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Abstract

In this article, we present an efficient descent method for locally Lipschitz continuous
multiobjective optimization problems (MOPs). The method is realized by combining a the-
oretical result regarding the computation of descent directions for nonsmooth MOPs with
a practical method to approximate the subdifferentials of the objective functions. We show
convergence to points which satisfy a necessary condition for Pareto optimality. Using a set
of test problems, we compare our method to the multiobjective proximal bundle method by
Mäkelä. The results indicate that our method is competitive while being easier to imple-
ment. While the number of objective function evaluations is larger, the overall number of
subgradient evaluations is lower. Finally, we show that our method can be combined with a
subdivision algorithm to compute entire Pareto sets of nonsmooth MOPs.

1 Introduction

In many scenarios in real life, the problem of optimizing multiple objectives at the same time
arises. In engineering for example, one often wants to steer a physical system as close as possible
to a desired state while minimizing the required energy cost at the same time. These problems
are called multiobjective optimization problems (MOPs) and generally do not possess a single
optimal solution. Instead, the solution is the set of all optimal compromises, the so-called
Pareto set containing all Pareto optimal points. Due to this, the numerical computation of
solutions to MOPs is more challenging than to single-objective problems. On top of that, there
are numerous applications where the objectives are nonsmooth, for example contact problems in
mechanics, which adds to the difficulty. In this article, we will address both difficulties combined
by considering nonsmooth MOPs.

When addressing the above-mentioned difficulties, i.e., multiple objectives and nonsmooth-
ness, separately, there exists a large number solution methods. For smooth MOPs, the most
popular methods include evolutionary [9, 10] and scalarization methods [27]. Additionally, some
methods from single-objective optimization have been generalized, like gradient descent methods
[13, 30, 14] and Newton’s method [12]. For the nonsmooth single-objective case, commonly used
methods include subgradient methods [31], bundle methods [20] and gradient sampling methods
[3]. More recently, in [22], a generalization of the steepest descent method to the nonsmooth
case was proposed, which is based on an efficient approximation of the subdifferential of the ob-
jective function. For nonsmooth multiobjective optimization, the literature is a lot more scarce.
Since classical scalarization approaches do not require the existence of gradients, they can still
be used. In [1], a generalization of the steepest descent method was proposed for the case when

1



the full subdifferentials of the objectives are known, which is rarely the case in practice. In [2, 7],
the subgradient method was generalized to the multiobjective case, but both articles report that
their method is not suitable for real life application due to inefficiency. In [25] (see also [18, 23]),
a multiobjective version of the proximal bundle method was proposed, which currently appears
to be the most efficient solver.

In this article, we develop a new descent method for locally Lipschitz continuous MOPs by
combining the descent direction from [1] with the approximation of the subdifferentials from
[22]. In [1] it was shown that the element with the smallest norm in the negative convex
hull of the subdifferentials of the objective functions is a common descent direction for all
objectives. In [22], the subdifferential of the objective function was approximated by starting
with a single subgradient and then systematically computing new subgradients until the element
with the smallest norm in the convex hull of all subgradients is a direction of (sufficient) descent.
Combining both approaches yields a descent direction for locally Lipschitz MOPs and together
with an Armijo step length, we obtain a descent method. We show convergence to points which
satisfy a necessary condition for Pareto optimality. Using a set of test problems, we compare
the performance of our method to the multiobjective proximal bundle method from [25]. The
results indicate that our method is inferior in terms of function evaluations, but superior in
terms of subgradient evaluations.

The structure of this article is as follows: we start with a short introduction to nonsmooth
and multiobjective optimization in Section 2. In Section 3, we derive our descent method by
replacing the Clarke subdifferential for the computation of the descent direction by the Goldstein
ε-subdifferential and then showing how the latter can be efficiently approximated. In Section 4,
we apply our descent method to numerical examples. We first visualize and discuss the typical
behavior of our method before comparing it to the multiobjective proximal bundle method from
[25] using a set of test problems. Afterwards, we show how our method can be combined with
a subdivision algorithm to approximate entire Pareto sets. Finally, in Section 5, we draw a
conclusion and discuss possible future work.

2 Nonsmooth multiobjective optimization

We consider the nonsmooth multiobjective optimization problem

min
x∈Rn

f(x) = min
x∈Rn

f1(x)
...

fk(x)

 , (MOP)

where f : Rn → Rk is the objective vector with components fi : Rn → R, i ∈ {1, ..., k}, called
objective functions. We assume the objective functions to be locally Lipschitz continuous, i.e.,
for each i ∈ {1, ..., k} and x ∈ Rn, there is some Li > 0 and ε > 0 with

|fi(y)− fi(z)| ≤ Li‖y − z‖ ∀y, z ∈ {y ∈ Rn : ‖x− y‖ < ε},

where ‖ · ‖ denotes the Euclidean norm in Rn. Since (MOP) is an optimization problem with
a vector-valued objective function, the classical concept of optimality from the scalar case can
not directly be conveyed. Instead, we are looking for the Pareto set, which is defined in the
following way:

Definition 2.1. A point x ∈ Rn is called Pareto optimal, if there is no y ∈ Rn such that

fi(y) ≤ fi(x) ∀i ∈ {1, ..., k},
fj(y) < fj(x) for some j ∈ {1, ..., k}.

The set of all Pareto optimal points is the Pareto set.
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In practice, to check if a given point is Pareto optimal, we need optimality conditions. In
the smooth case, there are the well-known KKT conditions (cf. [27]), which are based on the
gradients of the objective functions. In case the objective functions are merely locally Lipschitz,
the KKT conditions can be generalized using the concept of subdifferentials. In the following,
we will recall the required definitions and results from nonsmooth analysis. For a more detailed
introduction, we refer to [6].

Definition 2.2. Let Ωi ⊆ Rn be the set of points where fi is not differentiable. Then

∂fi(x) = conv({ξ ∈ Rn :∃(xj)j ∈ Rn \ Ωi with xj → x and

∇fi(xj)→ ξ for j →∞})

is the (Clarke) subdifferential of fi in x. ξ ∈ ∂fi(x) is a subgradient.

It is easy to see that if fi is continuously differentiable, then the Clarke subdifferential is the
set containing only the gradient of fi. We will later use the following technical result on some
properties of the Clarke subdifferential (cf. [6], Prop. 2.1.2).

Lemma 2.3. ∂fi(x) is nonempty, convex and compact.

Using the subdifferential, we can state a necessary optimality condition for locally Lipschitz
MOPs (cf. [24], Thm. 12).

