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First-order conditions for the optimal
control of the obstacle problem with state

constraints∗

Ira Neitzel† Gerd Wachsmuth‡

December 30, 2020

We consider an optimal control problem in which the state is governed
by an unilateral obstacle problem (with obstacle from below) and restricted
by a pointwise state constraint (from above). In the presence of control
constraints, we prove, via regularization of the state constraints, that a
system of C-stationarity is necessary for optimality. In the absence of control
constraints, we show that local minimizers are even strongly stationary by a
careful discussion of the primal first-order conditions of B-stationary type.
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1 Introduction
In this paper, we analyse an optimal control problem subject to an obstacle (from below)
and subject to an additional pointwise state constraint (from above). More precisely, we
are interested in the problem

Minimize J(y, u)
with respect to (y, u) ∈ H1

0 (Ω)× L2(Ω)
such that y ∈ K, 〈Ay − u, v − y〉 ≥ 0 ∀v ∈ K,

u ∈ Uad

and y ≤ yb a.e. in Ω.
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In our notation, y is the state and u is the control, and the set K is defined by the lower
obstacle ya, i.e.,

K := {v ∈ H1
0 (Ω) | v ≥ ya a.e. in Ω}.

For the precise assumptions we refer to Assumption 2.13. We just mention that we
work with minimal regularity, i.e., the coefficients in the differential operator A are just
assumed to be measurable and bounded, and we only require the so-called “uniform
exterior cone condition” of the bounded domain Ω ⊂ Rn, n ∈ {2, 3}.

Since the solution operator S of the obstacle is not differentiable, its optimal control is
a challenging problem. The first contribution is the seminal work [Mignot, 1976], which
demonstrates the directional differentiability of S and in which optimality conditions of
strongly stationary type were derived. Another classical work is [Barbu, 1984], in which
regularization methods are used to provide stationarity conditions. It turns out that
regularization techniques are applicable to a wider range of problems, in particular to
problems including control constraints. However, the resulting optimality conditions are
weaker than strong stationarity. It seems that the so-called system of C-stationarity is
the best system which can be derived in this way. For some more recent contributions to
the optimal control of the obstacle problem, we refer to [Hintermüller and Surowiec, 2011;
Kunisch and D. Wachsmuth, 2011; Schiela and D. Wachsmuth, 2013; G. Wachsmuth,
2014; 2016; Harder and G. Wachsmuth, 2018a].

PDE-constrained optimal control problems with pointwise state constraints have also
been known as a challenging problem class with respect to optimality conditions for
quite some time. The theory is typically based on the so called Slater condition, for
which continuity of the states is usually required. Lagrange multipliers in the first-order
optimality system are then obtained in the space of regular Borel measures, see [Casas,
1986], which in turn leads to low regularity of the adjoint state. From the meanwhile
very rich literature on different aspects of purely state-constrained problems we refer only
to [Casas, 1993], where the results of [Casas, 1986] have also been extended to boundary
control of semilinear elliptic PDEs, to [Raymond and Zidani, 1998; 1999] for some earlier
results on (semilinear) parabolic problems, as well as to related problems with constraints
of bottleneck type, [Bergounioux and Tröltzsch, 1999]. We also mention [Hintermüller and
Kunisch, 2009] for problems with control, state and gradient constraints. The structure
of Lagrange multipliers has for instance been discussed in [Bergounioux and Kunisch,
2002]. More recently, in [Casas et al., 2014], the authors showed improved regularity for
the Lagrange multiplier, inspired by a result for sparse optimal controls, see [Pieper and
Vexler, 2013]. Sparse control became a field of active research rather recently. These
problems resemble state-constrained problems in the way that if for instance measures as
control variables are considered, this leads to regularity difficulties in the state equation,
instead of the adjoint equation in case of pointwise state constraints.

The challenges and regularity issues associated with the Lagrange multiplier also influ-
ence all further analysis, such as second-order sufficient conditions (SSC) for nonconvex
problems, analysis of solution algorithms, or numerical analysis of such problems. For an
introductory overview on general aspects of second-order sufficient conditions and finite
element error analysis for PDE-constrained optimization, not restricted to pointwise
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state constraints, we mention [Casas and Tröltzsch, 2015] or [Hinze and Tröltzsch, 2010],
respectively.
There are a number of well-established regularization techniques that help to avoid

theoretical and numerical difficulties associated with pointwise state constraints. We
mention the rather classical Moreau-Yosida regularization approach from [Ito and Kunisch,
2003] that we will pursue in this paper, a Lavrentiev-regularization technique presented
originally in [Meyer et al., 2006], as well as the virtual control regularization approach
from [Krumbiegel and Rösch, 2009]. Moreover, barrier methods are in use; we refer for
instance to [Schiela, 2009] or [M. Ulbrich and S. Ulbrich, 2009]. As the literature on
regularization of pointwise state constraints is meanwhile also rather rich, let us only
refer to [Bergounioux et al., 2000; Hintermüller et al., 2003; 2008] as examples of a few
publications related to the Moreau-Yosida penalization.

We also would like to point out [Rösch and Tröltzsch, 2007] and the references therein,
where elliptic and parabolic problems with mixed control-state constraints have been
considered. Lagrange multipliers are shown to exist in Lp-spaces. While these constraints
exhibit better regularity properties, the analysis begins with existence of multipliers in
the dual space of L∞, which is even less regular than the space of regular Borel measures.
The regularity of the multipliers and also the optimal control is subsequently improved.
For a problem with bilateral control and mixed control-state constraints, a separation
condition for the active sets allows to prove L1-regularity of the multipliers and further
regularity improvements via bootstrapping arguments. Such a separation condition
has also been used in e.g. [Alt et al., 2010] for stability analysis of linear-quadratic
elliptic problems with mixed constraints, for convergence analysis of the SQP method
for nonlinear problems in [Griesse et al., 2008], and in [Neitzel and Tröltzsch, 2009] for
Lavrentiev regularization of pointwise state constraints in parabolic problems.
In our analysis, we will rely on separate supports of the multipliers associated with

the obstacle and the state constraints. In essence, this condition allows to apply typical
cut-off-type arguments. If the support of a low-regularity Lagrange-multiplier is clearly
separated from another point or rather area of interest, the smoothing properties of the
solution operators can be used to prove higher regularity on appropriate subdomains. In
our case, this means that the adjoint state admits H1

0−regularity away from the support
of the state-constraint multiplier. Cut-off arguments are a typical strategy to prove
known higher interior regularity results for PDEs. For PDE-constrained optimization,
such techniques have for example also been used to consider Dirichlet boundary control
of Poisson’s equation with pointwise state constraints in the interior, analyzed in [Mateos
and Neitzel, 2016] even though the states only admit H

1
2 (Ω) regularity on the whole

domain.
The literature concerning optimal control of the obstacle problem with additional state

constraints is rather scarce. We are only aware of three publications.
In [He, 1987], the author considers a problem which is more general than (P). In [He,

1987, Theorem 6.2], a system of C-stationarity is derived which includes a multiplier
ν ∈ L2(Ω) for the state constraint. This unusual high regularity seems to be related to
the requirement (6.5) therein. It is assumed that perturbations z ∈ L2(Ω) in the state
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constraint lead to perturbations of the optimal value which can be bounded from below
(up to first order) by the L2(Ω)-norm of z. It is not clear whether this assumption can be
verified for a large class of problems. We do not expect that the multiplier of the state
constraint considered in our paper belongs to L2(Ω).
In the contribution [Bergounioux, 1998], a more general variational inequality is

considered. This variational inequality is regularized and optimality conditions for the
regularized problem (subject to the state constraints) are derived. The passage to the
limit in this optimality system is not addressed.

[Bergounioux and Tiba, 1998, Section 3] addresses a problem very similar to (P), but
the state constraint is defined by a closed convex set in H1

0 (Ω). Again, the obstacle
problem is regularized. This contribution also addresses the passage to the limit in the
optimality system. The resulting optimality system uses a limiting object defined in
[Bergounioux and Tiba, 1998, Definition 3.1]. It is not clear how much information is
carried by this object. We just mention that optimality systems defined by the so-called
limiting normal cone seems to be of limited use in infinite dimensions, see [Mehlitz and
G. Wachsmuth, 2019; Harder and G. Wachsmuth, 2018b].
In this work, we present three optimality systems. First, in Theorem 3.5 we derive a

primal optimality system (i.e., it does not involve dual multipliers), which is typically
called B-stationarity. To this end, we heavily utilize that the pointwise convexity of the
solution operator of the obstacle problem (see Lemma 2.11) renders the state constraint
convex w.r.t. the control, i.e., the set Ustate := {u ∈ L2(Ω) | S(u) ≤ yb} is convex, where
S is the solution operator of the obstacle problem, see Lemma 3.1.

Second, we use a regularization approach to derive optimality conditions of C-stationary
type, see Theorem 4.1. To this end, we just regularize the state constraints and apply the
C-stationarity conditions from [G. Wachsmuth, 2016] to the regularized problems. The
passage to the limit in the optimality system requires some care due to the multiplier
of the state constraint, which is a measure and appears on the right-hand side of the
adjoint equation.

Finally, we show that the system of B-stationarity is equivalent to strong stationarity
in the absence of control constraints, see Theorem 5.7. To this end, we utilize classical
results by [Mignot, 1976]. Due to the state constraints, this is much more difficult than in
the classical setting. We mention that this result also allows to characterize the normal
cone to the convex set Ustate.

The paper is structured as follows. In Section 2.1 we fix some notation. Linear PDEs
governed by the differential operator A and its adjoint A? are discussed in Section 2.2.
Of particular importance are Lemmas 2.5 and 2.6. In these results, we discuss PDEs with
irregular but localized right-hand sides and show that the solution enjoys higher regularity
if we neglect a neighborhood of the support of the right-hand side. Afterwards, the
obstacle problem is discussed in Section 2.3. Using the regularity results of the previous
section, we can provide uniform estimates for the directional derivative S′ away from the
active set {y = ya}, see Lemma 2.10. In Section 2.4, we collect all the assumptions, see
Assumption 2.13, and give some basic properties of (P). The optimality conditions are
discussed in Sections 3 to 5, as described above.
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2 Preliminaries and technical results
We start by setting up the notation in Section 2.1. Afterwards, we discuss the solution
mapping of the differential operator in Section 2.2. The variational inequality will be
addressed in Section 2.3, and finally, we give some basic properties of the optimal control
problem in Section 2.4.

2.1 Notation
Let us fix some notation. The positive numbers are denoted by R+ := (0,∞). For a (real)
Banach space X, we denote by X? the (topological) dual space of X. The corresponding
duality pairing is denoted by 〈·, ·〉X : X? × X → R. If the space X is clear from the
context, we may omit the index X. The inner product in L2(Ω) is denoted by (·, ·).

For a subset set C ⊂ X, we define the polar cone and the annihilator by

C◦ := {ξ ∈ X? | ∀x ∈ C : 〈ξ, x〉X ≤ 0},
C⊥ := {ξ ∈ X? | ∀x ∈ C : 〈ξ, x〉X = 0},

respectively. Analogously, we define D◦, D⊥ ⊂ X for D ⊂ X?. In particular, the
annihilator of ξ ∈ X? is defined via

ξ⊥ := {x ∈ X | 〈ξ, x〉X = 0}.

