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Abstract: In the present paper a multiobjective optimal control problem governed by a linear parabolic1

advection-diffusion-reaction equation is considered. The optimal controls are computed by applying2

model predictive control (MPC), which is a method for controlling dynamical systems over long or3

infinite time horizons by successively computing optimal controls over a moving finite time horizon.4

Numerical experiments illustrate that the proposed solution approach can be successfully applied5

although some of the assumptions made in [1,2] can not be guaranteed for the studied tests.6

Keywords: Multiobjectice optimization; multiobjective optimal control; model predictive control;7

evolution problems; advection-diffusion equations.8

1. Introduction9

Model predictive control (MPC) is a method for controlling dynamical systems over long or10

infinite time horizons by successively computing optimal controls over a moving finite time horizon;11

cf., e.g., [3]. The successive re-optimization on the one hand introduces a feedback mechanism, which12

makes the method attractive as a real-time control scheme and as such it is widely used in industry [4].13

On the other hand, MPC provides a method to reduce the complexity of optimal control problems14

by splitting up problems on long or infinite horizons into smaller subproblems over shorter horizons.15

As such, MPC can be seen as a model reduction technique in time. Clearly, this approach only makes16

sense if the solution generated by MPC is in some sense close to the true optimal solution. Fortunately,17

this approximate optimality property can be rigorously proved for many classes of optimal control18

problems, see, e.g., [5,6] and the references therein.19

In practice, it is often the case that a single optimization criterion is not sufficient for modelling20

the demands in a given application. This leads to the concept of multiobjective optimal control, in21

which typically there does not exist a single optimal value but rather a whole set of optimal values,22

the so called Pareto front. Due to its usefulness in practice it is no surprise that this concept has been23

used and investigated also in the MPC context, see, e.g., [7–11]. Particularly, in [1,2] MPC algorithms24

were presented that allow for rigorous suboptimality estimates also in the multiobjective case. The25

main feature of this class of algorithms is a particular constraint that depends on the chosen point26

on the Pareto front when solving the first optimal control problem in the MPC scheme and that is27

applied in all subsequent optimal control problems. While the examples in [1,2] are limited to finite28

dimensional systems, in this paper we show that this idea can be successfully applied also to optimal29

control problems governed by partial differential equations (PDEs) and that the necessary constraint30

can be efficiently implemented using a gradient descent scheme. While we will see that some of the31

assumptions made in [1,2] are difficult to satisfy for PDE governed problems, our numerical tests will32

show that the algorithm nevertheless performs very well.33
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In the literature there is a vast amount of methods for multiobjectice optimization; see e.g. [12,13].34

However, in the context of PDE constrained problems there are only a few papers available. We refer,35

e.g., to [14–18]. In this paper, for computing the Pareto set and/or the Pareto front of (MOCP) we use36

the Euclidean reference point method, which was introduced in [19,20] and already used for solving37

multiobjective optimal control problems with two cost functions in [21–23].38

The paper is organized as follows: In Section 2 we pose the multiobjective optimal control problem39

(MOCP). The algorithmic approach for multiobjectice model predictive control (MOMPC) is explained40

and analyzed in Section 3. Numerical experiments are presented in Section 4. In the last section we41

draw a few conclusions.42

2. The multiobjective optimal control problem43

Let Ω ⊂ R2 be a bounded domain with Lipschitz-continuous boundary Γ = ∂Ω, T > 0,
Q = (0, T)×Ω, Σ = (0, T)× Γ. Given an initial condition y◦ ∈ L2(Ω) we consider the following
parametrized parabolic advection-diffusion-reaction equation with the diffusion coefficient d > 0, the
advection field c ∈ L∞((0, T)×Ω;R2) and the reaction coefficient r ≥ 0:

yt(t, x)− d∆y(t, x) + c(t, x) · ∇y(t, x) + ry(t, x) = 0 a.e. in Q,

d
∂y
∂n

(t, x) =
m

∑
i=1

ui(t)bi(x) a.e. on Σ,

y(0, x) = y◦(x) a.e. in Ω.

(1)

The functions bi ∈ L∞(Γ), 1 ≤ i ≤ m, denote given control shape functions, e.g., characteristic
functions:

Γ =
m⋃

i=1

Γi, bi(s) = χΓi (s), 1 ≤ i ≤ m, ‖bi‖2
L2(Γ) = |Γ

i|.

By setting H = L2(Ω) and V = H1(Ω), one can show that (1) has a unique weak solution y =44

y(u, y◦) ∈ W(0, T) = H1(0, T; V′) ∩ L2(0, T; V) for all controls u ∈ L2(0, T;Rm) =: U and all initial45

conditions y◦ ∈ H. Recall that W(0, T) is a Hilbert space endowed with its common inner product.46

Moreover, W(0, T) is continuously embedded into C([0, T]; H); cf. [24]. The solution operator S :47

U × H → W(0, T) ↪→ L2(0, T; H), which maps any control u ∈ U and initial value y◦ ∈ H to the48

solution y = S(u, y◦) of (1), is affine linear and continuous in both components.49

Given a fixed initial value y◦ ∈ H the multiobjective optimal control problem (MOCP) reads

min
u∈U

Ĵ(u, y◦) = min
u∈U

(
Ĵ1(u, y◦)
Ĵ2(u, y◦)

)
, (MOCP)

where the two objectives Ĵ1, Ĵ2 : U × H → R are given by

Ĵi(u, y◦) :=
σ1

i
2
‖C1

i S(u, y◦)− y1
i ‖2

L2(0,T;H) +
σ2

i
2
‖C2

i S(u, y◦)(T)− y2
i ‖2

H +
σ3

i
2
‖u‖2

L2(0,T;Rm)
(2)

for nonnegative weighting parameters σ1
i , σ2

i , σ3
i with σ1

i + σ2
i + σ3

i > 0, linear mappings C1
i ∈50

L(L2(0, T; H)) and C2
i ∈ L(H) and desired states y1

i ∈ L2(0, T; H) and y2
i ∈ H for i = 1, 2. Here, e.g.,51

L(L2(0, T; H)) denotes the Banach space of all linear and bounded operators mapping from L2(0, T; H)52

into itself.53

Problem (MOCP) involves the minimization of a vector-valued objective Ĵ(·, y◦) : U → R2. This54

is done by using the concept of Pareto optimality; see, e.g., [12].55
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Definition 1. The point ū ∈ U is called Pareto optimal for (MOCP), if there is no other control u ∈ U with
Ĵi(u, y◦) ≤ Ĵi(ū, y◦) for i = 1, 2 and Ĵl(u, y◦) < Ĵl(ū, y◦) for at least one l ∈ {1, 2}. The set

Uopt(y◦) = {u ∈ U | u is Pareto optimal}

is called the Pareto set, and

Jopt(y◦) = Ĵ(Uopt, y◦)

is called the Pareto front of (MOCP).56

3. Multiobjective model predictive control (MOMPC)57

In this section we explain how MPC is combined with multiobjective optimal control. Given a
final (large) time horizon T > 0 we use an equidistant time grid

0 = t0 < t1 < . . . < tL = T with tn = n∆t for n = 0, . . . , L and ∆t =
T
L

.

