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A proximal gradient method for control problems with
nonsmooth and nonconvex control cost

Carolin Natemeyer, Daniel Wachsmuth ∗

July 22, 2020

Abstract. We investigate the convergence of an application of a proximal gradient method to
control problems with nonsmooth and nonconvex control cost. Here, we focus on control cost
functionals that promote sparsity, which includes functionals of Lp-type for p ∈ [0, 1). We prove
stationarity properties of weak limit points of the method. These properties are weaker than
those provided by Pontryagin’s maximum principle and weaker than L-stationarity.

Keywords. Proximal gradient method, nonsmooth and nonconvex optimization, sparse con-
trol problems

1 Introduction
Let Ω ⊂ Rn be Lebesgue measurable with finite measure. We consider a possibly non-smooth
optimal control problem of type

min
u∈L2(Ω)

f(u) +
∫

Ω
g(u(x)) dx. (P)

Here, the function g : R→ R ∪ {+∞} is nonconvex and nonsmooth. Examples include

g(u) = |u|p, p ∈ (0, 1),

and

g(u) = |u|0 :=
{

1 if u 6= 0
0 if u = 0.

.

The function f : L2(Ω) → R is assumed to be smooth. Here, we have in mind to choose
f(u) := f(y(u)) as the smooth part of an optimal control problem incorporating the state
equation and possibly smooth cost functional. We will make the assumptions on the ingredients
of the control problem precise below in Section 2.

Due to the properties of g, the optimization problem (P) is challenging in several ways. First
of all, the resulting integral functional u 7→

∫
Ω g(u(x)) dx is not weakly lower semicontinuous in

L2(Ω), so it is impossible to prove existence of solutions of (P) by the direct method. Second,
it is challenging to solve numerically, i.e., to compute local minima or stationary points.
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In this paper, we address this second issue. Here, we propose to use the proximal gradient
method (also called forward-backward algorithm [3]). The main idea of this method is as follows:
Suppose the objective is to minimize a sum f + j of two functions f and j on the Hilbert space
H where f is smooth. Given an iterate uk, the next iterate uk+1 is computed as

uk+1 = arg min
u∈H

(
f(uk) +∇f(uk)(u− uk) + L

2 ‖u− uk‖
2
H + j(u)

)
, (1.1)

where L > 0 is a proximal parameter, and L−1 can be interpreted as a step-size. In our
setting, the functional to be minimized in each step is an integral function, whose minima can
be computed by minimizing the integrand pointwise. Using the so-called prox map, that is
defined by

proxγj(z) = arg min
x∈H

(1
2‖x− z‖

2
H + γj(x)

)
, (1.2)

where γ > 0, the next iterate of the algorithm can be written as

uk+1 = proxL−1j

(
uk −

1
L
∇f(uk)

)
.

If j ≡ 0, the method reduces to the steepest descent method. If j is the indicator function of a
convex set, then the method is a gradient projection method. If f and j are convex, then the
convergence properties of the method are well-known: under mild assumptions the iterates (uk)
converge weakly to a global minimum of f + j, see, e.g., [3, Corollary 27.9]. If f is non-convex,
then weak sequential limit points of (uk) are stationary, that is, they satisfy −∇f(u∗) ∈ ∂j(u∗).
If in addition j is nonconvex, then much less can be proven. In finite-dimensional problems, limit
points are fixed points of the iteration, and satisfy the so-called L-stationary type conditions,
see [5] and [4, Chapter 10] for optimization problems with l0-constraints. A feasible point u∗ is
called L-stationary if

u∗ = proxL−1j

(
u∗ − 1

L
∇f(u∗)

)
.

In a recent contribution [16], the method was analyzed when applied to control problems with
L0-control cost. There it was proven that weak sequential limit points of the iterates in L2(Ω)
satisfy the L-stationary type condition. An essential ingredient of the analysis in [16] was
that the functional g is sparsity promoting: solutions of the proximal step are either zero or
have a positive distance to zero. We will show how this property can be obtained under weak
assumptions on the functional g in (P) near u = 0, see Section 3. Still this is not enough to
conclude L-stationarity of limit points. We will show that weak limit points satisfy a weaker
condition in general, see Theorem 4.18. Under stronger assumptions, L-stationarity can be
obtained (Theorems 4.19, 4.20). Let us emphasize that, under weak assumptions, the sequence
of iterates (uk) contains weakly converging subsequences but is not weakly convergent in general.
Pointwise a.e. and strong convergence is obtained in Theorem 4.25. We apply these results to
g(u) = |u|p, p ∈ (0, 1) in Section 5.1.

Interestingly, the proximal gradient method sketched above is related to algorithms based on
proximal minimization of the Hamiltonian in control problems. These algorithms are motivated
by Pontryagin’s maximum principle. First results for smooth problems can be found in [15].
There, stationarity of pointwise limits of (uk) was proven. Under weaker conditions it was proved
in [6] that the residual in the optimality conditions tends to zero. These results were transferred
to control problems with parabolic partial differential equations in [7].

Notation. We will frequently use R̄ := R ∪ {+∞}.
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2 Preliminary considerations
Throughout the paper, we will use the following assumption on the function f .

Assumption A. The functional f : L2(Ω) → R is bounded from below and weakly lower
semicontinuous. Moreover, f is Fréchet differentiable and ∇f : L2(Ω) → L2(Ω) is Lipschitz
continuous with constant Lf , i.e.,

‖∇f(u1)−∇f(u2)‖L2(Ω) ≤ Lf‖u1 − u2‖L2(Ω)

holds for all u1, u2 ∈ L2(Ω).

For the moment, let g : R→ R̄ be lower semicontinuous and bounded from below. In Section
3 below, we will give the precise assumptions on g that allow sparse controls. Let u ∈ L2(Ω) be
given. Then x 7→ g(u(x)) is a measurable function, and we define

j(u) :=
∫

Ω
g(u(x)) dx.

Then j : L2(Ω)→ R̄ is well-defined and lower semicontinuous, but not weakly lower semicontin-
uous in general. Hence standard existence proofs cannot be applied. For a discussion, we refer
to [11,16]

Remark 2.1. The results are also valid for the general case that g depends on x ∈ Ω, which
results in the integral functional j(u) =

∫
Ω g(x, u(x)) dx, provided g : Ω × R → R̄ is a normal

integrand, for the definition we refer to [10, Definition VIII.1.1].

2.1 Necessary optimality conditions

The mapping u 7→
∫
Ω g(u(x)) dx is not directionally differentiable in general, and thus there

is no first order optimality condition. In the following we are going to derive a necessary
optimality condition for (P), known as Pontryagin maximum principle, where no derivatives of
the functional are involved. We formulate the Pontryagin maximum principle (PMP) as in [16].
A control ū ∈ L2(Ω) satisfies (PMP) if and only if for almost all x ∈ Ω

∇f(ū)(x)ū(x) + g(ū(x)) ≤ ∇f(ū)(x) · v + g(v) (2.1)

holds true for all v ∈ R. The following result is shown in [16, Thm. 2.5] for the special choice
g(u) := |u|0.

Theorem 2.2 (Pontryagin maximum principle). Let ū ∈ L2(Ω) ∩ L∞(Ω) be locally optimal to
(P). Furthermore, assume f satisfies

f(u)− f(ū) = ∇f(ū) · (u− ū) + o(‖u− ū‖L1(Ω))

for all u ∈ Uad. Then ū satisfies the Pontryagin maximum principle (2.1).

Proof. Let ū be a local solution to (P). We will use needle perturbations of the optimal control.
Let E := {(vi, ti), i ∈ N} be a countable dense subset of

epi(g) = {(v, t) ∈ R× R : g(v) ≤ t}.

For arbitrary x ∈ Ω define ur,i ∈ L2(Ω) by

ur,i :=
{
vi on Br(x),
ū otherwise
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for some r > 0 and i ∈ N. Let χr := χBr(x), then we have ur,i = (1− χr)ū+ χrvi and

‖ur,i − ū‖L1(Ω) = ‖χr(vi − ū)‖L1(Ω) ≤ (|vi|+ ‖ū‖L∞(Ω))‖χr‖L1(Ω)

= (|vi|+ ‖ū‖L∞(Ω))|Br(x)|.

With j(u) :=
∫

Ω
g(u(x)) dx we get

0 ≤ f(ur,i) + j(ur,i)− f(ū)− j(ū)

=
∫

Ω
∇f(ū)(ur,i − ū) dt+ o(‖ur,i − ū‖L1(Ω)) +

∫
Ω

(g(ur,i)− g(ū)) dt

≤
∫
Br(x)

∇f(ū)(vi − ū) + (ti − g(ū)) dt+ o(‖ur,i − ū‖L1(Ω))

After dividing above inequality by |Br(x)| and passing r ↘ 0, we obtain by Lebesgue’s
differentiation theorem

0 ≤ ∇f(ū)(x) · (vi − ū(x)) + (ti − g(ū(x))). (2.2)

This holds for every Lebesgue point x ∈ Ω of the integrands, i.e., for all x ∈ Ω \Ni, where Ni is
a set of zero Lebesgue measure, on which the above inequality is not satisfied. Since the union⋃
iNi is also of measure zero, (2.2) holds true for all x ∈ Ω \

⋃
iNi for all i. Due to the density

assumption, for (v, t) ∈ epi(g + IUad) we find a sequence (vk, tk)→ (v, t) with (vk, tk) ∈ E, and
hence for almost all x ∈ Ω it holds

0 ≤ ∇f(ū)(x) · (v − ū(x)) + (t− g(ū(x))).

for all (v, t) ∈ epi(g). Choosing t = g(v) yields the claim.