Theorem 2.4. Let x ∈ Rn be Pareto optimal. Then

0 ∈ conv

(
k⋃
i=1

∂fi(x)

)
. (1)

In the smooth case, (1) reduces to the classical multiobjective KKT conditions. Note that
in contrast to the smooth case, the optimality condition (1) is numerically challenging to work
with, as subdifferentials are difficult to compute. Thus, in numerical methods, (1) is only used
implicitly.

The method we are presenting in this paper is a descent method, which means that, starting
from a point x1 ∈ Rn, we want to generate a sequence (xj)j ∈ Rn in which each point is an
improvement over the previous point. This is done by computing directions vj ∈ Rn and step
lengths tj ∈ R>0 such that xj+1 = xj + tjvj and

fi(xj+1) < fi(xj) ∀j ∈ N, i ∈ {1, ..., k}.

For the computation of vj , we recall the following basic result from convex analysis that forms
the theoretical foundation for descent methods in the presence of multiple (sub)gradients. Let
‖.‖ be the Euclidean norm in Rn.

Theorem 2.5. Let W ⊆ Rn be convex and compact and

v̄ := arg min
ξ∈−W

‖ξ‖2. (2)

Then either v̄ 6= 0 and

〈v̄, ξ〉 ≤ −‖v̄‖2 < 0 ∀ξ ∈W, (3)

or v̄ = 0 and there is no v ∈ Rn with 〈v, ξ〉 < 0 for all ξ ∈W .
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Proof. Since v̄ is the projection of the origin onto the closed and convex set −W , we have

0 ≤ 〈−ξ − v̄, v̄ − 0〉 = −〈v̄, ξ〉 − ‖v̄‖2

⇔ 〈v̄, ξ〉 ≤ −‖v̄‖2

for all ξ ∈W (cf. [4], Lem.). In particular, if v̄ 6= 0 then 〈v̄, ξ〉 ≤ −‖v̄‖2 < 0.
Conversely, v̄ = 0 implies 0 ∈ W , so in this case there can not be any v ∈ Rn with 〈v, ξ〉 < 0

for all ξ ∈W .

Roughly speaking, Theorem 2.5 states that the element of minimal norm in the convex and
compact set −W is directionally opposed to all elements of W . To be more precise, v̄ is contained
in the intersection of all half-spaces induced by elements of −W . In the context of optimization,
this result has several applications:

(i) In the smooth, single-objective case, W = {∇f(x)} trivially yields the classical steepest
descent method.

(ii) In the smooth, multiobjective case, W = conv({∇f1(x), ...,∇fk(x)}) yields the descent
direction from [13] (after dualization) and [30].

(iii) In the nonsmooth, single-objective case, W = ∂f(x) yields the descent direction from [6],
Prop. 6.2.4.

(iv) In the nonsmooth, multiobjective case, W = conv
(⋃k

i=1 ∂fi(x)
)

yields the descent direc-

tion from [1].

In (i) and (ii), the solution of problem (2) is straightforward, since W is a convex polytope
with the gradients as vertices. In (iii), the solution of (2) is non-trivial due to the difficulty
of computing the subdifferential. In subgradient methods [31], the solution is approximated
by using a single subgradient instead of the entire subdifferential. As a result, it can not be
guaranteed that the solution is a descent direction and in particular, (2) can not be used as
a stopping criterion. In gradient sampling methods [3], the subdifferential is approximated by
the convex hull of gradients of the objective function in randomly sampled points around the
current point. Due to the randomness, it can not be guaranteed that the resulting direction
yields sufficient descent. Additionally, a check for differentiability of the objective is required,
which can pose a problem [17]. In (iv), the solution of (2) gets even more complicated due to
the presence of multiple subdifferentials. So far, the only methods that deal with (2) in this case
are multiobjective versions of the subgradient method [2, 7], which were reported unsuitable for
real life applications.

In the following section, we will describe a new way to compute descent directions for nons-
mooth MOPs by systematically computing an approximation of conv

(
∪ki=1∂fi(x)

)
that is suffi-

cient to obtain a ”good enough” descent direction from (2).

3 Descent method for nonsmooth MOPs

In this section, we will present a method to compute descent directions of nonsmooth MOPs
that generalizes the method from [22] to the multiobjective case. As described in the previous
section, when computing descent directions via Theorem 2.5, one has the problem of having to
compute subdifferentials. Since these are difficult to come by in practice, we will instead replace
W in Theorem 2.5 by an approximation of conv

(
∪ki=1∂fi(x)

)
such that the resulting direction is

guaranteed to have sufficient descent. To this end, we will first replace the Clarke subdifferential
by the so-called ε-subdifferential, and then take a finite approximation of the latter.
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3.1 The epsilon-subdifferential

By definition, ∂fi(x) is the convex hull of the limits of the gradient of fi in all sequences near
x that converge to x. Thus, if we evaluate ∇fi in a number of points close to x (where it is
defined) and take the convex hull, we expect the resulting set to be an approximation of ∂fi(x).
To formalize this, we introduce the following definition [16, 21].

Definition 3.1. Let ε ≥ 0, x ∈ Rn and Bε(x) := {y ∈ Rn : ‖x− y‖ ≤ ε}. Then

∂εfi(x) := conv

 ⋃
y∈Bε(x)

∂fi(y)


is the (Goldstein) ε-subdifferential of fi in x. ξ ∈ ∂εfi(x) is an ε-subgradient.

Note that ∂0fi(x) = ∂fi(x) and ∂fi(x) ⊆ ∂εfi(x). For ε ≥ 0 we define for the multiobjective
setting

Fε(x) := conv

(
k⋃
i=1

∂εfi(x)

)
.

To be able to choose W = Fε(x) in Theorem 2.5, we first need to establish some properties of
Fε(x).

Lemma 3.2. ∂εfi(x) is nonempty, convex and compact. In particular, the same holds for Fε(x).

Proof. For ∂εfi(x), this was shown in [16], Prop. 2.3. For Fε(x), it then follows directly from
the definition.

We immediately get the following corollary from Theorems 2.4 and 2.5.

Corollary 3.3. Let ε ≥ 0.

a) If x is Pareto optimal, then

0 ∈ Fε(x). (4)

b) Let x ∈ Rn and

v̄ := arg min
ξ∈−Fε(x)

‖ξ‖2. (5)

Then either v̄ 6= 0 and

〈v̄, ξ〉 ≤ −‖v̄‖2 < 0 ∀ξ ∈ Fε(x), (6)

or v̄ = 0 and there is no v ∈ Rn with 〈v, ξ〉 < 0 for all ξ ∈ Fε(x).

The previous corollary states that when working with the ε-subdifferential instead of the
Clarke subdifferential, we still have a necessary optimality condition and a way to compute
descent directions, although the optimality conditions are weaker and the descent direction has
a less strong descent. This is illustrated in the following example.
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Example 3.4. Consider the locally Lipschitz function

f : R2 → R2, x 7→
(

(x1 − 1)2 + (x2 − 1)2

x2
1 + |x2|

)
.