The open-loop problems in the MPC algorithm are then solved on smaller time horizons `∆t with
1 < ` < L. We set

tend = tL−`+1 = (L− `+ 1)∆t ≤ T.

By the MPC method we will finally compute an optimal control on the time horizon [0, tend]. For58

n = 0, . . . , L− ` the optimal control to this problem on the interval (tn, tn + ∆t) = (tn, tn+1) is stored59

and used to compute the next part of the state trajectory on the interval (tn, tn+1). Then the time60

horizon is shifted by ∆t and the procedure is repeated until the final time horizon is reached. Notice61

that the end time for the computed MPC control is tend.62

To deal with this framework we have to consider (1) on subintervals of [0, T]. To this end we
introduce further notations: For an arbitrary initial time ta ∈ [0, T) and end time tb ∈ (ta, T], we study
the state equation on the time horizon I = (ta, tb):

yt(t, x)− d∆y(t, x) + c(t, x) · ∇y(t, x) + ry(t, x) = 0 a.e. in I×Ω,

d
∂y
∂n

(t, x) =
m

∑
i=1

ui(t)bi(x) a.e. on I× Γ,

y(ta, x) = ya(x) a.e. in Ω

(3)

for some initial value ya ∈ H. Again it is possible to show that for each u ∈ UI = L2(I;Rm) and63

ya ∈ H there exists a unique weak solution y = y(u, ya) ∈W(I) to (3) and that the associated solution64

operator SI : UI × H →W(I) ↪→ L2(I; H) is affine linear and continuous in both components.65

The two objectives ĴI1 , ĴI2 : UI × H → R are given by

ĴIi (u, ya) :=
σ1

i
2
‖C1

i SI(u, ya)− y1
i ‖2

L2(I;H) +
σ2

i
2
‖C2

i SI(u, ya)(tb)− y2
i ‖2

H +
σ3

i
2
‖u‖2

L2(I;Rm) (4)

for i = 1, 2. Note that we would actually have to write C1I
i ∈ L2(I; H) for i = 1, 2 to display the

dependence of the operators on the time interval I. Since we define these operators in a canonical way
by

C1I
i f :=

(
C1

i (E f )
)∣∣∣

I
for f ∈ L2(I; H),

where E : L2(I; H) ↪→ L2(0, T; H) extends any function f ∈ L2(I; H) by 0 to a function in L2(0, T; H),66

we omit this dependence on I for the purpose of readability.67
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Throughout we denote by UI
opt(ya) and J I

opt(ya) the Pareto set and Pareto front, respectively, of
the MOCP

min
u∈UI

ĴI(u, ya) = min
u∈UI

(
ĴI1 (u, ya)
ĴI2 (u, ya)

)
. (MOCPI)

Especially for the open-loop problems in the MPC algorithm we make the following notations: Given68

n ∈ {0, . . . , L − `} we set t`n = tn + `∆t ≤ T for the final time instance and Un = L2(tn, t`n;Rm).69

Furthermore, for brevity we define Sn = S(tn ,t`n), Ĵn
i = Ĵ(tn ,t`n)

i for i = 1, 2, and Un
opt(ya) = U

(tn ,t`n)
opt (ya) as70

well as J n
opt(ya) = J

(tn ,t`n)
opt (ya). In the context of MOMPC the notion of external stability turns out to71

be important, see [1, Definition 6] and Theorem 2 below.72

Definition 2. Let I = (ta, tb) ⊂ [0, T] be a time interval and the initial condition ya ∈ H be arbitrary. The73

set ĴI(UI, ya) is called externally stable, if for every y ∈ ĴI(UI, ya) there is ȳ ∈ J I
opt(ya) with ȳ ≤ y. This74

is equivalent to ĴI(UI, ya) ⊂ J I
opt(ya) +R2

≥0.75

For the cost functions defined in (4) it is possible to show that the set ĴI(UI, ya) is externally76

stable, as the following theorem shows.77

Theorem 1. Let I = (ta, tb) ⊂ [0, T] be a time interval and the initial condition ya ∈ H be arbitrarily given.78

We assume that σ3
i > 0 for i = 1, 2. Then the set ĴI(UI, ya) is externally stable.79

Proof. It is possible to show that the Pareto optimal points of ĴI(UI, ya) and ĴI(UI, ya) +R2
≥0 are the

same, i.e., it holds J I
opt(ya) = ( ĴI(UI, ya) +R2

≥0)opt. So if we show that the set ĴI(UI, ya) +R2
≥0 is

externally stable, i.e., that it holds ĴI(UI, ya) +R2
≥0 ⊂ ( ĴI(UI, ya) +R2

≥0)opt +R2
≥0, we are done, since

then we have

ĴI(UI, ya) ⊂ ĴI(UI, ya) +R2
≥0 ⊂ ( ĴI(UI, ya) +R2

≥0)opt +R2
≥0 = J I

opt(ya) +R2
≥0.

According to [12, Theorem 2.21] we only need to show that ĴI(UI, ya) + R2
≥0 6= ∅ and that for

all y ∈ ĴI(UI, ya) + R2
≥0 the set ( ĴI(UI, ya) + R2

≥0) ∩ (y − R2
≥0) is compact (this is the notion of

R2
≥0-compactness). It is clear that ĴI(UI, ya) 6= ∅ holds.

Since the set ĴI(UI, ya) +R2
≥0 is bounded from below and y−R2

≥0 is bounded from above, the set
( ĴI(UI, ya) +R2

≥0) ∩ (y−R2
≥0) is bounded.

