk

(zkl )‖L2(D) ≤ tolnewt

9: Set zkl+1 := zkl + dzkl
10: Set l := l + 1
11: end while
12: Set zk+1 = zkl
13: Set γk+1 = φ(γk)
14: if “penalty-to-sample threshold’ then
15: Choose Mk+1 ≥ min(Mk,Mmax)
16: else
17: Set Mk+1 := Mk

18: end if
19: Set tolresk+1 = ρtolresk
20: Set k := k + 1
21: end while

5.2. Example: Risk-Neutral PDE-Constrained Optimization. In order to demonstrate
the viability of the algorithm, we consider a model problem based on [43, Ex. 6.1, Ex. 6.2]
and [35, Sec. 7.2]. Here, we set ν = 10−3, D = (0, 1), ũ(x) = sin(50.0 ∗ x/π), and consider the
optimal control problem

(5.6) minimize
z∈L2(D)

1

2
EP

[
‖u− ũd‖2L2(D)

]
+
ν

2
‖z‖2L2(D) over z ∈ L2(D)

where z ∈ Zad :=
{
w ∈ L2(D) |−0.75 ≤ w(x) ≤ 0.75 a.e. x ∈ D

}
and the solution of the random

PDE u = u(z) ∈ L∞(Ω,F ,P;H1(D)) solves the weak form of

−ν(ω)∂xxu(ω, x) = f(ω, x) + z(x) (ω, x) ∈ Ω×D,(5.7a)
u(ω, 0) = d0(ω), u(ω, 1) = d1(ω) ω ∈ Ω.(5.7b)

In addition, we impose the state constraint

P({ω ∈ Ω | u(ω, x) ≥ 0, for L-a.e. x ∈ D}) = 1.

Furthermore, we suppose that

ν(ω) := 102ξ1(ω)−3, f(ω, x) :=
2ξ2(ω)− 1

10

d0(ω) := 2 +
2ξ3(ω)− 1

1000
d1(ω) := 1 +

ξ4(ω)

1000
,

with random variables ξi : Ω → R, i = 1, 2, 3, 4, such that the supports ξi, i = 1, 2, 3, 4, are
[0, 1]. We assume here that each of these random variables is uniformly distributed. Following
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the usual change of variables, the forward problem (5.7) can be understood as

−ν(ξ)∂xxu(ξ, x) = f(ξ, x) + z(x) (ξ, x) ∈ Ξ×D,(5.8a)
u(ξ, 0) = d0(ξ), u(ξ, 1) = d1(ξ) ξ ∈ Ξ.(5.8b)

with Ξ = [0, 1]4, endowed with the associated uniform density. We define ξ := (ξ1, . . . , ξ4) ∈ Ξ.
Since (5.8) is linear, we can use the superposition principle to lift the boundary conditions into
the righthand side of (5.8). This allows us to transform the problem into the function space
setting used throughout the paper.

5.2.1. Discretization and Implementation. The pointwise forward problem and the control space
are discretized using piecewise finite elements on a uniform mesh with parameter h = 1/(29−1).
We use a standard Monte Carlo approximation for the random inputs ξ1, . . . , ξ4 ∈ [0, 1]. We
initialize the algorithm by choosing: γ0 = 1, γmax = 104,M0 = 200, tolres

0 = 10−2, ρres = 0.9997,
tolnewt = 10−8, z0 ≡ 0. Once the penalty to sample threshold is reached, Mk is increased by 10
samples. As mentioned above, the discrete PDEs are solved via a direct solver and the Newton
steps are calculated using a preconditioned method of conjugate gradients (for the linear equation
on the inactive set). As a preconditioner we use the localized mass matrix for the inactive set.
In the current implementation, we use the `2-norm of the residual in the stopping criterion.
Alternatively, one could use the proper discrete Riesz maps (i.e. the inverse mass matrix) to
first obtain a representation of the discrete solution in the finite-dimensional subspace and then
use the discrete L2-norm. This would be especially important in a nested grid or AFEM approach
in future numerical studies. For the nonsmooth operator in the adjoint equations, we utilize a
mass-lumping approach to obtain the discrete operators. Otherwise, the differential operators
and identity operators give rise to the usual stiffness and mass matrices subject to the random
inputs.