The set of nondifferentiable points of f is R× {0}. For ε > 0 and x ∈ R2 we have

∇f1(x) =

(
2(x1 − 1)
2(x2 − 1)

)
and ∂εf1(x) = 2Bε(x)−

(
2
2

)
.

For x ∈ R× {0} we have

∂f2(x) = {2x1} × [−1, 1] and ∂εf2(x) = {2x1 + [−2ε, 2ε]} × [−1, 1].

Figure 1 shows the Clarke subdifferential (a), the ε-subdifferential (b) for ε = 0.2 and the
corresponding sets Fε(x) for x = (1.5, 0)>. Additionally, the corresponding solutions of (5) are

(a) (b)

Figure 1: Clarke subdifferentials (a), ε-subdifferentials (b) for ε = 0.2 and the corresponding
sets Fε(x) for x = (1.5, 0)> in Example 3.4.

shown. In this case, the predicted descent −‖v̄‖2 (cf. (3)) is approximately −3.7692 in (a) and
−2.4433 in (b).

Figure 2 shows the same scenario for x = (0.5, 0)>. Here, the Clarke subdifferential still
yields a descent, while v̄ = 0 for the ε-subdifferential. In other words, x satisfies the necessary
optimality condition (4) but not (1).

The following lemma shows that for the direction from (5), there is a lower bound for a step
size up to which we have guaranteed descent in each objective function fi.

Lemma 3.5. Let ε ≥ 0 and v̄ be the solution of (5). Then

fi(x+ tv̄) ≤ fi(x)− t‖v̄‖2 ∀t ≤ ε

‖v̄‖
.

Proof. Let t ≤ ε
‖v̄‖ . Since fi is locally Lipschitz continuous on Rn, it is in particular Lipschitz

continuous on an open set containing x + [0, t]v̄. By applying the mean value theorem (cf. [6],
Thm. 2.3.7), we obtain

fi(x+ tv̄)− fi(x) ∈ 〈∂fi(x+ rv̄), tv̄〉
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(a) (b)

Figure 2: Clarke subdifferentials (a), ε-subdifferentials (b) for ε = 0.2 and the corresponding
sets Fε(x) for x = (0.5, 0)> in Example 3.4.

for some r ∈ (0, t). Since ‖x− (x+ rv̄)‖ = r‖v̄‖ < ε we have ∂fi(x+ rv̄) ⊆ ∂εfi(x). This means
that there is some ξ ∈ ∂εfi(x) such that

fi(x+ tv̄)− fi(x) = t〈ξ, v̄〉.

Combined with (6) we obtain

fi(x+ tv̄)− fi(x) ≤ −t‖v̄‖2

⇔ fi(x+ tv̄) ≤ fi(x)− t‖v̄‖2.

In the following, we will describe how we can obtain a good approximation of (5) without
requiring full knowledge of the ε-subdifferentials.

3.2 Efficient computation of descent directions

In this part, we will describe how the solution of (5) can be approximated when only a single
subgradient can be computed at every x ∈ Rn. Similar to the gradient sampling approach,
the idea behind our method is to replace Fε(x) in (5) by the convex hull of a finite number of
ε-subgradients ξ1, ..., ξm ∈ Fε(x), m ∈ N. Since it is impossible to know a priori how many and
which ε-subgradients are required to obtain a good descent direction, we solve (5) multiple times
in an iterative approach to enrich our approximation until a satisfying direction has been found.
To this end, we have to specify how to enrich our current approximation conv({ξ1, ..., ξm}) and
how to characterize an acceptable descent direction.

Let W = {ξ1, ..., ξm} ⊆ Fε(x) and

ṽ := arg min
v∈− conv(W )

‖v‖2. (7)

Let c ∈ (0, 1). Motivated by Lemma 3.5, we regard ṽ as an acceptable descent direction, if

fi

(
x+

ε

‖ṽ‖
ṽ

)
≤ fi(x)− cε‖ṽ‖ ∀i ∈ {1, ..., k}. (8)
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If the set I ⊆ {1, ..., k} for which (8) is violated is non-empty then we have to find a new ε-
subgradient ξ′ ∈ Fε(x) such that W ∪{ξ′} yields a better descent direction. Intuitively, (8) being
violated means that the local behavior of fi, i ∈ I, in x in the direction ṽ is not sufficiently
captured in W . Thus, for each i ∈ I, we expect that there exists some t′ ∈ (0, ε

‖ṽ‖ ] such that

ξ′ ∈ ∂fi(x+ t′ṽ) improves the approximation of Fε(x). This is proven in the following lemma.

Lemma 3.6. Let c ∈ (0, 1), W = {ξ1, ..., ξm} ⊆ Fε(x) and ṽ be the solution of (7). If

fi

(
x+

ε

‖ṽ‖
ṽ

)
> fi(x)− cε‖ṽ‖,

then there is some t′ ∈ (0, ε
‖ṽ‖ ] and ξ′ ∈ ∂fi(x+ t′ṽ) such that

〈ṽ, ξ′〉 > −c‖ṽ‖2. (9)

In particular, ξ′ ∈ Fε(x) \ conv(W ).

Proof. Assume that for all t′ ∈ (0, ε
‖ṽ‖ ] and ξ′ ∈ ∂fi(x+ t′ṽ) we have

〈ṽ, ξ′〉 ≤ −c‖ṽ‖2. (10)

By applying the mean value theorem as in Lemma 3.5, we obtain

fi

(
x+

ε

‖ṽ‖
ṽ

)
− fi(x) ∈ 〈∂fi(x+ rṽ),

ε

‖ṽ‖
ṽ〉

for some r ∈ (0, ε
‖ṽ‖). This means that there is some ξ′ ∈ ∂fi(x+ rṽ) such that

fi

(
x+

ε

‖ṽ‖
ṽ

)
− fi(x) = 〈ξ′, ε

‖ṽ‖
ṽ〉 =

ε

‖ṽ‖
〈ξ′, ṽ〉.

By (10) it follows that

fi

(
x+

ε

‖ṽ‖
ṽ

)
− fi(x) ≤ −cε‖ṽ‖

⇔ fi

(
x+

ε

‖ṽ‖
ṽ

)
≤ fi(x)− cε‖ṽ‖,

which is a contradiction. In particular, (3) yields ξ′ ∈ Fε(x) \ conv(W ).

The following example visualizes the previous lemma.