3 Sparsity promoting proximal operators
In this section, we will investigate the minimization problems that have to be solved in order to
compute the proximal gradient step in (1.1). Let g : R→ R̄ be proper and lower-semicontinuous.
For s > 0 and q ∈ R, we define the function

hq,s(u) := −qu+ 1
2u

2 + sg(u).

Here, we have in mind to set q := −∇f(uk)(x). Let us investigate scalar-valued optimization
problems of form

min
u∈R

hq,s(u). (3.1)

The solution set is given by the proximal map proxsg : R ⇒ R of g,

proxsg(q) := arg min
u∈R

(1
2 |u− q|

2 + sg(u)
)
.

If g is convex then (3.1) is a convex problem, and the proximal map is single-valued. If g is
bounded from below and lower semicontinuous, proxsg(q) is nonempty for all q but may be
multi-valued for some q.

The focus of this section is to investigate under which assumptions proxsg is sparsity pro-
moting: Here, we want to prove that there is σ > 0 such that

u ∈ proxsg ⇒ u = 0 or |u| ≥ σ.
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In [13], this was also investigated for some special cases of non-convex functions. We will show
that the following assumption is enough to guarantee the sparsity promoting property, it contains
the result from [13] as a special case.

Assumption B.

(B1) g : R→ R̄ is lower semicontinuous, symmetric with g(0) = 0.

(B2) There is u 6= 0 such that g(u) ∈ R.

(B3) g satisfies one of the following properties:

(B3.a) g is twice differentiable on an interval (0, ε) for some ε > 0 and lim sup
u↘0

g′′(u) ∈

(−∞, 0),
(B3.b) g is twice differentiable on an interval (0, ε) for some ε > 0 and lim

u↘0
g′′(u) = −∞,

(B3.c) 0 < lim infu↘0 g(u).

(B4) g(u) ≥ 0 for all u ∈ R.

By assumption B, the function g is non-convex in a neighborhood of 0 and nonsmooth at 0.
Some examples are given below.

Example 3.1. Functions satisfying assumption B.

(i) g(u) := |u|0 :=
{

1 u 6= 0,
0 else,

(ii) g(u) := |u|p, p ∈ (0, 1),

(iii) g(u) := ln(1 + α|u|), with a given positive constant α.

(iv) The indicator function of the integers g(u) := δZ(u) =
{

0 if u ∈ Z,
∞ otherwise.

We are interested in the characterization of global solutions to (3.1) in terms of q. It is well-
known that for given s > 0 the proximal map q ⇒ proxsg(q) is monotone, i.e., the inequality

0 ≤ (q1 − q2)
(
proxsg(q1)− proxsg(q2)

)
is satisfied for all q1, q2 ∈ R. In addition, the graph of proxsg is a closed set. Moreover, the
following results hold true.

Lemma 3.2. Let g : R → R̄ satisfy Assumption (B1). Let u ∈ proxsg(q). Then u ≥ 0 if and
only if q ≥ 0.

Proof. Due to (B1), we have u ∈ proxsg(q) if and only if −u ∈ proxsg(−q). The claim now
follows from the monotonicity of the prox-mapping.

Lemma 3.3. Let g : R→ R̄ satisfy Assumptions (B1), (B4). Then the growth condition

|u| ≤ 2|q| ∀u ∈ proxsg(q)

is satisfied.
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Proof. Let u ∈ proxsg(q). By optimality, the following inequality

1
2u

2 − qu+ g(u) ≤ g(0) = 0.

is true. Since g(u) ≥ 0, the claim follows.

Lemma 3.4. Let H be a Hilbert space. Let f : H → R̄ be a function with f(0) ∈ R. Then
0 ∈ proxf (q) for all q ∈ H if and only if f is of the form f(x) = f(0) + δ{0}(x). Here, δ{0} is
the indicator function of {0} defined by δ{0}(0) = 0 and δ{0}(x) = +∞ for all x 6= 0.

Proof. If f is of the claimed form, then clearly proxf (q) = {0} for all q. Now, let 0 ∈ proxf (q)
for all q ∈ H. Then it holds

1
2‖u− q‖

2
H + f(u) ≥ 1

2‖q‖
2
H + f(0) ∀u, q ∈ H.

This is equivalent to
f(u) + 1

2‖u‖
2
H ≥ f(0) + (u, q)H ∀u, q ∈ H.

Setting q := tu and letting t→ +∞ shows f(u) = +∞ for all u 6= 0.

Lemma 3.5. Let g : R → R̄ satisfy Assumption (B1). Let s > 0. Assume there is q0 ≥ 0 such
that

q0|u| ≤
1
2u

2 + sg(u) ∀u ∈ R. (3.2)

Then u = 0 is a global solution to (3.1) if |q| ≤ q0. If |q| < q0 then u = 0 is the unique global
solution to (3.1). Moreover, if

q0 := sup{q ≥ 0 : q|u| ≤ 1
2u

2 + sg(u) ∀u ∈ R},

then |q| ≤ q0 is also necessary for u = 0 being a global solution to (3.1).

Proof. Let |q| ≤ q0. Take u 6= 0, then we have

hq,s(u) = 1
2u

2 + sg(u)− uq ≥ 1
2u

2 + sg(u)− |u| · |q| ≥ 1
2u

2 + sg(u)− q0|u| ≥ 0 = hq,s(0).

Note that the second inequality is strict if |q| < q0. For the second claim assume u = 0 is a
global solution to (3.1). Assume q > 0. Then it holds

qu ≤ 1
2u

2 + sg(u) ∀u ≥ 0.

Since g(u) = g(−u), this implies

q|u| ≤ 1
2u

2 + sg(u) ∀u ∈ R.

By the definition of q0, the inequality q ≤ q0 follows. Similarly, one can prove |q| ≤ q0 for
negative q.

Together with Assumption B, these results allows us to show the following key observation
concerning the characterization of solutions to (3.1). A similar statement to the following can
be found in [13, Theorem 1.1].
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Theorem 3.6. Let g : R → R̄ satisfy Assumption B. Then there exists s0 ≥ 0 such that for
every s > s0 there is u0(s) > 0 such that for all q ∈ R a global minimizer u of (3.1) satisfies

u = 0 or |u| ≥ u0(s).

In case g satisfies (B3.b) or (B3.c), s0 can be chosen to be zero. Moreover, for all s > 0 there
is q0 := q0(s) > 0 such that u = 0 is a global solution to (3.1) if and only if |q| ≤ q0. If |q| < q0
then u = 0 is the unique global solution to (3.1).

Proof. Assume that the first claim does not hold. Then there are sequences (un) and (qn) and
s > 0 with un ∈ proxsg(qn) and un → 0. W.l.o.g., (un) is a monotonically decreasing sequence
of positive numbers, and hence (qn) is monotonically decreasing and non-negative by Lemma
3.2. Let u and q denote the limits of both sequences. Since un 6= 0 is a global minimum of
hqn,s, it follows hqn,s(un) ≤ hqn,s(0) = 0. Passing to the limit in this inequality, we obtain
lim infn→∞ hqn,s(un) ≤ 0, which implies

lim inf
n→∞

g(un) ≤ 0.

With g(0) = 0 by (B1), this contradicts (B3.c). Let now (B3.a) or (B3.b) be satisfied. Then for
n sufficiently large the necessary second-order optimality condition h′′qn,s(un) ≥ 0 holds, and we
obtain

lim sup
n→∞

h′′qn,s(un) ≥ 0,

which implies
1 + s lim sup

n→∞
g′′(un) ≥ 0.

This inequality is a contradiction to (B3.a) if s > −1/lim supu↘0 g
′′(u) > 0 and to (B3.b) for all

s.
By (B1), it holds proxsg(q) 6= ∅ for all q. Due to (B2) and Lemma 3.4, there is q ≥ 0 such

that 0 6∈ proxsg. The claim concerning q0 follows from Assumptions (B4), (B3) and Lemma
3.5. First, consider that case (B3.a) or (B3.b) is satisfied, i.e., there is ε1 > 0 such that g is
strictly concave on (0, ε1]. By reducing ε1 if necessary, we get g(ε1) > 0. Since g(u) = 0, it
holds g(u) ≥ g(ε1)

ε1
|u| for all u ∈ (0, ε1) by concavity. Due to symmetry, this holds for all u with

|u| ≤ ε1. Since g(u) ≥ 0 for all u by (B4), it holds 1
2u

2+sg(u) ≥ ε1
2 |u| for all |u| ≥ ε1. This proves

1
2u

2 + sg(u) ≥ min( ε12 ,
sg(ε1)
ε1

)|u| for all u. Hence, the claim follows with q0 := min( ε12 ,
sg(ε1)
ε1

)
by Lemma 3.5. Second, if (B3.c) is satisfied, then there are ε2, τ > 0 such that g(u) ≥ τ for
all u with |u| ∈ (0, ε2) as g is lower semicontinuous. Therefore, it holds g(u) ≥ τ ≥ τ

ε2
|u| if

|u| ∈ (0, ε2). The claim follows as above by Lemma 3.5.