5.2.2. Performance of the Algorithm. The performance of the algorithm can be seen in Figure
1, where we plot the total number of PCG iterations per γ-update (k) and the total number of
Newton iterations needed to reach γ = 1000. The number of PCG iterations remains relatively
stable (between 100-150), whereas the number of Newton iterations per γ-update appears to be
trending downward. We note that no more than five Newton steps were needed for any given
γ and that both the CG algorithm and inner loop used inexact solves. Since we employed a
relatively rough initial stopping tolerance and a small batch of samples (despite increasing by 10
everytime (γk mod 100) = 0) the algorithm consistently produces a solution z that performs
exactly as expected in light of the model (risk neutral objective) and theory (especially Remark
4.16). This is qualitatively illustrated in Figure 2, where we observed that only 2.3 % of the
out-of-sample states violated the bound constraint. Due to the presence of the random viscosity
term in the forward problem, the L∞-norm of the sampled states can vary significantly. Finally,
and perhaps due to the previous fact, we noticed that smaller batches sizes, e.g., on the order
of 10, led to a failure of the Newton solver for γ near 1000.
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200

Outer vs. PCG Iterations

0 250 500 750 1000
2
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5
Outer vs. Inner Iterations

Figure 1. (left) Total PCG iterations per outer iteration k. (right) Total New-
ton iterations per outer iteration k.
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Figure 2. (left) Optimal solution z up to γ = 1000. (right) Controlled states
using z for 2000 out of sample instances of ξ.

5.3. Solving the Risk-Netural PDE-Constrained GNEP.

5.3.1. A General Algorithm. As mentioned earlier, we employ a fixed point strategy to solve
a two-player, risk-netural PDE-constrained GNEP. The fixed point iteration is derived from a
standard Krasnoselskii-Mann iteration. We introduce the mappings T i(zj) i 6= j, where

T 1(z2) := argmin
z1∈Z1

ad

{EP [J1(S(z1, z2) + uf , (z1, z2))] |P(S(z1, z2) + uf ≥ ψ) = 1} .

and T 2(z1) is defined analogously. The fixed point iteration is based on the following outer
iteration:

(1) Given (zold
1 , zold

2 ) ∈ L2(D)× L2(D).
(2) The first player determines ẑ1 = T 1(zold

2 ) and reveals this to the second player.
(3) The second player then determines ẑ2 = T 2(ẑ1) and reveals this to the first player.
(4) The first player now determines w1 = T 1(ẑ2).
(5) Choosing λ ∈ (0, 1], the first player now updates their strategy by setting

znew
1 := (1− λ)zold

1 + λw1.

The second player is assumed to choose znew
2 = T 2(znew

1 ).

Obviously, (1)-(5) represents an ideal setting as the state constraint needs to be treated by a
Moreau-Yosida approximation. In this context, we denote the γ-dependent mapping in steps
(2)-(4) by T iγ . The full algorithm is depicted in Algorithm 2. Note that λ = 1 would correspond
to a Gauss-Seidel iteration and λ > 1 to successive over-relation. As the evaluation of the T-
mappings requires an iterative solver in practice, we note here that zold

1 is used in (2), zold
2 in

(3), ẑ2 in (4), and ẑ2 in (5).
Many of the inputs in Algorithm 2 are either self-explanatory or play the same role as in

Algorithm 1. Here, we introduce tolkm
0 > 0 and ρkm ∈ (0, 1], which allow us to successively

reduce the tolerance used in the Krasnoselkskii-Mann iteration as γk (and consequently Mk)
increase. We suppress the fact that certain fixed data and parameter values need to be passed
to the Tγ-operators throughout the inner iterations.

It is again possible to adapt the tolerance used in the PCG solver for the Newton steps, but
empirical evidence indicates that this value should be rather small (order at least 1e-6). Though
the structure of Algorithm 2 is very similar to that of Algorithm 1, it is important to note that
each evaluation of T iγk is associated with a semismooth Newton solve for the current γk and
sample of size Mk.