Now, let C ⊂ X be closed and convex. For all x ∈ C, we define the radial cone, the
tangent cone, and the normal cone to C at x via

RC(x) :=
⋃
λ>0

(C − x), TC(x) := cl(RC(x)), NC(x) := TC(x)◦ = (C − x)◦,

respectively. In case x ∈ X \ C, we define all these cones to be the empty set. In case
X = L2(Ω), where Ω ⊂ Rn is measurable, we identify X? with X in the canonical way
and, therefore, interpret NC(x) as a subset of X.
Further, we need some basic concepts of capacity theory. For a summary, we refer to

[G. Wachsmuth, 2014, Section 2], [G. Wachsmuth, 2016, Section 1.2] and [Harder and G.
Wachsmuth, 2018a, Section 3]. In particular, we require the definition of the quasi-support
q-supp(ξ) for measures ξ ∈ H−1(Ω)−, see [G. Wachsmuth, 2014, Lemma 3.1] and [Harder
and G. Wachsmuth, 2018a, Lemma 3.7, Definition 3.8] (called “fine support” therein).
If y : Ω→ R is some function, we define

{y > 0} := {x ∈ Ω | y(x) > 0}.

Note that this set is defined up to sets of measure zero if y ∈ Lr(Ω), r ∈ [1,∞], and up
to sets of capacity zero if y ∈ H1(Ω). The same notation will be used for other relations
and also with more than one function, e.g., {y1 > y2} with the obvious meaning.
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2.2 Solution operators of differential equations
In this section, we specify the properties of the differential operator A appearing in (P).
To this end, let us define A : H1(Ω)→ H−1(Ω) via

〈Ay, v〉 :=
∫

Ω

n∑
i,j=1

aij ∂jy ∂iv +
n∑
i=1

bi y ∂iv +
n∑
i=1

ci ∂iy v + d y v dx

=
∫

Ω
∇v>A∇y + y (b>∇v) + v (c>∇y) + d y v dx ∀y ∈ H1(Ω), v ∈ H1

0 (Ω).
(2.1)

For the coefficients appearing in (2.1), we assume measurability and boundedness, i.e.,

aij , bi, ci, d ∈ L∞(Ω) (2.2)

on a domain Ω ⊂ Rn, n ∈ {2, 3}, satisfying a uniform exterior cone condition. Note that
this is precisely the definition of the operator [Gilbarg and Trudinger, 2001, (8.1)] and
the regularity condition of Ω described on page 205 therein. As usual, we will denote by
Γ := ∂Ω the boundary of Ω. For our analysis, we assume that A is strictly elliptic, i.e.,
there exists γ0 > 0 such that

n∑
i,j=1

aij(x)wiwj = w>A(x)w ≥ γ0 ‖w‖2Rn ∀w ∈ Rn and a.a. x ∈ Ω. (2.3)

Further, A should be coercive on H1
0 (Ω), i.e., there exists γ1 > 0 such that

〈Ay, y〉 ≥ γ1 ‖y‖2H1
0 (Ω) ∀y ∈ H1

0 (Ω). (2.4)

These assumptions on A hold throughout the paper. In the remainder of this section,
we are concerned with existence and regularity results for the differential equation

y ∈ H1
0 (Ω), Ay = f in H−1(Ω) (2.5)

and the associated adjoint equation. The following is a standard existence and regularity
result and the starting point of our analysis.

Theorem 2.1. Let f ∈ H−1(Ω). Then there exists a unique weak solution y ∈ H1
0 (Ω) of

(2.5), satisfying
‖y‖H1

0 (Ω) ≤ C‖f‖H−1(Ω). (2.6)

Proof. Under our assumptions on A, this follows by the well-known Lax-Milgram theory.

If we can rely on more regularity of the data, we also obtain better regularity properties
of the solution. However, we are limited by the low regularity (2.2) of the coefficients.
The following theorem, that particularly includes the case of right-hand sides in L2(Ω)
for spatial dimensions up to n = 3, guarantees Hölder regularity. In the sequel, this will
allow to rely on a so-called Slater condition as constraint qualification in order to obtain
first-order necessary optimality conditions for controls in L2(Ω).
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Theorem 2.2. For every q′ > n and f ∈W−1,q′(Ω), the unique solution y ∈ H1
0 (Ω) of

equation (2.5) enjoys the additional regularity y ∈ C0,α
0 (Ω) for some α > 0 and we have

the estimate
‖y‖H1

0 (Ω) + ‖y‖
C0,α

0 (Ω) ≤ C‖f‖W−1,q′ (Ω). (2.7)

Here, C and α do not depend on f .

Proof. The additional Hölder regularity follows from [Gilbarg and Trudinger, 2001,
Theorem 8.29]. Together with [Gilbarg and Trudinger, 2001, Theorem 8.15], the norm
estimate follows.

Using this regularity, we can define the solution operator T : W−1,q′(Ω)→ C0(Ω) of
(2.5). Note that T is compact, since the Hölder space C0,α

0 (Ω) is compactly embedded
in C0(Ω) by the Arzelà-Ascoli theorem. Its adjoint operator T ? : M(Ω) → W 1,q

0 (Ω) is
related to the adjoint equation of (2.5).

Theorem 2.3. Let q ∈
(
1, n/(n− 1)

)
be given. For every ν ∈M(Ω), the equation

A?p = ν

admits a unique very weak solution p ∈W 1,q
0 (Ω), i.e.

〈Az, p〉
W 1,q

0 (Ω) =
∫

Ω
z dν ∀z ∈ Z, (2.8)

where
Z := {z ∈ H1

0 (Ω) | Az ∈W−1,q′(Ω)}. (2.9)

Here, q′ ∈ (n,∞) is the conjugate exponent of q. This solution fulfills the estimate

‖p‖
W 1,q

0 (Ω) ≤ C‖ν‖M(Ω), (2.10)

with C independent of ν. Finally, if νk
?
⇀ ν, we have pk → p in W 1,q

0 (Ω) for the
corresponding solutions.

Note that Z ⊂ C0(Ω) due to Theorem 2.2, hence, the right-hand side in (2.8) is well
defined.

Proof. For ν ∈ M(Ω), we define the function p := T ?ν ∈ W 1,q
0 (Ω). It is uniquely

determined by the properties of the adjoint operator,

〈f, p〉
W 1,q

0 (Ω) = 〈ν, Tf〉M(Ω),C0(Ω) =
∫

Ω
(Tf) dν ∀f ∈W−1,q′(Ω). (2.11)

From this, we observe that (2.10) holds. Note that (2.11) is equivalent to the very weak
formulation (2.8).
In order to verify the compactness property, we use that T ? maps weak-? convergent

sequences to weak-? convergent sequences (since it is an adjoint operator) and it maps
bounded sequences to sequences possessing a strong accumulation point (since it is
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compact by Schauder’s theorem). Hence, if νk
?
⇀ ν in M(Ω), every subsequence of

(T ?νk)k∈N possesses a strong accumulation point which has to coincide with T ?ν due to
T ?νk

?
⇀ T ?ν inW 1,q

0 (Ω). Hence, a subsequence-subsequence argument shows T ?νk → T ?ν
in W 1,q

0 (Ω).

We point out that using the density of C0(Ω) in W−1,q′(Ω), it is also possible to use

Ẑ := {z ∈ H1
0 (Ω) | Az ∈ C0(Ω)},

as it was done in [Casas et al., 2014]. In particular, this shows that the very weak solution
of (2.8) does not depend on the choice of the regularity exponent q.
Note that Az ∈W−1,q′(Ω) in the definition of Z means that∣∣〈Az, v〉∣∣ ≤ C‖v‖

W 1,q
0 (Ω) ∀v ∈ H1

0 (Ω).

Therefore, the functional Az ∈ H−1(Ω) can be extended continuously to a functional
from W−1,q′(Ω). Note that we cannot use integration by parts on the left-hand side of
(2.8), since this would require p ∈ H1

0 (Ω) or z ∈W 1,q′
0 (Ω). This, however, may not hold

under the low regularity (2.2). For a thorough discussion of the interpretation of the
adjoint equation in the case of coefficients with low regularity, we refer to [Meyer et al.,
2011].

Of course, it is also possible to discuss the adjoint equation with right-hand sides from
H−1(Ω), i.e.,

p ∈ H1
0 (Ω), A?p = µ in H−1(Ω).

Existence and uniqueness follows from Lax-Milgram. Due to Z ⊂ H1
0 (Ω) ∩ C0(Ω), both

notions of solutions coincide if µ ∈ H−1(Ω) ∩ M(Ω). Indeed, for every z ∈ Z and
p ∈ H1

0 (Ω), we have

〈Az, p〉
W 1,q

0 (Ω) = 〈Az, p〉H1
0 (Ω) and

∫
Ω
z dµ = 〈µ, z〉H1

0 (Ω).

Thus, we can define a very weak solution p ∈W 1,q
0 (Ω) of

A?p = µ+ ν

for µ ∈ H−1(Ω) and ν ∈M(Ω) via

〈Az, p〉
W 1,q

0 (Ω) = 〈µ, z〉H1
0 (Ω) +

∫
Ω
z dν ∀z ∈ Z, (2.12)

and this solution does not depend on the precise splitting of µ+ ν into µ ∈ H−1(Ω) and
ν ∈M(Ω).

Let us consider further properties and auxiliary results, starting with smooth multipliers
for the space Z.

Lemma 2.4. Let z ∈ H1
0 (Ω) be given such that Az ∈ W−1,q′(Ω) for some q′ > n with

q′ < ∞ in case n = 2 and q′ ≤ 6 in case n = 3. Then, for all ψ ∈ C∞(Ω) we have
ψz ∈ H1

0 (Ω) and A(ψz) ∈W−1,q′(Ω).
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Proof. Theorem 2.2 implies z ∈ L∞(Ω). Further, we already know that the linear
functional v 7→ 〈Az, ψv〉 belongs to W−1,q′(Ω). Now we consider

〈A(ψz), v〉 − 〈Az, ψv〉

=
∫

Ω
∇v>A∇(ψz) + (ψz) (b>∇v) + v (c>∇(ψz)) + d (ψz)v dx

−
∫

Ω
∇(ψv)>A∇z + z (b>∇(ψv)) + (ψv) (c>∇z) + dz (ψv) dx

=
∫

Ω
z∇v>A∇ψ − v∇ψ>A∇z − zv (b>∇ψ) + vz (c>∇ψ) dx.

This yields the bound∣∣〈A(ψz), v〉 − 〈Az, ψv〉
∣∣ ≤ C(‖∇v‖L1(Ω) + ‖v‖L2(Ω) + ‖v‖L1(Ω) + ‖v‖L1(Ω)

)
.

The Sobolev embedding theorem yields W 1,s
0 (Ω) ↪→ L2(Ω) for 1/s = 1/2 + 1/n, i.e.,

s = 2n/(n+ 2). Thus, s = 6/5 for n = 3. Due to the assumption on q′, we have q′ ≤ s′,
and therefore A(ψz) ∈W−1,q′(Ω).

