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Marco Bernreuther*, Georg Müller*, and Stefan Volkwein*

Reduced Basis Model Order Reduction
in Optimal Control of a Nonsmooth
Semilinear Elliptic PDE

Abstract: In this paper, an optimization problem governed by a nonsmooth semilin-
ear elliptic partial differential equation is considered. A reduced order approach is
applied in order to obtain a computationally fast and certified numerical solution
approach. Using the reduced basis method and efficient a-posteriori error estimation
for the primal and dual equations, an adaptive algorithm is developed and tested
successfully for several numerical examples.

Keywords: Nonsmooth optimization, nonsmooth semilinear elliptic equations, semis-
mooth Newton, reduced basis method, error estimation.

1 Introduction

In this paper, we consider the optimal control problem governed by a nonsmooth
semilinear elliptic partial differential equation (PDE)

min
(y,µ)

J (y, µ) = j(y) +
σ

2
∥µ∥2A

s.t. (y, µ) ∈ V ×Rp satisfies −∆y +max{0, y} = Bµ in V ′,

(P)

where µ denotes a parameter that acts as a control on the right hand side and y is
the state. We endow V B H1

0 (Ω) with the usual inner product

⟨φ, ϕ⟩V B
∫
Ω

∇φ · ∇ϕ+ φϕ dx for φ, ϕ ∈ V

and the induced norm ∥ · ∥V B ⟨· , ·⟩1/2V . Its topological dual space is written as V ′.
Our assumptions on the data throughout the paper are as follows:
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Assumption 1.1. 1) Ω ⊂ Rd, d ≥ 1, is a bounded domain that is either convex
or possesses a C1,1-boundary (cf. [10, Section 6.2]),

2) j : V → R is weakly lower semicontinuous, twice continuously differentiable
and bounded from below,

3) σ > 0,
4) p ∈ N \ {0}, A ∈ Rp×p diagonal, positive definite and ∥ · ∥A B ⟨A · , ·⟩1/2,
5) B : Rp → L2(Ω) is linear and bounded and the pairwise intersection of the sets

{bi ̸= 0} of bi B B(ei) ∈ L2(Ω), where ei, i = 1, . . . , p denote the unit vectors
in Rp, are Lebesgue-nullsets and all bi are nonzero.

The governing constraint is a rather well understood semilinear elliptic PDE –
cf. [8, 9], for instance. It features a “level-1-type” nonsmooth Nemytski-operator
that induces a nonsmoothness in the solution operator, which remains Lipschitz
continuous and Hadamard differentiable. Depending on the specific result, our
examinations can, of course, be generalized for additional parameters or different
Nemytski-operators. We refer to Assumption 1.1 and Section 2 for the exact
setting chosen in this paper. Some examples of problems related to the nonsmooth
PDE arise, for instance, in mechanics, plasma physics and the context of certain
combustion processes, see, e.g., [16, 21, 22, 25] for possible areas of application.

The goal of the present paper is the development, analysis and numerical
realization of efficient, fast and certified solution algorithms for a first-order system
of (P). Of course, for the implementation, a discretization of the state space V and
the PDE constraint is required. Utilizing a standard finite element (FE) method for
the discretization of the first-order system of (P), we derive a complex nonlinear
and nonsmooth large-scale system. To obtain fast numerical solution methods, a
reduced order approach is applied employing the reduced basis (RB) method – cf.,
e.g., [3, 13, 18, 20].

For the construction of an accurate and efficient RB scheme, a-posteriori
error analysis is required. Recall that the RB method is especially efficient for
parametrized linear-quadratic optimal control problems – see [15, 17], for instance.
For RB results in the framework of nonlinear elliptic PDEs, we refer, e.g., to
[5, 11, 23] and to the recent work [14].