Remark 3.7. 1. In general, the constant u0 in Theorem 3.6 depends on s and the structure
of g.

2. We note the second claim concerning q0 in Theorem 3.6 holds for all s > 0 and does not
depend on the first claim due to Assumption (B4). One can replace g(u) ≥ 0 by the
pre-requisite of Lemma 3.5.

3. Assumption B also allows functions of form g(u) = q̃(u) + δD(u) with some g̃ : R→ R̄ and
the indicator function δD of the set D ⊆ R. This means the analysis includes constrained
optimization problems, e.g., standard box constraints of form

min
u∈[a,b]

−qu+ 1
2u

2 + sg̃(u),

with a, b ∈ R, a < b.
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Example 3.8. The proximal map of (3.1) with g(u) = |u|0 is given by the hard-thresholding
operator, defined by

proxsg(q) =
{

0 if |q| ≤
√

2s,
q else.

With the above considerations in mind, let us discuss the minimization problem

min
u∈R

gku+ L

2 (u− uk)2 + g(u). (3.3)

This minimization corresponds to the pointwise minimization of the integrand in (1.1).

Corollary 3.9. Let gk, uk ∈ R, L > 0 be given. Then the number u ∈ R is a solution to (3.3)
if and only if

u ∈ proxL−1g

(
Luk − gk

L

)
.

If 1
L > s0, see Theorem 3.6, then all global solutions u satisfy

u = 0 or |u| ≥ u0(L−1)

with some u0(L−1) > 0 as in Theorem 3.6.

Proof. Problem (3.3) is equivalent to

min
u∈R

gk − Luk
L

u+ 1
2u

2 + 1
L
g(u)

and therefore of form (3.1). The claim follows by definition and from Theorem 3.6.

4 Analysis of the proximal gradient algorithm
In this section, we will analyze the proximal gradient algorithm.

Algorithm 4.1 (Proximal gradient algorithm). Choose L > 0 and u0 ∈ L2(Ω). Set k = 0.

1. Compute uk+1 as solution of

min
u∈L2(Ω)

f(uk) +∇f(uk)(u− uk) + L

2 ‖u− uk‖
2
L2(Ω) + j(u). (4.1)

2. Set k := k + 1, repeat.

The functional to be minimized in (4.1) can be written as an integral functional. In this
representation the minimization can be carried out pointwise by using the previous results.
The following statements are generalizations of [16, Lemmas 3.10, 3.11, Theorem 3.12], and the
corresponding proofs can be carried over easily.

Lemma 4.2. Let uk ∈ Uad be given. Then

min
u∈L2(Ω)

f(uk) +∇f(uk)(u− uk) + L

2 ‖u− uk‖
2
L2(Ω) +

∫
Ω
g(u(x)) dx (4.2)

is solvable, and uk+1 ∈ L2(Ω) is a global solution if and only if

uk+1(x) ∈ proxL−1g

( 1
L

(Luk(x)−∇f(uk)(x))
)

f.a.a. x ∈ Ω. (4.3)
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Proof. Let us show, that we can choose a measurable function satisfying the inclusion (4.3).
The set-valued mapping proxL−1g has closed graph and is thus outer semicontinuous. Then
by [14, Corollary 14.14], the set-valued mapping x 7→ proxL−1g

(
1
L(Luk(x)−∇f(uk)(x))

)
is

measurable. A well-known result [14, Corollary 14.6] implies the existence of a measurable
function u such that u(x) ∈ proxL−1g

(
1
L(Luk(x)−∇f(uk)(x))

)
for almost all x ∈ Ω. Due to

the growth condition of Lemma 3.3, we have u ∈ L2(Ω), and hence u solves (4.2). If uk+1 solves
(4.2) then (4.3) follows by a standard argument.

We introduce the following notation. For a sequence (uk) ⊂ L2(Ω) define

Ik := {x ∈ Ω : uk(x) 6= 0}, χk := χ(uk) = χIk .

Let us now investigate convergence properties of Algorithm 4.1. The following Lemma will be
helpful for what follows.

Lemma 4.3. Assume 1
L > s0 with s0 from Theorem 3.6. Let uk, uk+1 ∈ L2(Ω) be consecutive

iterates of Algorithm (4.1). Then

‖uk+1 − uk‖pLp(Ω) ≥ u
p
0‖χk − χk+1‖L1(Ω)

holds for p ∈ [1,∞), where u0 := u0(L−1) is as in Theorem 3.6.

Proof. Since uk(x) 6= 0 and uk+1(x) = 0 on Ik \ Ik+1, it holds |uk+1(x) − uk(x)| ≥ u0 for all
x ∈ Ik \ Ik+1 by Corollary (3.9). Hence,

‖uk+1 − uk‖pLp(Ω) =
∫

Ω
|uk+1(x)− uk(x)|p dx

≥
∫

(Ik\Ik+1)∪(Ik+1\Ik)
|uk+1(x)− uk(x)|p dx ≥ up0‖χk+1 − χk‖L1(Ω).

Theorem 4.4. For L > Lf let (uk) be a sequence of iterates generated by Algorithm 4.1. Then
the following statements hold:

(i) The sequence (f(uk) + j(uk)) is monotonically decreasing and converging.

(ii) The sequences (uk) and (∇f(uk)) are bounded in L2(Ω) if f + j is weakly coercive on
L2(Ω), i.e., f(u) + j(u)→∞ as ‖uk‖L2(Ω) →∞.

(iii) ‖uk+1 − uk‖L2(Ω) → 0.

(iv) Let s0 be as in Theorem 3.6. Assume 1
L > s0. Then the sequence of characteristic functions

(χk) is converging in L1(Ω) and pointwise a.e. to some characteristic function χ.

Proof. (i) Due to the Lipschitz continuity of ∇f it holds

f(uk+1) ≤ f(uk) +∇f(uk)(uk+1 − uk) + Lf
2 ||uk+1 − uk||2L2(Ω).

Using the optimality of uk+1, we find that the inequality

f(uk+1) + j(uk+1) ≤ f(uk) + j(uk)−
L− Lf

2 ‖uk+1 − uk‖2L2(Ω) (4.4)
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holds.. Hence, (f(uk) + j(uk)) is decreasing. Convergence follows because f and j are bounded
from below.

(ii) Weak coercivity of the functional implies that (uk) is bounded. Furthermore, because of

‖∇f(uk)‖L2(Ω) ≤ ‖∇f(uk)−∇f(0)‖L2(Ω) + ‖∇f(0)‖L2(Ω)

≤ Lf‖uk‖L2(Ω) + ‖∇f(0)‖L2(Ω),

boundedness of (∇f(uk)) in L2(Ω) follows.
(iii) Summation over k = 1, . . . , n in (4.4) yields

n∑
k=1

(f(uk+1) + j(uk+1)) ≤
n∑
k=1

(
f(uk) + j(uk)−

L− Lf
2 ‖uk+1 − uk‖2L2(Ω)

)
and hence

f(un+1) + j(un+1) +
n∑
k=1

L− Lf
2 ‖uk+1 − uk‖2L2(Ω) ≤ f(u1) + j(u1) <∞.

Letting n→∞ implies
∞∑
k=1
‖uk+1 − uk‖2L2(Ω) <∞ and therefore ‖uk+1 − uk‖L2(Ω) → 0.

(iv) By Lemma 4.3, we get

L− Lf
2 u2

0

∞∑
k=1
‖χk − χk+1‖L1(Ω) ≤

L− Lf
2

∞∑
k=1
‖uk − uk+1‖L2(Ω) < +∞

Hence, (χk) is a Cauchy sequence in L1(Ω), and therefore also converging in L1(Ω), i.e., χk → χ
for some characteristic function χ. Pointwise a.e. convergence of (χk) can be proven by Fatou’s
Lemma.

As a consequence, we get the following result.

Corollary 4.5. Suppose 1
L > s0. Then for any weak sequential limit point u∗ ∈ L2(Ω) of iterates

(uk) of Algorithm 4.1 it holds
(1− χ)u∗ = 0

almost everywhere in Ω. Here, χ is as in Theorem 4.4.

Proof. See [16, Thm.3.15].

Corollary 4.6. Let (uk) be a sequence of iterates generated by Algorithm 4.1. Then uk+1−uk →
0 pointwise almost everywhere on Ω.

Proof. By the Lemma of Fatou, we have∫
Ω

lim inf
n→∞

n∑
k=0
|uk+1(x)− uk(x)|2 dx ≤ lim inf

n→∞

n∑
k=0
‖uk+1(x)− uk(x)‖2L2(Ω) < +∞.

This implies
∑n
k=0 |uk+1(x)− uk(x)|2 <∞ for almost all x ∈ Ω, and the claim follows.
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4.1 Stationarity conditions for weak limit points from inclusions

Under a weak coercivity assumption Theorem 4.4 implies that Algorithm 4.1 generates a se-
quence (uk) with weak limit point u∗ ∈ L2(Ω). Due to the lack of weak lower semicontinuity in
the term u 7→

∫
Ω g(u) dx, however, we cannot conclude anything about the value of the objective

functional in a weak limit point. Unfortunately, we are not able to show

f(u∗) + j(u∗) ≤ lim
k→∞

f(uk) + j(uk),

as it was done in [16, Thm. 3.14] for the special choice g(u) := |u|0. Nevertheless, by using
results of set-valued analysis we will show that a weak limit point of a sequence (uk) of iterates
satisfies a certain inclusion in almost every point x ∈ Ω, which can be interpreted as a pointwise
stationary condition for weak limit points.