Example 3.7. Consider f as in Example 3.4, ε = 0.2 and x = (0.75, 0)>. The dashed lines in
Figure 3 show the ε-subdifferentials, Fε(x) and the resulting descent direction (cf. Figure 1 and
2). Let y = (0.94,−0.02)>. Then ‖x− y‖ ≈ 0.191 ≤ ε, so y ∈ Bε(x) and

∂εf1(x) ⊇ ∂f1(y) =

{(
−0.12
−2.04

)}
=: {ξ1},

∂εf2(x) ⊇ ∂f2(y) =

{(
1.88
−1

)}
=: {ξ2}.

Let W := {ξ1, ξ2} and conv(W ) be the approximation of Fε(x), shown as the solid line in Figure
3(a). Let ṽ be the solution of (7) for this W and choose c = 0.25. Checking (8), we have

f2

(
x+

ε

‖ṽ‖
ṽ

)
≈ 0.6101 > 0.4748 ≈ f2(x)− cε‖ṽ‖.
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(a) (b)

Figure 3: Approximations of Fε(x) for ε = 0.2 and x = (0.75, 0)> in Example 3.7. Fε(x) is
approximated by conv({ξ1, ξ2}) in (a) and by conv({ξ1, ξ2, ξ

′}) in (b).

By Lemma 3.6, this means that there is some t′ ∈ (0, ε
‖ṽ‖ ] and ξ′ ∈ ∂f2(x+ t′ṽ) such that

〈ṽ, ξ′〉 > −c‖ṽ‖2.

In this case, we can take for example t′ = 1
2

ε
‖ṽ‖ , resulting in

∂f2(x+ t′v) ≈
{(

1.4077
1

)}
=: {ξ′},

〈ṽ, ξ′〉 ≈ 0.4172 > −0.7696 ≈ −c‖ṽ‖2.

Figure 3(b) shows the improved approximation W ∪ {ξ′} and the resulting descent direction ṽ.
By checking (8) for this new descent direction, we see that ṽ is acceptable. (Note that in general,
a single improvement step like this will not be sufficient to reach an acceptable direction.)

Note that Lemma 3.6 only shows the existence of t′ and ξ′ without stating a way how to
actually compute them. To this end, let i be the index of an objective function for which (8) is
not satisfied, define

hi : R→ R, t 7→ fi(x+ tṽ)− fi(x) + ct‖ṽ‖2 (11)

(cf. [22]) and consider Algorithm 1. If fi is continuously differentiable around x, then (9) is
equivalent to h′i(t

′) > 0, i.e., hi being monotonically increasing around t′. Thus, the idea of
Algorithm 1 is to find some t such that hi is monotonically increasing around t, while checking
if (9) is satisfied for a subgradient ξ ∈ fi(x+ tṽ).

Although in the general setting, we can not guarantee that Algorithm 1 yields a subgradient
satisfying (9), we can at least show that after finitely many iterations, a factor t is found such
that ∂fi(x+ tṽ) contains a subgradient that satisfies (9).
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Algorithm 1 Compute new subgradient

Given: Current point x ∈ Rn, direction ṽ, tolerance ε, Armijo parameter c ∈ (0, 1).
1: Set a = 0, b = ε

‖ṽ‖ and t = a+b
2 .

2: Compute ξ′ ∈ ∂fi(x+ tṽ).
3: If 〈ṽ, ξ′〉 > −c‖ṽ‖2 then stop.
4: If hi(b) > hi(t) then set a = t. Otherwise set b = t.
5: Set t = a+b

2 and go to step 2.

Lemma 3.8. Let (tk)k be the sequence generated in Algorithm 1. If (tk)k is finite, then some
ξ′ was found such that (9) is satisfied. If (tk)k is infinite, then it converges to some t̄ ∈ [0, ε

‖ṽ‖ ]

such that there is some ξ′ ∈ ∂fi(x + t̄ṽ) which satisfies (9). Additionally, there is some N ∈ N
such that for all k > N there is some ξ′ ∈ ∂fi(x+ tkṽ) satisfying (9).

Proof. Let (tk)k be finite with last element t̄ ∈ (0, ε
‖ṽ‖). Then Algorithm 1 must have stopped

in step 3, i.e., some ξ′ ∈ ∂fi(x+ t̄ṽ) satisfying (9) was found.
Now let (tk)k be infinite. By construction, (tk)k is a Cauchy sequence in the compact set [0, ε

‖ṽ‖ ],

so it has to converge to some t̄ ∈ [0, ε
‖ṽ‖ ]. Additionally, since (8) is violated for the index i by

assumption, we have

hi(0) = 0 and hi

(
ε

‖ṽ‖

)
> 0.

Let (ak)k and (bk)k be the sequences corresponding to a and b in Algorithm 1 (at the start of
each iteration). Then hi(ak) < hi(bk) for all k ∈ N. Thus, by the mean value theorem, there
has to be some rk ∈ (ak, bk) such that

0 < hi(bk)− hi(ak) ∈ 〈∂hi(rk), bk − ak〉 = ∂hi(rk)(bk − ak).

In particular, limk→∞ rk = t̄ and since ak < bk, ∂hi(rk) ∩ R>0 6= ∅ for all k ∈ N. By upper
semicontinuity of ∂h there must be some θ ∈ ∂hi(t̄) with θ > 0. By the chain rule, we have

0 < θ ∈ ∂hi(t̄) ⊆ 〈ṽ, ∂fi(x+ t̄ṽ)〉+ c‖ṽ‖2. (12)

Thus, there must be some ξ′ ∈ ∂fi(x+ t̄ṽ) with

0 < 〈ṽ, ξ′〉+ c‖ṽ‖2

⇔ 〈ṽ, ξ′〉 > −c‖ṽ‖2.

By upper semicontinuity of ∂h it also follows that there is someN ∈ N such that ∂hi(tk)∩R>0 6= ∅
for all k > N . Applying the same argument as above completes the proof.

In the following remark, we will briefly discuss the implication of Lemma 3.8 for practical use
of Algorithm 1.

Remark 3.9. Let N ∈ N be as in Lemma 3.8.

a) Note that if k > N and h is differentiable in tk, then we have

0 < ∇hi(tk) = 〈ṽ,∇fi(x+ tkṽ)〉+ c‖ṽ‖2,

i.e., the stopping criterion in step 3 is satisfied. Thus, if Algorithm 1 generates an infinite
sequence, h must be nonsmooth in tk for all k > N . In particular, fi must be nonsmooth
in x+ tkṽ for all k > N .
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b) If f is regular (cf. [6], Def. 2.3.4), then equality holds when applying the chain rule to h
(cf. [6], Thm. 2.3.10), i.e.,

∂hi(tk) = 〈ṽ, ∂fi(x+ tkṽ)〉+ c‖ṽ‖2.

Thus, if Algorithm 1 generates an infinite sequence, then for all k > N there must be
both positive and negative elements in ∂hi(tk). By convexity of ∂hi(tk), this implies that
0 ∈ ∂hi(tk) for all k > N , i.e., h must have infinitely many (nonsmooth) stationary points
in [0, ε

‖ṽ‖ ].