The closedness of ĴI(UI, ya) +R2
≥0 follows from the convexity, the continuity and the property

lim
‖u‖UI→0

ĴIi (u, ya) = ∞,

which follows from σ3
i > 0 for i = 1, 2, of the cost functions ĴI1 (·, ya), ĴI2 (·, ya), and was for example80

shown in the proof of Theorem 3.35 in [22].81

The pseudocode for a general MOMPC algorithm is shown in Algorithm 1. Here we use a fixed
time horizon ∆t on which the computed control is applied before a re-optimization is performed.
We note that it may be possible to use varying time horizons here, similar as discussed for the
single-objective case, e.g., in [6, Section 10.4]. The most important question is how to perform step 5 of
Algorithm 1. Clearly, one possibility is to compute the entire Pareto set Un

opt(ya), which is nonempty by
Theorem 1, and then to choose a control ūn ∈ Un

opt(ya) according to some given preferences. However,
this procedure is computationally costly, and thus, infeasible for many applications. On the other
hand, one could compute only one Pareto optimal control ūn ∈ Un

opt(ya). Then the question is under



Version April 8, 2020 submitted to Journal Not Specified 5 of 18

Algorithm 1 (Multiobjective model predictive control)

Given: Initial state y◦ ∈ H.
1: Output: MOMPC feedback control µ.
2: Set y0(t0) = y◦.
3: for n = 0 to L− ` do
4: Set ta = tn, tb = ta + `∆t and ya = yn(tn).
5: Compute a Pareto optimal control ūn ∈ Un

opt(ya).
6: Set yn+1(t) = yn(t) for all t ∈ [0, tn] and compute yn+1(t) = Sn(ūn, ya)(t) for all t ∈ (tn, tn+1].
7: Set µ(t) = ūn(t) for all t ∈ (tn, tn+1].
8: end for

which criteria this control should be computed. In [1] the authors allowed an arbitrary choice for
ū0 ∈ U 0

opt(y◦) and used the additional constraint

Ĵn
i (ūn, ya) ≤ Ĵn

i (ũ, ya), for i = 1, 2 and ya = yn(tn), (5)

for all n ∈ {1, . . . , L− `}, where ũ is given by

ũ(t) =

{
ūn−1(t), if t ∈ [tn, t`n−1] = [tn, tn−1+`],

κ(t), if t ∈ (t`n−1, t`n] = (tn−1+`, tn+`]
(6)

and the feedback κ ∈ U(t`n−1,t`n) is chosen such that

σ1
i

2

∥∥∥C1
i S(t`n−1,t`n)(κ, yκ)− y1

i

∥∥∥2

L2(t`n−1,t`n ;H)
+

σ2
i

2

∥∥∥C2
i S(t`n−1,t`n)(κ, yκ)(t`n)− y2

i

∥∥∥2

H
+

σ3
i

2
‖κ‖2

L2(t`n−1,t`n ;Rm)

≤
σ2

i
2

∥∥∥C2
i Sn−1(ūn−1, yn−1(tn−1))(t`n−1)− y2

i

∥∥∥2

H
, (7)

holds for i = 1, 2, with yκ = Sn−1(ūn−1, yn−1(tn−1))(t`n−1). The external stability of the set82

Ĵn(Un, yn(tn)) ensures that such a control ūn exists.83

Theorem 2. Let n ∈ {0, . . . , L− `} and ya = yn(tn). Given ũ ∈ Un there is ūn ∈ Un
opt(ya) such that (5) is84

satisfied.85

Proof. This follows directly from Theorem 1, where it was shown that the set Ĵn(Un, ya) is externally86

stable.87

However, the existence of a feedback κ ∈ U(t`n−1,t`n) fulfilling (7) cannot be shown in general for
our problem, but has to be assumed. Such a feedback exists if and only if the minimal value of the
minimization problem

min
κ∈U(t`n−1,t`n)

max
i∈{1,2}

σ1
i

2

∥∥∥C1
i S(t`n−1,t`n)(κ, yκ)− y1

i

∥∥∥2

L2(t`n−1,t`n ;H)
+

σ2
i

2

∥∥∥C2
i S(t`n−1,t`n)(κ, yκ)(t`n)− y2

i

∥∥∥2

H

+
σ3

i
2
‖κ‖2

L2(t`n−1,t`n ;Rm)
−

σ2
i

2

∥∥∥C2
i Sn−1(ūn−1, yn−1(tn−1))(t`n−1)− y2

i

∥∥∥2

H
. (8)

is smaller or equal than zero. Thus, by solving the minimization problem (8) we can on the one hand88

check, if such a feedback exists, and on the other hand compute it explicitly.89

If the conditions (5) and (7) are fulfilled throughout Algorithm 1 we can show the following90

performance theorem, compare [1, Theorem 11], where also the proof was taken from and adapted to91

our situation.92
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Theorem 3. Let y◦ ∈ H be arbitrary and assume that σ3
i > 0 holds for i = 1, 2. Denote by ū0 ∈ U 0

opt(y◦)
the initially chosen Pareto optimal control in Algorithm 1. Furthermore, assume that it is possible to choose a
feedback κ ∈ U(t`n−1,t`n) fulfilling (7) for every n ∈ {1, . . . , L− `}. Let µ ∈ U(0,tend) be the resulting MOMPC
feedback control resulting from Algorithm 1. Then it holds

Ĵ(0,tend)
i,perf (µ, y◦) =

σ1
i

2

∥∥∥C1
i S(0,tend)(µ, y◦)− y1

i

∥∥∥2

L2(0,tend;H)
+

σ3
i

2
‖µ‖2

L2(0,tend;Rm) ≤ Ĵ0
i (ū0, y◦)

for i = 1, 2.93

Proof. Note that it holds µ(t) = ūn(t) for almost all t ∈ (tn, tn+1) and all n ∈ {0, . . . , L− `} and that

L−`⋃
n=0

(tn, tn+1) = (0, tend)

holds true. By defining yn = S(0,tend)(µ, y◦)(tn) for all n ∈ {0, . . . , L− `} we can write

σ1
i

2

∥∥∥C1
i S(0,tend)(µ, y◦)− y1

i

∥∥∥2

L2(0,tend;H)
+

σ3
i

2
‖µ‖2

L2(0,tend;Rm)

=
1
2

L−`
∑
n=0

[
σ1

i

∥∥∥C1
i Sn(ūn, yn)− y1

i

∥∥∥2

L2(tn ,tn+1;H)
+ σ3

i ‖ūn‖2
L2(tn ,tn+1;Rm)

]
=

1
2

L−`
∑
n=0

[
σ1

i

∥∥∥C1
i Sn(ūn, yn)− y1

i

∥∥∥2

L2(tn ,t`n ;H)
+ σ3

i ‖ūn‖2
L2(tn ,t`n ;Rm)

+ σ2
i

∥∥∥C2
i Sn(ūn, yn)(t`n)− y2

i

∥∥∥2

H
− σ1

i

∥∥∥C1
i Sn(ūn, yn)− y1

i

∥∥∥2

L2(tn+1,t`n ;H)

− σ3
i ‖ūn‖2

L2(tn+1,t`n ;Rm) − σ2
i

∥∥∥C2
i Sn(ūn, yn)(t`n)− y2

i

∥∥∥2

H

]
.