By definition, the iterates satisfy the inclusion

uk+1(x) ∈ proxL−1g

( 1
L

(Luk(x)−∇f(uk)(x))
)

for almost all x ∈ Ω, see e.g., (4.3). However, this inclusion seems to be useless for a convergence
analysis as the function uk+1 to the left of the inclusion as well as the arguments Luk −∇f(uk)
only have weakly converging subsequences at best. The idea is to construct a set-valued mapping
G : R ⇒ R, such that a solution uk+1 of (4.2) satisfies the inclusion

uk+1(x) ∈ G(zk(x)) (4.5)

in almost every point x ∈ Ω for some zk ∈ L2(Ω), where (zk) converges strongly or pointwise
almost everywhere. Here, we will use

zk := −
(
∇f(uk) + L(uk+1 − uk)

)
.

By Theorem 4.4, we have uk+1 − uk → 0 in L2(Ω) and pointwise almost everywhere. With the
additional assumption that subsequences of (∇f(uk)) are converging pointwise almost every-
where, the argument of the set-valued mapping is converging pointwise almost everywhere. In
the context of optimal control problems, such an assumption is not a severe restriction. So there
is a chance to pass to the limit in the inclusion (4.5).

Lemma 4.7. Let uk+1 be a solution of (4.2). Then

uk+1(x) ∈ G(zk(x)) f.a.a. x ∈ Ω,

where the set-valued mapping G : R ⇒ R is given by

u ∈ G(z) := GL(z) :⇐⇒ u = arg min
v∈R

−zv + L

2 (v − u)2 + g(v).

Unfortunately, the set-valued map G is not monotone in general. If g would be convex, then
the optimality condition of (4.2) is zk(x) ∈ ∂g(uk+1(x)) for almost all x ∈ Ω, hence one could
choose G = gph(∂(g∗)), where g∗ denotes the convex conjugate of g.

Remark 4.8. The definition of G is related to the concept of L-stationary points, introduced
in [4, Definition 9.19] for l0-optimization problems in Rn.

For the rest of this section, we will always suppose that g satisfies Assumption B. As a first
direct consequence from the definition of G we get
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Corollary 4.9. Assume 1
L > s0. Let u, z ∈ R such that u ∈ G(z). Then we have: If u > 0

then u ≥ max
(
u0,

Lq0−z
L

)
, and if u < 0 then u ≤ min

(
−u0,−Lq0+z

L

)
. In case u = 0 it holds

|z| ≤ Lq0. Here, u0 := u0(L−1) and q0 := q0(L−1) are the positive constants from Theorem 3.6.

Proof. By construction of G, we have

u ∈ G(z)⇐⇒ u = proxL−1g

(
Lu+ z

L

)
.

If u 6= 0 then by Lemma 3.2 and Theorem 3.6, it follows that u ≥ u0(L−1) if and only if
Lu+z
L ≥ q0(L−1) and likewise u < −u0(L−1) iff Lu+z

L ≤ −q0(L−1). The claim follows for u > 0
and u < 0, respectively. On the other hand u = 0 is a solution if and only if | zL | ≤ q0, which
implies the claim for u = 0.

4.2 A convergence result for inclusions

Let us recall a few helpful notions and results from set-valued analysis that can be found in the
literature, see e.g., [2, 14].

Definition 4.10. For a sequence of sets An ⊂ Rn we define the outer limit by

lim sup
n→∞

An := {x : ∃(xnk), xnk → x, xnk ∈ Ank}.

Definition 4.11. Let S : Rm ⇒ Rn be a set-valued map.

1. The domain and graph of S are defined by

domS := {x : S(x) 6= ∅}, gphS := {(x, y) : y ∈ S(x)}.

2. S is called outer semicontinuous in x̄ if

lim sup
x→x̄

S(x) ⊆ S(x̄).

3. S is called locally bounded at x ∈ Rm if there is a neighborhood U of x such that S(U) is
bounded.

A set-valued mapping S is outer semicontinuous if and only if it has a closed graph.
The following convergence analysis relies on [2, Thm. 7.2.1]. We want to extend this result

to set-valued maps into Rn that are not locally bounded. Let us define the following set-valued
map that serves as a generalization of x→ conv(F (x)) for the locally unbounded situation.

Definition 4.12. Let F : Rm ⇒ Rn be a set-valued map.
Define the set-valued map conv∞ F : Rm ⇒ Rn by

(conv∞ F )(x) := lim sup
k→∞

conv
(
F
(
x+B1/k(0)

))
.

By definition, it holds gphF ⊂ gph conv∞ F . In addition, we have conv(F (x)) ⊂ (conv∞ F )(x).
If F is locally bounded in x, then (conv∞)F (x) = conv(F (x)), which can be proven using
Carathéodory’s theorem. In general, dom conv∞ F is strictly larger than domF .

Example 4.13. Define F : R ⇒ R by

gphF = {(x, y) : yx = 1}.

Then F is not locally bounded near x = 0. Here it holds gph(conv∞ F ) = gphF ∪ ({0} ×R), so
that dom(conv∞ F ) = R 6= domF .
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Theorem 4.14. Let (Ω,A, µ) be a measure space and F : Rm ⇒ Rn be a set-valued map. Let
sequences of measurable functions (xn), (yn) be given such that

1. xn converges almost everywhere to some function x : Ω→ Rm,

2. yn converges weakly to a function y in L1(µ,Rn),

3. yn(t) ∈ F (xn(t)) for almost all t ∈ Ω.

Then for almost all t ∈ Ω it holds:

y(t) ∈ (conv∞ F )(x(t)).

Proof. Arguing as in the proof of [2, Thm. 7.2.1], we find

y(t) ∈
⋂
k∈N

conv
(
F (x(t) +B1/k(0))

)
for almost all t ∈ Ω. Take t ∈ Ω such that the above inclusion is satisfied. Then there is
a sequence (uk) such that uk → y(t), uk ∈ conv(F (x(t) + B1/k(0))). This implies y(t) ∈
lim supk→∞ conv

(
F (x(t) +B1/k(0))

)
, or equivalently y(t) ∈ (conv∞ F )(x(t)).

4.3 Stationarity conditions for weak limit points

Recall, for iterates (uk) of Algorithm 4.1 and the corresponding sequence zk we have by con-
struction

uk+1(x) ∈ G(zk(x)) f.a.a. x ∈ Ω.

Then by Theorem 4.14, we could expect the inclusion u∗(t) ∈ (conv∞ G)(−∇f(u∗)(x)) point-
wise almost everywhere to hold in the subsequential limit. However, the convexification of G
results in a set-valued map that is very large. In order to obtain a smaller inclusion in the limit,
we will employ the result of Corollary 4.9: the graph of G can be split into three clearly separated
components. In the sequel, we will show that we can pass to the limit with each component
separately, which leads to a smaller set-valued map in the limit. This observation motivates the
following splitting of the map G.

Definition 4.15. For L > 0 we define the following set-valued mappings.

1. G+ : R ⇒ R with u ∈ G+(z) :⇐⇒ u ∈ G(z) and u > 0,

2. G− : R ⇒ R with u ∈ G−(z) :⇐⇒ u ∈ G(z) and u < 0,

3. G0 : R ⇒ R with u ∈ G0(z) :⇐⇒ u ∈ G(z) and u = 0.

The mappings G+,G− and G0 are depicted in Figure 2 for the special choice g(u) := α
2 |u|

2 +
|u|p + δ[−b,b](u), p ∈ (0, 1), b ∈ (0,∞).

Obviously we have by construction

uk+1(x) ∈ (G+ ∪ G− ∪ G0)(zk(x)) f.a.a. x ∈ Ω. (4.6)

Corollary 4.16. The mappings G,G0 are outer semicontinuous. If L−1 > s0 the same holds
for G+ and G−.
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Proof. G being outer semicontinuous is equivalent to the closedness of its graph. Let (un), (qn)
be sequences such that un → u, qn → q and un ∈ G(qn). By definition it holds

0 ≤ −qn(v − un) + (g(v)− g(un)) + L

2 (v − un)2

for all v ∈ R. Passing to the limit in above inequality yields

0 ≤ −q(v − u) + (g(v)− g(u)) + L

2 (v − u)2

due to the lower semicontinuity of g. Hence,

u = arg min
v∈R

−qv + L

2 (v − u)2 + g(v),

i.e., u ∈ G(q), which is the claim for G. For G+,G−,G0 the claim follows as their graphs are
intersections of closed sets with gphG, which follows from Corollary 4.9 (for suitable chosen L
in case of G+,G−).

In the sequel we want to apply Theorem 4.14 to each of the set-valued maps in (4.6) sepa-
rately. Let us first show the next helpful result.

