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Abstract: In the present paper a multiobjective optimal control problem governed by a linear parabolic
advection-diffusion-reaction equation is considered. The optimal controls are computed by applying
model predictive control (MPC), which is a method for controlling dynamical systems over long or
infinite time horizons by successively computing optimal controls over a moving finite time horizon.
Numerical experiments illustrate that the proposed solution approach can be successfully applied
although some of the assumptions made in [1,2] can not be guaranteed for the studied tests.

Keywords: Multiobjectice optimization; multiobjective optimal control; model predictive control;
evolution problems; advection-diffusion equations.

1. Introduction

Model predictive control (MPC) is a method for controlling dynamical systems over long or
infinite time horizons by successively computing optimal controls over a moving finite time horizon;
cf., e.g., [3]. The successive re-optimization on the one hand introduces a feedback mechanism, which
makes the method attractive as a real-time control scheme and as such it is widely used in industry [4].
On the other hand, MPC provides a method to reduce the complexity of optimal control problems
by splitting up problems on long or infinite horizons into smaller subproblems over shorter horizons.
As such, MPC can be seen as a model reduction technique in time. Clearly, this approach only makes
sense if the solution generated by MPC is in some sense close to the true optimal solution. Fortunately,
this approximate optimality property can be rigorously proved for many classes of optimal control
problems, see, e.g., [5,6] and the references therein.

In practice, it is often the case that a single optimization criterion is not sufficient for modelling
the demands in a given application. This leads to the concept of multiobjective optimal control, in
which typically there does not exist a single optimal value but rather a whole set of optimal values,
the so called Pareto front. Due to its usefulness in practice it is no surprise that this concept has been
used and investigated also in the MPC context, see, e.g., [7-11]. Particularly, in [1,2] MPC algorithms
were presented that allow for rigorous suboptimality estimates also in the multiobjective case. The
main feature of this class of algorithms is a particular constraint that depends on the chosen point
on the Pareto front when solving the first optimal control problem in the MPC scheme and that is
applied in all subsequent optimal control problems. While the examples in [1,2] are limited to finite
dimensional systems, in this paper we show that this idea can be successfully applied also to optimal
control problems governed by partial differential equations (PDEs) and that the necessary constraint
can be efficiently implemented using a gradient descent scheme. While we will see that some of the
assumptions made in [1,2] are difficult to satisfy for PDE governed problems, our numerical tests will
show that the algorithm nevertheless performs very well.

Submitted to Journal Not Specified, pages 1 —18 www.mdpi.com/journal/notspecified


http://www.mdpi.com
http://www.mdpi.com/journal/notspecified

34

35

36

37

38

39

40

41

42

43

44

45

46

a7

48

49

50

51

52

53

54

55

Version April 8, 2020 submitted to Journal Not Specified 20f18

In the literature there is a vast amount of methods for multiobjectice optimization; see e.g. [12,13].
However, in the context of PDE constrained problems there are only a few papers available. We refer,
e.g., to [14-18]. In this paper, for computing the Pareto set and/or the Pareto front of (MOCP) we use
the Euclidean reference point method, which was introduced in [19,20] and already used for solving
multiobjective optimal control problems with two cost functions in [21-23].

The paper is organized as follows: In Section 2 we pose the multiobjective optimal control problem
(MOCP). The algorithmic approach for multiobjectice model predictive control (MOMPC) is explained
and analyzed in Section 3. Numerical experiments are presented in Section 4. In the last section we
draw a few conclusions.

2. The multiobjective optimal control problem

Let QO C R? be a bounded domain with Lipschitz-continuous boundary I' = 0QQ, T > 0,
Q=(0,T) xQ, X = (0,T) x I. Given an initial condition y, € L?(Q)) we consider the following
parametrized parabolic advection-diffusion-reaction equation with the diffusion coefficient d > 0, the
advection field ¢ € L*((0, T) x Q;R?) and the reaction coefficient r > 0:

ye(t,x) = dBy(t,x) + c(t,x) - Vy(t ) +ry(t,x) =0 ae.inQ,
d g%(t,x) = éui(t)bi(x) a.e.ony, )
y(0,x) = yo(x) a.e. in Q.

The functions b; € L*(T'), 1 < i < m, denote given control shape functions, e.g., characteristic
functions:

m
T=Jr, bi(s)=xp(s), 1 <i<m, ||bill72) = |T'].
i=1

By setting H = L?(Q) and V = H!(Q), one can show that (1) has a unique weak solution y =
y(u,yo) € W(0,T) = H'(0,T; V') N L*(0, T; V) for all controls u € L2(0, T;R™) =: U and all initial
conditions y, € H. Recall that W(0, T) is a Hilbert space endowed with its common inner product.
Moreover, W(0, T) is continuously embedded into C([0, T]; H); cf. [24]. The solution operator S :
UxH — W(0,T) — L?(0,T; H), which maps any control # € U and initial value y, € H to the
solution y = S(u,y.) of (1), is affine linear and continuous in both components.

Given a fixed initial value y, € H the multiobjective optimal control problem (MOCP) reads

s 7 _ . fl(u/]/O)
min [(u, yo) —I;gg( (i, yo) ) (MOCP)

where the two objectives fi, [, : U x H — R are given by

1 2
Jituye) = T 1CHS (1, y0) = ¥ 0 many + - NCPS (14, ya)(T) = 211 + ‘fnuliz(o,T;Rm) @
for nonnegative weighting parameters ¢}, 07, o7 with o} + 0 + ¢? > 0, linear mappings C! €
£(L?(0,T; H)) and C? € L(H) and desired states y; € L>(0,T; H) and y? € H fori = 1,2. Here, e.g.,
L(L2(0, T; H)) denotes the Banach space of all linear and bounded operators mapping from L2(0, T; H)
into itself.
Problem (MOCP) involves the minimization of a vector-valued objective J (,¥0): U — R2. This
is done by using the concept of Pareto optimality; see, e.g., [12].
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Definition 1. The point it € U is called Pareto optimal for (MOCP), if there is no other control u € U with
Ji(u,yo) < Ji(i,yo) fori =1,2and J;(u,yo) < Ji(i1,yo) for at least one | € {1,2}. The set

Uopt(yo) = {u € U | u is Pareto optimal }
is called the Pareto set, and

jopt(]/O) = T(Z/[opt/ yo)
is called the Pareto front of (MOCP).