(9)

Since we assume the existence of a feedback κ fulfilling (7), we can conclude

− σ2
i

∥∥∥C2
i Sn(ūn, yn)(t`n)− y2

i

∥∥∥2

H

≤ −σ1
i

∥∥∥C1
i Sn+1(ũn+1, yn+1)− y1

i

∥∥∥2

L2(t`n ,t`n+1;H)

− σ2
i

∥∥∥C2
i Sn+1(ũn+1, yn+1)(t`n+1)− y2

i

∥∥∥2

H
−

σ3
i

2
‖κ‖2

L2(t`n ,t`n+1;Rm)

(10)

for all n ∈ {0, . . . , L− `} with ũn+1 ∈ U(tn+1,t`n+1) defined as in (6). Due to (6) we find that

‖ūn‖2
L2(tn+1,t`n ;Rm) + ‖κ‖

2
L2(t`n ,t`n+1;Rm) = ‖ũn+1‖2

L2(tn+1,t`n+1;Rm) . (11)

Moreover, it follows that∥∥∥C1
i Sn(ūn, yn)− y1

i

∥∥∥2

L2(tn+1,t`n ;H)
+
∥∥∥C1

i Sn+1(ũn+1, yn+1)− y1
i

∥∥∥2

L2(t`n ,t`n+1;H)

=
∥∥∥C1

i Sn+1(ũn+1, yn+1)− y1
i

∥∥∥2

L2(tn+1,t`n+1;H)
.

(12)
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Plugging (10) into (9) and utilizing (11)-(12) we deduce that

σ1
i

2

∥∥∥C1
i S(0,tend)(µ, y◦)− y1

i

∥∥∥2

L2(0,tend;H)
+

σ3
i

2
‖µ‖2

L2(0,tend;Rm)

≤ 1
2

L−`
∑
n=0

[
σ1

i

∥∥∥C1
i Sn(ūn, yn)− y1

i

∥∥∥2

L2(tn ,t`n ;H)
+ σ3

i ‖ūn‖2
L2(tn ,t`n ;Rm)

+ σ2
i

∥∥∥C2
i Sn(ūn, yn)(t`n)− y2

i

∥∥∥2

H
− σ1

i

∥∥∥C1
i Sn+1(ũn+1, yn+1)− y1

i

∥∥∥2

L2(tn+1,t`n+1;H)

− σ3
i ‖ũn+1‖2

L2(tn+1,t`n+1;Rm) − σ2
i

∥∥∥C2
i Sn+1(ũn+1, yn+1)(t`n+1)− y2

i

∥∥∥2

H

]
.

Since the control ūn+1 fulfills (5) for n ∈ {0, . . . , L− `− 1}, we can further estimate

σ1
i

2

∥∥∥C1
i S(0,tend)(µ, y◦)− y1

i

∥∥∥2

L2(0,tend;H)
+

σ3
i

2
‖µ‖2

L2(0,tend;Rm)

≤ 1
2

L−`
∑
n=0

[
σ1

i

∥∥∥C1
i Sn(ūn, yn)− y1

i

∥∥∥2

L2(tn ,t`n ;H)
+ σ3

i ‖ūn‖2
L2(tn ,t`n ;Rm)

+ σ2
i

∥∥∥C2
i Sn(ūn, yn)(t`n)− y2

i

∥∥∥2

H

]
− 1

2

L−`−1

∑
n=0

[
σ1

i

∥∥∥C1
i Sn+1(ūn+1, yn+1)− y1

i

∥∥∥2

L2(tn+1,t`n+1;H)
+ σ3

i ‖ūn+1‖2
L2(tn+1,t`n+1;Rm)

+ σ2
i

∥∥∥C2
i Sn+1(ūn+1, yn+1)(t`n+1)− y2

i

∥∥∥2

H

]
−

σ1
i

2

∥∥∥C1
i SL−`+1(ũL−`+1, yL−`)− y1

i

∥∥∥2

L2(tL−`+1,t`L−`+1;H)
−

σ3
i

2
‖ũL−`+1‖2

L2(tL−`+1,t`L−`+1;Rm)

−
σ2

i
2

∥∥∥C2
i SL−`+1(ũL−`+1, yL−`+1)(t`L−`+1)− y2

i

∥∥∥2

L2(tL−`+1,t`L−`+1;H)
.

The first two sums on the right-hand side are a telescopic sum. Together with the nonnegativity of the
norms, this finally implies

σ1
i

2

∥∥∥C1
i S(0,tend)(µ, y◦)− y1

i

∥∥∥2

L2(0,tend;H)
+

σ3
i

2
‖µ‖2

L2(0,tend;Rm)

≤
σ1

i
2

∥∥∥C1
i S0(ū0, y0)− y1

i

∥∥∥2

L2(t0,t`0;H)
+

σ3
i

2
‖ū0‖2

L2(t0,t`0;Rm) +
σ2

i
2

∥∥∥C2
i S0(ū0, y0)(t`0)− y2

i

∥∥∥2

H

= Ĵ0
i (ū0, y◦),

which is what we wanted to show.94

Remark 1. 1) The statement from Theorem 3 is important, since it gives us performance bounds on the cost95

functions values of the MOMPC feedback control µ already after choosing the initial control ū0 ∈ U 0
opt(y◦),96

but before performing the MOMPC Algorithm 1. Thus, one strategy is to compute the entire Pareto set97

U 0
opt(y◦), which is computationally cheap due to the small time horizon (t0, t`0), and then to choose the98

initial control ū0 ∈ U 0
opt(y◦) according to the desired upper bounds on the cost functions.99

2) Theorem 3 holds for arbitrary T > 0. In particular, by taking the limit T → ∞, the result can also be100

shown for the infinite-horizon case.101

Now we want to present a gradient descent scheme for computing a control ūn ∈ Un
opt(ya)102

fulfilling (5). To this end we use the following result which is taken from e.g. [25, Theorem 2.1], where it103

is proved for the case of finite-dimensional controls. However, the extension to our infinite-dimensional104
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setting Un = L2(tn, t`n;Rm) is straight-forward, since the proof of Theorem 2.1 in [25] does not explicitly105

use the finite-dimensionality of the space Un, but only its property of being a Hilbert space.106

Theorem 4. Let n ∈ {0, . . . , L− `} and σ3
i > 0 for i = 1, 2. Suppose that ya ∈ H, u ∈ Un are arbitrarily

given and

α̂n = arg min
α=(α1,α2)∈R2

{∥∥α1∇u Ĵn
1 (u, ya)