Lemma 2.5. Let subsets U, V ⊂ Ω be given, such that U is compact, V is open and
U ⊂ V . Let f ∈ H−1(Ω) and ϕ ∈ C∞(Rn) with ϕ|V = 0. Then the weak solution
y ∈ H1

0 (Ω) of
Ay = ϕf

is continuous in a neighborhood of U and fulfills

‖y‖C(U) ≤ C‖f‖H−1(Ω). (2.13)

Moreover, the mapping H−1(Ω) 3 f 7→ y ∈ C(U) is compact.

Proof. Choose ψ ∈ C∞c (Ω) with ψ|U = 1, and ψ|Ω\V = 0. Then the product of ϕ and ψ
vanishes, and we observe

〈A(ψy), v〉 = 〈A(ψy), v〉 − 〈ϕy, ψv〉 = 〈A(ψy), v〉 − 〈Ay, ψv〉.

Similar to the proof of Lemma 2.4 we therefore obtain

〈A(ψy), v〉 =
∫

Ω
y∇v>A∇ψ − v∇ψ>A∇y − yv (b>∇ψ) + vy (c>∇ψ) dx

≤ C‖y‖L6(Ω)‖∇v‖L6/5(Ω) + C‖∇y‖L2(Ω)‖v‖L2(Ω) + C‖y‖L6(Ω)‖v‖L6/5(Ω),

≤ C‖y‖H1
0 (Ω)‖v‖W 1,6/5(Ω),

where we have used the embeddings H1
0 (Ω) ↪→ L6(Ω) for y as well as W 1,6/5

0 (Ω) ↪→ L2(Ω)
in the case n ≤ 3 as before. With Theorem 2.1 we deduce

〈A(ψy), v〉 ≤ C‖f‖H−1(Ω)‖v‖W 1,6/5(Ω),
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hence ‖A(ψy)‖W−1,6(Ω) ≤ C‖f‖H−1(Ω). Finally, this yields

‖ψy‖
C0,α

0 (Ω) ≤ C‖f‖H−1(Ω)

by Theorem 2.2. Note that due to the compact embedding of C0,α
0 (Ω) ↪→ C0(Ω) the

mapping f 7→ ψy is compact from H−1(Ω) into C0(Ω), which concludes the proof.

By a duality argument, we obtain a regularity result for the adjoint equation.

Lemma 2.6. Let subsets U, V ⊂ Ω be given, such that U is compact, V is open and
U ⊂ V . Let µ ∈M(Ω) with supp(µ) ⊂ U and ϕ ∈ C∞(Rn) with and ϕ|V = 0. Then the
very weak solution p ∈W 1,q

0 (Ω) of
A?p = µ

fulfills
‖ϕp‖H1

0 (Ω) ≤ C‖µ‖M(Ω). (2.14)

Moreover, if µk
?
⇀ µ, then ϕpk → ϕp in H1

0 (Ω), where pk is the very weak solution for
the right-hand side µk.

Proof. We test the very weak formulation with the solution y ∈ H1
0 (Ω) ∩ C0,α

0 (Ω) of
Ay = ϕf for f ∈ L2(Ω), and obtain∫

Ω
pϕf dx =

∫
Ω
p (Ay) dx =

∫
Ω
y dµ ≤ ‖y‖C(U)‖µ‖M(Ω).

Note that the last estimate uses supp(µ) ⊂ U . Applying Lemma 2.5 yields∫
Ω
pϕf dx ≤ C‖f‖H−1(Ω)‖µ‖M(Ω).

Since f ∈ L2(Ω) was arbitrary, this yields ‖ϕp‖H1
0 (Ω) ≤ C‖µ‖M(Ω).

It remains to verify the compactness property. As in the beginning of the proof, we
have

〈f, ϕ p〉H1
0 (Ω) = 〈µ, y〉C(U)

for all f ∈ L2(Ω), µ ∈ M(U), where Ay = ϕf and A?p = µ (in the very weak sense).
Using the density of L2(Ω) in H−1(Ω) and Lemma 2.5, this equation extends to all
f ∈ H−1(Ω). Therefore, the mappingM(U) 3 µ 7→ ϕp ∈ H1

0 (Ω) is the adjoint of the
mapping H−1(Ω) 3 f 7→ y ∈ C(U) from Lemma 2.5. Now, we can argue as in the proof
of Theorem 2.3.

2.3 Solution operator of the obstacle problem
In this section, we give some properties of the solution operator of the variational
inequality (VI)

Find y ∈ K such that 〈Ay − u, v − y〉 ≥ 0 ∀v ∈ K (VI)
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which appears as a constraint in (P). Here

K := {v ∈ H1
0 (Ω) | v ≥ ya a.e. in Ω}.

We assume the same regularity of A and Ω as in the previous section. We further suppose
that ya ≤ 0 on Γ in the sense of H1(Ω) and this implies K 6= ∅. First of all, it is
well-known that this VI admits a unique solution y ∈ H1

0 (Ω) for each u ∈ H−1(Ω), see
[Kinderlehrer and Stampacchia, 1980, Theorem II.2.1] or [Troianiello, 1987, Theorem 4.4].
The solution operator is denoted by

S : H−1(Ω)→ H1
0 (Ω), u 7→ y.

It is known that (VI) is equivalent to the existence of ξ ∈ H−1(Ω) such that

Ay = u− ξ, ξ ∈ NK(y).

Here, NK(y) is the normal cone of the convex set K.
Next, we address Hölder regularity of the solutions.

Theorem 2.7. We assume that the obstacle ya satisfies ya ∈ H1(Ω) and Aya ∈ L2(Ω).
Then, for any u ∈ L2(Ω), we have Ay, ξ ∈ L2(Ω), where y := S(u), ξ := u − Ay.
Moreover, S : L2(Ω)→ C0,α

0 (Ω) is continuous for some α ∈ (0, 1).

Proof. We can apply [Troianiello, 1987, Theorem 4.32] and obtain the pointwise a.e.
inequality u ≤ Ay ≤ max{Aya, u}, where u ∈ L2(Ω) is arbitrary and y = S(u). This
implies

‖Ay‖L2(Ω) ≤ ‖u‖L2(Ω) + ‖Aya‖L2(Ω),

i.e., u 7→ Ay is bounded from L2(Ω) to L2(Ω).
Now, let a sequence with uk → u in L2(Ω) be given. We set yk := S(uk). Since Ayk is

bounded in L2(Ω) and converges in H−1(Ω) to Ay, we get Ayk ⇀ Ay in L2(Ω).
Since the embedding from W

1,5/4
0 (Ω) into L2(Ω) is compact ([Gilbarg and Trudinger,

2001, Theorem 7.22]), the adjoint embedding from L2(Ω) into W−1,5(Ω) = W
1,5/4
0 (Ω)? is

compact as well (by Schauder’s theorem). Hence, Ayk → Ay in W−1,5(Ω). Finally, A−1

is continuous from W−1,5(Ω) to C0,α
0 (Ω), see Theorem 2.2.

Using the standard truncation idea due to Stampacchia, we can also show the Lipschitz
continuity of S w.r.t. a weaker norm on the forces u.

Lemma 2.8. Let q′ > n be given. Then, there exists C > 0 such that

‖S(u1)− S(u2)‖L∞(Ω) ≤ C‖u1 − u2‖W−1,q′ (Ω) ∀u1, u2 ∈W−1,q′(Ω).

Proof. Let u1, u2 ∈ W−1,q′(Ω) be given and set yj := S(uj) for j = 1, 2. For k > 0, we
define ŷk := (y1 − y2 − k)+. Due to y1 − ŷk = min(y2 + k, y1) ≥ ya, we can test the VIs
for y1 and y2 with y1 − ŷk and y2 + ŷk, respectively. Adding the resulting inequalities
leads to

〈A(y1 − y2), ŷk〉 ≤ 〈u1 − u2, ŷk〉 ∀k > 0.

11



Now, we can use the arguments of [Troianiello, 1987, Lemma 2.8] (see also the remark
following this lemma) to obtain

ess sup(y1 − y2) ≤ C‖u1 − u2‖W−1,p′ (Ω).

Note that we can avoid the L2(Ω)-norm of y1− y2 on the right-hand side of this estimate
due to the Lipschitz-continuity of S from H−1(Ω) to H1

0 (Ω). By interchanging the roles
of y1 and y2, we arrive at the claimed estimate.

An important property is the monotonicity

u1 ≤ u2 ⇒ S(u1) ≤ S(u2), (2.15)

see, e.g., [Troianiello, 1987, Corollary, p. 242].
From the seminal work of Mignot, we get the directional differentiability of the mapping

S : H−1(Ω)→ H1
0 (Ω), see [Mignot, 1976, Théorème 3.3].

Theorem 2.9. The solution operator S : H−1(Ω)→ H1
0 (Ω) is directionally differentiable

at all points ū ∈ H−1(Ω). The directional derivative z := S′(ū;h) ∈ H1
0 (Ω) in direction

h ∈ H−1(Ω) is given by the unique solution of the VI

z ∈ K(ū), 〈Az − h, v − z〉 ≥ 0 ∀v ∈ K(ū). (2.16)

Here,
K(ū) := TK(ȳ) ∩ ξ̄⊥,

where ȳ = S(ū) and ξ̄ := ū−Aȳ are the associated state and multiplier, respectively. For
the critical cone K(ū), we have the representation

K(ū) =
{
v ∈ H1

0 (Ω)
∣∣ v ≥ 0 q.e. on {ȳ = ya} and v = 0 q.e. on q-supp(ξ̄)

}
. (2.17)

The formula for the critical cone involving the quasi-support of ξ̄ can be found in
[G. Wachsmuth, 2014, Lemma 3.1].

Since S : H−1(Ω)→ H1
0 (Ω) is Lipschitz continuous, we obtain that S is even Hadamard

differentiable, i.e., (S(ū+ tkhk)− S(ū))/tk → S′(ū;h) if hk → h in H−1(Ω) and tk ↘ 0.
We note that the monotonicity (2.15) implies

h1 ≤ h2 ⇒ S′(u;h1) ≤ S′(u;h2) (2.18)

for the directional derivative.
The next lemma shows that the difference quotients converge uniformly on the set

where ȳ has a positive distance from the lower bound ya.

Lemma 2.10. Let the assumptions of Theorem 2.7 and, additionally, ya ∈ C(Ω̄) be
satisfied. For ū ∈ L2(Ω), we define the state ȳ := S(ū) and the set

Ω̂ := {ȳ ≥ ya + σ},

where σ > 0 is arbitrary and we use the continuous representatives of ȳ and ya.
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(a) For an arbitrary q′ > n, there exists a constant C > 0, such that

‖S′(ū;h1)− S′(ū;h2)‖L∞(Ω̂) ≤ C‖h1 − h2‖W−1,q′ (Ω) ∀h1, h2 ∈W−1,q′(Ω).

(b) Let ϕ̃ ∈ C∞(Rn) be given such that ϕ̃ vanishes on a neighborhood of Ω̂. Then,

‖S′(ū; ϕ̃h1)− S′(ū; ϕ̃h2)‖L∞(Ω̂) ≤ C‖h1 − h2‖H−1(Ω) ∀h1, h2 ∈ H−1(Ω).