3. Multiobjective model predictive control (MOMPC)

In this section we explain how MPC is combined with multiobjective optimal control. Given a
final (large) time horizon T > 0 we use an equidistant time grid

T
O=ty<th <...<tp, =T with tn:nAtforn:O,...,LandAt:E.

The open-loop problems in the MPC algorithm are then solved on smaller time horizons ¢Af with
1< ¢ < L. Weset
tend = tL—p41 = (L -0+ 1)Af <T.

By the MPC method we will finally compute an optimal control on the time horizon [0, tenq]. For
n=0,...,L —{ the optimal control to this problem on the interval (¢, t, + At) = (t,, t,+1) is stored
and used to compute the next part of the state trajectory on the interval (t,,t,41). Then the time
horizon is shifted by Af and the procedure is repeated until the final time horizon is reached. Notice
that the end time for the computed MPC control is tepg.

To deal with this framework we have to consider (1) on subintervals of [0, T|. To this end we
introduce further notations: For an arbitrary initial time ¢, € [0, T) and end time t, € (t,, T], we study
the state equation on the time horizon J = (t,,t},):

ye(t,x) —dAy(t,x) +c(t, x) - Vy(t,x) + ry(t,x) =0 a.e.inJ x Q,
dy & ‘
d %(t, x) = 1; u;i(t)b;(x) a.e.onJ xT, 3)
y(ta, x) = ya(x) a.e.in Q)

for some initial value y, € H. Again it is possible to show that for each u € U’ = L*(J;R™) and
Ya € H there exists a unique weak solution y = y(u,ya) € W(J) to (3) and that the associated solution
operator S? : U’ x H — W(J) < L?(J; H) is affine linear and continuous in both components.

The two objectives f7, f3 : U” x H — R are given by

7 ‘Tl 0'-2 (7.3
2 ,ya) = 1CHS” (,ya) = 2y + 2 1CPS” (0, a) (t6) = 21 + = gy @)

for i = 1,2. Note that we would actually have to write Cilj € L2(J3;H) for i = 1,2 to display the
dependence of the operators on the time interval J. Since we define these operators in a canonical way

by
el f = (C}(Ef))‘j for f € L2(; H),

where £ : LZ(J,' H) — L*(0,T; H) extends any function f € LZ(J; H) by 0 to a function in LZ(O, T;H),
we omit this dependence on J for the purpose of readability.
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Throughout we denote by U/, pt(ya) and Jgpt(ya) the Pareto set and Pareto front, respectively, of
the MOCP

min [’ (u,y,) = min ( ]:i](u’ya) ) ) (MOCP?)

uel’? uel’? ]zj(u/]/a)

Especially for the open-loop problems in the MPC algorithm we make the following notations: Given

n € {0,.. — 0} we set t& = t, + (At < T for the final time instance and U" = Lz(tn,té R™).
Furthermore for brevity we define S" = S (nsty ), = ] ) for i = 1,2, and Ugp(ya) = Z/{gj”tt”)(ya) as

well as Jgui(Va) = Topt (b £2) (ya)- In the context of MOMPC the notion of external stability turns out to
be important, see [1, Def1n1t10n 6] and Theorem 2 below.

Definition 2. Let J = (ta,ty) C [0, T| be a time interval and the initial condition y, € H be arbitrary. The
set J7(U’,ya) is called externally stable, if for every y € J7(U’,ya) thereis § € jgpt(ya) with j <y. This
is equivalent to J7 (U, ya) C Tgpi(ya) + RE,.

For the cost functions defined in (4) it is possible to show that the set [7(U”,v,) is externally
stable, as the following theorem shows.

Theorem 1. Let J = (t,, tp) C [0, T| be a time interval and the initial condition y, € H be arbitrarily given.
We assume that 07 > 0 for i = 1,2. Then the set [’ (U’, ya) is externally stable.

Proof. It is possible to show that the Pareto optimal points of |/ (LI”, . ) and J7(U?,ya) + R2 <, are the
same, i.e., it holds jopt(ya) = (f7(U?,ya) + Rzo)Opt- So if we show that the set P, y,) + ]R_O is
externally stable, i.e., thatit holds /7 (U’,ya) + R2, C (J7(U’,ya) +R2)opt + R% ), we are done, since
then we have

P U’,ya) c (U7, ya) ‘HRZZO c (U, ya) "’Rzzo)c)pt“‘Rzzo = jgpt(ya) +R220-

According to [12, Theorem 2.21] we only need to show that [7(U’,y.) + R2, # @ and that for
ally € J2(U?,ya) + R2 2o the set (U, ya) + R2,) N (y — R%,) is compact (this is the notion of
R2 j-compactness). It is clear that [7(U’,ya) # @ holds -

Since the set J7(U”, ya) + ]R>0 is bounded from below and y — R>0 is bounded from above, the set
(U, ya) + R2,) N (y — R2,) is bounded.

The closedness of 7 (U7, ya) + ]R o follows from the convexity, the continuity and the property

hm ]1 (u ]/a) = 00,

l[ull 5 —0

which follows from (713 > 0 fori = 1,2, of the cost functions ff(, Ya), Azj (-,ya), and was for example
shown in the proof of Theorem 3.35 in [22]. O

The pseudocode for a general MOMPC algorithm is shown in Algorithm 1. Here we use a fixed
time horizon At on which the computed control is applied before a re-optimization is performed.
We note that it may be possible to use varying time horizons here, similar as discussed for the
single-objective case, e.g., in [6, Section 10.4]. The most important question is how to perform step 5 of
Algorithm 1. Clearly, one possibility is to compute the entire Pareto set L{gpt(ya ), which is nonempty by
Theorem 1, and then to choose a control i, € Ug,(ya) according to some given preferences. However,
this procedure is computationally costly, and thus, infeasible for many applications. On the other

hand, one could compute only one Pareto optimal control i, € Ugp,(ya). Then the question is under
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Algorithm 1 (Multiobjective model predictive control)

Given: Initial state y, € H.