Lemma 4.17. Let (uk) be a sequence of iterates generated by Algorithm 4.1. Let b > a be given.
Define

A+
k := {x ∈ Ω : uk(x) ≥ b},

A−k := {x ∈ Ω : uk(x) ≤ a},

and χ+
k := χA+

k
, χ−k := χA−

k
. Then it holds

∞∑
k=1
‖χ+

k+1χ
−
k + χ−k+1χ

+
k ‖L1(Ω) < +∞.

If χ+
k + χ−k = 1 for all k almost everywhere, then there are characteristic functions χ+, χ−

such that χ+ + χ− = 1 almost everywhere, χ+
k → χ+ and χ−k → χ− strongly in L1(Ω) and

pointwise almost everywhere.

Proof. Let x ∈ Ω. If χ+
k+1(x)χ−k (x) = 1, then uk+1(x)−uk(x) ≥ b−a. This proves ‖χ+

k+1χ
−
k ‖L1(Ω) ≤

(b − a)−2‖uk+1 − uk‖2L2(Ω). Similarly, we obtain ‖χ−k+1χ
+
k ‖L1(Ω) ≤ (b − a)−2‖uk+1 − uk‖2L2(Ω).

Since
∑∞
k=1 ‖uk+1−uk‖2L2(Ω) < +∞, the claim follows. Suppose χ+

k +χ−k = 1 almost everywhere.
Then we have

χ+
k+1χ

−
k + χ−k+1χ

+
k = χ+

k+1(1− χ+
k ) + (1− χ+

k+1)χ+
k = |χ+

k+1 − χ
+
k |,

which implies the second claim.

Theorem 4.18. Let s0 be as in Theorem 3.6. Assume 1
L > s0. Let (uk) be a sequence of

iterates generated by Algorithm 4.1 with weak limit point u∗ ∈ L2(Ω), i.e., ukn ⇀ u∗. Assume
∇f(ukn)(x) → ∇f(u∗)(x) for almost every x ∈ Ω. Let G0,G+,G− : R ⇒ R be as in Definition
4.15. Then

u∗(x) ∈
(
G0 ∪ conv∞G+ ∪ conv∞ G−

)
(−∇f(u∗)(x))

holds for almost all x ∈ Ω.
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Proof. By Theorem 4.4 and Corollary 4.6, we have ukn+1 ⇀ u∗ in L2(Ω) and

zkn := − (∇f(ukn) + L(ukn+1 − ukn))→ −∇f(u∗) := z

pointwise almost everywhere on Ω. Let us define I+
k := {x ∈ Ω : uk(x) > 0} and I−k := {x ∈ Ω :

uk(x) < 0} with associated characteristic functions χ+
k , χ

−
k . Then by Lemma 4.17 with a = 0

and b = u0 with u0 from Theorem 3.6, we obtain χ+
k → χ+ in L1(Ω) and pointwise almost

everywhere. Similarly, χ−k → χ− in L1(Ω) and pointwise almost everywhere.
Let us fix (u′, q′) ∈ gphG+. Then the following inclusion

χ+
k+1uk+1 + (1− χ+

k+1)u′ ∈ G+(χ+
k+1zk + (1− χ+

k+1)q′)

is satisfied almost everywhere on Ω. By Theorem 4.14, we obtain

χ+u∗ + (1− χ+)u′ ∈ conv∞G+(χ+z + (1− χ+)q′)

almost everywhere on Ω. Similarly, we obtain for (u′′, q′′) ∈ gphG−

χ−u∗ + (1− χ−)u′′ ∈ conv∞G−(χ−z + (1− χ−)q′′)

and
(1− χ)u∗ ∈ G0((1− χ)z)

almost everywhere, where χk and χ are as in Theorem 4.4. Note that conv∞G0 = G0. By
construction, χ+

k + χ−k = χk, which implies χ+ + χ− = χ. Then we can combine all the
inclusions above into one, which is

u+(x) ∈
(
G0 ∪ conv∞G+ ∪ conv∞ G−

)
(−∇f(u∗)(x))

for almost all x ∈ Ω.

Let us remark that the assumption of pointwise convergence of (∇f(uk)) is not a severe
restriction. If ∇f : L2(Ω) → L2(Ω) is completely continuous, then this assumption is fulfilled.
For many control problems, this property of ∇f is guaranteed to hold.

Interestingly, we can get rid of the convexification operator conv∞ if we assume that the
whole sequence (∇f(uk)) converges pointwise almost everywhere.

Theorem 4.19. Let (uk) be a sequence of iterates generated by Algorithm 4.1 with weak limit
point u∗ ∈ L2(Ω). Assume ∇f(uk)→ ∇f(u∗) pointwise almost everywhere. Then

u∗(x) ∈ G(−∇f(u∗)(x))

holds for almost all x ∈ Ω.

Proof. Denote z(x) := −∇f(u∗)(x). Then zk(x)→ z(x) almost everywhere.
Let (z̃, ũ) 6∈ gphG. Since gphG is closed, there is ε > 0 such that

(Bε(z̃)×Bε(ũ)) ∩ gphG = ∅.

Let ε′ ∈ (0, ε). Set
I := {x : |z̃ − z(x)| < ε′},

and
IK := {x ∈ I : |z̃ − zk(x)| < ε ∀k > K}.
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The sequence (IK) is monotonically increasing. Since zk(x) → z(x) for almost all x ∈ Ω, we
have ∪K∈NIK = I.

Define
A+
k := {x ∈ Ω : uk(x) ≥ ũ+ ε},

A−k := {x ∈ Ω : uk(x) ≤ ũ− ε},

and χ+
k := χA+

k
, χ−k := χA−

k
. By Lemma 4.17 above, we have

∑∞
k=1 ‖χ+

k+1χ
−
k + χ−k+1χ

+
k ‖L1(Ω) <

+∞, χ+
k+1χ

−
k + χ−k+1χ

+
k → 0 in L1(Ω) and pointwise almost everywhere.

Let x ∈ I. Then there isK such that x ∈ IK . This implies uk(x) 6∈ Bε(ũ) for all k > K. Here,
the pointwise convergence of the whole sequence (zk) is needed. The sum

∑∞
k=K+1(χ+

k+1χ
−
k +

χ−k+1χ
+
k )(x) counts the number of switches between values larger than ũ + ε and smaller than

ũ− ε from uk(x) to uk+1(x). Since this sum is finite for almost all x ∈ Ω, there is only a finite
number of such switches. Then there is K ′ > K such that either uk(x) ≥ ũ+ ε for all k > K ′ or
uk(x) ≤ ũ− ε for all k > K ′. Set

S+
K := {x ∈ I : uk(t) ≥ ũ+ ε ∀k > K},

S−K := {x ∈ I : uk(t) ≤ ũ− ε ∀k > K}.

The sequences (S+
K) and (S−K) are increasing, and ∪K∈N(S+

K ∪ S
−
K) = I.

Since ukn ⇀ u∗, this implies u∗ ≥ ũ+ε on S+
K and u∗ ≤ ũ−ε on S−K . Since ∪K∈N(S+

K∪S
−
K) =

I, this implies
u∗(x) 6∈ Bε(ũ)

for almost all x ∈ I, which implies

((z(x), u∗(x)) 6∈ Bε′(z̃)×Bε(ũ)

for almost all x ∈ Ω. Since we can cover the complement of gphG by countably many such sets,
the claim follows.

For convex functions g, the result above is equivalent to

−∇f(u∗) ∈ ∂g(u∗),

see, e.g., [3, Cor. 27.9].

4.4 Pointwise convergence of iterates

So far we were able to show that weak limit points of iterates (uk) satisfy a certain inclusion in a
pointwise sense. However, the resulting set in the limit might still be large or even unbounded in
general. Assuming that G is (locally) single-valued on its components G+,G−,G0, we can show
local pointwise convergence of a subsequence of iterates (ukn) to a weak limit point u∗ ∈ L2(Ω).
In the next result this is illustrated for the map G+, however it can be shown for the components
G−,G0 similarly. To this end, we set in the following χ+

k := χ{x∈Ω: uk(x)>0} with χ+
k → χ+ in

L1(Ω) and pointwise almost everywhere by Lemma 4.17.

Theorem 4.20. Let z̄ ∈ dom(G+). Assume that G+ : R → R is single-valued and locally
bounded on Bε(z̄)∩dom(G+) for some ε > 0. Let ukn ⇀ u∗ in L2(Ω) and assume ∇f(ukn)(x)→
∇f(u∗)(x) pointwise almost everywhere. For ε′ ∈ (0, ε] define the set

Iε′ :=
{
x ∈ supp(χ+) : −∇f(u∗)(x) ∈ Bε′(z) ∩ dom(G+)

}
.
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Then
ukn(x)→ u∗(x)

holds for almost all x ∈ I. Furthermore, we have

u∗(x) ∈ proxL−1g

( 1
L

(Lu∗(x)−∇f(u∗)(x))
)

f.a.a. x ∈ Iε.