∥∥2
U +

∥∥α2∇u Ĵn
2 (u, ya)

∥∥2
U

∣∣ α1, α2 ≥ 0 and α1 + α2 = 1
}

. (13)

Then either
qn(u) = −α̂n

1∇u Ĵn
1 (u, ya)− α̂n

2∇u Ĵn
2 (u, ya)

is a descent direction for the cost functions Ĵn
1 (· , ya) and Ĵn

2 (· , ya), or qn(u) = 0 holds. Since the cost functions107

Ĵn
1 (· , ya), Ĵn

2 (· , ya) are strictly convex, the latter implies that u is a Pareto optimal point, c.f. [12].108

Remark 2. Problem (13) is a quadratic optimization problem in the variable α ∈ R2 with the constraints109

α ∈ [0, 1]2 and α1 + α2 = 1. By substituting α2 = 1− α1, this problem can be reformulated as a box-constrained110

quadratic optimization problem in only one variable, which is easy to solve. In our numerical experiments we111

utilize the MATLAB routine quadprog.112

With Theorem 4 we can set up Algorithm 2, which takes an arbitrary point u ∈ Un as an input113

and results in a Pareto optimal point ū, compare [26, Algorithm 1]. From [26, Lemma 4] it follows that

Algorithm 2 (Multiobjective Gradient Descent Method)

Given: Current iterate n, initial control u ∈ Un, tolerance ε > 0, Armijo parameter 0 < β� 1.
1: Set k = 0 and ya = yn(tn).
2: Get α̂n by solving (13) and set qn(u) = −∑2

i=1 α̂n
i ∇u Ĵn

i (u, ya).
3: while ‖qn(u)‖Un > ε do
4: Set k = k + 1.
5: Armijo backtracking: determine the step size tk > 0 as the maximal t ∈ {(1/2)l | l ∈ N0} with

Ĵn
i
(
u + tqn(u), ya

)
≤ Ĵn

i (u, ya) + βt∇u Ĵn
i (u, ya)>qn(u), i = 1, 2.

6: Set u+ = u + tkqn(u) and then u = u+.
7: Get α̂n by solving (13) and set qn(u) = −∑2

i=1 α̂n
i ∇u Ĵn

i (u, ya).
8: end while
9: Set ūn = u.

114

a step length tk > 0 can always be found in step 5 of Algorithm 2. Moreover, in [26, Theorem 1] the115

authors proved the following convergence result. Again, they assumed a finite-dimensional space Un,116

but the arguments of the proof transfer directly to our setting Un = L2(tn, t`n;Rm).117

Theorem 5. Every accumulation point of the sequence (uk)k∈N produced by Algorithm 2 is a Pareto optimal118

point.119

Remark 3. 1) Note that we cannot prove that the sequence (uk)k∈N has an accumulation point in the120

infinite-dimensional case. However, we will not encounter this problem in our numerical implementation,121

since the space Un will be discretized. Therefore, Algorithm 2 will in practice terminate in a finite number122

of steps.123

2) By construction of the algorithm it holds Ĵn
i (ūn, ya) ≤ Ĵn

i (u, ya), i = 1, 2, for any initial control u ∈ Un,124

so that (5) is fulfilled, if we choose u = ũ.125

Finally, the MOMPC algorithm looks as follows.126
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Algorithm 3 (Multiobjective Model Predictive Control)

Given: Initial state y◦ ∈ H.
1: for n = 0 to L` do
2: Set ya = yn(tn).
3: if n == 0 then
4: Choose an arbitrary initial control u ∈ U 0

opt(y◦). Go to step 7.
5: end if
6: Use Algorithm 2 to compute a Pareto optimal control ūn ∈ Un

opt(ya) fulfilling (5).
7: Set yn+1(t) = yn(t) for all t ∈ [0, tn] and compute yn+1(t) = Sn(ūn, ya)(t) for all t ∈ (tn, tn+1].
8: Set µ(t) = ūn(t) for all t ∈ (tn, tn+1].
9: Compute a feedback κ by solving (8) and set ũ according to (6).

10: end for

4. Numerical Tests127

Throughout the numerical experiments let the domain Ω be given by Ω = (0, 1)2 with points128

x = (x1, x2). This domain is discretized by using linear finite elements with 494 degrees of freedom. We129

choose tend = 1 and ∆t = 1/198. The number of total time steps L is set to L = 197 + ` in dependence130

of the smaller time horizons ` of the MPC open-loop problems. Accordingly, the final time T is given131

by T = L∆t. For the time integration of the PDE we use the Crank-Nicolson method. In Algorithm 2132

we set the tolerance ε = 10−4. In Algorithm 3 the initial control ū0 is chosen as an element of the Pareto133

set U 0
opt(y◦). Therefore, in the following we will always compute a finite approximation U 0

opt,appr(y◦)134

of this set, which depends on the MPC horizon length `, by the Euclidean reference point method.135

We note that in all our examples we use fixed temporal and spatial discretizations. Clearly,136

this is not necessarily efficient and one may rather prefer to use adaptive discretizations that only137

use fine grids in space and/or time when this is really relevant for obtaining a sufficiently accurate138

numerical approximation for the control function. For single-objective PDE governed MPC problems,139

such methods were developed in, e.g., [27,28]. We conjecture that they could be adapted to the140

multiobjective setting.141

4.1. Example 1142

Let the advection field be given by

c(t, x) =


(1, 1)>, if t ≤ 0.5,
√

2 (cos(2π(t− 0.5) + π/4), sin(2π(t− 0.5) + π/4))> , if t ∈ (0.5, 1),

(−1,−1)>, if t ∈ [1, T],

(14)

i.e., it is space-independent and at first constantly pointing into the direction (1, 1)> before it then
smoothly rotates towards the direction (−1,−1)>. The diffusion coefficient is set to d = 1, the reaction
term is chosen as r = 0, i.e., there is no reaction in the system, and the control input u ∈ L2(0, 1;R4)

acts on all four edges of the domain individually.
Furthermore, we choose y◦(x) = 15,

y1
1(x, t) :=

{
15 + x1x2t, if t ∈ [0, 1],

15 + x1x2, if t ∈ [1, T],

y2
1(x) := 15 + x1x2 and set σ1

1 = 1, σ2
1 = 0.1, σ3

1 = 0.001 in the cost function Ĵ1 and σ1
2 = 0, σ2

1 = 0,
σ3

1 = 1 in the cost function Ĵ2. The linear mappings C1
1 ∈ L(L2(0, T; H)) and C2

1 ∈ L(H) are chosen
to be the identity, respectively. This is a quite typical framework for MOCPs: the first cost function
penalizes the deviation from a desired state, whereas the second cost function measures the control
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costs.
Given these data we can apply Theorem 1 and show the external stability of the sets Ĵn(Un, yn(tn)),
which implies the feasibility of the steps 4 and 6 in Algorithm 3.
However, we can in general not expect that there is a feedback κ fulfilling (7). The reason for this is
that such a κ would have to fulfill the inequality