1: Output: MOMPC feedback control .

2: Set yo(to) = Yo.

3: forn=0toL—{do

4: Setty = ty, tp = ta + (At and ya = yu(ty).

5 Compute a Pareto optimal control @I, € U,¢(ya).

6:  Setyyi1(t) =ynu(t) forall t € [0, t,] and compute y,,11(t) = S"(iln, ya)(t) forall t € (t, ty41]-
7 Set ju(t) = iy (t) forall t € (ty, ty41].

8: end for

which criteria this control should be computed. In [1] the authors allowed an arbitrary choice for
iy € ngt(yo) and used the additional constraint

fl‘n(ﬁn/ya) < f?(ﬁ/ya); fori=1,2and Ya = ]/n(tn)r (5)

foralln € {1,...,L — {}, where i is given by

i(t) =

{ﬁn_1(t), ift € [tn/tfl_l] = [tn/tn—l-i-ﬂ]r (6)

K(t), if t € (ty_y tn] = (bn1v0turd]

and the feedback x € U( wo1tn) is chosen such that

(7 2 (7

( # 1,té

2
Sttt () (#) — 2| +

)(K yK) yz

i 2
7 ||K||L2(tf’71,tf1;Rm)

N

o;

Si

Sn 1(“;1 1 Yn— 1(11 1))(/ ) yz @)

holds for i = 1,2, with y, = S”_l(ﬁn,l,yn,l(tn,l))(tﬁfl). The external stability of the set
JH (U™, yn(ty)) ensures that such a control 7, exists.

Theorem 2. Letn € {0,...,L — {} and yo = yn(tn). Given ii € U" there is ii, € Z/{gpt(ya) such that (5) is
satisfied.

Proof. This follows directly from Theorem 1, where it was shown that the set f "(U",ya) is externally
stable. [

However, the existence of a feedback «x € Uit fulfilling (7) cannot be shown in general for
our problem, but has to be assumed. Such a feedback exists if and only if the minimal value of the
minimization problem

2 (T
2040 4l B3
L (t,H,tn,H

2
), ) (1) o2

min  max —- = 1’t”)(K Ye) — Y}

4
KGU“

3 0'.2
o 257111y () 8 ) — 2.

el ey = = ®)
is smaller or equal than zero. Thus, by solving the minimization problem (8) we can on the one hand
check, if such a feedback exists, and on the other hand compute it explicitly.

If the conditions (5) and (7) are fulfilled throughout Algorithm 1 we can show the following
performance theorem, compare [1, Theorem 11], where also the proof was taken from and adapted to
our situation.
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Theorem 3. Let y, € H be arbitrary and assume that 02 > 0 holds for i = 1,2. Denote by iy € Z/lgpt(yo)
the initially chosen Pareto optimal control in Algorithm 1. Furthermore, assume that it is possible to choose a
feedback x € U(tﬁfl'tﬁ)fulﬁlling (7) for every n € {1,...,L — £}. Let u € UOtend) be the resulting MOMPC
feedback control resulting from Algorithm 1. Then it holds

: 7
2

2 70/ =
voragty T 2 N2 gmm) < 7 (Foyo)

1
%
2

7 0’ en
Jiorend) (1, ) = \635(0’“"‘”(% yo) — ;i

93 fOT’i = 1,2.

Proof. Note that it holds p(t) = 7,(t) for almostall t € (t,,t,41) and alln € {0,...,L — ¢} and that

L—¢

U (tn/ tn—l-l) = (0/ tend)

n=0
holds true. By defining y, = S©fend) (41, 0)(t,) forall n € {0,..., L — £} we can write

1
%
2

2 (73 2
‘ €150 tend) (31, 10 — y! + 5 [ 2(0 tengimm)

L2 (O/tendFH)
2

12 (t11,tn+1}H)

_ 2
Cilsn(un,]/n) - ]/11 + ‘713 ”u””LZ(t,,,th;Rm) :|

2

)

B 2
C}S™ (1w, yn) — Y} +07 H”n||L2(t,,,t£;R”’)

L2(t,th;H)
2

C!S" (i, yn) — y;

o)

Since we assume the existence of a feedback « fulfilling (7), we can conclude

1
_O—i

’2
H L2 (typ1,th;H)

C2S" (i1, yn) (ty) — v

+ 07 ||CES" (#n, yu) (£1) — v

2
_U—i

3= 12
—0; ||”nHL2(tn+1,tf;;R’”)

2
H

2

< —d} | Cl S iy, Yus1) — i (10)

L2(tf, b iH)

2 o
H - THKHLZ(tthﬁJA;RM)

CfS”+1(ﬁn+1/yn+1)(tﬁ+l) —v;

2
|

foralln € {0,...,L — ¢} with i, 1 € Utr+1ti1) defined as in (6). Due to (6) we find that

_ 2 2 ~ 2
Hun”Lz(th,tﬁ;Rm) + ”KHLZ(tf,,tﬁH;Rm) = ||u"+1||L2(tn+1/t,€+1}Rm) . (11)

Moreover, it follows that

|

2 2

C}S”(an,yn) - %1

Ton+1(y 1
H) + HCZ s" (unJrl/ yi’lJrl) —Yi Lz(tﬁ,tz

n+1;H)

Lz(thrl/tfz;

) (12

Cilsn+l (Fny1,Ynt1) — yz1

L2 (tn+1/tﬁl+1/'H)
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Plugging (10) into (9) and utilizing (11)-(12) we deduce that

1

i {150 tena) ||

? ‘Cls d (l’l/yo) yl Lz(Otnd,H) 2 ||y||L2(0rtend;Rm)

15 )
S E Z |: S?I un,yn) ]/1 Lz(tnt H) +Uf ||u”||L2(tn,tﬁ}R"”)
2
+U'i2 isn(ﬁn/yﬂ)(tﬁ) _ylz‘ H_O'il ’Cilsn+1(ﬂ"+1’y”+1) _yl L2(ty 1,t5 3 H)
1oty yi

i Sn+1 (ﬁn+11yn+l)( fl+l) yz

al

Since the control i, fulfills (5) for n € {0,...,L — ¢ — 1}, we can further estimate