Motivated by the previous remark, we will from now on assume that Algorithm 1 stops after
finitely many iterations and thus yields a new subgradient satisfying (9). We can use this
method of finding new subgradients to construct an algorithm that computes descent directions
of nonsmooth MOPs, namely Algorithm 2.

Algorithm 2 Compute descent direction

Given: Current point x ∈ Rn, tolerances ε, δ > 0, Armijo parameter c ∈ (0, 1).
1: Compute ξi1 ∈ ∂εfi(x) for all i ∈ {1, ..., k}. Set W1 = {ξ1

1 , ..., ξ
k
1} and l = 1.

2: Compute vl = arg minv∈− conv(Wl)
‖v‖2.

3: If ‖vl‖ ≤ δ then stop.
4: Find all objective functions for which there is insufficient descent:

Il =

{
j ∈ {1, ..., k} : fj

(
x+

ε

‖vl‖
vl

)
> fj(x)− cε‖vl‖

}
.

If Il = ∅ then stop.
5: For each j ∈ Il, compute t ∈ (0, ε

‖vl‖ ] and ξjl ∈ ∂fj(x+ tvl) such that

〈vl, ξjl 〉 > −c‖vl‖
2

via Algorithm 1.
6: Set Wl+1 = Wl ∪ {ξjl : j ∈ Il}, l = l + 1 and go to step 2.

The following theorem shows that Algorithm 2 stops after a finite number of iterations and
produces an acceptable descent direction (cf. (8)).

Theorem 3.10. Algorithm 2 terminates. In particular, if ṽ is the last element of (vl)l, then
either ‖ṽ‖ ≤ δ or ṽ is an acceptable descent direction, i.e.,

fi

(
x+

ε

‖ṽ‖
ṽ

)
≤ fi(x)− cε‖ṽ‖ ∀i ∈ {1, ..., k}.

Proof. Assume that Algorithm 2 does not terminate, i.e., (vl)l∈N is an infinite sequence. Let
l > 1 and j ∈ Il−1. Since ξjl−1 ∈Wl and −vl−1 ∈Wl−1 ⊆Wl we have

‖vl‖2 ≤ ‖ − vl−1 + s(ξjl−1 + vl−1)‖2

= ‖vl−1‖2 − 2s〈vl−1, ξ
j
l−1 + vl−1〉+ s2‖ξjl−1 + vl−1‖2

= ‖vl−1‖2 − 2s〈vl−1, ξ
j
l−1〉 − 2s‖vl−1‖2 + s2‖ξjl−1 + vl−1‖2 (13)

for all s ∈ [0, 1]. Since j ∈ Il−1 we must have

〈vl−1, ξ
j
l−1〉 > −c‖vl−1‖2 (14)
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by step 5. Let L be a common Lipschitz constant of all fi, i ∈ {1, ..., k}, on the closed ε-ball
Bε(x) around x. Then by [6], Prop. 2.1.2, and the definition of the ε-subdifferential, we must
have ‖ξ‖ ≤ L for all ξ ∈ Fε(x). So in particular,

‖ξjl−1 + vl−1‖ ≤ 2L. (15)

Combining (13) with (14) and (15) yields

‖vl‖2 < ‖vl−1‖2 − 2sc‖vl−1‖2 − 2s‖vl−1‖2 + 4s2L2

= ‖vl−1‖2 − 2s(c+ 1)‖vl−1‖2 + 4s2L2.

Let s := c+1
4L2 ‖vl−1‖2. Since c+ 1 ∈ (1, 2) and ‖vl−1‖ ≤ L we have s ∈ (0, 1). We obtain

‖vl‖2 < ‖vl−1‖2 − 2
(c+ 1)2

4L2
‖vl−1‖4 +

(c+ 1)2

4L2
‖vl−1‖4

=

(
1− (c+ 1)2

4L2
‖vl−1‖2

)
‖vl−1‖2.

Since Algorithm 2 did not terminate, it holds ‖vl−1‖ > δ. It follows that

‖vl‖2 <

(
1−

(
c+ 1

2L
δ

)2
)
‖vl−1‖2.

Let r = 1−
(
c+1
2L δ

)2
. Note that we have δ < ‖vl‖ ≤ L for all l ∈ N, so r ∈ (0, 1). Additionally, r

does not depend on l, so we have

‖vl‖2 < r‖vl−1‖2 < r2‖vl−1‖2 < ... < rl−1‖v1‖2 ≤ rl−1L2.

In particular, there is some l such that ‖vl‖ ≤ δ, which is a contradiction.

Remark 3.11. The proof of Theorem 3.10 shows that for convergence of Algorithm 2, it would
be sufficient to consider only a single j ∈ Ij in step 5. Similarly, for the initial approximation
W1, a single element from ∂εfi(x) for any i ∈ {1, ..., k} would be enough. A modification
of either step can potentially reduce the number of executions of step 5 (i.e., Algorithm 1) in
Algorithm 2 in case the ε-subdifferentials of multiple objective functions are similar. Nonetheless,
we will restrain the discussion in this article to Algorithm 2 as it is, since both modifications
also introduce a bias towards certain objective functions, which we want to avoid.

To highlight the strengths of Algorithm 2, we will consider an example where standard gradient
sampling approaches can fail to obtain a useful descent direction.

Example 3.12. For a, b ∈ R \ {0} consider the locally Lipschitz function

f : R2 → R2, x 7→
(

(x1 − 1)2 + (x2 − 1)2

|x2 − a|x1||+ bx2

)
.

The set of nondifferentiable points is

Ωf = ({0} × R) ∪ {(λ, a|λ|)> : λ ∈ R},

separating R2 into four smooth areas (cf. Figure 4(a)). For large a > 0, the two areas above
the graph of λ 7→ a|λ| become small, making it difficult to compute the subdifferential close to
(0, 0)>.
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Let a = 10, b = 0.5, ε = 10−3 and x = (10−4, 10−4)>. In this case, (0, 0)> is the minimal
point of f2 and

∂εf2(x) = conv

{(
−a
b− 1

)
,

(
a

b+ 1

)
,

(
a

b− 1

)
,

(
−a
b+ 1

)}
= conv

{(
−10
−0.5

)
,

(
10
1.5

)
,

(
10
−0.5

)
,

(
−10
1.5

)}
.