1
2
‖κ‖2

L2(t`n−1,t`n ;Rm)
≤ 0,

due to the choices σ1
2 = σ2

2 = 0 in the second cost function, which implies κ = 0. Plugging this into (7)
for i = 1 we see that the inequality is only fulfilled, if the uncontrolled system would move towards
the desired temperatures. This is unlikely to happen in our setting, since the desired temperatures are
larger than the initial condition and increasing in time. Nevertheless we can still compute a minimizer
of (8) and use it to define ũ in (6). Note that in this case, the assumptions of Theorem 3 are not fulfilled,
so that this choice of κ and ũ is of heuristic nature.
Another heuristic approach for determining ũ that we want to test in the following is motivated by
the criteria used in step 2 of Algorithm 4 in [2], which was designed for problems without terminal
condition and translates to our problem as follows: During the n-th loop iteration of Algorithm 3

(n ∈ {0, . . . , L− `}) compute κ ∈ U (t`n−1,t`n+1)
opt (yn(t`n−1)) in step 9 such that

‖κ‖2
L2(t`n−1,t`n ;R4) ≤ ‖ūn‖2

L2(t`n−1,t`n ;R4) (15)

holds. Then we set

ũ(t) =

{
ūn(t), if t ∈ [tn+1, t`n−1] = [tn+1, tn−1+`],

κ(t), if t ∈ (t`n−1, t`n+1] = (tn−1+`, tn+1+`].
(16)

Here we do not impose the inequality (15) on κ explicitly. The reason for this is that demanding
(15) would not guarantee us any performance results for our framework, but only increase the
computational time. Therefore, we use again the gradient descent method presented in Algorithm 2

for computing a control κ ∈ U (t`n−1,t`n+1)
opt . As initial control u we choose

u(t) =

{
ūn(t), if t ∈ (t`n−1, t`n],

ūn(t− ∆t), if t ∈ (t`n, t`n+1].

Again, it can be shown that for any accumulation point ū of the sequence (uk)k∈N produced by

Algorithm 2, it holds ū ∈ U (t`n−1,t`n+1)
opt (yn(t`n−1)). Moreover, although the inequality (15) is not

guaranteed directly by this method, we still get Ĵ(t
`
n−1,t`n+1)(κ, yn(t`n−1)) ≤ Ĵ(t

`
n−1,t`n+1)(u, yn(t`n−1)).

In particular, this implies

‖κ‖2
L2(t`n−1,t`n+1;R4) ≤ ‖u‖

2
L2(t`n−1,t`n ;R4) = 2 ‖ūn‖2

L2(t`n−1,t`n ;R4) , (17)

since the time grid is equidistant. Therefore, it can be expected that (15) is satisfied in most cases.143

144

Test 1. In our first test the main focus is on investigating how well the MOMPC Algorithm 3 performs145

compared to the open-loop problem on the time intervall [0, 1] for different MPC horizons. Therefore,146

we perform Algorithm 3 with all controls from U 0
opt,appr(y◦) for the MPC horizon lengths of ` = 25,147

` = 50 and ` = 99 with two different strategies in step 9:148

1. Compute κ by minimizing (8) and set ũ as in (6).149

2. Compute κ by using Algorithm 2 as described above and set ũ according to (16).150
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Note that the set U 0
opt,appr(y◦) contains 42, 34 and 40 elements for the horizon lengths ` = 25, ` = 50151

and ` = 99, respectively.152

The obtained results when using strategy 1 for computing κ are shown in the top row of Figure 1 (a)-(c).153

It is clearly visible that an increasing MPC horizon length has the positive effect that the MOMPC154

points produced by Algorithm 3 are located closer to the Pareto front J (0,1)
opt (y◦). This can be explained155

by the fact that a larger MPC horizon allows for a better prediction of the future behavior of the system156

dynamics. However, we see a clustering of MOMPC points in the middle of the Pareto front, which157

only slightly improves, if the MPC horizon length is increased. So it is not possible to obtain the whole158

extent of the Pareto front by varying the initial control ū0 ∈ U 0
opt,appr(y◦).159

On the other hand, we can see the results of strategy 2 in the bottom row of Figure 1 (a)-(c). Let160

us first note that the inequality (15) is fulfilled in most steps of Algorithm 3 for all initial controls161

ū0 ∈ U 0
opt,appr(y◦). Only for some initial controls ū0, for which Ĵ0(ū0, y◦) is located on the top left162

part of the Pareto front J 0
opt(y◦), i.e., for initial controls corresponding to the part of the Pareto front,163

where the main goal is to minimize Ĵ0
1 (·, y◦) almost regardless of the function values of Ĵ0

2 (·, y◦), the164

condition (15) is not fulfilled in some steps of the MOMPC algorithm. The reason for this is the165

following: When using Algorithm 2 for computing a feedback κ ∈ U (t`n−1,t`n+1)
opt , the resulting minimizer166

α̂ of (13) displays the weight of the cost functions Ĵ(t
`
n−1,t`n+1)(·, yn(t`n−1)) at the Pareto optimal point167

κ ∈ U (t`n−1,t`n+1)
opt (yn(t`n−1)). If we start with a point ū0, for which Ĵ0(ū0, y◦) is located on the top left part168

of the Pareto front J 0
opt(y◦), the weighting of the cost functions will be α̂ ≈ (1, 0)>. Therefore, the169

descent direction qn(u) from Algorithm 2 will mostly point in the direction of the negative gradient of170

the first cost function, which might lead to (15) not being satisfied.171

Looking at the results, we observe again that a larger MPC horizon length leads to a better result in the172

sense that the MOMPC points are closer to the Pareto front. In contrast to strategy 1, we do not see a173

clustering of MOMPC points in the middle of the Pareto front, but rather in the lower right part of the174

Pareto front. This clustering improves, if the MPC horizon length is increased, so that the entire scale175

of the Pareto front is obtained for a horizon length of ` = 99.176
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(a) ` = 25
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(b) ` = 50
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Figure 1. Results of Algorithm 3 for all initial controls ū0 ∈ U0
opt,appr(y◦) for different horizon lengths.