_ 2
- (713 Hun+1 ||L2(t,,+1,tﬁ+1;Rm) — Y

Ull Cl (0 tend) 0—13 2
5 |Ii (1:90) =¥ | 2o H) + o 1220 ey
1 L—¢ 1 B 2
<5 Lo ||elS" @) = v g+ B
n=0 n
28" (i1, ) (t) — 7 iH]
TEE T 1 teni 1)|? 3 2
n - —
_ E P} {0’1- ’Cl S (Lln+1, ynJrl) —Yi Lz(tnﬂ/fﬁ,H‘H) + 0; ||Mn+] HLz(thrlrtﬁJrlFRm)
+07 (| C2S" (1, Ynr) (b 1) — V7 H]

’ % el
— — ||U7 _

Lz(tL 141/ tL (+17 H) 2 L=t LZ(

2

L2(tp g1ty _yoqH)

—/
: SL +1(

ﬁLféJrl/nyé) _]/z tL—£+lrt,£,[+1FRm)

L—t+1 ¢ 2
PSS T T g, Y—ee1) (F ) — V7

The first two sums on the right-hand side are a telescopic sum. Together with the nonnegativity of the
norms, this finally implies

3

1
o p 2
- ’ 71 |\P‘||L2(o,tend;Rm)

15(Otena) (11, ) — y}

L2 (0 tends H)

2500, yo) (85) — 2|,

ag: _ 2
71|‘u0||L2 t[ Rm)+

’ClSO o, Yo) = ¥

= ]?(ﬁo,yo),

L2(to,t5;H)

which is what we wanted to show. [

Remark 1. 1) The statement from Theorem 3 is important, since it gives us performance bounds on the cost
functions values of the MOMPC feedback control y already after choosing the initial control i1y € ngt(yo )
but before performing the MOMPC Algorithm 1. Thus, one strategy is to compute the entire Pareto set
0pt(yo) which is computationally cheap due to the small time horizon (to, t§), and then to choose the

initial control 1 € 0pt(yo) according to the desired upper bounds on the cost functions.
2) Theorem 3 holds for arbitrary T > Q. In particular, by taking the limit T — oo, the result can also be

shown for the infinite-horizon case.

Now we want to present a gradient descent scheme for computing a control i, € L{gpt(ya)
fulfilling (5). To this end we use the following result which is taken from e.g. [25, Theorem 2.1], where it
is proved for the case of finite-dimensional controls. However, the extension to our infinite-dimensional



105

126

Version April 8, 2020 submitted to Journal Not Specified 8 of 18

setting U" = L2(t,, t4; R™) is straight-forward, since the proof of Theorem 2.1 in [25] does not explicitly
use the finite-dimensionality of the space U", but only its property of being a Hilbert space.

Theorem 4. Letn € {0,...,L — (} and o7 > 0 fori = 1,2. Suppose that ya € H, u € U" are arbitrarily
given and

A" = argmin {Halvuf{’(u,ya)||%l+ Htxzvuff(u,ya)né | a1, 00 > 0 and aq + o = 1}. (13)

a=(aq,00)ER2
Then either
q"(u) = =& Vufi (4, ya) — 85 Vuf5 (4, ya)

is a descent direction for the cost functions (-, ya) and f3(-,ya), or " (u) = 0 holds. Since the cost functions
ff (-, Ya), J5(-, ya) are strictly convex, the latter implies that u is a Pareto optimal point, c.f. [12].

Remark 2. Problem (13) is a quadratic optimization problem in the variable « € R? with the constraints
a € [0,1)? and &y + ap = 1. By substituting ay = 1 — ay, this problem can be reformulated as a box-constrained
quadratic optimization problem in only one variable, which is easy to solve. In our numerical experiments we
utilize the MATLAB routine quadprog.

With Theorem 4 we can set up Algorithm 2, which takes an arbitrary point u € U" as an input
and results in a Pareto optimal point i, compare [26, Algorithm 1]. From [26, Lemma 4] it follows that

Algorithm 2 (Multiobjective Gradient Descent Method)

Given: Current iterate 7, initial control u € U", tolerance ¢ > 0, Armijo parameter 0 < f < 1.
1: Setk =0and ya = yu(tn).

2: Get &" by solving (13) and set g" (1) = — Y.2_; &'V, [ (1, ya).

% while [ (1) lun > ¢ do

4: Setk =k+1.

5 Armijo backtracking: determine the step size t; > 0 as the maximal t € {(1/2)" | I € Ny} with

i (u+tq"(u),ya) < Ji'(,ya) + BEVufl (u,ya) "q" (u), i=1,2.

6:  Setu™ =u+tq"(u) and thenu = ut.

7. Get&" by solving (13) and set g" (1) = — Y2, &'V, ]! (1, ya).
8: end while

9: Set i, = u.

a step length t; > 0 can always be found in step 5 of Algorithm 2. Moreover, in [26, Theorem 1] the
authors proved the following convergence result. Again, they assumed a finite-dimensional space U",
but the arguments of the proof transfer directly to our setting U" = L2 (t,, t;; R™).

Theorem 5. Every accumulation point of the sequence (uy )xen produced by Algorithm 2 is a Pareto optimal
point.

Remark 3. 1) Note that we cannot prove that the sequence (uy)xen has an accumulation point in the
infinite-dimensional case. However, we will not encounter this problem in our numerical implementation,
since the space U™ will be discretized. Therefore, Algorithm 2 will in practice terminate in a finite number
of steps.

2) By construction of the algorithm it holds ff(ﬂn,ya) < f{l(u, Ya), i = 1,2, for any initial control u € U",
so that (5) is fulfilled, if we choose u = 1l.

Finally, the MOMPC algorithm looks as follows.