Remark 5.1. For each fixed γk and Mk, the algorithm is basically a Krasnoselskii-Mann itera-
tion with inexact evaluations of the fixed point mapping. As such, convergence can be guaranteed
if the latter can be shown to be nonexpansive. Such an analysis goes beyond the scope of the
paper. Given the underlying individual problems are strongly convex, this property is most likely
linked to the modulus of strong convexity of the individual cost functions.
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Algorithm 2: A Fixed Point Iteration for a Stochastic PDE-Constrained GNEP
1: Input (Data): (ud,1, ud,2) ∈ L2(D)2, (ν1, ν2) ∈ R2

++, (ai, bi) ∈ L∞(D)2 ai < bi i = 1, 2,
ψ ∈ C(Ξ), f ∈ L∞P (Ω;L2(D))

2: Input (Parameters): k := 0, λ ∈ (0, 1], γ0 > 0, γmax ≥ γ0 > 0, M0 ∈ N, Mmax ≥M0,
φ : R+ → R+, tolkm

0 > 0, ρkm ∈ (0, 1], tolnwt
0 > 0, ρnwt ∈ (0, 1], tolnewt ≥ 0

3: Input (Initial Values): (z0,1, z0,2) ∈ L2(D)2, (dz0,1, dz0,2) ≡ 0 ∈ L2(D)2

4: (Initialize): Set

ẑ1,1 = T 1
γk

(z0,2), ẑ1,2 = T 2
γk

(ẑ1,1), w1,1 = T 1
γk

(ẑ1,2)

5: Set z1,1 = (1− λ)z0,1 + λw1,1, z1,2 = T 2
γk

(z1,1), and k := k + 1
6: while γk ≤ γmax do
7: Set l := 0
8: Set zkl,1 := zk,1 and zkl,2 := zk,2
9: Set

ẑkl+1,1 = T 1
γk

(zkl,2) ẑkl+1,2 = T 2
γk

(ẑkl+1,1) wkl+1,1 = T 1
γk

(ẑkl+1,2)

Set zkl+1,1 = (1− λ)zkl,1 + λwkl+1,1, z
k
l+1,2 = T 2

γk
(zkl+1,1), and l := l + 1

10: while ‖zkl,1 − zkl−1,1‖L2(D) > tolkm
k do

11: Set
ẑkl+1,1 = T 1

γk
(zkl,2) ẑkl+1,2 = T 2

γk
(ẑkl+1,1) wkl+1,1 = T 1

γk
(ẑkl+1,2)

Set zkl+1,1 = (1− λ)zkl,1 + λwkl+1,1, z
k
l+1,2 = T 2

γk
(zkl+1,1), and l := l + 1

12: end while
13: Set zk+1,1 = zkl,1 and zk+1,2 = zkl,2
14: Set γk+1 = φ(γk)
15: if “penalty-to-sample threshold’ then
16: Choose Mk+1 ≥ min(Mk,Mmax)
17: else
18: Set Mk+1 := Mk

19: end if
20: Set tolkm

k+1 = ρkmtolkm
k

21: Set k := k + 1
22: end while

5.3.2. Examples. We wish to study to the performance of the algorithm for two example GNEPs.
The individual problems build on the model class used in Section 5.2. We start with an essentially
symmetric game in which only the desired states ud,i differ and the controls z1, z2 are fully
amenable in the sense that B1 = B2 is identity on L2(D). As a second example we set

B1z1 = χ[0, 1
2

)z1 and B2z2 = χ[ 1
2
,1)z2.

In both examples, we set ud,1 = sin(50x/π) and ud,2 = cos(50x/π). In the case where B1, B2

are trivial, we take the bounds to be a1 = a2 = −1 and b1 = b2 = 1, whereas in the second
example with restricted control action, we set a1 = a2 = −3/4 and b1 = b2 = 3/4. These choices
were made to try to force larger active sets, which ensure that we are solving a truly nonsmooth
equation.

Given these assumptions, the template for the individual problems has the form

(5.9) minimize
z∈L2(D)

1

2
EP

[
‖u− ũd,i‖2L2(D)

]
+
νi
2
‖zi‖2L2(D) over zi ∈ L2(D)

where z ∈ Ziad :=
{
w ∈ L2(D) |ai ≤ w(x) ≤ bi a.e. x ∈ D

}
and the solution of the random PDE

u = u(z) ∈ L∞(Ω,F ,P;H1(D)) solves the weak form of

−ν(ω)∂xxu(ω, x) = f(ω, x) + (B1z1)(x) + (B2z2)(x) (ω, x) ∈ Ω×D,(5.10a)
u(ω, 0) = d0(ω), u(ω, 1) = d1(ω) ω ∈ Ω.(5.10b)
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As before, we impose the state constraint

P({ω ∈ Ω | u(ω, x) ≥ 0, for L-a.e. x ∈ D}) = 1.