Top: Strategy 1 for computing κ. Bottom: Strategy 2 for computing κ.
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The difference in the clustering behavior of strategy 1 compared to strategy 2 can be seen by
looking at the following relation: Every initial control vector ū0 ∈ U 0

opt,appr(y◦) is the solution to a
weighted-sum problem

min
u∈U0

αinit
1 Ĵ0

1 (u, y◦) + αinit
2 Ĵ0

2 (u, y◦)

for some weight vector αinit ∈ R2
≥0 with αinit

1 + αinit
2 = 1; see, e.g., [12]. This weight vector can be

determined easily when using the Euclidean reference point method to compute U 0
opt,appr(y◦); cf. [19,

Lemma 5]. After executing Algorithm 3 we can check to which Pareto optimal point ȳ = Ĵ(0,1)(ū, y◦) ∈
J (0,1)

opt (y◦) the MOMPC point Ĵ(0,1)(µ, y◦) has the smallest distance. Again, ū is the solution to a
weighted-sum problem

min
u∈U(0,1)

αend
1 Ĵ(0,1)

1 (u, y◦) + αend
2 Ĵ(0,1)

2 (u, y◦)

for a weight vector αend ∈ R2
≥0 with αend

1 + αend
2 = 1, which can again be determined. The mapping177

αinit
1 7→ αend

1 can be seen in Figure 2 for both strategies. Since the mapping displays the first weight
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0.8

1

(a) Strategy 1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b) Strategy 2

Figure 2. The mapping αinit
1 7→ αend

1 for different MPC horizon lengths.
178

vector, a small value in the plot corresponds to a small weighting of the first cost function (the tracking179

term) and a large weighting of the second cost function (the control costs), and vice versa.180

Note that the ’ideal’ result of this mapping would be the identity, since this would imply that the181

weight αinit of the initial control ū0 remains constant throughout the MOMPC algorithm.182

From this plot the clustering of the MOMPC points for both strategies can be deduced. For strategy183

1 it can be seen that the clustering of the points happen at a weight of αend
1 ∈ [0.7, 0.8] for all MPC184

horizon lengths. Up to an initial weight of αinit
1 ≈ 0.8 all the initial controls lead more or less to the185

same result of the MOMPC algorithm. Only for initial controls with an initial weight of αinit
1 > 0.8, we186

observe that the upper part of the Pareto front can be reached.187

For strategy 2 the clustering in the lower part of the Pareto front for MPC horizon lengths of ` = 25188

and ` = 50 can be deduced, since up to an initial weight of αinit
1 ≈ 0.8, the value of αend

1 stays below a189

value of 0.1, which means that the resulting MOMPC point is in a region of the Pareto front, where the190

cost function Ĵ(0,1)
2 (·, y◦) is weighted much more in comparison to the first cost function Ĵ(0,1)

1 (·, y◦).191

Moreover, for these two MPC horizons, we can see a clear cut-off behavior at a value of 0.8. If αinit
1 is192

larger than 0.8, the value of αend
1 is larger than 0.9. For an MPC horizon length of ` = 99, we do not193

observe such a clear cut-off behavior. Although the plot is still far from being the identity, it is visible194

that one can control the outcome of the MOMPC algorithm more precisely by varying the initial195

control.196
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In conclusion we can say that for strategy 2 a larger MPC horizon leads to a better distribution of197

the MOMPC points on the Pareto front, and that it is possible to approximate the full scale of the198

Pareto front by choosing different initial controls u0 ∈ U0
opt(y◦). Strategy 1, however, seems not to be199

well-suited for this problem framework, since it is not possible to reach to whole extent of the Pareto200

front by choosing different initial controls. Quite on the contrary, the MOMPC algorithm steers almost201

all initial controls to the same region of the Pareto front, independently of the MPC horizon length.202

203

Test 2. Now we want to show why the use of MPC in the multiobjective context is needed. For this we
consider the following setup: Imagine that we want to compute the Pareto front J (0,1)

opt (y◦). However,
there is only a prediction of the advection field available, which is given by

cpred(t, x) = (1, 1)> for all (t, x) ∈ [0, T]×Ω.

In the end it turns out that the prediction of the advection field is not very accurate, and the true204

advection is given by the function c in (14), i.e., it deviates from the prediction cpred after t = 0.5.205
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(b) Results obtained from Algorithm 3 for ` = 50

Figure 3. Comparison of the predictive multiobjective optimal control and Algorithm 3.

Denote by U(0,1)
opt,pred(y◦) the Pareto set of the problem (MOCP) using the predicted advection cpred.206

Again we used the Euclidean reference point method to compute an approximation both of U(0,1)
opt (y◦)207

and of U(0,1)
opt,pred(y◦). Figure 3 (a) displays the Pareto front J (0,1)

opt (y◦) together with the function values208

Ĵ(0,1)(U(0,1)
opt,pred(y◦), y◦). One can clearly see that the controls in U(0,1)

opt,pred(y◦) are far from being Pareto209

optimal for the problem with advection c, especially in the upper part of the Pareto front. This can210

be explained by the fact that the changing advection totally changes the strategy that has to be used211

to come close to the desired temperature, which is not captured by the open-loop problem using the212

prediction cpred.213

We compare this to the results obtained by using the MOMPC Algorithm 3 together with strategy 2214

from the first test, where we assumed that the true advection is known to the open-loop problems215

in the MPC algorithm. This is reasonable since the MPC horizons are reasonably small to allow a216

precise prediction of the future behavior of the advection field. Just as an example we look at an217

MPC horizon length of ` = 50 in Figure 3 (b) and see that in contrast to the predicted Pareto optimal218

controls U(0,1)
opt,pred(y◦) the MOMPC feedback control µ comes quite close to the true Pareto front. This219

underlines that the use of MOMPC is necessary in situations, in which there are only predictions of220

data available.221



Version April 8, 2020 submitted to Journal Not Specified 14 of 18

4.2. Example 2222

The parameter choices of the previous experiment imply that the choice of a feedback κ fulfilling
(7) is not possible. In this section we want to present numerical results for a setup that allows such a
feedback in principle.
To this end we choose the following parameter values: The diffusion coefficient is set to d = 0.5, the
reaction coefficient to r = 0.5, and the advection field is chosen as

c(t, x) =

{
(1, 0)>, if x2 ≤ 0.5,

(−1, 0)>, if x2 ≥ 0.5.

As initial condition we choose

y◦(x) = −3 · (1 + tanh((x1 − 0.5)/0.2)) + 3,

which is a smooth approximation of the discontinuous function

x 7→
{

3, if x1 ≤ 0.5,

−3, if x1 ≥ 0.5.