Proof. Let ukn+1 ⇀ u∗ in L2(Ω). By the assumption and Corollary 4.9 it holds zkn(x) →
z(x) := −∇f(u∗)(x) pointwise almost everywhere. In addition, ukn+1 ⇀ u∗ in L2(Ω) holds.
Let ε′ ∈ (0, ε) be given. Take x ∈ Iε′ such that zkn(x) → z(x). Then there is K > 0 such that
|zkn(x)− z̄| < ε for all kn > K. Since x ∈ supp(χ+) and χ+

k → χ+ in L1(Ω) and pointwise almost
everywhere there is K ′ > 0 such that x ∈ supp(χ+

k ) for all k > K ′. Hence, for kn sufficiently
large we have

zkn(x) ∈ Bε(z̄) ∩ dom(G+).
Since G+ is single-valued, locally bounded and outer semicontinuous in Bε(z̄) ∩ dom(G+), it is
continuous, see also [14, Cor. 5.20]. This implies

lim
n→∞

ukn+1(x) = lim
n→∞

G+(zkn(x)) = G+( lim
n→∞

zkn(x)) = G+(z(x)).

The continuity property mentioned above implies conv∞ G+(z(x)) = G+(z(x)). Then by The-
orem 4.18, G+(z(x)) = {u∗(x)}, and the convergence ukn(x) → u∗(x) follows. The fixed-point
property is a consequence of the closedness of the graph of the proximal operator. As x ∈ Iε′
was chosen arbitrary, and Iε = ∪ε′∈(0,ε)Iε′ , the claim is proven.

The above result requires local boundedness of the set-valued map G, which is not satisfied
in general. For some interesting choices of g, e.g. g(u) := |u|p, it can be proven, see Section 5.
Let us give an example of a locally unbounded map G below.

Example 4.21. Let L > 0 and define g(u) := δZ(u) :=
{

0 if u ∈ Z
+∞ else.

with the associated

map GL. Set U := [−L
2 ,

L
2 ]. Then it holds that G(z) = Z for all z ∈ U , i.e., G is clearly not

locally bounded in the origin.

4.5 Strong convergence of iterates

Many optimal control problems of type (P) include a smooth cost functional of form u →
α
2 ‖u‖

2
L2(Ω), α > 0. For the rest of the sequel, we will treat this term explicitly in the convergence

analysis to obtain an almost everywhere and strong convergence of a subsequence. Therefore let
g̃ : R→ R satisfy Assumption B and consider a sequence of iterates computed by

uk+1 := arg min
u∈L2(Ω)

f(uk) +∇f(uk)(u− uk) + L

2 ‖u− uk‖
2
L2(Ω) + α

2 ‖u‖
2
L2(Ω) +

∫
Ω
g̃(u(x)) dx. (4.7)

The solution to (4.7) is now given by

uk+1(x) ∈ prox 1
L+α g̃

( 1
L+ α

(Luk(x)−∇f(uk)(x))
)

for almost every x ∈ Ω. It follows that all the analysis that was done in this section still
applies in this case and all results can be transferred except for a possible change of notation.
Furthermore, we adapt the set-valued map G : R→ R from Lemma 4.7 which is then defined by

u ∈ G(z) :⇐⇒ u = arg min
v∈R

−zv + L

2 (v − u)2 + α

2 v
2 + g̃(v).
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For simplicity we assume dom(g̃) = [−b, b] with b ∈ (0,∞], i.e., the subproblem (4.7) is
equivalent to a box constrained optimization problem of form

uk+1 := arg min
u∈L2(Ω)

f(uk) +∇f(uk)(u− uk) + L

2 ‖u− uk‖
2
L2(Ω) + α

2 ‖u‖
2
L2(Ω) +

∫
Ω
g̃(u(x)) dx.

subject to |u(x)| ≤ b for almost every x ∈ Ω. To obtain strong convergence of iterates in L1(Ω)
and an L-stationary condition almost everywhere, we need to put stronger and more restricting
assumptions on g̃, as the next theorem shows. To this end, let us introduce the following
extension of Assumption B.

Assumption B+.

(B5) g̃ is C1 on (0, b) with g′(b) := limu↗b g
′(u).

(B6) For s > 0 there is uI := uI(s) > 0 such that u 7→ 1
2u

2 + sg̃(u) is strictly convex on [uI , b].

First, we have the following necessary optimality condition for (4.7) due to Assumption (B5).

Corollary 4.22. Let uk+1 be a solution to (4.7) and g̃ satisfy in addition (B5). Then the
pointwise inequality in R(

∇f(uk)(x) + L(uk+1(x)− uk(x)) + αuk+1(x)
+ g̃′(uk+1(x))

)
(v − uk+1(x)) ≥ 0

for all v ∈ [−b, b] holds for almost all x ∈ Ik+1.

Proof. Since dom(g) = [−b, b], minimizing the integrand in

min
u∈L2(Ω)

∫
Ω
∇f(uk)(x)u(x) + L

2 (u(x)− uk(x))2 + α

2 |u(x)|2 + g̃(u(x)) dx. (4.8)

pointwise is equivalent to solve the constrained problem

min
u:|u|≤b

f(uk)(x)u+ L

2 (u− uk(x))2 + α

2 |u|
2 + g̃(u)

in every Lebesgue point x. For x ∈ Ik+1 it holds uk+1(x) 6= 0, and therefore above problem is
differentiable. The claimed inequality is the corresponding necessary optimality condition.

Let us for the rest of the sequel assume that g̃ satisfies (B5) and (B6) in addition to As-
sumption B. This enables us to give more information about the set-valued map G as the next
result shows. That is, elements in G are (possibly unique) solutions of an associated variational
inequality.

Lemma 4.23. Let u0( 1
L+α), q0( 1

L+α) be constants as in Theorem 3.6 and |u| ≥ u0( 1
L+α). Then

u ∈ G(z) satisfies the variational inequality

(−z + αu+ g̃′(u))(v − u) ≥ 0 (4.9)

for all v ∈ [−b, b]. If in addition | z+LuL+α | ≥ q0
(

1
L+α

)
and u0 ≥ uI with uI := uI( 1

L+α) as in (B6),
then we have u ∈ G(z) if and only u satisfies (4.9).

18



Proof. Let us discuss the case u ≥ u0 only. If u ∈ G(z) for some z ∈ R, then by definition

u = arg min
v∈R

−zv + L

2 (v − u)2 + α

2 v
2 + g̃(v)

= arg min
|v|≤b

−zv + L

2 (v − u)2 + α

2 v
2 + g̃(v)

= arg min
|v|≤b

−(z + Lu)v + L+ α

2 v2 + g̃(v)

Hence, by first order necessary optimality condition it holds

0 ≤
(
−(z + Lu) + (L+ α)u+ g̃′(u)

)
(v − u)

= (−z + αu+ g̃′(u))(v − u)

for all v ∈ [−b, b], which is the claim.
Assume uI ≤ u0 holds, and let u > 0 satisfy (4.9), then u satisfies in particular

0 ≤ (−z + αu+ g̃′(u))(v − u) = (−z − Lu+ (α+ L)u+ g̃′(u))(v − u)

for all v ∈ [uI , b], i.e., it is stationary to

min
v∈[uI ,b]

−zv + α

2 v
2 + g̃(v) (4.10)

and also to
min

v∈[uI ,b]
−(z + Lu)v + L+ α

2 v2 + g̃(v).

By convexity u is the unique solution of the latter and since by assumption z+Lu
L+α ≥ q0

(
1

L+α

)
,

it follows from Theorem 3.6 that there is a global solution larger than u0 to the unconstrained
problem which together implies u ∈ G(z).

Lemma 4.24. Let α > 0. Assume uk+1 is a global solution to (4.7) with |uk+1(x)| ≥ u0 ≥ uI( 1
α)

for almost all x ∈ Ik+1, where uI( 1
α) is as in (B6). Then there is a continuous mapping

G : L2(Ω)→ L2(Ω) such that
uk+1 = χk+1G

(
zk
α

)
.

Proof. We set s := 1
α and uI := uI(s) as in (B6). Note that by assumptions the following holds

for α > 0 and |u| ≥ u0 ≥ uI :

u ∈ G(z)⇐⇒ u ∈ prox(L+α)−1g̃

(
z + Lu

L+ α

)
=⇒ u ∈ proxuIsg̃

(
z

α

)
,

where we define, corresponding to (4.10),

u ∈ proxuIsg̃ (z) :⇐⇒ u = arg min
|v|∈[uI ,b]

−zv + 1
2v

2 + sg̃(v).

Due to assumption (B6) and Lemma 4.23, uk+1(x) is the only element in G(zk(x)) \ {0} for
almost all x ∈ Ik+1 and it holds uk+1(x) = proxuIsg̃

(
zk(x)
α

)
. Set

zI := sup{q > 0 : uI = proxuIsg̃ (q)}.
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It is easy to see that proxuIsg̃ is single-valued for |z| > 0. Since it is in addition outer semicontinu-
ous and locally bounded for |z| ≥ zI , it is also continuous on {z : |z| ≥ zI}, see also [14, Corollary
5.20]. Let u ∈ proxuIsg̃ (z). By optimality of u we have

−zu+ 1
2u

2 + sg̃(u) ≤ −z · sign(u)uI + 1
2u

2
I + sg̃(uI).

Dividing by |u| > 0, we get

1
2 |u| ≤

(
u− sign(u)uI

|u|

)
z + u2

I

|u|
+ s

g̃(uI)− g̃(u)
|u|

.