In particular, 0 ∈ ∂εf2(x), so the descent direction with the exact ε-subdifferentials from (5) is
zero. When applying Algorithm 2 in x, after two iterations we obtain

ṽ = v2 ≈ (0.118, 1.185) · 10−9,

i.e., ‖ṽ‖ ≈ 1.191 · 10−11. Thus, x is correctly identified as (potentially) Pareto optimal. The
final approximation W2 of Fε(x) is

W2 =
{
ξ1

1 , ξ
2
1 , ξ

2
2

}
=

{(
10
−0.5

)
,

(
−1.9998
−1.9998

)
,

(
−10
1.5

)}
.

The first two elements of W2 are the gradients of f1 and f2 in x from the first iteration of
Algorithm 2, and the last element is the gradient of f2 in x′ = x+ tv1 = (0.038, 0.596)> · 10−3 ∈
Bε(x) from the second iteration. The result is visualized in Figure 4.

(a) (b)

Figure 4: (a) The set of nondifferentiable points Ωf of f , the ball Bε(x) for the ε-subdifferential
and the point in which subgradients where computed for Algorithm 2 in Example 3.12. (b) The
approximation of Fε(x) in Algorithm 2.

Building on Algorithm 2, it is now straightforward to construct the descent method for locally
Lipschitz continuous MOPs given in Algorithm 3. In step 4, the classical Armijo backtracking
line search was used (cf. [13]) for the sake of simplicity. Note that it is well defined due to step
4 in Algorithm 2.

Since we introduced the two tolerances ε (for the ε-subdifferential) and δ (as a threshold for
when we consider ε-subgradients to be zero), we can not expect that Algorithm 3 computes points
which satisfy the optimality condition (1). This is why we introduce the following definition,
similar to the definition of ε-stationarity from [3].
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Algorithm 3 Nonsmooth descent method

Given: Initial point x1 ∈ Rn, tolerances ε, δ > 0, Armijo parameters c ∈ (0, 1), t0 > 0.
1: Set j = 1.
2: Compute a descent direction vj via Algorithm 2.
3: If ‖vj‖ ≤ δ then stop.
4: Compute

s̄ = inf({s ∈ N ∪ {0} : fi(xj + 2−st0vj) ≤ fi(xj)− 2−st0c‖vj‖2 ∀i ∈ {1, ..., k}})

and set t̄ = max({2−s̄t0, ε
‖vj‖}).

5: Set xj+1 = xj + t̄vj , j = j + 1 and go to step 2.

Definition 3.13. Let x ∈ Rn, ε > 0 and δ > 0. Then x is called (ε, δ)-critical, if

min
v∈−Fε(x̄)

‖v‖ ≤ δ.

It is easy to see that (ε, δ)-criticality is a necessary optimality condition for Pareto optimality,
but a weaker one than (1). The following theorem shows that convergence in the sense of
(ε, δ)-criticality is what we can expect from our descent method.

Theorem 3.14. Let (xj)j be the sequence generated by Algorithm 3. Then either (fi(xj))j is
unbounded below for each i ∈ {1, ..., k}, or (xj)j is finite with the last element being (ε, δ)-critical.

Proof. Assume that (xj)j is infinite. Then ‖vj‖ > δ for all j ∈ N. By step 4 and Lemma 3.5 we
have

fi(xj + t̄vj)− fi(xj) ≤ −t̄‖vj‖2 ≤ −ε‖vj‖ < −εδ < 0

for all i ∈ {1, ..., k}. This implies that (fi(xj))j is unbounded below for each i ∈ {1, ..., k}.
Now assume that (xj)j is finite, with x̄ and v̄ being the last elements of (xj)j and (vj)j , respec-
tively. Since the algorithm stopped, we must have ‖v̄‖ ≤ δ. From the application of Algorithm
2 in step 2, we know that there must be some W ⊆ Fε(x̄) such that v̄ = arg minv∈−W ‖v‖2. This
implies

min
v∈−Fε(x̄)

‖v‖ ≤ min
v∈− conv(W )

‖v‖ = ‖v̄‖ ≤ δ.

4 Numerical examples

In this section we will apply our nonsmooth descent method (Algorithm 3) to several examples.
We will begin by discussing its typical behavior before comparing its performance to the multi-
objective proximal bundle method [25]. Finally, we will combine our method with the subdivision
algorithm [11] in order to approximate the entire Pareto set of nonsmooth MOPs.

4.1 Typical behavior

In smooth areas, the behavior of Algorithm 3 is almost identical to the behavior of the mul-
tiobjective steepest descent method [13]. The only difference stems from the fact that, unlike
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the Clarke subdifferential, the ε-subdifferential does not reduce to the gradient when f is con-
tinuously differentiable. As a result, Algorithm 3 may behave differently in points x ∈ Rn
where

max{‖∇fi(x)−∇fi(y)‖ : y ∈ Bε(x), i ∈ {1, ..., k}}

is large. (If f is twice differentiable, this can obviously be characterized in terms of second order
derivatives.) Nevertheless, if ε is chosen small enough, this difference can be neglected. Thus,
in the following, we will focus on the behavior with respect to the nonsmoothness of f .

To show the typical behavior of Algorithm 3, we consider the objective function

f : R2 → R2, x 7→
(

max{x2
1 + (x2 − 1)2 + x2 − 1,−x2

1 − (x2 − 1)2 + x2 + 1}
−x1 + 2(x2

1 + x2
2 − 1) + 1.75|x2

1 + x2
2 − 1|

)
(16)

from [25] (combining Crescent from [19] and Mifflin 2 from [26]). The set of nondifferentiable
points is Ωf = S1 ∪ (S1 + (0, 1)>). We consider the starting points

x1 = (0,−0.3)>, x2 = (0.6, 1.0)>, x3 = (−1,−0.2)>,

the tolerances ε = 10−3, δ = 10−3 and the Armijo parameters c = 0.25, t0 = 1. The results are
shown in Figure 5. We will briefly go over the result for each starting point:

Figure 5: Result of Algorithm 3 in three different starting points for the MOP (16). The Pareto
set is shown in red, the dashed lines show the set of nondifferentiable points Ωf .

• For x1, the sequence moves through the smooth area like the steepest descent method until
a point is found with a distance less or equal ε to the set of nondifferentiable points Ωf . In
that point, more than one ε-subgradient is required to obtain a sufficient approximation
of the ε-subdifferentials. Since this part of Ωf is Pareto optimal, no acceptable descent
direction (cf. (8)) is found and the algorithm stops (in a (ε, δ)-critical point).