127

128

Version April 8, 2020 submitted to Journal Not Specified 90f18

Algorithm 3 (Multiobjective Model Predictive Control)

Given: Initial state y, € H.
1: forn =0to Ly, do
2: Set ya = yn(tn).
if n == 0 then
Choose an arbitrary initial control u € L{gpt(yo). Go to step 7.
end if
Use Algorithm 2 to compute a Pareto optimal control i1, € L{gpt(ya) fulfilling (5).
Set y41(t) = yu(t) for all t € [0, t,] and compute y,,11(t) = S"(iiy, ya)(t) forall t € (t, ty41]-
Set ju(t) = iy (t) forall t € (ty, ty41].
9: Compute a feedback « by solving (8) and set i according to (6).
10: end for

4. Numerical Tests

Throughout the numerical experiments let the domain Q be given by Q = (0, 1)? with points
x = (x1,x2). This domain is discretized by using linear finite elements with 494 degrees of freedom. We
choose teng = 1 and At = 1/198. The number of total time steps L is set to L = 197 + £ in dependence
of the smaller time horizons ¢ of the MPC open-loop problems. Accordingly, the final time T is given
by T = LAt. For the time integration of the PDE we use the Crank-Nicolson method. In Algorithm 2
we set the tolerance e = 10~%. In Algorithm 3 the initial control  is chosen as an element of the Pareto
set ngt(yo). Therefore, in the following we will always compute a finite approximation L{gptlappr(yo)
of this set, which depends on the MPC horizon length ¢, by the Euclidean reference point method.

We note that in all our examples we use fixed temporal and spatial discretizations. Clearly,
this is not necessarily efficient and one may rather prefer to use adaptive discretizations that only
use fine grids in space and/or time when this is really relevant for obtaining a sufficiently accurate
numerical approximation for the control function. For single-objective PDE governed MPC problem:s,
such methods were developed in, e.g., [27,28]. We conjecture that they could be adapted to the
multiobjective setting.

4.1. Example 1

Let the advection field be given by

(1,17, ift <0.5,
c(t,x) = { /2 (cos(27t(t — 0.5) + 71/4),sin(27(t — 0.5) + 71/4)) ", ift € (0.5,1), (14)
(-1,-1)7, ifte1,T),

i.e., it is space-independent and at first constantly pointing into the direction (1,1) " before it then
smoothly rotates towards the direction (—1, —1) . The diffusion coefficient is set to d = 1, the reaction
term is chosen as r = 0, i.e., there is no reaction in the system, and the control input u € L?(0,1; R*)
acts on all four edges of the domain individually.

Furthermore, we choose v, (x) = 15,

15+ x1x0t, if £ €[0,1],
yi(xt) = .
154+ x1xy, ift € [1, T],

y2(x) := 15+ x;xp and set o] = 1, 07 = 0.1, 05 = 0.001 in the cost function f; and ¢ = 0, ¢? = 0,
0? = 1in the cost function f,. The linear mappings C{ € £(L?(0,T; H)) and C? € £(H) are chosen
to be the identity, respectively. This is a quite typical framework for MOCPs: the first cost function
penalizes the deviation from a desired state, whereas the second cost function measures the control
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costs.

Given these data we can apply Theorem 1 and show the external stability of the sets ["(U", y, (t1)),
which implies the feasibility of the steps 4 and 6 in Algorithm 3.

However, we can in general not expect that there is a feedback « fulfilling (7). The reason for this is
that such a x would have to fulfill the inequality

1 2
E ||K||L2(t’€71,t£;]Rm) S O/

due to the choices 0 = 02 = 0 in the second cost function, which implies x = 0. Plugging this into (7)
for i = 1 we see that the inequality is only fulfilled, if the uncontrolled system would move towards
the desired temperatures. This is unlikely to happen in our setting, since the desired temperatures are
larger than the initial condition and increasing in time. Nevertheless we can still compute a minimizer
of (8) and use it to define # in (6). Note that in this case, the assumptions of Theorem 3 are not fulfilled,
so that this choice of x and i is of heuristic nature.

Another heuristic approach for determining i that we want to test in the following is motivated by
the criteria used in step 2 of Algorithm 4 in [2], which was designed for problems without terminal

condition and translates to our problem as follows: During the n-th loop iteration of Algorithm 3
(it

(n €{0,...,L —£}) compute k € Uyp; " 1) (yn(tf_,)) in step 9 such that

2 = 112
HKHLZ(tﬁ,llffﬁR4) < ||u”||L2(tﬁ71,fél;R4) (15)

holds. Then we set

T0(t), ift € [tpir,th 1] = st tao14d],

ﬁ(t) _ { n( ) 1 [ r;Jrl ;271] [ n+1stn 1+€] (16)
K(t)r ift € (tn—lrtn+1] = (tn71+fl tn+l+€]'

Here we do not impose the inequality (15) on x explicitly. The reason for this is that demanding

(15) would not guarantee us any performance results for our framework, but only increase the

computational time. Therefore, we use again the gradient descent method presented in Algorithm 2

¢ l
u(tn—l'tn+1)

for computing a control x € . As initial control u we choose

Opt
o (1), ift e (t£ ,,t],
u =
i (t—At), ift € (th,t4].

Again, it can be shown that for any accumulation point i of the sequence (i )xey produced by

¢4
Algorithm 2, it holds @ € U(g;”t’l't”“)(yn(tfl_l)). Moreover, although the inequality (15) is not

guaranteed directly by this method, we still get ]A(ti—l'tfﬂl)(x,yn(tflfl)) < ]A(tf'—l'tfwl)(u,yn(tf‘kl)).
In particular, this implies

2 =12
# ;R‘*) S ||u|‘L2(tf;71,t§;;R4) =2 Hu"||L2(tf;71,tﬁ;R4)’ (17)

2
||K||L2(tf171’ n+1

since the time grid is equidistant. Therefore, it can be expected that (15) is satisfied in most cases.