Having in mind that uI
|u| ≤ 1, the growth estimate | proxuIsg̃ (z)| ≤ 2|z| + c for all |z| ≥ zI with

some c > 0 independent of z follows.
Let l : R→ R denote a continuous function defined by

l(z) :=
{

proxuIsg (z) if |z| ≥ zI ,
uI
zI
z if |z| ≤ zI .

Define
G : L2(Ω)→ L2(Ω), G(z)(x) = l(z(x))

for z : Ω→ R. Then by a well-known result, see e.g. [1, Theorem 3.1], the superposition operator
G is continuous from L2(Ω)→ L2(Ω) and the claim follows.

Now, we are able to prove strong convergence of a subsequence of (uk) similar to [16, Thm.
3.17].

Theorem 4.25. Suppose complete continuity of ∇f and let (uk) ⊂ L2(Ω) be a sequence gener-
ated by Algorithm 4.7 with weak limit point u∗. Under the same assumptions as in Lemma 4.24
u∗ is a strong sequential limit point of (uk) in L1(Ω).

Proof. By Lemma 4.24 there exists a continuous mapping G : L2(Ω)→ L2(Ω) such that uk+1 =
χk+1

(
G( zkα )

)
. Let ukn ⇀ u∗ in L2(Ω). Again, by Theorem 4.4 and complete continuity of ∇f ,

we obtain strong convergence of the sequence

zkn := − (∇f(ukn) + L(ukn+1 − uk))→ −∇f(u∗) =: z∗

in L2(Ω) as well as χk → χ in Lp(Ω) for all p <∞ and ukn+1 ⇀ u∗. Then the convergence

ukn+1 = χkn+1G

( 1
α
zkn

)
→ χG

( 1
α
z∗
)

in L1(Ω) follows by Hölder’s inequality. Since strong and weak limit points coincide, it follows
ukn → u∗ in L1(Ω) and

u∗ = χG

(
− 1
α
∇f(u∗)

)
.

With the assumptions in Theorem 4.25 we can find an almost everywhere converging sub-
sequence of iterates, i.e., ukn(x) → u∗(x) for almost every x ∈ Ω. By the closedness of the
mapping proxsg̃, we get

u∗(x) ∈ prox 1
L+α g̃

( 1
L+ α

(Lu∗(x)−∇f(u∗)(x))
)

f.a.a x ∈ Ω, (4.11)
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i.e., u∗ is L-stationary to the problem in almost every point. If L = 0 in (4.11), then we obtain
by Lemma 4.2

u∗(x) = arg min
u∈R

f(uk)(x)u(x) + α

2 |u(x)|2 + g̃(u(x)) f.a.a. x ∈ Ω.

Hence, in this case u∗ satisfies the Pontryagin maximum principle.

4.6 The proximal gradient method with variable stepsize

The convergence results of this section require the knowledge of the Lipschitz modulus Lf of
∇f . This can be overcome by line-search with respect to the parameter L subject to a suitable
decrease condition, which is a widely applied technique.

Algorithm 4.26 (Proximal gradient with variable step-size). Choose η > 0 and u0 ∈ Uad. Set
k = 0.

1. Determine Lk ≥ 0 and uk+1 as global solution of

min
u∈L2(Ω)

f(uk) +∇f(uk)(u− uk) + Lk
2 ‖u− uk‖

2
L2(Ω) + j(u)

such that
η‖uk+1 − uk‖2L2(Ω) ≤ (f(uk) + j(uk))− (f(uk+1 + j(uk+1)) (4.12)

is satisfied.

2. Set k := k + 1, repeat.

The convergence results as in Theorem 4.4 can be carried over. Then theorem 4.4 holds with-
out the assumption L > Lf . The assumptions 1/L > s0 has to be replaced by (lim supLk)−1 >
s0. This is satisfied if s0 = 0, which is true by Theorem 3.6 if one of (B3.b), (B3.c) is valid.

5 Applications of the proximal gradient method

5.1 Optimal control with Lp control cost, p ∈ (0, 1)
In [16], the discussed proximal method was analyzed and applied to optimal control problems
with L0 control cost, i.e., g(u) := α

2u
2 + |u|0. In this section, we discuss the problem with

g(u) := α
2u

2 + β|u|p + δ[−b,b], where p ∈ (0, 1) and b ∈ (0,∞] and consider

min
u∈L2(Ω)

f(u) + α

2 ‖u‖L2(Ω) + β

∫
Ω
|u(x)|p dx (5.1)

s.t.
u ∈ Uad := {u ∈ L2(Ω) : |u(x)| ≤ b a.e. in Ω}

with α ≥ 0, β > 0.
To find a solution to (5.1)with Algorithm 4.1, the subproblem, interpreted in terms of (4.7)

with g̃ := |u|p + δ[−b,b],

min
u∈Uad

f(uk) +∇f(uk)(u− uk) + L

2 ‖u− uk‖
2
L2(Ω) + α

2 ‖u‖L2(Ω) + β

∫
Ω
|u(x)|p dx
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has to be solved in every iteration. According to Theorem 4.2, uk+1 is a solution to (5.1) if and
only if

uk+1(x) ∈ prox β
L+α g̃

( 1
L+ α

(Luk(x)−∇f(uk)(x))
)

f.a.a. x ∈ Ω.

Due to Theorem 3.6 it holds uk+1(x) = 0 or |uk+1(x)| ≥ u0 for all k. The particular choice of g
allows to compute the constant u0 explicitly by solving min

u6=0
u
2 + sg(u)

2 and is given by

u0

(
β

α+ L

)
= min

(
b,

(
α+ L

2β(1− p)

) 1
p−2
)

as a consequence of Lemma 3.5.

Figure 1: The mapping proxsg(q) for parameters (s, b, p) = (0.5, 2, 0.5) (left) and (s, b, p) =
(3, 2, 0.3) (right) with g̃(u) := |u|p + δ[−b,b].

We recall the definition of the set-valued map G : R→ R, which reads in this case

u ∈ G(z) := GL,α,s :⇐⇒ u = arg min
|v|≤b

−zv + L

2 (u− v)2 + α

2 v
2 + s|v|p.

Note that g satisfies assumptions (B5) and (B6) due to its structure. This allows to give an
equivalent but more precise characterization of G as Lemma 4.23 applies to uk+1(x) on Ik+1.

Corollary 5.1. Let u ≥ u0( β
L+α). Then u ∈ G(zk(x))⇐⇒ u is a stationary point of

min
u:|u|≤b

−zk(x)u+ α

2 u
2 + β|u|p

for almost all x ∈ Ik+1.

A visualization of G is given in Figure 2 below.
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Figure 2: The union (G0 ∪ G+ ∪ G−)(q) and the convexified map (G0 ∪ convG+ ∪ convG−)(q)
(filled area) (right) for parameters (L,α, s, b) = (0.1, 0.01, 0.01, 2) and g̃(u) := |u|0.8 + δ[−b,b].

With a suitable choice of parameters, we can apply Theorem 4.25 to the Lp problem to
obtain a strong convergent subsequence.

Corollary 5.2. Let α > 0 and (uk) a sequence of iterates. Furthermore, assume L ≤ (2
p − 1)α.

Then the assumptions of Theorem 4.25 are satisfied. If in addition ∇f is completely continuous
from L2(Ω) to L2(Ω), then every weak sequential limit point u∗ ∈ L2(Ω) is a strong sequential
limit point in L1(Ω).

Proof. Let k ∈ N. It holds |uk+1(x)| ≥ u0 with u0 := min
(
b,
(

α+L
2β(1−p)

) 1
p−2
)

on Ik+1. A short
calculation yields that the assumptions on the parameters imply(

α+ L

2β(1− p)

) 1
p−2
≥
(

α

βp(1− p)

) 1
p−2

=: uI .

Here, uI is the positive point of inflection of (5.1) and it holds that

h
q, β
α

(u) = −qu+ 1
2u

2 + β

α
|u|p

is convex for all q ∈ R on [uI ,∞) and (−∞, uI), respectively, which corresponds to Assumption
(B6). The claim now follows by Lemma 4.24 and Theorem 4.25.

5.2 Optimal control with discrete-valued controls

Let us investigate the optimization problem with optimal control taking discrete values. That
is, we choose g(u) as the indicator function of integers, i.e.,

g(u) := δZ(u) :=
{

0 if u ∈ Z,
∞ else

.

The problem now reads
min

u∈L2(Ω)
f(u) +

∫
Ω
δZ(u(x)) dx. (5.2)

Note, this choice satisfies Assumption (B3.c). Applying Algorithm 4.1, the subproblem to solve
is given by
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min
u∈L2(Ω)

f(uk) +∇f(uk)(u− uk) + L

2 ‖u− uk‖
2
L2(Ω) +

∫
Ω
δZ(u(x)) dx (5.3)

and can be solved pointwise and explicitly. The analysis carried out in Chapter 4 is applicable,
however, the special choice of g comes along with the following desirable result.

Lemma 5.3. Let uk, uk+1 ∈ Uad be consecutive iterates of Algorithm 4.1. Then

‖uk+1 − uk‖pLp(Ω) ≥ ‖uk+1 − uk‖L1(Ω)

holds for all p ∈ [1,∞).

Proof. The claim follows directly, since either |uk+1(x)− uk(x)| = 0 or |uk+1(x)− uk(x)| ≥ 1 as
the iterates are integer-valued in almost every point.