(c) Let sequences (hk)k∈N ⊂ L2(Ω) and (tk)k∈N ⊂ R+ be given such that hk → h in
W−1,q′(Ω) and tk ↘ 0. We define the perturbed states yk := S(ū + tkhk). Then,
the difference quotients (yk − ȳ)/tk converge towards S′(ū;h) uniformly on the set
Ω̂ as k →∞. In particular, S′(ū;h) is continuous on Ω̂.

Proof. Note that we get continuity of ȳ from Theorem 2.7 and ya is continuous by
assumption. Thus, the sets Ω̂ and

Ω̂2 := {ȳ ≤ ya + σ/2}

are closed. In the sequel, we are going to apply the regularity result Lemma 2.5 with
U = Ω̂. Therefore, we fix a function ϕ ∈ C∞(Rn), such that 0 ≤ ϕ ≤ 1 on Rn, ϕ = 0 on
a neighborhood V of U = Ω̂ and ϕ = 1 on Ω̂2. Note that this is possible, since the sets
Ω̂, Ω̂2 have a positive distance.
We start with (a). Let h1, h2 ∈W−1,q′(Ω) be given. We define the functional

ξ̂ :=
(
h1 −AS′(ū;h1)

)
−
(
h2 −AS′(ū;h2)

)
∈ K(ū)◦,

see (2.16). Note that
‖ξ̂‖H−1(Ω) ≤ ‖h1 − h2‖H−1(Ω).

For arbitrary v ∈ H1
0 (Ω), we have (1−ϕ)v = 0 q.e. on Ω̂2 ⊃ {ȳ = ya}. Thus, ±(1−ϕ)v ∈

K(ū). Thus, 〈(1− ϕ)ξ̂, v〉 = 0, i.e., ξ̂ = ϕξ̂. By Theorem 2.2 and Lemma 2.5, we get

‖S′(ū;h1)− S′(ū;h2)‖L∞(Ω̂) = ‖A−1(ϕξ̂ − h1 + h2)‖L∞(Ω̂)

≤ C
(
‖ξ̂‖H−1(Ω) + ‖h1 − h2‖W−1,q′ (Ω)

)
≤ C

(
‖h1 − h2‖H−1(Ω) + ‖h1 − h2‖W−1,q′ (Ω)

)
and the assertion follows.
The proof of (b) is very similar. One just has to replace Theorem 2.2 by another

application of Lemma 2.5.
Next, we show (c). Since S : W−1,q′(Ω) → L∞(Ω) is Lipschitz by Lemma 2.8, there

exists N ∈ N such that

yk(x) > ya(x) ∀x ∈ Ω \ Ω̂2, k ≥ N.

Hence, the associated multiplier ξk := (ū + tkhk) − Ayk ∈ L2(Ω) is supported on the
set Ω̂2. Now, we consider the difference quotient of the multipliers ξ̂k := (ξk − ξ̄)/tk,
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where ξ̄ := ū−Aȳ. This difference quotient is supported on Ω̂2 and converges in H−1(Ω)
towards ξ̂ := h−AS′(ū;h), see Theorem 2.9. This implies ξ̂k = ϕξ̂k → ϕξ̂ = ξ̂.
Thus, we can apply Lemma 2.5 and obtain∥∥∥A−1ξ̂k −A−1ξ̂

∥∥∥
L∞(Ω̂)

= ‖A−1
(
ϕ(ξ̂k − ξ̂)

)
‖L∞(Ω̂) ≤ ‖ξ̂k − ξ̂‖H−1(Ω) → 0.

Together with

yk − ȳ
tk

= A−1h+A−1ξ̂k and S′(ū;h) = A−1h+A−1ξ̂,

this shows the claim.

A well-known property of the obstacle problem with a lower bound is the pointwise
convexity of the solution operator. This renders the state constraint convex w.r.t. the
control u and will become important for our analysis of the optimal control problem.

Lemma 2.11. Let u1, u2 ∈ H−1(Ω) and α ∈ (0, 1) be given. Then,

S(αu1 + (1− α)u2) ≤ αS(u1) + (1− α)S(u2) a.e. in Ω.

Proof. For convenience, we reproduce the short proof from [Mignot, 1976, Lemme 4.1].
We set u3 := αu1 + (1 − α)u2 and yi := S(ui) for i = 1, . . . , 3. We have to show

that w := (y3 − αy1 − (1 − α)y2)+ is zero. This definition directly implies w ≥ 0 and
y3 − w = min{y3, αy1 + (1− α)y2} ≥ ya. Thus, we obtain

〈Ay1 − u1, w〉 = 〈Ay1 − u1, y1 + w − y1〉 ≥ 0,
〈Ay2 − u2, w〉 = 〈Ay2 − u2, y2 + w − y2〉 ≥ 0,
〈Ay3 − u3,−w〉 = 〈Ay3 − u3, y3 − w − y3〉 ≥ 0.

We multiply the first two inequalities by α and (1− α), respectively. Adding the three
resulting inequalities yields

〈A(y3 − αy1 − (1− α)y2), w〉 ≤ 0.

The structure of the differential operator gives

〈Av+, v+〉 = 〈Av, v+〉 ∀v ∈ H1
0 (Ω)

and together with the coercivity of A we obtain w = 0.

From this pointwise convexity, we obtain two inequalities for the directional derivative
by the usual arguments.

Corollary 2.12. Let u, h, h2 ∈ H−1(Ω) be given. Then,

S(u) + S′(u;h) ≤ S(u+ h) a.e. in Ω,
S′(u;h+ h2) ≤ S′(u;h) + S′(u;h2) a.e. in Ω.
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Proof. For any t ∈ (0, 1) we have

S(u+ th) = S((1− t)u+ t(u+ h)) ≤ (1− t)S(u) + tS(u+ h).

Now, we subtract S(u), divide by t > 0 and pass to the limit t↘ 0 to arrive at the first
assertion. The second assertion follows similarly by considering

2
(
S(u+ t (h+ h2))− S(u)

)
≤ S(u+ t (2h))− S(u) + S(u+ t (2h2))− S(u),

dividing by t > 0, passing to the limit t ↘ 0 and using the positive homogeneity of
S′(u; ·).

2.4 Optimal control problem
We will now discuss the optimal control problem (P). To this end, let us collect all the
assumptions which have been made in the previous preliminary results. Additionally, we
make further assumptions concerning the optimal control problem, in particular we will
assume the existence of a Slater point, from which we will eventually deduce existence of
a Lagrange multiplier associated with the state constraints.

Assumption 2.13.

(i) The domain Ω ⊂ Rn, n ∈ {2, 3}, is bounded and satisfies the uniform exterior cone
condition, see [Gilbarg and Trudinger, 2001, p. 205].

(ii) The differential operator A is given as in (2.1), such that (2.2)–(2.4) are satisfied.

(iii) The obstacle ya ∈ H1(Ω) ∩ C(Ω̄) satisfies ya ≤ 0 on Γ in the sense max{ya, 0} ∈
H1

0 (Ω) and Aya ∈ L2(Ω).

(iv) The state constraint has the regularity yb ∈ C(Ω̄) and satisfies yb > 0 on Γ.

(v) The control set Uad ⊂ L2(Ω) is convex, closed, and non-empty.

(vi) The objective J : H1
0 (Ω) × L2(Ω) → R is assumed to be continuously Fréchet-

differentiable and bounded from below. We require that J is sequentially lower
semi-continuous w.r.t. to the strong topology in H1

0 (Ω) and the weak topology in
L2(Ω), that is J(y, u) ≤ lim infk→∞ J(yk, uk) for all sequences

(
(yk, uk)

)
k∈N ⊂

H1
0 (Ω) × L2(Ω) satisfying yk → y in H1

0 (Ω) and uk ⇀ u in L2(Ω). Finally, we
assume that J is coercive w.r.t. the second variable on the feasible set Uad, that is
the boundedness of (uk)k∈N in L2(Ω) follows from the boundedness of (J(yk, uk))k∈N
for all sequences

(
(yk, uk)

)
k∈N ⊂ H

1
0 (Ω)× Uad.

(vii) There exists a Slater point û ∈ Uad with S(û) ≤ yb − τ on Ω for some τ > 0.

Due to the Slater condition, we have ya ≤ yb − τ on Ω. In the case without control
constraints, this apparently weaker condition already implies the Slater condition.

15



Lemma 2.14. We assume Assumption 2.13 (i)–(iv). If, additionally, ya ≤ yb − τ on Ω
for some τ > 0, ya < 0 on Γ, and Uad = L2(Ω), then Assumption 2.13 (vii) follows.

Proof. Since ya, yb are continuous, yb > 0 > ya on Γ, and yb − ya ≥ τ > 0, it is possible
to construct an arbitrarily smooth function ỹ ≥ ya with ỹ = 0 on Γ and positive distance
to yb. Now we define ũ := Aỹ ∈ W−1,q′(Ω), q′ > n. By a density argument, we can
smooth ũ and construct û ∈ L2(Ω) such that, with ŷ = S(û), Lemma 2.8 guarantees
‖ỹ − ŷ‖L∞(Ω) ≤ ε for any fixed, positive ε. Therefore, choosing û corresponding to ε > 0
small enough, ŷ has positive distance to yb, meaning that û fulfills the Slater point
property.

Note that one cannot expect û ∈ Uad if Uad 6= L2(Ω).
If the admissible set Uad has a minimal point, i.e., ub ∈ Uad with u ≥ ub for all u ∈ Uad,

then there exists a Slater point if and only if ub is a Slater point. This follows easily from
the monotonicity of S, see (2.15).
From now on, we will always assume that Assumption 2.13 is satisfied.
The existence of the Slater point û will not only be used to show optimality conditions.

As a side effect, it also guarantees the existence of solutions.

Theorem 2.15. There exists at least one globally optimal control ū ∈ Uad to (P) with
associated optimal state ȳ ∈ H1

0 (Ω).

Proof. Due to Assumption 2.13 (vii), there exists a feasible pair (ŷ, û). Then, we infer
the existence of an optimal solution (ȳ, ū) to Problem (P) by standard arguments.

Note that due to the nonlinearity of the solution operator S, one cannot show uniqueness
of the solution.

3 Primal optimality conditions
In this section, we address necessary optimality conditions for (P) which do not involve
dual quantities. We start by masking the state constraint as a convex control constraint
via Lemma 2.11.

Lemma 3.1. We define

Ustate := {u ∈ L2(Ω) | S(u) ≤ yb in Ω},
Ueff := Uad ∩ Ustate = {u ∈ Uad | S(u) ≤ yb in Ω}.

The sets Ustate, Ueff ⊂ L2(Ω) are closed and convex.

Proof. The convexity follows from Lemma 2.11 and the closedness from the continuity of
S : L2(Ω)→ C0,α

0 (Ω), see Theorem 2.7.
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Using this result, we can reformulate (P) and obtain the equivalent problem

Minimize J(S(u), u)
with respect to (y, u) ∈ H1

0 (Ω)× L2(Ω)
such that u ∈ Ueff .

(3.1)

Since the set Ueff is closed and convex, we could apply [G. Wachsmuth, 2016, Theorem 1.1]
to obtain a system of C-stationarity. This system contains the normal cone to Ueff in
L2(Ω) and it is not immediately clear how to evaluate this normal cone. After we have
characterized the normal cone in Lemma 5.9, we comment on this approach at the end
of Section 5.