Test 1. In our first test the main focus is on investigating how well the MOMPC Algorithm 3 performs
compared to the open-loop problem on the time intervall [0, 1] for different MPC horizons. Therefore,
we perform Algorithm 3 with all controls from Z/Igpt/appr(yo) for the MPC horizon lengths of ¢ = 25,
¢ =50 and ¢ = 99 with two different strategies in step 9:

1. Compute x by minimizing (8) and set # as in (6).
2. Compute x by using Algorithm 2 as described above and set i according to (16).
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Note that the set ngpt,appr(yo) contains 42, 34 and 40 elements for the horizon lengths ¢ = 25, £ = 50

and ¢ = 99, respectively.
The obtained results when using strategy 1 for computing « are shown in the top row of Figure 1 (a)-(c).

It is clearly visible that an increasing MPC horizon length has the positive effect that the MOMPC

points produced by Algorithm 3 are located closer to the Pareto front 7, O(S’tl) (Yo). This can be explained
by the fact that a larger MPC horizon allows for a better prediction of the future behavior of the system
dynamics. However, we see a clustering of MOMPC points in the middle of the Pareto front, which
only slightly improves, if the MPC horizon length is increased. So it is not possible to obtain the whole

extent of the Pareto front by varying the initial control iy € ngpt,appr(yo).

On the other hand, we can see the results of strategy 2 in the bottom row of Figure 1 (a)-(c). Let
us first note that the inequality (15) is fulfilled in most steps of Algorithm 3 for all initial controls

iy € ngt/appr(yo). Only for some initial controls i, for which [°(i, y,) is located on the top left

part of the Pareto front jgpt(yo), i.e., for initial controls corresponding to the part of the Pareto front,
where the main goal is to minimize | ?(~, Vo) almost regardless of the function values of fg (-,¥o), the

condition (15) is not fulfilled in some steps of the MOMPC algorithm. The reason for this is the
ARV Y

following: When using Algorithm 2 for computing a feedback x € Z/{é ¢ , the resulting minimizer

P
& of (13) displays the weight of the cost functions f(tfifl'tiﬂ) (-,yn(t’_,)) at the Pareto optimal point
¢y
= u(();zt—l'thrl)
of the Pareto front 79 (1), the weighting of the cost functions will be & ~ (1,0)". Therefore, the
opt y g g
descent direction ¢" (1) from Algorithm 2 will mostly point in the direction of the negative gradient of

the first cost function, which might lead to (15) not being satisfied.

(yn(tf_,)). If we start with a point i, for which [°(iy, y.) is located on the top left part

Looking at the results, we observe again that a larger MPC horizon length leads to a better result in the
sense that the MOMPC points are closer to the Pareto front. In contrast to strategy 1, we do not see a
clustering of MOMPC points in the middle of the Pareto front, but rather in the lower right part of the
Pareto front. This clustering improves, if the MPC horizon length is increased, so that the entire scale
of the Pareto front is obtained for a horizon length of ¢ = 99.

03 03 o 03 ;
)] — 01 —_ 01
0.25 —Jopt (¥) 0.25 ‘?Opt (1) 0.25 qapt (5)
x JOD () x JOD(u y,) x JOD(,yo)
— 02 —~ 02 — 02
B EY =
Zost W o5 ~o1s
=04 =04 =04
0.05 0.05 0.05
0 0 0
0 0005 001 0015 002 0025 0 0005 001 0015 002 0025 0 0005 001 0015 002 0025
Ty Ty Ty
03 03 ) 03 ;
(8] (Syps 00,
0.25 — “opt (ve) 0.25 T vopt (ve) 0.25 T opt (ve)
x Jm’”(lh%) x J(O.l)(#’yo> x J(o.l)(#’y())
— o2} |* — 02 — 02
= x > =
=015 ~~0.15 x ~—0.15
=04 = o4 = 04
x
0.05 0.05 0.05
0 0 0
0 0005 001 0015 002 0025 0 0005 001 0015 002 0025 0 0005 001 0015 002 0025
#(0,1 #(0,1) #(0,1)
TV JM () JM ()
(@ ¢=25 (b) £ =50 (c) £ =99

Figure 1. Results of Algorithm 3 for all initial controls 7y € ngptlappr

Top: Strategy 1 for computing x. Bottom: Strategy 2 for computing «.

(yo) for different horizon lengths.
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The difference in the clustering behavior of strategy 1 compared to strategy 2 can be seen by
looking at the following relation: Every initial control vector iy € ngt/appr(yo) is the solution to a
weighted-sum problem

min o7 (1, o) + a1, o)

for some weight vector Mt € RZZO with adnif + a0t = 1; see, e.g., [12]. This weight vector can be
determined easily when using the Euclidean reference point method to compute ugpt,appr(yo) ;cf. [19,
Lemma 5]. After executing Algorithm 3 we can check to which Pareto optimal point § = f(0) (i1, y,) €

jég’tl)(yo) the MOMPC point [ (1,1,) has the smallest distance. Again, i is the solution to a

weighted-sum problem

min ocfndfl(o’l) (u,yo) + ocS“dféo’l) (u,yo)
uely©y

for a weight vector a®™d € R2 ; with a$"? + a$"? = 1, which can again be determined. The mapping
ainit s ¢¢nd can be seen in Figure 2 for both strategies. Since the mapping displays the first weight

1 p 1 5
| x £ =25
08 08/ | x £=50 ’
X 5% R KRR ROBREBEREIBREAERE e 3 % X X ¢ =99
x
~ 06/ © 06 .
& G
© 0.4 0.4r
x (=25 xxx
02+ % £ =50 0.2F xxxx
é 99 xxxx%:xxx
N % X 3% XA X
0 : : ‘ : 0 Lmmsdoci X : ‘ ‘
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
a{nit a{'m’t
(a) Strategy 1 (b) Strategy 2

Figure 2. The mapping leim't — acf“d for different MPC horizon lengths.

vector, a small value in the plot corresponds to a small weighting of the first cost function (the tracking
term) and a large weighting of the second cost function (the control costs), and vice versa.

Note that the “ideal’ result of this mapping would be the identity, since this would imply that the
weight a™¢ of the initial control 77y remains constant throughout the MOMPC algorithm.

From this plot the clustering of the MOMPC points for both strategies can be deduced. For strategy
1 it can be seen that the clustering of the points happen at a weight of 5" € [0.7,0.8] for all MPC
horizon lengths. Up to an initial weight of ai &~ 0.8 all the initial controls lead more or less to the
same result of the MOMPC algorithm. Only for initial controls with an initial weight of ai™ > 0.8, we
observe that the upper part of the Pareto front can be reached.