Lemma 5.3 implies strong convergence of iterates (uk) in L1(Ω).

Theorem 5.4. Let (uk) be a sequence generated by Algorithm 4.1 with weak limit point u∗.
Then uk → u∗ in L1(Ω).

Proof. As in the proof of Theorem 4.4, we get
∞∑
k=1
‖uk+1 − uk‖2L2(Ω) <∞

and therefore by Lemma 5.3
∞∑
k=1
‖uk+1 − uk‖L1(Ω) ≤

∞∑
k=1
‖uk+1 − uk‖2L2(Ω) <∞

Thus, (uk) is a Cauchy sequence in L1(Ω) and therefore convergent in L1(Ω) and it holds
uk → u∗.

6 Numerical experiments
In this section we finally apply the proximal gradient method to optimal control problems of
type (P) and carry out numerical experiments for cost functionals with different g.

Let in the following denote fl the reduced tracking-type functional

fl(u) := ‖Slu− yd‖2L2(Ω),

where Sl is the weak solution operator of the linear Poisson equation

−∆y = u in Ω, y = 0 on ∂Ω. (6.1)

Further we define the nonlinear solution operator Ssl of the semilinear equation

−∆y + d(y) = u in Ω, y = 0 on ∂Ω (6.2)

where d(x, y) : Ω×R→ R is a C2 Carathéodory Function with respect to y with d(·, 0) in Lp(Ω),
n < p, satisfying

1. ∂d
∂y

(x, y) ≥ 0 for almost all x ∈ Ω,
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2. ∀M > 0 ∃CM > 0 s.t.
∣∣∣∣∂d(x, y)

∂y

∣∣∣∣+
∣∣∣∣∣∂2d(x, y)

∂y2

∣∣∣∣∣ ≤ CM for almost all x ∈ Ω and |y| ≤M .

Then the equation is uniquely solvable, we refer to e.g., [8, 9] In addition, we define

fsl := ‖Ssl(u)− yd‖2L2(Ω).

Furthermore, we choose Ω := (0, 1)2 to be the underlying domain in all following examples.
To solve the partial differential equation, the domain is divided into a regular triangular mesh
and the PDE (6.1),(6.2) is discretized with piecewise linear finite elements. The controls are
discretized with piecewise constant functions on the triangles. The finite-element matrices were
created with FEnicCS [12]. If not mentioned otherwise, the meshsize is approximately h =√

2/160 ≈ 0.00884. In each iteration a suitable constant Lk > 0 needs to be determined, that
satisfies the decrease condition

η‖uk+1 − uk‖2L2(Ω) ≤ (f(uk) + j(uk))− (f(uk+1 + j(uk+1)), (6.3)

see (4.12). Note, L−1
k can be seen as a stepsize. In [16] several stepsize selection strategies

are proposed. In our tests, we use a simple Armijo-like backtracking line search method (BT).
That is, having an initial L0 > 0 and a widening factor θ ∈ (0, 1), determine Lk as the smallest
accepted number of form L0θ−i, i = 0, 1, .... This method ensures a decrease in the objective
values along the iterates, but it turns out to be very slow for large L0, as the corresponding
stepsize L−1

k gets smaller. For all our tests we choose

η = 10−4, θ = 0.5.

The stopping criterion is as follows:

If |f(uk+1) + g(uk+1)− (f(uk) + g(uk)| ≤ 10−12:
STOP.

First, we consider control problems with Lp control cost, which were investigated in chapter
5.1, i.e., g(u) := |u|p + δ[−b,b] with p ∈ (0, 1).

Example 1 Let g(u) := |u|p + δ[−b,b] for p ∈ (0, 1) and find

min
u∈L2(Ω)

fl(u) + ‖u‖2L2(Ω) + β

∫
Ω
g(u(x)) dx.

Setting Uad := {L2(Ω) : |u(x)| ≤ b a.e. on Ω} the problem is equivalent to

min
u∈Uad

fl(u) + ‖u‖2L2(Ω) + β

∫
Ω
|u(x)|p dx.

The first example is taken from [16], where the proximal gradient algorithm was investigated
for (sparse) optimal control problems with L0(Ω) control cost. Since

∫
Ω |u|pdx →

∫
Ω |u|0dx as

p↘ 0, we expect similar solutions. We choose the same problem data as in [11, 16]. That is, if
not mentioned otherwise,

yd(x, y) = 10x sin(5x) cos(7y)

and α = 0.01, β = 0.01, b = 4.
A computed solution for p = 0.8 is shown in Figure 3.
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Figure 3: Solution u

Convergence for decreasing p−values. In the following we consider solutions for different
values of p. We use the same data and discretization as above. We set L0 = 0.0001. In Table

p J(u∗) Np(u∗) no. pde
0.5 5.3831 0.6711 15
0.3 5.3819 0.5725 15
0.1 5.3808 0.4841 15
0.01 5.3804 0.4482 15
0.001 5.3804 0.4448 15
0 5.38034 0.4445 15

Table 1: Decreasing values of p

1 it can be seen that J(u∗) and
∫

Ω
|u∗|pdx converge for decreasing values of p. The last row in

Table 1 shows the result of applying the iterative hard-thresholding algorithm IHT-LS from [16]
to the problem with p = 0, which is in agreement with our expectation. In the implementation
we used a meshsize of h =

√
2/500 ≈ 0.0028.

Discretization. Next, we solved the problem on different levels of discretization to investigate
the influence. As can be seen in Table 2 the algorithm stays robust across different mesh sizes.

h J(u∗) Np(u∗) no. pde
0.071 5.2239 0.6371 13
0.035 5.3429 0.6581 15
0.0177 5.3732 0.6686 15
0.00884 5.3808 0.6704 15
0.00442 5.3827 0.6710 15
0.00221 5.3832 0.6711 15

Table 2: influence of meshsize
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Convergence in the case L > (2/p− 1)α. So far, in every experiment the assumption on
the parameters was naturally satisfied, such that strong convergence of iterates can be proven
according to Theorem 5.2. The numerical results confirmed the theory. We will now investigate
the case where the assumption is not satisfied, i.e., we choose parameters such that L > (2/p−
1)α. In the following we present the result for the problem parameters

α = 0.001, p = 0.9, L0 = 0.005.

Furthermore, we set b = 6. In our computations the algorithm needed very long to reach the
stopping criteria |J(uk+1)− J(uk)| ≤ 10−12 as can be seen in Table 3. This might be due to the
parameter choice and the step-size strategy. For smaller mesh-sizes more iterations are needed.

h J(u∗) Np(u∗) no. pde
0.00884 5.3567 1.1246 395
0.00442 5.3567 1.1247 601
0.00221 5.3567 1.1253 821

Table 3: performance for bad choice of parameters across different mesh-sizes

Recall, the problem in the analysis that comes with this choice of parameters is that the map
G in Lemma 4.7 is not necessarily single-valued anymore on the set of points where an iterate is
not vanishing, see also Figure 2. Let uI := uI(β/α) > 0 denote the constant from Assumption
(B6) and define the set

Ωm,k := {x ∈ Ω : 0 < |uk(x)| < uI}.
Then Ωm,k is the set of points for which the crucial assumption in Lemma 4.24 that implies
single-valuedness of G \ {0} is not satisfied. In our numerical experiments, however, we made
the observation that the measure of the set Ωm,k is decreasing as k →∞, see Figure 4. Across
different mesh-sizes h, the measure decreases and tends to zero along the iterations.

Figure 4: Measure of Ωm,k at iteration k for different discretization levels

Unfortunately, we were not able to prove such a behavior in the analysis and have no theo-
retical evidence whether this can be expected in general. But assuming

|Ωm,k| → 0

based on our numerical result, strong convergence of the sequence (uk) can be concluded similar
to Theorem 4.25.
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Example 2 Let us now consider the semilinear problem

min
u∈Uad

fsl(u) + ‖u‖2L2(Ω) + β

∫
Ω
g(u(x)) dx

with g(u) = |u|p, p ∈ (0, 1). This example can be found in [9] for semilinear control problems
with L1-cost. Here, fsl is given by the standard tracking type functional u 7→ ‖yu − yd‖2L2(Ω),
where yu is the solution of the semilinear elliptic state equation

−∆y + y3 = u in Ω, y = 0 on ∂Ω.

The data is given by α = 0.002, β = 0.03, b = 12 and yd = 4 sin(2πx1) sin(πx2)ex1 . We use the
parameter L0 = 0.001.

Figure 5: solution u of the semilinear optimal control problem with g(u) := |u|0.5.

We made similar observations as in the linear case concerning the influence of discretization
and different values of p. Also the behavior of the algorithm in case of a bad choice of parameters
is as before (see Example 1).

Example 3 In this last test, we consider an optimal control problem with discrete-valued
controls. That is, we choose

g(u) := δZ(u),

where δM denotes the indicator function of a set M , i.e., δM (u) :=
{

0 if u ∈M,

∞ else
. Here, the

subproblem in Algorithm 4.1 can be solved pointwise and explicitly. We adapt again the setting
from Example 1. In Figure 6, a solution plot of the optimal control is displayed. We used exactly
the same problem data as before in Example 1, but set b = 2 and L0 = 0.001. Again, we find
the algorithm is robust with respect to the discretization.
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Figure 6: optimal control with discrete values
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