Another possibility is to use the directional differentiability of S to arrive at a primal
optimality system.

Lemma 3.2. Let ū be locally optimal for (P) with associated state ȳ = S(ū). Then,

〈Jy(ȳ, ū), S′(ū;h)〉+ (Ju(ȳ, ū), h) ≥ 0 ∀h ∈ TUeff (ū)

is necessary for the optimality of ū.

Here, Jy(ȳ, ū) ∈ H−1(Ω) and Ju(ȳ, ū) ∈ L2(Ω) are the partial derivatives of J w.r.t. y
and u evaluated at (ȳ, ū).

Proof. For any h ∈ RUeff (ū), we have u+ th ∈ Ueff for t > 0 small enough. Thus,

J(S(u+ th), u+ th)− J(S(u), u) ≥ 0.

Dividing by t > 0 and passing to the limit t↘ 0, we obtain

〈Jy(ȳ, ū), S′(ū;h)〉+ (Ju(ȳ, ū), h) ≥ 0 ∀h ∈ RUeff (ū).

Since RUeff (ū) is dense in TUeff (ū) and since the left-hand side of the inequality is
continuous w.r.t. u ∈ L2(Ω), the claim follows.

Our next goal is the characterization of the tangent cone of Ueff . We start by the
investigation of the tangent cone of Ustate.

Theorem 3.3. Let ū ∈ Ustate be given. Then,

TUstate(ū) = {h ∈ L2(Ω) | S′(ū;h) ≤ 0 everywhere on Ωb}, (3.2)

where Ωb := {ȳ = yb} with ȳ = S(ū).

Note that S′(ū;h) is continuous in the neighborhood {ȳ ≥ ya + ζ/2} of Ωb via
Lemma 2.10. Thus, the inequality can be understood in an “everywhere”-sense.

17



Proof. “⊂”: Let h ∈ TUstate(ū) be given. Then, there are sequences (uk)k∈N ⊂ Ustate,
(tk)k∈N ⊂ R+ such that uk → ū, tk ↘ 0 and hk := (uk − ū)/tk → h in L2(Ω). We
define yk := S(uk) = S(ū + tkhk). Then, 0 ≥ yk−ȳ

tk
holds everywhere on Ωb. Due to

Lemma 2.10 (c), the right-hand side converges uniformly on Ωb towards S′(ū;h). Hence,
S′(ū;h) ≤ 0 on Ωb.

“⊃”: Let h ∈ L2(Ω) with S′(ū;h) ≤ 0 on Ωb be given. In case Ωb = ∅, the continuous
functions ȳ and yb have a positive distance. Therefore, the claim follows from the
continuity of S : L2(Ω)→ C0,α

0 (Ω), see Theorem 2.7.
Otherwise, let (tk)k∈N ⊂ R+ with tk ↘ 0 be given. Due to the continuity of S from

L2(Ω) to C0,α
0 (Ω), there exists a sequence (sk)k∈N ⊂ R+, sk ↘ 0, such that

S(ū+ tkh) ≤ S(ū) + sk on Ω.

W.l.o.g. we assume sk ≤ ζ/3. Therefore, the sets

Ωk := {ȳ ≥ yb − sk}, Ω̂ := {ȳ ≥ ya + ζ/3}

satisfy Ωb ⊂ Ωk ⊂ Ω̂ for all k ∈ N. We define the scalar sequence

dk := sup{S′(ū;h)(x) | x ∈ Ωk} ≥ 0.

We claim that dk ↘ 0. Indeed, otherwise we would get a sequence (xk)k∈N with xk ∈ Ωk

and S′(ū;h)(xk) ≥ ε > 0. This sequence has accumulation points and due to continuity,
all accumulation points x̄ satisfy S′(ū;h)(x̄) ≥ ε > 0 and ȳ(x̄) ≥ yb(x̄), i.e., x̄ ∈ Ωb. This
is a contradiction to S′(ū;h) ≤ 0 on Ωb.
Due to Lemma 2.10 (c),

rk :=
∥∥∥∥S(ū+ tkh)− ȳ

tk
− S′(ū;h)

∥∥∥∥
C(Ω̂)

↘ 0.

Now we have

S(ū+ tkh) ≤ S(ū) + tkS
′(ū;h) + tkrk ≤ yb + tk (dk + rk) on Ωk ⊂ Ω̂,

S(ū+ tkh) ≤ S(ū) + sk ≤ yb on Ω \ Ωk.

Next, we use the Slater point û ∈ L2(Ω), i.e., S(û) ≤ yb − τ for some τ > 0. We set

hk := (1− αk)h+ αk
tk

(û− ū), αk := dk + rk
τ

tk.

From αk/tk → 0 we get hk → h in L2(Ω). Moreover, for k large enough we have
αk ∈ (0, 1) and via Lemma 2.11 we obtain

S(ū+ tkhk) = S
(
(1− αk) (ū+ tkh) + αkû

)
≤ (1− αk)S(ū+ tkh) + αkS(û)
≤ (1− αk) (yb + tk (dk + rk)) + αk (yb − τ)
= yb + (1− αk)tk (dk + rk)− αkτ
≤ yb + tk (dk + rk)− αkτ = yb on Ω.

This shows ū+ tkhk ∈ Ustate. Together with hk → h in L2(Ω) we get h ∈ TUstate(ū).
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Using the Slater point again, we can characterize the tangent cone and normal cone to
Ueff = Uad ∩ Ustate.

Theorem 3.4. Let ū ∈ Ueff be given. Then,

TUeff (ū) = TUad(ū) ∩ TUstate(ū), NUeff (ū) = NUad(ū) +NUstate(ū).

Proof. Due to the continuity of S : L2(Ω)→ C0,α
0 (Ω), see Theorem 2.7, the Slater point

û is an interior point of Ustate and belongs to Uad. Hence, we can apply the sum rule
of convex analysis [Bauschke and Combettes, 2011, Corollary 16.38] to the indicator
function δUeff = δUad ∩ δUstate and obtain

NUeff (ū) = ∂δUeff (ū) = ∂δUad(ū) + ∂δUstate(ū) = NUad(ū) +NUstate(ū).

The tangent cone can be obtained by polarization via the bipolar theorem.

Together with Lemma 3.2, we obtain the following optimality condition.

Theorem 3.5. Every locally optimal solution ū of (P) satisfies

〈Jy(ȳ, ū), S′(ū;h)〉+ (Ju(ȳ, ū), h) ≥ 0 ∀h ∈ TUad(ū), S′(ū;h) ≤ 0 on Ωb, (3.3)

where Ωb := {ȳ = yb} and ȳ := S(ū).

Although we have derived a characterization of the tangent cone of Ustate, see Theo-
rem 3.3, this cannot be employed to obtain an expression for the normal cone, due to
the nonlinearity of S′(ū; ·). Even if an explicit formula for this normal cone would be
available, the primal optimality condition (3.3) cannot be turned directly into a dual
optimality condition, since the left-hand side in (3.3) depends nonlinearly on h. We
mention that a formula for NUstate(ū) will be given in Lemma 5.9 below.

4 Dual optimality conditions via regularization
In this section, we are going to derive optimality conditions which include multipliers via
a regularization procedure. We will prove the following theorem.

Theorem 4.1. Every local solution (ȳ, ū) of (P) is C-stationary, i.e., there exist multi-
pliers p ∈W 1,q

0 (Ω), µ ∈ H−1(Ω), ν ∈M(Ω)+, λ ∈ L2(Ω) such that p ∈ H1(Ω̂a) for some
open Ω̂a ⊃ {ȳ = ya} and such that the system

A?p+ Jy(ȳ, ū) + ν + µ = 0, (4.1a)
Ju(ȳ, ū) + λ− p = 0, (4.1b)

p = 0 q.e. on q-supp(ξ̄), (4.1c)
〈µ, v〉H1

0 (Ω) = 0 ∀v ∈ H1
0 (Ω), v = 0 q.e. on {ȳ = ya}, (4.1d)

〈µ,Φp〉H1
0 (Ω) ≥ 0 ∀Φ ∈W 1,∞(Ω)+, Φ|Ω\Ω̂a = 0, (4.1e)

supp(ν) ⊂ Ωb, (4.1f)
λ ∈ NUad(ū) (4.1g)
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is satisfied. Here, the adjoint equation is to be understood in the very weak sense, see
(2.12), and q ∈ (1, n/(n − 1)) can be chosen arbitrarily. Note that Φp ∈ H1

0 (Ω) even
though p itself is only in W 1,p

0 (Ω).

The proof of this theorem is divided into several steps, which will be addressed in the
remaining part of this section:

• Section 4.1: Existence of solutions and optimality condition for regularized problems.

• Section 4.2: Boundedness of the multipliers of the regularized optimality system.

• Section 4.3: Passage to the limit in the optimality system.

Throughout the remaining part of this section, we fix a local solution (ȳ, ū) of (P).

4.1 Regularized problems
In order to derive an optimality condition for problem (P), we consider a regularization
of the state constraint by penalization of any violation of the constraints, see [Ito and
Kunisch, 2003]. Clearly, other regularization approaches would be viable as well, i.e., a
regularization of the obstacle problem. For a regularization parameter γ > 0, define the
regularized problem

Minimize J(y, u) + γ

2‖max{0, y − yb}‖2L2(Ω) + 1
2‖u− ū‖

2
L2(Ω)

with respect to (y, u) ∈ H1
0 (Ω)× L2(Ω)

such that y ∈ K, 〈Ay − u, v − y〉 ≥ 0 ∀v ∈ K,
and u ∈ Uad.

(Pγ)

Note that the term 1
2‖u− ū‖

2
L2(Ω) in the regularized objective functional is necessary

to prove convergence if (ȳ, ū) is not a strict local minimizer.
We proceed by proving that the minimizer (ȳ, ū) can be approximated by local solutions

of the regularized problem (Pγ).

Lemma 4.2. There exists a sequence (γk)k∈N with γk → ∞, such that there exists a
local solution (yk, uk) of (Pγ) with γ = γk for each k ∈ N and uk → ū in L2(Ω). Thus,
yk → ȳ in H1

0 (Ω) and ξk := uk −Ayk → ū−Aȳ =: ξ̄ in H−1(Ω).

Proof. We use a meanwhile classical localization argument. Let δ > 0 denote the radius
of optimality of ū. We introduce the auxiliary problems

Minimize J(y, u) + γ

2‖max{0, y − yb}‖2L2(Ω) + 1
2‖u− ū‖

2
L2(Ω)

with respect to (y, u) ∈ H1
0 (Ω)× L2(Ω)

such that y ∈ K, 〈Ay − u, v − y〉 ≥ 0 ∀v ∈ K
and u ∈ Uad ∩Bδ(ū).