• For x2, the sequence starts zig-zagging around the non-optimal part of Ωf , since the points
are too far away from Ωf for the algorithm to notice the nondifferentiability. When a point
is found with distance less or equal ε to Ωf , a better descent direction is found, breaking
the zig-zagging motion.
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Table 1: Test problems (using objectives from [25])

Nr. fi Area Nr. fi Area
1. CB3, DEM [−3, 3]2 10. QL, LQ [−3, 3]2

2. CB3, QL [−3, 3]2 11. QL, Mifflin 1 [−3, 3]2

3. CB3, LQ [0.5, 1.5]2 12. QL, Wolfe [−3, 3]2

4. CB3, Mifflin 1 [−3, 3]2 13. LQ, Mifflin 1 [0.5, 1.5]× [−0.5, 1]
5. CB3, Wolfe [−3, 3]2 14. LQ, Wolfe [−3, 3]2

6. DEM, QL [−3, 3]2 15. Mifflin 1, Wolfe [−3, 3]2

7. DEM, LQ [−3, 3]2 16. Crescent, Mifflin 2 [−0.5, 1.5]2

8. DEM, Mifflin 1 [−3, 3]2 17. Mifflin 2, WF [−3, 3]2

9. DEM, Wolfe [−3, 3]2 18. Mifflin 2, SPIRAL [−3, 3]2

• For x3, the sequence has a similar zig-zagging motion to the previous case. The difference
is that this time, the sequence moves along Ωf until a Pareto optimal point in Ωf is found.

As described above, the zig-zagging behavior when starting in x2 is caused by the fact that ε
was too small for the method to notice the nondifferentiability. To circumvent problems like this
and quickly move through problematic areas, it is possible to apply Algorithm 3 consecutively
with decreasing values of ε. The result is Algorithm 4. (A similar idea was implemented in [22].)

Algorithm 4 ε-decreasing nonsmooth descent method

Given: Initial point x1 ∈ Rn, tolerances δ, ε1, ..., εK > 0 , Armijo parameters c ∈ (0, 1), t0 > 0.
1: Set y1 = x1.
2: for i = 1, ...,K do
3: Apply Algorithm 3 with initial point yi and tolerance ε = εi. Let yi+1 be the final element

in the generated sequence.
4: end for

4.2 Comparison to the multiobjective proximal bundle method

We will now compare Algorithms 3 and 4 to the multiobjective proximal bundle method (MPB)
by Mäkelä, Karmitsa and Wilppu from [25] (see also [23]). As test problems, we consider the 18
MOPs in Table 1, which are created on the basis of the scalar problems from [25]. Problems 1 to
15 are convex (and were also considered in [28]) and problems 16 to 18 are nonconvex. Due to
their simplicity, we are able to differentiate all test problems by hand to obtain explicit formulas
for the subgradients. For each test problem, we choose 100 starting points on a 10 × 10 grid in
the corresponding area given in Table 1.

For the MPB, we use the Fortran implementation from [23] with the default parameters. For
Algorithm 3, we use ε = 10−3, δ = 10−3, c = 0.25 and t0 = max{‖vj‖−1, 1} (i.e., the initial step
size t0 is chosen depending on the norm of the descent direction vj in the current iteration). For
Algorithm 4, we additionally use ε1 = 10−1, ε2 = 10−2, ε3 = 10−3. By this choice of parameters,
all three methods produce results of similar approximation quality.

To compare the performance of the three methods, we count the number of evaluations of
objectives fi, their subgradients ξ ∈ ∂fi and the number of iterations (i.e., descent steps)
needed. (This means that one call of f will account for k evaluations of objectives.) Since the
MPB always evaluates all objectives and subgradients in a point, the value for the objectives
and the subgradients are the same here. The results are shown in Table 2 and are discussed in
the following.

• Function evaluations: When considering the number of function evaluations, it is clear
that the MPB requires far less evaluations than both of our algorithms. In our methods,
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Table 2: Performance of MPB, Algorithm 3 and Algorithm 4 for the test problems in Table 1
for 100 starting points

#fi #∂fi # Iter
Nr. MPB Alg. 3 Alg. 4 MPB Alg. 3 Alg. 4 MPB Alg. 3 Alg. 4
1. 1780 6924 7801 1780 1102 1751 761 492 695
2. 2522 14688 12263 2522 1906 2351 1151 842 914
3. 880 5625 6447 880 921 1534 340 448 662
4. 4416 103826 17664 4416 11774 3415 1832 4644 1242
5. 2956 30457 16877 2956 3479 3037 1377 1616 1161
6. 1640 8357 8684 1640 1209 1802 706 552 736
7. 1702 8736 8483 1702 1307 1832 723 595 739
8. 4226 8283 8620 4226 1318 1914 1204 582 759
9. 1828 8201 8794 1828 1194 1805 793 536 732
10. 1782 6799 7201 1782 1101 1722 684 543 733
11. 4426 52096 17594 4426 6311 3189 1964 2442 1206
12. 2482 15146 12446 2482 1992 2401 1140 967 1010
13. 2662 36570 9513 2662 4958 2247 1221 1692 787
14. 4264 95303 12227 4264 9524 2571 1774 4379 921
15. 3594 85936 15669 3594 9329 3124 1444 3963 1125
16. 2206 20372 11094 2206 2596 2400 884 1194 947
17. 2388 7920 5852 2388 1272 1556 868 626 706
18. 11430 166707 31528 11430 16676 6902 2789 8291 2412

Avg. 3176.9 37885.9 12153.2 3176.9 4331.6 2530.7 1203.1 1911.3 971.5
100% 1192.5% 382.5% 100% 136.3% 79.7% 100% 158.9% 80.8%

these evaluations are used to check if a descent direction is acceptable (cf. (8)) and for the
computation of the Armijo step length. One reason for the larger total amount is the fact
that unlike the MPB, our methods are autonomous in the sense that they do not reuse
information from previous iterations, so some information is potentially gathered multiple
times. Additionally, the step length we use is fairly simple, so it might be possible to lower
the number of evaluations by using a more sophisticated step length. When comparing
our methods to each other, we see that Algorithm 4 is a lot more efficient than Algorithm
3 when the number of evaluations is high and is slightly less efficient when the number of
evaluations is low. The reason for this is that for simple problems (i.e., where the number
of evaluations is low), some of the iterations of Algorithm 4 will be redundant, because
the (εi−1, δ)-critical point of the previous iteration is already (εi, δ)-critical.

• Subgradient evaluations: For the subgradient evaluations, we see that MPB is slightly
superior to our methods on problems 3, 5 and 16, but inferior on the rest. Regarding
the comparison of Algorithms 3 and 4, we observe the same pattern as for the function
evaluations: Algorithm 3 is superior for simple and Algorithm 4 for complex problems.

• Iterations: For the number of iterations, besides problem 5, we see the exact same pattern
as for the number of subgradient evaluations. Note that the MPB can perform null steps,
which are iterations where only the bundle is enriched, while the current point in the
descent sequence stays the same.