For strategy 2 the clustering in the lower part of the Pareto front for MPC horizon lengths of ¢ = 25
and ¢ = 50 can be deduced, since up to an initial weight of ai" ~ 0.8, the value of a" stays below a
value of 0.1, which means that the resulting MOMPC point is in a region of the Pareto front, where the
cost function f2(0’1> (+,¥o) is weighted much more in comparison to the first cost function fl(o’l) (-, Yo)-
Moreover, for these two MPC horizons, we can see a clear cut-off behavior at a value of 0.8. If oc’im't is
larger than 0.8, the value of zxf“d is larger than 0.9. For an MPC horizon length of £ = 99, we do not
observe such a clear cut-off behavior. Although the plot is still far from being the identity, it is visible
that one can control the outcome of the MOMPC algorithm more precisely by varying the initial
control.
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In conclusion we can say that for strategy 2 a larger MPC horizon leads to a better distribution of
the MOMPC points on the Pareto front, and that it is possible to approximate the full scale of the
Pareto front by choosing different initial controls 1 € ngt(yo). Strategy 1, however, seems not to be
well-suited for this problem framework, since it is not possible to reach to whole extent of the Pareto
front by choosing different initial controls. Quite on the contrary, the MOMPC algorithm steers almost
all initial controls to the same region of the Pareto front, independently of the MPC horizon length.

Test 2. Now we want to show why the use of MPC in the multiobjective context is needed. For this we
consider the following setup: Imagine that we want to compute the Pareto front 7, o(g’tl) (yo). However,
there is only a prediction of the advection field available, which is given by

cPred(p x) = (1,1)7 forall (¢,x) € [0, T] x Q.

In the end it turns out that the prediction of the advection field is not very accurate, and the true
advection is given by the function c in (14), i.e., it deviates from the prediction cP™? after t = 0.5.

0.35 ‘
0.1)
03 7—{% “’?3 y x,,a"" | 03
x J (Uo;;t,pred(y°)’ Yo) ' j(OA,l)
0257 1 025! —opt (yo) |
% 0.21 1 * J(O"l)(ua yo)

o~ —~ 02 ]
S,,0.15¢ =

A ~~0.15 x

0.1 !
uﬁ"‘
0.05} 0.1
0 ‘ 0.05}
0 0005 001 0015 002 0025
7(0,1
Jl( ' >('>yo) 0 y
0,1) ) 0 0005 001 0015 002 0.025
(a) Pareto front 7+ * and the function values FOV (g
5 0,1 . .
jo1 (U(()p t;?re (o), yo) (b) Results obtained from Algorithm 3 for ¢ = 50

Figure 3. Comparison of the predictive multiobjective optimal control and Algorithm 3.

Denote by u

opt,pre 4(Yo) the Pareto set of the problem (MOCP) using the predicted advection cpred,

Again we used the Euclidean reference point method to compute an approximation both of l,l(()op’t1 ) (Yo)

and of UV (yo). Figure 3 (a) displays the Pareto front 7, O(ggl) (yo) together with the function values

opt,pred

jo1) (LI(()OP'tl})jr ed(Yo),Yo). One can clearly see that the controls in U(()g:; red
optimal for the problem with advection c, especially in the upper /part of the Pareto front. This can
be explained by the fact that the changing advection totally changes the strategy that has to be used
to come close to the desired temperature, which is not captured by the open-loop problem using the
prediction cPred,

We compare this to the results obtained by using the MOMPC Algorithm 3 together with strategy 2
from the first test, where we assumed that the true advection is known to the open-loop problems

in the MPC algorithm. This is reasonable since the MPC horizons are reasonably small to allow a

(Yo) are far from being Pareto

precise prediction of the future behavior of the advection field. Just as an example we look at an
MPC horizon length of £ = 50 in Figure 3 (b) and see that in contrast to the predicted Pareto optimal
(()Optl}), red(Yo) the MOMPC feedback control i comes quite close to the true Pareto front. This
underlines that the use of MOMPC is necessary in situations, in which there are only predictions of

data available.

controls U
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4.2. Example 2

The parameter choices of the previous experiment imply that the choice of a feedback « fulfilling
(7) is not possible. In this section we want to present numerical results for a setup that allows such a
feedback in principle.
To this end we choose the following parameter values: The diffusion coefficient is set to d = 0.5, the
reaction coefficient to r = 0.5, and the advection field is chosen as

(%) (1,007, ifxy <0.5,
c(t,x) =
(-1,0)7, ifxp >0.5.

As initial condition we choose
Yo(x) = =3+ (1 +tanh((x; — 0.5)/0.2)) + 3,

which is a smooth approximation of the discontinuous function

3, ifx; <05,
X =
—3, ifx; > 0.5.

It can be shown that y = 0 is a stable steady state of the PDE (1) to the control u = 0. Therefore, we
choose the desired temperatures y; =y} = 0 € L?(0,1; H) and y? = y3 = 0 € H together with the
parameter values 0f = 01 = 1,07 = 03 = 0.1 and ¢ = 03 = 0.1. The linear functionals in the cost

functions are given by

Ci : L*(0,1;H) — L*(0,1; H), fe=f (xwx )x<05) 001X (1) x>0, 5})
Cl:12(0,1;H) — L2(0,1; H), fiof (0 01X { (1) 1y <05} + X{(t) 1y 20. 5})
C}:H — H, f=rf (X{x\x1<o 51 +0. 01X{x|x1>05})
C3:H—H, f=f: (0'01X{x\x1§0.5} +X{x|x120.5}) .

Thus, both cost functions measure the deviation of the state from the steady state y = 0 together with
some control costs. To make the cost functions conflicting, the linear functionals are chosen such that
the first cost function penalizes deviations from the steady state mostly in the left half of the domain,
whereas the second cost function penalizes the deviation in the right half of the domain.