(Pγ,δ)
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By the usual arguments, these problems possess global solutions. Let (γk)k∈N be an
arbitrary sequence of positive numbers with γk → ∞. We denote by (yk, uk) a global
solution of problem (Pγ,δ) with γ = γk.
Since the sequence (uk)k∈N is bounded in L2(Ω), we can extract a weakly convergent

subsequence (denoted by the same symbol). We denote by ũ the weak limit and by
compact embedding, we have yk → ỹ := S(ũ) in H1

0 (Ω). Since (ȳ, ū) is feasible for (Pγ,δ),
we find

J(ȳ, ū) ≥ J(yk, uk) + γk
2 ‖max{0, yk − yb}‖2L2(Ω) + 1

2‖uk − ū‖
2
L2(Ω). (4.2)

From this inequality we infer that ỹ ≤ yb. Hence, (ỹ, ũ) is a feasible point for (P) and by
lower semicontinuity of J , we find

J(ȳ, ū) ≥ J(ỹ, ũ) + 1
2 lim sup

k→∞
‖uk − ū‖2L2(Ω) ≥ J(ỹ, ũ) + 1

2‖ũ− ū‖
2
L2(Ω).

Since ũ ∈ Bδ(ū), we obtain

(ỹ, ũ) = (ȳ, ū) and ‖uk − ū‖L2(Ω) → 0,

i.e., uk → ū in L2(Ω). Hence, the constraint uk ∈ Bδ(ū) is not active for large k and the
result follows.

The regularized problem (Pγ) is a standard optimal control problem of the obstacle
problem with control constraints and a differentiable objective function. Thus, we obtain
a primal optimality condition similar to Lemma 3.2, i.e.,

0 ≤ 〈Jy(yk, uk), S′(uk, h)〉+ γ (max{0, yk − yb}, S′(uk;h)) + (Ju(yk, uk), h) + (uk − ū, h)
(4.3)

folds for all h ∈ TUad(uk). On the other hand, local solutions satisfy a system of
C-stationarity, see [G. Wachsmuth, 2016, Theorem 1.1] and (under higher regularity
assumptions on the data) [Schiela and D. Wachsmuth, 2013, Propositions 3.5–3.8]. This
yields the following result.

Lemma 4.3. Let (yk, uk) be locally optimal for (Pγ). Then, there exist µk ∈ H−1(Ω),
λk ∈ L2(Ω) and pk ∈ H1

0 (Ω) such that the system

A?pk + Jy(yk, uk) + γk max{0, yk − yb}+ µk = 0 in H−1(Ω), (4.4a)
Ju(yk, uk) + (uk − ū) + λk − pk = 0 in L2(Ω), (4.4b)

pk = 0 q.e. on Ωs,k, (4.4c)
〈µk, v〉H1

0 (Ω) = 0 ∀v ∈ H1
0 (Ω), v = 0 q.e. on Ωa,k,

(4.4d)
〈µk,Φpk〉H1

0 (Ω) ≥ 0 ∀Φ ∈W 1,∞(Ω)+, (4.4e)

λk ∈ NUad(uk) (4.4f)
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is satisfied. Here,

Ωa,k := {yk = ya}, Ωs,k := q-supp ξk

are the active and strictly active set for the obstacle problem at (yk, uk), respectively, and
ξk := uk −Ayk is the corresponding multiplier. Note that both sets are defined up to sets
of capacity zero.

4.2 Boundedness of the multipliers
From now on, we will not only fix (ȳ, ū) (with associated multiplier ξ̄), but also sequences
(γk)k∈N and ((yk, uk))k∈N as in Lemma 4.2 and the corresponding sequences of multipliers
from Lemma 4.3. Recall that Lemma 4.2 already implies the convergence results for the
primal quantities uk, yk, and ξk. We check that this implies bounds on the dual variables,
in order to pass to the limit in the optimality system (4.4) in Lemma 4.3.

For brevity, we introduce the regularized counterpart to the multiplier ν for the state
constraint via

νk := γk max{0, yk − yb}, (4.5)

as well as the set on which the state constraint is violated or active, i.e.,

Ωb,k := {yk ≥ yb}.

Note that νk is an approximation of a Lagrange multiplier for the pointwise state
constraint ȳ ≤ yb in the unregularized problem (P) with support contained in Ωb,k. Our
first goal is to bound νk, µk, and pk in appropriate spaces. To this end, we observe that
the supports of νk and µk are uniformly separated.

Lemma 4.4. There exists a constant ρ > 0 such that

dist(Ωa,k,Ωb,k) ≥ ρ

holds for all k.

Proof. By Assumption 2.13 (i) the controls uk are bounded in L2(Ω), and the associated
states yk are bounded in H2(Ω) due to the mapping properties of S. Hence, their
Hölder-norm is uniformly bounded and the result follows from ya ≤ yb − τ .

As a consequence, we obtain the following auxiliary result:

Lemma 4.5. There exist open sets Ω̂a ⊃ Ωa and Ω̂b ⊃ Ωb such that Ωa,k ⊂ Ω̂a, Ωb,k ⊂ Ω̂b

for all k sufficiently large as well as ρ > 0 such that

dist(Ω̂a, Ω̂b) > ρ.

Proof. We define

Ω̂a :=
{
ȳ < ya + τ

4
}
, Ω̂b :=

{
ȳ > yb −

τ

4
}
.
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For x ∈ Ωa,k, we observe that ȳ(x) = ȳ(x)− yk(x) + yk(x) ≤ ‖ȳ − yk‖L∞(Ω) + ya(x). For
k large enough, uniform convergence of yk towards ȳ yields x ∈ Ω̂a. The set Ω̂b can be
treated analogously. From yb − τ

4 − ya −
τ
4 < τ − τ

2 = τ
2 and the Hölder continuity of ȳ

the result follows.

The boundedness of the multiplier approximations νk is a simple consequence of the
Slater point property.

Lemma 4.6. There exists C > 0 such that ‖νk‖L1(Ω) ≤ C.

Proof. We start with the B-stationarity (4.3) with h = û− uk, i.e.,

0 ≤ 〈Jy(yk, uk), S′(uk; û− uk)〉+ γk (max{0, yk − yb}, S′(uk; û− uk))
+ (Ju(yk, uk), û− uk) + (uk − ū, û− uk).

Due to the convergence properties of yk and uk, the first, third and fourth addend can
be bounded by a constant. Thus,

γk (max{0, yk − yb}, S′(uk; û− uk)) ≥ −C.

Due to the convexity of the solution operator S, Corollary 2.12 can be used to obtain
a linearized Slater condition for the local solutions uk of (Pγ) from the Slater point û.
Indeed, for all k > 0 we have

yk + S′(uk; û− uk) ≤ S(û) ≤ yb − τ.

Combining the last two inequalities yields

(νk, yb − yk − τ) = γk (max{0, yk − yb}, yb − yk − τ) ≥ −C.

Since (νk, yb − yk) ≤ 0 by definition of νk, we obtain ‖νk‖L1(Ω) ≤ Cτ−1.

Next, we show the boundedness of the adjoint state p and of the multiplier µ.

Lemma 4.7. For every q ∈
(
1, n/(n− 1)

)
, there exists C > 0 such that

‖pk‖W 1,q
0 (Ω) + ‖pk‖H1(Ω̂a) + ‖µk‖H−1(Ω) ≤ C,

where Ω̂a is defined in Lemma 4.5.

Proof. We split the adjoints pk into the sum of pyk, p
µ
k , p

ν
k ∈ H1

0 (Ω), defined via

A?pyk + Jy(yk, uk) = 0 in H−1(Ω),
A?pµk + µk = 0 in H−1(Ω),

A?pνk + γk max{0, yk − yb} = 0 in H−1(Ω).
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Due to (yk, uk) → (ȳ, ū), the term Jy(yk, uk) is bounded in H−1(Ω), see Assump-
tion 2.13 (vi). This implies the boundedness of pyk, i.e.,

‖pyk‖H1
0 (Ω) ≤ C.

Next, we are going to bound pνk. To this end, let ϕ ∈ C∞c (Ω) be given, such that ϕ = 1 on
Ω̂a and ϕ = 0 on Ω̂b. Since the equation for pνk can be understood in the very weak sense,
see (2.12), we can apply Theorem 2.3 and Lemma 2.6 in combination with Lemma 4.6 to
obtain

‖pνk‖W 1,q
0 (Ω) + ‖ϕpνk‖H1

0 (Ω) ≤ C.

To obtain a uniform bound for pµk , we write

γ1‖pµk‖
2
H1

0 (Ω) ≤ 〈A
?pµk , p

µ
k〉 = −〈µk, pµk〉 = 〈µk, pνk〉+ 〈µk, pyk〉 − 〈µk, pk〉.

In order to bound the first term, we use

〈µk, (1− ϕ)v〉 = 0 ∀v ∈ H1
0 (Ω)

due to (4.4d). For the third term, we can apply (4.4e) with Φ = 1 and obtain−〈µk, pk〉 ≤ 0.
Now, the above inequality yields

γ1‖pµk‖
2
H1

0 (Ω) ≤ 〈µk, ϕp
ν
k〉+ 〈µk, pyk〉

≤ C‖µk‖H−1(Ω)‖ϕpνk‖H1
0 (Ω) + C‖µk‖H−1(Ω)‖p

y
k‖H1

0 (Ω).

Together with
C−1‖pµk‖H1

0 (Ω) ≤ ‖µk‖H−1(Ω) ≤ C‖p
µ
k‖H1

0 (Ω)

which follows from the coercivity of A?, we obtain the claim.

4.3 Passage to the limit in the optimality system
From the boundedness results in Lemma 4.6 and Lemma 4.7 we conclude that there exist
weakly convergent subsequences, denoted by the same index k, satisfying

pk ⇀ p in W 1,q
0 (Ω), νk

?
⇀ ν inM(Ω), µk ⇀ µ in H−1(Ω).

In the following steps, we will prove that the limits satisfy the optimality system of
Theorem 4.1. To this end, we recall the strong convergences

uk → ū in L2(Ω), yk → ȳ in H1
0 (Ω)

from Lemma 4.2, and note that the strong convergence

λk → λ in L2(Ω)

with λ ∈ NUad(ū) is then a simple consequence of the gradient equation (4.4b) in
Lemma 4.3 and the closedness of the graph of the normal cone. This proves (4.1b)
and (4.1g). Also, (4.1a) is immediately clear. It remains to prove the complementarity
condition for ν, as well as the properties (4.1c)-(4.1e). First, let us show that the weak
limit ν fulfills the complementarity condition (4.1f) for the unregularized problem (P).
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Lemma 4.8. The weak limit ν fulfills ν ≥ 0 as well as supp(ν) ⊂ Ωb, see (4.1f).

Proof. Nonnegativity of ν is an immediate consequence of νk ≥ 0 for all k. Moreover,
from (4.2), we observe∫

Ω
νk (yk − yb) dx = γk

∫
Ω

max{0, yk − yb}2 dx→ 0.

The mapping properties of S guarantee yk → ȳ in C0(Ω), and hence

〈ν, ȳ − yb〉C0(Ω) = 0.

Feasibility of ȳ, i.e. ȳ − yb ≤ 0 concludes the proof.

The conditions (4.1c) and (4.1d) on p and µ follow from results in [G. Wachsmuth,
2016]:

Lemma 4.9. The weak limit p of (pk) satisfies p = 0 q.e. on q-supp(ξ̄), see (4.1c).

Proof. This follows from (4.4c) via [G. Wachsmuth, 2016, Lemma 4.2].