As before, we set D = (0, 1). The uncertainties are chosen as in Section 5.2.

5.3.3. Discretization and Implementation. The discretization, sampling, γ-update strategy, and
tolerance reduction for the Newton iterations are the same as in Section 5.2.1. We fixed λ = 0.5.
Though further experiments demonstrated that successive over relaxation, i.e., λ > 1, does in
fact work, the number of Krasnoselskii-Mann iterations remained roughly the same. The inner
KM-iterations stopped once the discrete L2(D)-norm of znew

1 − zold
1 reached a tolerance of 1e-3.

5.3.4. Performance of the Algorithm. We have already investigated the performance of the
sample-average based semismooth Newton solver in Section 5.2.2. As expected, the algorithm
performs reliably in the GNEP setting, where it is called hundreds of times without failing to
converge. The behavior of Algorithm 2 for the full control action is depicted in Figures 3 and 4.
For the second example, in which the controls are restricted to subsets of D, we point the reader
to Figures 5 and 6. In both cases, we observe non-trivial active sets for the equilibrium controls.
In either case, the fixed point iteration requires a moderate number of iterations for the first few
γ. This then rapidly tapers off as γk and Mk increased. The performance of the equilibrium
controls is also demonstrated in Figures 4 and 6. These plots correspond to an estimated viola-
tion (in the sense of the L∞-norm) of the state constraints of 1.5% and 3% respectively. This is
well within the usual tolerance of 95% often used for probability constraints.
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Figure 3. Equilibrium controls z1 (left) and z2 (right) for B1 = B2 = idL2(D).
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Figure 4. (left) Number of Krasnoselskii-Mann iterations versus γ-updates k.
(right) Controlled states using Nash equilibrium (z1, z2) for 2000 out of sample
instances of ξ. B1 = B2 = idL2(D)
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Figure 5. Equilibrium controls z1 (left) and z2 (right) for B1 = χ[0,0.5], B2 = χ[0.5,1].
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Figure 6. (left) Number of Krasnoselskii-Mann iterations versus γ-updates k.
(right) Controlled states using Nash equilibrium (z1, z2) for 2000 out of sample
instances of ξ for B1 = χ[0,0.5], B2 = χ[0.5,1].

6. Conclusions and Outlook

In this paper, we proved existence of solutions/equilibria and derive optimality conditions
for both stochastic PDE-constrained optimization and equilibrium problems subject to state
constraints. For our analysis, higher regularity of the random states was proven using a priori
estimates for deterministic elliptic PDE. This allowed us to make use of the existing optimality
theory for convex optimization problems. In the case of GNEPs, a GNEP-specific constraint
qualification was crucial for the development of a relaxation approach on which both the theory
and our numerical methods could be built. We saw that this condition is fundamentally different
than the classical constraint qualifications from nonlinear programming such as the Mangasarian-
Fromowitz CQ, which was originally introduced in [46]. Nevertheless, the low regularity of the
Lagrange multipliers still makes passing to the limit highly nontrivial.

After rigorously passing to the limit in the smoothing parameter, we provided further insight
into the approximation technique using results on concentration inequalities and asymptotic sta-
tistics. Finally, we suggested two algorithms; the first for solving risk-neutral PDE-constrained
optimization problems subject to state constraints and the second for the extension to GNEPs.

The algorithms performed well and the statistical properties of the solutions are comparable
with what one would require of probability constraints; though our approach is much easier to
treat theoretically and numerically. At least for a fixed sample, the optimization solver is known
to converge locally superlinearly. A full convergence analysis linking sampling, adaptive finite
elements, smoothing, and convergence of these algorithms (as least in a probabilistic sense) will
be a future direction of research. The convergence of the GNEP solver is much more delicate
and will require a fine analysis of the nonexpansivity of the underlying fixed point mapping. We
postulate here that this is linked to the modulus of strong convexity of the underlying problems.
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