If we run Algorithm 3 with this parameter setting, we still observe that in many iterations there is no
feedback « fulfilling (7), especially for the larger MPC horizons of £ = 25 and ¢ = 50. The reason for
this is that the initial Pareto front 7, Oopt(yo) is quite close or even dominates the Pareto front 7, (5221) (Yo)
in some points for a MPC horizon of ¢ = 25 or £ = 50, see Figure 4. Since the MOMPC points

MPC horizon ¢ =13 MPC horizon ¢ = 25 MPC horizon ¢ = 50
0.18 T 0.18 o0 0.18 o0
0,1)
— g ) . — g ) . — g )
0.16 8 o JO t(?l) 0.16 o JO t(?l) 0.16 g o JO t(?l)
—_ o] —_ —_
=0.14 =0.14 =0.14
= = 2 =
g g g
0.12 0.12 0.12
0000 @
01 0.1 Q00 0.1
oo 00
0.08 0.1 0.12 0.14 0.16 0.18 0.08 0.1 0.12 0.14 0.16 0.18 0.08 0.1 0.12 0.14 0.16 0.18
PGS PGS PGS
@ /=13 (b) ¢ =25 (c) £ =50

Figure 4. Comparison between 7, o(lg’t (yo) and J, Opt(yo) for different MPC horizon lengths.
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cannot perform better than any point on the Pareto front jcgg’tl) (yo), it is not possible to achieve the
performance result from Theorem 3 in those parts. As all the other assumptions of Theorem 3 are
satisfied, the reason for not achieving the performance result has to be that it is not possible to find a
feedback « fulfilling (7) in all steps of the algorithm. This is what we observe numerically.

However, if we look at Figure 5 we see that we still obtain the performance result from Theorem 3
for many points, although a feedback x cannot be found for all these points. The black lines indicate
which performance value | corresponds to which initial cost. Therefore, if the black lines are pointing
to the top right (starting from the red point), this means that the performance result is satisfied for
this point. We observe that the performance result holds for all points for an MPC horizon length of
¢ = 13 and for most points for / = 25. Even for ¢ = 50 there are some points in the middle of the
Pareto front, for which the performance result holds, although there are only very few steps, where
a feedback « fulfilling (7) can be found. Figure 6 indicates that this performance behavior does not
change drastically, if we increase the time horizon f.,4. The reason for this is that at time f¢,q = 1 the

MPC horizon ¢ =13 MPC horizon ¢ = 25 MPC horizon £ = 50
0.16
0 0 0
015 : A(%Iig(y") 0.16 . A((l)m(yo) 0.16 k . A(%pﬁ(ya)
0.14 / ° Jpérf(M’ %) 0.15 i Jpéﬂ(Ma o) 0.15 'é . Jper 1, Yo)
— 014 —014F %
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0.11 '/./..//" o {C./‘ . “
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Figure 5. Performance Results.

steady state y = 0 is almost reached, so that almost no further costs are needed after this point. If
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Figure 6. Performance Results for the top left point of the Pareto front.

we compare the MOMPC results obtained from Algorithm 3 with the Pareto front 7, O(Ig’tl) (Yo) of the
open-loop problem in Figure 7, we observe that increasing the MPC horizon has two positive effects
on the results: Firstly, the MOMPC points are located closer to the Pareto front, and secondly, they are
spread more evenly over the entire Pareto front. Already for an MPC horizon length of / = 50 we can
see that the Pareto front is almost perfectly approximated.
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Figure 7. Comparison the results from Algorithm 3 and the Pareto front.

5. Conclusion and outlook

In this paper we have adopted the framework of MOMPC presented in [1,2] for ODEs to
parabolic advection-diffusion-reaction equations. A key ingredient for the MOMPC algorithm is
a gradient-based descent scheme for multiobjective optimization taken from [25,26]. On the one
hand, this scheme results in a Pareto optimal point, and on the other hand, it intrinsically implies
that the crucial condition (5) is satisfied. Assuming the existence of a feedback «x satisfying (7) we
could show that the performance result from [1, Theorem 11] also holds for our framework of the
MOMPC algorithm. Numerically, it turns out that it is hard to guarantee that such a feedback exists.
However, even in the case that such a feedback does not exist, the results of the MOMPC algorithm are
comparable with the Pareto optimal points of the full-horizon open-loop problem. Especially when
some parameters of the PDE can only be predicted, the MOMPC algorithm turns out to be a useful
tool, if we still want to compute many compromises between the cost functions.

Both the analysis in Section 3 and the numerical experiments in Section 4 were only carried out for
two cost functions, but it is possible to extend both to an arbitrary number of cost function as long as
all cost functions are of the form (2). For the analysis this extension is straight-forward, since all the
arguments can be transferred directly to this more general case. On the numerical side we can still
use the Euclidean reference point method for computing the initial Pareto set L{gpt(yo), see e.g., [29].
In general, the effort for computing the Pareto set Z/[gpt(yo) scales exponentially with the number of
cost functions. However, this computation has only to be performed once in step 4 of Algorithm 3,
which is in many cases not underlying any time restrictions. While performing the rest of the MOMPC
algorithm the number of cost functions only influences the complexity of steps 6 and 9. In step 6
we need to perform Algorithm 2, in which the dimension of the variable space of the minimization
problem (13) is equal to the number of cost functions. Since we only have to compute one Pareto
optimal control I, € U, (ya) this step is computationally not expensive. In step 9 the number of cost
functions in the min-max problem 8 corresponds to the total number of cost functions. Again the effort
for solving this problem does not cause complex calculations.

During the MOMPC Algorithm 3 numerous open-loop problems on the MPC horizon have to
be solved. Since this involves the solution of the PDE and its associated adjoint equation, this is
numerically expensive. Therefore, in a future work one can apply model-order reduction techniques
(e.g., the proper orthogonal decomposition method, cf. [30,31]) for lowering the computational effort.
Strategies presented in [16,17] could be used to show convergence to the full solution.
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lowing abbreviations are used in this manuscript:

Multiobjective optimization
Multiobjective optimization problem
Multiobjective optimal control problem
Model predictive control

MOMPC  Multiobjective model predictive control

ODE Ordinary differential equation

PDE Partial differential equation
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