Lemma 4.10. The weak limit µ of (µk) satisfies

µ ∈ {v ∈ H1
0 (Ω) | v = 0 q.e. on {ȳ = ya}}⊥,

see (4.1d).

Proof. This follows from (4.4d) via [G. Wachsmuth, 2016, Lemma 4.3].

Finally, we prove (4.1e).

Lemma 4.11. The weak limits p and µ fulfill 〈µ,Φp〉H1
0 (Ω) ≥ 0 for all Φ ∈ W 1,∞(Ω)+

that satisfy Φ|Ω\Ω̂a = 0, see (4.1e).

Proof. From (4.4e) in the C-stationarity system of Lemma 4.3, we know

〈µk, pkΦ〉 ≥ 0 ∀Φ ∈W 1,∞(Ω)+.

Using the separation of the adjoint state into pyk, p
µ
k , and pνk, we therefore observe

0 ≤ 〈µk, pkΦ〉 = 〈µk, (pyk + pµk + pνk)Φ〉 = 〈µk, pykΦ〉+ 〈−A?pµk , p
µ
kΦ〉+ 〈µk, pνkΦ〉. (4.6)

For the first term on the right-hand-side of (4.6), we note that pyk converges strongly in
H1

0 (Ω) due to the mapping properties of T ?, cf. Theorem 2.1 which is applicable to the
adjoint equation. This yields 〈µk, pykΦ〉 → 〈µ, pyΦ〉. The arguments in [G. Wachsmuth,
2016, Proof of Lemma 4.5, (4.2)] applied to the second term yield

lim sup
k→∞

〈−A?pµk , p
µ
kΦ〉 ≤ 〈−A?pµ, pµΦ〉.
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Finally, for the third term 〈µk, pνkΦ〉 we apply the separation of sets from Lemma 4.5,
and point out that Φp ∈ H1

0 (Ω). Note that the supports of ν and all νk are contained in
Ω̂b. We apply Lemma 2.6 with U = Ω̂b and V an open set containing Ω̂b with positive
distance to Ω̂a, ϕ ≥ 0, ϕ = 1 on Ω̂a, and ϕ = 0 on Ω̂b. Hence, µk = ϕµk converges weakly
towards µ = ϕµ in H−1(Ω) and ϕpνk converges strongly to ϕpν in H1

0 (Ω). Thus we obtain

〈µk, pνkΦ〉 = 〈µk, ϕpνkΦ〉 → 〈µ, ϕpνΦ〉 = 〈µ, pνΦ〉.

Collecting all arguments yields the assertion.

The proof of Theorem 4.1 is complete.

5 Strong stationarity without control constraints
In this section, we consider the problem (P) in the case without control constraints, i.e.,
Uad = L2(Ω). We will show that in this case local solutions are strongly stationary. As a
byproduct, we will obtain a characterization of the normal cone of Ustate.
In the following, we will follow the approach by [Mignot, 1976, Théorème 4.3] and

show the system of strong stationarity by employing Theorem 3.5. On the one hand, this
has the advantage of showing the equivalency of B-stationarity and strong stationarity.
On the other hand, it enables us to derive the announced characterization of the normal
cone of Ustate.

Before we dive into the proofs, let us state the system of strong stationarity. Note that
we state the system without assuming Uad = L2(Ω). However, we only show that it is a
necessary optimality condition in case Uad = L2(Ω).

Definition 5.1. Let an admissible control ū ∈ Ueff be given. We denote by ȳ = S(ū) and
ξ̄ = ū−Aȳ the associated state and multiplier. We say that ū is strongly stationary if
there exist p ∈W 1,q

0 (Ω), µ ∈ H−1(Ω), ν ∈M(Ω)+, λ ∈ L2(Ω) such that p ∈ H1(Ω̂a) for
some open Ω̂a ⊃ {ȳ = ya} and such that the system

A?p+ Jy(ȳ, ū) + ν + µ = 0 (5.1a)
Ju(ȳ, ū) + λ− p = 0 (5.1b)

p = 0 q.e. on q-supp(ξ̄), p ≤ 0 q.e. on {ȳ = ya} (5.1c)
µ ∈ K(ū)◦ (5.1d)

supp(ν) ⊂ Ωb (5.1e)
λ ∈ NUad(ū) (5.1f)

is satisfied. Here, Ωs := q-supp(ξ̄), Ωa := {ȳ = ya}, Ωb = {ȳ = yb}, and the adjoint
equation is to be understood in the very weak sense, see (2.12).

Note that (5.1f) implies λ = 0 in case Uad = L2(Ω).
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In the sequel of this section, we will use two smooth test functions. These functions
have the properties

ψ ∈ C∞c (Ω), 0 ≤ ψ ≤ 1 in Ω, ψ = 0 in nbhd. of Ωa, ψ = 1 in nbhd. of Ωb, (5.2a)
ϕ ∈ C∞(Rn) 0 ≤ ϕ ≤ 1 in Ω, ϕ = 1 in {ψ < 1}, ϕ = 0 in nbhd. of Ωb. (5.2b)

We fix ϕ and ψ throughout this section. Note that such a choice of ϕ and ψ is possible
since Ωa and Ωb have a positive distance and since Ωb has a positive distance to the
boundary.

Further, we argue that the regularity p ∈ H1(Ω̂a) is enough to write down the condition
(5.1c). Indeed, it implies that ϕp ∈ H1

0 (Ω) has a quasi-continuous representative. Since
ϕ = 1 in a neighborhood of Ωa, p is quasi-continuous on Ωa and therefore it makes
sense to state (5.1c). In the case that the adjoint state has additionally the regularity
p ∈ H1

0 (Ω), one can formulate (5.1c) as p ∈ −K(ū).
Now, we start with the B-stationarity system Theorem 3.5. In order to satisfy (5.1b)

and (5.1f), we set p = Ju(ȳ, ū) in case Uad = L2(Ω). The differentiability properties of J
only yield the low regularity p ∈ L2(Ω). In the next two results, we show that p enjoys
some increased regularity and that the first-order condition (3.3) can be extended to a
larger test spaces.

Lemma 5.2. We assume Uad = L2(Ω). Let ū ∈ Ueff satisfy (3.3). Then, the function
p := Ju(ȳ, ū) ∈ L2(Ω) satisfies p ∈W 1,q(Ω) for all q < n/(n− 1). Moreover,

〈Jy(ȳ, ū), S′(ū;h)〉+ 〈h, p〉 ≥ 0 ∀h ∈W−1,q′(Ω), S′(ū;h) ≤ 0 on Ωb, (5.3)

where Ωb := {ȳ = yb} with ȳ = S(ū).

Proof. Let q ∈ (1, n/(n − 1)) be given, i.e., q′ ∈ (n,∞). For all h ∈ L2(Ω), we have
zh := S′(ū;h) satisfies Az = h− υh with υh ∈ K(ū)◦ and ‖υh‖H−1(Ω) ≤ ‖h‖H−1(Ω) Now,
from Lemma 2.10 (a) we get the estimate

‖S′(ū;h)‖L∞(Ωb) = ‖S′(ū;h)− S′(ū; 0)‖L∞(Ωb) ≤ C‖h‖W−1,q′ (Ω),

where C > 0 is independent of h. We set c := ζ/C. Then, for all h ∈ L2(Ω) with
‖h‖W−1,q′ (Ω) ≤ c we have

S′(ū;h+ (û− ū)) ≤ S′(ū;h) + S′(ū; û− ū)
≤ S′(ū;h) + S(û)− S(ū) ≤ ζ + (yb − ζ)− yb = 0

on Ωb, see Corollary 2.12. Therefore, we can use h + (û − ū) as a test function in
Theorem 3.5 and obtain

〈Jy(ȳ, ū), S′(ū;h+ (û− ū))〉+ (Ju(ȳ, ū), h+ (û− ū)) ≥ 0.

Thus, there is K > 0 such that

(Ju(ȳ, ū), h) ≥ −〈Jy(ȳ, ū), S′(ū;h+ (û− ū))〉 − (Ju(ȳ, ū), û− ū) ≥ −K
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holds for all h ∈ L2(Ω) with ‖h‖W−1,q(Ω) ≤ c. Since we can replace h by −h, we infer

|(Ju(ȳ, ū), h)| ≤ K ∀h ∈ L2(Ω), ‖h‖W−1,q(Ω) ≤ C.

By scaling we get

|(Ju(ȳ, ū), h)| ≤ K

C
‖h‖W−1,q(Ω) ∀h ∈ L2(Ω).

This and the density of L2(Ω) in W−1,q(Ω), imply p = Ju(ȳ, ū) ∈W 1,q
0 (Ω).

It remains to show (5.3). Let h ∈W−1,q′(Ω) with S′(ū;h) ≤ 0 on Ωb be given. Then,
there is a sequence (hk)k∈N ⊂ L2(Ω) with hk → h in W−1,q′(Ω). Then, Lemma 2.10 (a)
implies

rk := ‖S′(ū;hk)− S′(ū;h)‖L∞(Ωb) → 0.
Thus,

S′(ū;hk + rkζ
−1 (û− ū)) ≤ 0 a.e. on Ωb.

Hence,

〈Jy(ȳ, ū), S′(ū;hk + rkζ
−1 (û− ū))〉+ (Ju(ȳ, ū), hk + rkζ

−1 (û− ū)) ≥ 0.

Due to Ju(ȳ, ū) = p ∈W 1,q
0 (Ω), we can pass to the limit k →∞ and obtain (5.3).

Using similar arguments, we get that p has H1-regularity if we stay away from the
active set Ωb.

Lemma 5.3. We assume Uad = L2(Ω). Let ū ∈ Ueff satisfy (3.3) and p := Ju(ȳ, ū) ∈
L2(Ω). We have ϕp ∈ H1

0 (Ω) and

〈Jy(ȳ, ū), S′(ū;ϕh)〉+ 〈h, ϕp〉 ≥ 0 ∀h ∈ H−1(Ω), S′(ū;ϕh) ≤ 0 on Ωb. (5.4)

Proof. The proof is very similar to the proof of Lemma 5.2. We mainly have to replace
the regularity result Lemma 2.10 (a) by Lemma 2.10 (b). This yields

‖S′(ū;ϕh)‖L∞(Ωb) ≤ C‖h‖H−1(Ω)

for all h ∈ L2(Ω), where C > 0 is independent of h. Now we can argue along the lines of
the proof of Lemma 5.2.

Using this extended stationarity condition, we can show the sign conditions on p.

Lemma 5.4. We assume Uad = L2(Ω). Let ū ∈ Ueff satisfy (3.3) and p := Ju(ȳ, ū) ∈
L2(Ω). Then, p ∈ H1(Ω̂a) for some open Ω̂a ⊃ Ωa := {S(ū) = ya} and (5.1c) holds.

Proof. We choose Ω̂a with a positive distance to Ωb := {S(ū) = yb}. Then, there exist
ϕ ∈ C∞c (Ω) such that the support of ϕ does not intersect Ωb, ϕ ≥ 0 and ϕ = 1 on Ω̂a.
Now, Lemma 5.3 implies p ∈ H1(Ω̂a).

Next, let h ∈ K(ū)◦ be arbitrary. Since ϕv ∈ K(ū) for all v ∈ K(ū), we have ϕh ∈ K(ū)◦
as well. Thus, S′(ū;ϕh) = 0, see Theorem 2.9. Thus, (5.4) implies

〈h, ϕp〉 ≥ 0 ∀h ∈ K(ū)◦.