It can be shown that y = 0 is a stable steady state of the PDE (1) to the control u = 0. Therefore, we
choose the desired temperatures y1

1 = y1
2 = 0 ∈ L2(0, 1; H) and y2

1 = y2
2 = 0 ∈ H together with the

parameter values σ1
1 = σ1

2 = 1, σ2
1 = σ2

2 = 0.1 and σ3
1 = σ3

2 = 0.1. The linear functionals in the cost
functions are given by

C1
1 : L2(0, 1; H)→ L2(0, 1; H), f 7→ f ·

(
χ{(t,x)|x1≤0.5} + 0.01χ{(t,x)|x1≥0.5}

)
,

C1
2 : L2(0, 1; H)→ L2(0, 1; H), f 7→ f ·

(
0.01χ{(t,x)|x1≤0.5} + χ{(t,x)|x1≥0.5}

)
,

C2
1 : H → H, f 7→ f ·

(
χ{x|x1≤0.5} + 0.01χ{x|x1≥0.5}

)
,

C2
2 : H → H, f 7→ f ·

(
0.01χ{x|x1≤0.5} + χ{x|x1≥0.5}

)
.

Thus, both cost functions measure the deviation of the state from the steady state y = 0 together with223

some control costs. To make the cost functions conflicting, the linear functionals are chosen such that224

the first cost function penalizes deviations from the steady state mostly in the left half of the domain,225

whereas the second cost function penalizes the deviation in the right half of the domain.226

If we run Algorithm 3 with this parameter setting, we still observe that in many iterations there is no227

feedback κ fulfilling (7), especially for the larger MPC horizons of ` = 25 and ` = 50. The reason for228

this is that the initial Pareto front J 0
opt(y◦) is quite close or even dominates the Pareto front J (0,1)

opt (y◦)229

in some points for a MPC horizon of ` = 25 or ` = 50, see Figure 4. Since the MOMPC points
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Figure 4. Comparison between J (0,1)
opt (y◦) and J 0

opt(y◦) for different MPC horizon lengths.
230
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cannot perform better than any point on the Pareto front J (0,1)
opt (y◦), it is not possible to achieve the231

performance result from Theorem 3 in those parts. As all the other assumptions of Theorem 3 are232

satisfied, the reason for not achieving the performance result has to be that it is not possible to find a233

feedback κ fulfilling (7) in all steps of the algorithm. This is what we observe numerically.234

However, if we look at Figure 5 we see that we still obtain the performance result from Theorem 3235

for many points, although a feedback κ cannot be found for all these points. The black lines indicate236

which performance value Ĵ corresponds to which initial cost. Therefore, if the black lines are pointing237

to the top right (starting from the red point), this means that the performance result is satisfied for238

this point. We observe that the performance result holds for all points for an MPC horizon length of239

` = 13 and for most points for ` = 25. Even for ` = 50 there are some points in the middle of the240

Pareto front, for which the performance result holds, although there are only very few steps, where241

a feedback κ fulfilling (7) can be found. Figure 6 indicates that this performance behavior does not242

change drastically, if we increase the time horizon tend. The reason for this is that at time tend = 1 the
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Figure 5. Performance Results.
243

steady state y = 0 is almost reached, so that almost no further costs are needed after this point. If

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

(a) ` = 13

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

(b) ` = 25

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

(c) ` = 50

Figure 6. Performance Results for the top left point of the Pareto front.
244

we compare the MOMPC results obtained from Algorithm 3 with the Pareto front J (0,1)
opt (y◦) of the245

open-loop problem in Figure 7, we observe that increasing the MPC horizon has two positive effects246

on the results: Firstly, the MOMPC points are located closer to the Pareto front, and secondly, they are247

spread more evenly over the entire Pareto front. Already for an MPC horizon length of ` = 50 we can248

see that the Pareto front is almost perfectly approximated.249
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Figure 7. Comparison the results from Algorithm 3 and the Pareto front.

5. Conclusion and outlook250

In this paper we have adopted the framework of MOMPC presented in [1,2] for ODEs to251

parabolic advection-diffusion-reaction equations. A key ingredient for the MOMPC algorithm is252

a gradient-based descent scheme for multiobjective optimization taken from [25,26]. On the one253

hand, this scheme results in a Pareto optimal point, and on the other hand, it intrinsically implies254

that the crucial condition (5) is satisfied. Assuming the existence of a feedback κ satisfying (7) we255

could show that the performance result from [1, Theorem 11] also holds for our framework of the256

MOMPC algorithm. Numerically, it turns out that it is hard to guarantee that such a feedback exists.257

However, even in the case that such a feedback does not exist, the results of the MOMPC algorithm are258

comparable with the Pareto optimal points of the full-horizon open-loop problem. Especially when259

some parameters of the PDE can only be predicted, the MOMPC algorithm turns out to be a useful260

tool, if we still want to compute many compromises between the cost functions.261

Both the analysis in Section 3 and the numerical experiments in Section 4 were only carried out for262

two cost functions, but it is possible to extend both to an arbitrary number of cost function as long as263

all cost functions are of the form (2). For the analysis this extension is straight-forward, since all the264

arguments can be transferred directly to this more general case. On the numerical side we can still265

use the Euclidean reference point method for computing the initial Pareto set U 0
opt(y◦), see e.g., [29].266

In general, the effort for computing the Pareto set U 0
opt(y◦) scales exponentially with the number of267

cost functions. However, this computation has only to be performed once in step 4 of Algorithm 3,268

which is in many cases not underlying any time restrictions. While performing the rest of the MOMPC269

algorithm the number of cost functions only influences the complexity of steps 6 and 9. In step 6270

we need to perform Algorithm 2, in which the dimension of the variable space of the minimization271

problem (13) is equal to the number of cost functions. Since we only have to compute one Pareto272

optimal control ūn ∈ Un
opt(ya) this step is computationally not expensive. In step 9 the number of cost273

functions in the min-max problem 8 corresponds to the total number of cost functions. Again the effort274

for solving this problem does not cause complex calculations.275

During the MOMPC Algorithm 3 numerous open-loop problems on the MPC horizon have to276

be solved. Since this involves the solution of the PDE and its associated adjoint equation, this is277

numerically expensive. Therefore, in a future work one can apply model-order reduction techniques278

(e.g., the proper orthogonal decomposition method, cf. [30,31]) for lowering the computational effort.279

Strategies presented in [16,17] could be used to show convergence to the full solution.280
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The following abbreviations are used in this manuscript:286

287

MO Multiobjective optimization
MOP Multiobjective optimization problem
MOCP Multiobjective optimal control problem
MPC Model predictive control
MOMPC Multiobjective model predictive control
ODE Ordinary differential equation
PDE Partial differential equation
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