For our set of test problems, this leads us to the overall conclusion that in terms of function
evaluations, the MPB seems to be superior to our methods, while in terms of subgradient
evaluations, our methods seem to be (almost always) more efficient. Furthermore, we remark
that the implementation of the MPB is somewhat challenging, whereas our method can be
implemented relatively quickly.
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4.3 Combination with the subdivision algorithm

Note that so far, we have a method where we can put in some initial point from Rn and obtain
a single (ε, δ)-critical point (close to an actual Pareto optimal point) as a result. But ultimately,
we are not interested in one, but all Pareto optimal points. The intuitive and straightforward
approach to extend our method would be to just take a large set of well-spread initial points
and apply our method to each of them. The problem with this is that we have no guarantee
that this results in a good approximation of the Pareto set. To solve this issue, we combine our
method with the subdivision algorithm which was developed for smooth problems in [11]. Since
we only have to do minor adjustments for the nonsmooth case, we will only sketch the method
here and refer to [11] for the details.

The idea is to interpret the nonsmooth descent method as a discrete dynamical system

xj+1 = g(xj), j = 0, 1, 2, ..., x0 ∈ Rn, (17)

where g : Rn → Rn is the map that applies one iteration of Algorithm 3 to a point in Rn.
(For the sake of brevity, we have omitted the rest of the input of the algorithm here.) Since no
information is carried over between iterations of the algorithm, the trajectory (i.e., the sequence)
generated by the system (17) is the same as the one generated by Algorithm 3. In particular,
this means that the Pareto set of the MOP is contained in the set of fixed points of the system
(17). Thus, the subdivision algorithm (which was originally designed to compute attractors of
dynamical systems) can be used to compute (a superset of) the Pareto set.

The subdivision algorithm starts with a large hypercube (or box ) in Rn that contains the
Pareto set and mainly consists of two steps:

1. Subdivision: Divide each box in the current set of boxes into smaller boxes.

2. Selection: Compute the image of the union of the current set of boxes under g and remove
all boxes that have an empty intersection with this image. Go to step 1.

In practice, we realize step 1 by evenly dividing each box into 2n smaller boxes and step 2 by
using the image of a set of sample points. The algorithm is visualized in Figure 6.

(a) (b)

Figure 6: Subdivision algorithm. (a) Applying g to a set of sample points. (b) Selection step,
where boxes with an empty intersection with the image of g are removed.

Unfortunately, the convergence results of the subdivison algorithm only apply if g is a diffeo-
morphism. If the objective function f is smooth, then the descent direction is at least continuous
(cf. [13]) and the resulting dynamical system g, while not being a diffeomorphism, still behaves
well enough for the subdivision algorithm to work. If f is nonsmooth, then our descent direc-
tion is inherently discontinuous close to the nonsmooth points. Thus, the subdivision algorithm
applied to (17) will (usually) fail to work. In practice, we were able to solve this issue by apply-
ing multiple iterations of Algorithm 3 in g at once instead of just one. Roughly speaking, this
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smoothes g by pushing the influence of the discontinuity further away from the Pareto set and
was sufficient for convergence (in our tests).

Figures 7 to 9 show the result of the subdivision algorithm for some of the problems from
Table 1. For each problem, we used 15 iterations of Algorithm 3 in g, [−3.1, 3]2 as the starting
box and applied 9 iterations of the subdivision algorithm. For the approximation of the Pareto
front (i.e., the image of the Pareto set), we evaluated f in all points of the image of g of the last
selection step in the subdivision algorithm. In all of these examples, the algorithm produced a
tight approximation of the Pareto set.

(a) (b)

Figure 7: (a) Result of the subdivision algorithm applied to problem 6 from Table 1. (b)
Corresponding approximation of the Pareto front (red) and a pointwise discretization of the
image of f (black).

(a) (b)

Figure 8: (a) Result of the subdivision algorithm applied to problem 12 from Table 1. (b)
Corresponding approximation of the Pareto front (red) and a pointwise discretization of the
image of f (black).
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(a) (b)

Figure 9: (a) Result of the subdivision algorithm applied to problem 16 from Table 1. (b)
Corresponding approximation of the Pareto front (red) and a pointwise discretization of the
image of f (black).

5 Conclusion and outlook

In this article, we have developed a new descent method for locally Lipschitz continuous mul-
tiobjective optimization problems, which is based on the efficient approximation of the Clarke
subdifferentials of the objective functions from [22]. In [1], it was shown that the element with
the smallest norm in the negative convex hull of the union of the subdifferentials is a descent
direction for all objectives at the same time. In practice, the entire subdifferentials which are re-
quired to compute this direction are rarely known and only single subgradients can be computed.
To solve this issue, we presented a method to obtain an approximation of the subdifferentials
which is sufficient to obtain a descent direction. The idea is to start with a rough approximation
of the subdifferentials by only a few subgradients and then systematically enrich the approx-
imation with new subgradients until a direction of sufficient descent is found. By combining
the descent direction with an Armijo step length, we obtained a descent method for nonsmooth
MOPs and showed convergence to points which satisfy a necessary condition for Pareto opti-
mality. We then compared the performance to the multiobjective proximal bundle method from
[25]. For the 18 test problems we considered, the MPB was superior in terms of objective func-
tion evaluations, but our method required less subgradient evaluations and iterations. Finally,
we showed that our descent method can be combined with the subdivision algorithm from [11]
to compute approximations of entire Pareto sets.

For future work, we believe that it is straightforward to extend our method to constrained
MOPs by adding constraints to the problem (7) that ensure that the descent direction maintains
the feasibility of the descent sequence (similar to [14] for smooth problems). Additionally, in
[8], the classical gradient sampling method for scalar nonsmooth optimization was generalized
by allowing variable norms in the direction finding problem, increasing its efficiency. We expect
that a similar generalization can be performed for problem (7), which potentially yields a similar
increase in efficiency. Additional potential for increased performance lies in more advanced step
length schemes as well as descent directions with memory (for instance, conjugate-gradient-like).
Furthermore, it might be possible to extend our method to infinite-dimensional nonsmooth
MOPs [29, 5]. Finally, in the context of nonsmooth many-objective optimization, we believe
that considering subsets of objectives is a very promising and efficient approach (cf. [15] for
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smooth problems). However, theoretical advances are required for locally Lipschitz continuous
problems.
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[24] M. M. Mäkelä, V.-P. Eronen, and N. Karmitsa. On Nonsmooth Multiobjective Optimality
Conditions with Generalized Convexities, pages 333–357. Springer New York, New York,
NY, 2014.
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[30] S. Schäffler, R. Schultz, and K. Weinzierl. Stochastic Method for the Solution of Uncon-
strained Vector Optimization Problems. J. Optim. Theory Appl., 114(1):209–222, 2002.

[31] N. Shor. Minimization Methods for Non-Differentiable Function. Springer-Verlag Berlin
Heidelberg, 1985.

22