Hence, ϕp ∈ −K(ū). Since ϕ = 1 in a neighborhood of Ωa, this shows (5.1c).
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It remains to verify the adjoint equation and the sign conditions on µ and ν. First, we
consider the adjoint equation in a neighborhood of Ωb.

Lemma 5.5. We assume Uad = L2(Ω). Let ū ∈ Ueff satisfy (3.3) and p := Ju(ȳ, ū) ∈
W 1,q

0 (Ω) with arbitrary q ∈ (2n/(n+ 2), n/(n− 1)). Then, there is ν ∈M(Ω) such that
(5.1e) and

〈A(ψz), p〉+ 〈Jy(ȳ, ū), ψz〉+
∫

Ω
z dν = 0 ∀z ∈ Z, (5.5)

where Z is defined in (2.9).

Proof. We have 1/q ∈ (1−1/n, 1/2+1/n) and 1/q′ ∈ (1/2−1/n, 1/n). Thus, Lemma 2.4
implies A(ψz) ∈W−1,q′(Ω), hence the first term in (5.5) is well defined.
Due to the properties of S′(ū; ·), we have S′(ū;A(ψz)) = ψz for all z ∈ Z. If,

additionally, z ≤ 0 on Ωb, we have by (5.3)

〈Jy(ȳ, ū), ψz〉+ 〈A(ψz), p〉 ≥ 0.

Hence, the left-hand side defines a negative functional w.r.t. z ∈ Z. Moreover, if
M := ‖z‖C0(Ω), we have ϕ (z +M) ≥ 0 on Ωb, thus

〈Jy(ȳ, ū), ψ (z +M)〉+ 〈A(ψ (z +M)), p〉 ≥ 0,

i.e.,
〈Jy(ȳ, ū), ψz〉+ 〈A(ψz), p〉 ≥ −〈Jy(ȳ, ū),Mψ〉 − 〈A(Mψ), p〉 =: −CM.

Similarly, by considering ϕ (z−M), one can show that the left-hand side is bounded from
above by CM . Since C∞c (Ω)+ ⊂ Z is dense in C0(Ω)+, the first two addends in (5.5)
define a negative Borel measure −ν ∈M(Ω). This shows (5.5). Moreover, by considering
z ∈ C∞c (Ω) with z = 0 on Ωb is arbitrary, we get

∫
Ω z dν = 0. Hence, (5.1e) follows.

Next, we argue in the neighborhood of Ωa. To this end, we use the test function ϕ
from (5.2b).

Lemma 5.6. We assume Uad = L2(Ω). Let ū ∈ Ueff satisfy (3.3) and p := Ju(ȳū). We
define µ ∈ H−1(Ω) via

〈µ, v〉 := −
[
〈Jy(ȳ, ū), (1− ψ)v〉+ 〈A((1− ψ)v), p〉

]
∀v ∈ H1

0 (Ω). (5.6)

Then, (5.1d) is satisfied.

Proof. Since ϕp ∈ H1
0 (Ω) by Lemma 5.3, we have p ∈ H1({ψ < 1}). Thus, the definition

(5.6) implies the regularity µ ∈ H−1(Ω).
In order to check (5.1d), we take an arbitrary v ∈ K(ū). Then, (1−ψ)v ∈ K(ū) as well

and, consequently, S′(ū;h) = (1 − ψ)v for h = A((1 − ψ)v). Note that h = ϕh due to
the construction of ϕ and ψ, i.e., S′(ū;ϕh) = (1− ψ)v as well. Since (1− ψ)v = 0 on Ωb,
we can use h in (5.4) and obtain

−〈µ, v〉 = 〈Jy(ȳ, ū), (1− ψ)v〉+ 〈A((1− ψ)v), p〉
= 〈Jy(ȳ, ū), (1− ψ)v〉+ 〈A((1− ψ)v), ϕp〉 ≥ 0.

Since v ∈ K(ū) was arbitrary, this shows µ ∈ K(ū)◦.
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By collection of the results of Lemmas 5.2 to 5.6, we can show that the system of
strong stationarity is equivalent to the B-stationarity from Theorem 3.5.

Theorem 5.7. We assume Uad = L2(Ω) and let ū ∈ Ustate be given. Then, ū is strongly
stationary if and only if the B-stationarity (3.3) is satisfied.

Proof. “⇐”: By using the results from the previous lemmas, it remains to show that
the adjoint PDE (5.1a) is satisfied. To this end, let z ∈ Z be arbitrary. Using (5.5) and
(5.6), we have

〈Jy(ȳ, ū), z〉+ 〈Az, p〉 = 〈Jy(ȳ, ū), (1− ψ)z〉+ 〈A((1− ψ)z), p〉
+ 〈Jy(ȳ, ū), ψz〉+ 〈A(ψz), p〉

= −〈µ, ν〉 −
∫

Ω
z dν.

Hence, the adjoint PDE is satisfied.
“⇒”: Now assume that the system of strong stationarity (5.1) is satisfied. Let h ∈ L2(Ω)

with v := S′(ū;h) ≤ 0 on Ωb be given. We set ξh := h−Av ∈ K(ū)◦ ⊂ H−1(Ω). Note
that, in general, v 6∈ Z, therefore we cannot use v directly as a test function in the adjoint
PDE.
Due to the differentiability result Theorem 2.9, we have ξ̂ := h−Av ∈ K(ū)◦. This

implies ϕξ̂ = ξ̂. In order to test the adjoint PDE, we approximate ξ̂ ∈ H−1(Ω) by a
sequence (ξk)k∈N ⊂ L2(Ω) such that ξk → ξ̂ in H−1(Ω). This implies ϕξk → ϕξ̂ = ξ̂ in
H−1(Ω). Now, we can test the adjoint PDE by zk := A−1(h− ϕξk) ∈ Z and obtain∫

Ω
p (h− ϕξk) dx+ 〈Jy(ȳ, ū) + µ, zk〉+

∫
Ω
zk dν.

Now, we have zk → v in H1
0 (Ω) and zk → v in C(Ωb) due to Theorem 2.1 and Lemma 2.5.

Since the measure ν is supported on Ωb, we can pass to the limit k →∞ and obtain∫
Ω
phdx− 〈ξ̂, ϕp〉H1

0 (Ω) + 〈Jy(ȳ, ū) + µ, v〉H1
0 (Ω) +

∫
Ω
v dν = 0.

Now, we can use the sign conditions from the adjoint system and from v and ξ̂. This
results in ∫

Ω
phdx+ 〈Jy(ȳ, ū), v〉H1

0 (Ω) ≥ 0.

Since h was arbitrary (as above) and p = Ju(ȳ, ū), this shows (3.3).

Note that the second part of the proof also works in case Uad 6= L2(Ω).

Remark 5.8.

1. In the case that ū is even a locally optimal control, one can use the results of
Section 4 to skip some parts of the proofs, since the system of C-stationarity already
includes the regularity of p and the adjoint equation. However, one still needs to
extend the B-stationarity condition via density to (5.3) and (5.4) to show the signs
of p and µ.
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2. In the case Uad = L2(Ω), one can obtain the uniqueness of the multipliers. First,
we infer λ = 0 and, thus, p is unique via (5.1b). Let us argue that µ and ν are
unique by using (5.1a) and the fact that the supports of µ and ν are disjoint. To
this end, let ϕ ∈ C∞c (Ω) be given such that ϕ = 0 on {ȳ = ya}. Thus, ±ϕ ∈ K(ū)
and (5.1d) implies 〈µ, ϕ〉 = 0. Hence, (5.1a) implies

〈ν, ϕ〉 = −〈A?p+ Jy(ȳ, ū), ϕ〉 ∀ϕ ∈ C∞c , ϕ = 0 on {ȳ = ya}.

Since the support of ν is contained in {ȳ = yb}, the measure ν is uniquely determined
by the values of 〈ν, ϕ〉 for these test functions ϕ. Since p is unique, the uniqueness
of ν follows. Consequently, the uniqueness of µ follows from (5.1a).

The next result addresses the question of characterizing the normal cone to Ustate,
which was left open in Section 3.
Lemma 5.9. Let ū, τ ∈ L2(Ω) be given and set ȳ := S(ū). Then, τ ∈ NUstate(ū) is
equivalent to the existence of p ∈W 1,q

0 (Ω), µ ∈ H−1(Ω), ν ∈M(Ω)+ such that p ∈ H1(Ω̂a)
for some open Ω̂a ⊃ {ȳ = ya}, p = −τ ,

A?p+ ν + µ = 0

and the sign conditions (5.1c), (5.1d), (5.1e) are satisfied.
Proof. Let τ ∈ L2(Ω) be arbitrary. We consider the auxiliary problem

Minimize −(τ, u)
such that u ∈ Ustate.

Note that this is a special case of problem (P) with Uad = L2(Ω) and J(y, u) := −(τ, u).
Now, τ ∈ NUstate(ū) is equivalent to

−(τ, h) ≥ 0 ∀h ∈ TUstate(ū).

Using the characterization (3.2) of the tangent cone, this is equivalent to the B-stationarity
(3.3) of ū for the auxiliary problem. Now, the assertion follows from the equivalency of
B-stationarity and strong stationarity in Theorem 5.7.

Using the characterization of the normal cone to Ustate, we can use directly the
optimality system from [G. Wachsmuth, 2016, Theorem 1.1], i.e., with Ueff as control
constraints. Let us check that this does not yield a system of C-stationarity in the
case Uad ⊂ L2(Ω). From the referenced optimality system, we get the existence of
µ1 ∈ H−1(Ω), λ̂ ∈ L2(Ω) and p1 ∈ H1

0 (Ω) such that the system

A?p1 + Jy(ȳ, ū) + µ1 = 0 in H−1(Ω),
Ju(y, u) + λ̂− p1 = 0 in L2(Ω),

p1 = 0 q.e. on q-supp(ξ̄),
〈µ1, v〉H−1,H1

0
= 0 ∀v ∈ H1

0 (Ω), v = 0 q.e. on Ωa,

〈µ1,Φp1〉 ≥ 0 ∀Φ ∈W 1,∞(Ω)+,

λ̂ ∈ NUeff (u)
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is satisfied. Next we use Theorem 3.4 and Lemma 5.9 to evaluate λ̂ ∈ NUeff (ū). This
yields the existence of λ ∈ NUad(ū), p2 ∈W 1,q

0 (Ω), µ2 ∈ H−1(Ω), ν ∈M(Ω)+ such that
λ̂ = λ− p2, p2 ∈ H1(Ω̂a) for some open Ω̂a ⊃ {ȳ = ya},

A?p2 + ν + µ2 = 0

and the sign conditions (5.1c), (5.1d), (5.1e) are satisfied by p2, µ2 and ν, respectively.
By defining p = p1 +p2 and µ = µ1 +µ2, we arrive at (4.1a) and (4.1b). The conditions

(4.1f) and (4.1g) on ν and λ follow. Moreover, it is straightforward to see that (4.1c),
(4.1d) are satisfied. However, the sign condition (4.1e) will, in general, not be valid.
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