Results concerning model order reduction (MOR) for nonsmooth PDE con-
strained optimization are rarely found in the literature, with the only contribution,
to the best of the authors’ knowledge, being [4], where an offline/online based
(greedy) reduced basis framework for the PDE constraint in (P) is investigated.
The results showed that the RB method combined with empirical interpolation
techniques (cf., e.g., [2, 6, 7]) can improve the efficiency of solving the PDE – with
nonsmooth effects being the limiting factor for the quality of the reduced order
approximations, however. Since the constraint is part of the first-order system for
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(P), we extend the results obtained in the thesis [4] and present an RB approach
for the constraint that is justified by efficient a-posteriori error analysis. This way,
we obtain a significant reduction of the CPU times compared to a standard FE
discretization. For the optimization problem (P), we consider first-order conditions
based on those derived in [9], i.e., the system

−∆ȳ +max{0, ȳ} = Bµ̄, (1a)

−∆p̄+ 1{ȳ>0}p̄ = j′(ȳ), (1b)

B∗p̄+ σAµ = 0, (1c)

and the corresponding pseudo semismooth Newton (PSN) scheme. In (1b), the
symbol 1 denotes the indicator function and in (1c), the operator B∗ ∈ L(L2(Ω),Rp)

is the adjoint of B. Starting from a classical offline/online RB concept, we introduce
a novel adaptive combined RB-PSN scheme that does not require an offline phase
and improves the RB approximation quality simultaneously with the solution
iterations using local information along the iterates.

The paper is organized as follows: In Section 2, we introduce and analyze the
RB method for the parametrized nonsmooth PDE constraint of the optimization
problem – including residual based error estimation. Numerical tests illustrate the
drastic reduction of the CPU times compared to a piecewise linear FE scheme.
Section 3 covers the offline/online and the adaptive RB approach for the system
(1). We explain the adaptive RB approach in detail, derive a residual based error
indicator for the first-order system and illustrate the efficiency and accuracy of the
method by several numerical experiments. Finally, we draw some conclusions in
Section 4.

2 MOR for the State Equation

The aim of this section is to establish classical MOR results based on the RB
approach – such as error estimators, a-priori estimates and convergence theory –
for the nonsmooth PDE constraint. The crucial ingredients for this will be the
monotonicity of the max-operator and the Lipschitz continuity of the solution
operator to the PDE. The presented results are mainly based on [4].

Let us first fix the exact analytical framework for the FE and RB analysis
of the PDE and recall some of the known results. We consider the more general
parametrized boundary value problem

c(µ)⟨∇y,∇φ⟩L2 + a(µ)⟨max{0, y}, φ⟩L2 = ⟨f(µ), φ⟩V ′,V ∀φ ∈W, (2)



4 Bernreuther, Müller, Volkwein

where µ is in a parameter set P ⊂ Rp, p ∈ N\{0}, and W denotes a closed subspace
of V – in the FE setting, this is the finite element space, in the MOR framework,
this will be a low-dimensional subspace spanned by the RB functions. For the
remainder of this section, we additionally assume the following:

Assumption 2.1. 1) P ⊂ Rp, p ∈ N \ {0} is nonempty and closed,
2) c : P → R is Lc-Lipschitz continuous, positive and uniformly bounded away

from zero,
3) a : P → R is La-Lipschitz continuous and nonnegative,
4) f : P → V ′ is Lf -Lipschitz continuous,
5) P is compact or both a and c are constant.

The following proposition sums up the standard existence and uniqueness result
for solutions to equation (2) given the assumptions made above and provides some
additional information on the Lipschitz constant.

Proposition 2.2. Let Assumptions 1.1 and 2.1 be satisfied. For every µ ∈ P, there
exists a unique solution y ∈W to the equation (2). The induced solution operator
SW : P →W is LS -Lipschitz continuous with the constant

LS =
C1

C2

(
Lc + LaC1

C2
sup
µ∈P

∥f(µ)∥V ′ + Lf

)
(3)

independently of W , where CP > 0 denotes the Poincaré constant, C1 = 1 + C2
P

and C2 = inf{c(µ)|µ ∈ P}.

Proof. Though the result is fairly standard, we will give a short outline of the proof
for the sake of completeness. Existence and uniqueness is guaranteed by the Browder-
Minty theorem. For the proof of the Lipschitz continuity, we set y1 B y(µ1) and
y2 B y(µ2). Without loss of generality, we assume that ∥y1 − y2∥V > 0, otherwise,
the statement is trivial. We subtract the PDEs

c(µ1)⟨∇y1,∇φ⟩L2 + a(µ1)⟨max{0, y1}, φ⟩L2 = ⟨f(µ1), φ⟩V ′,V ∀φ ∈W, (4)

c(µ2)⟨∇y2,∇φ⟩L2 + a(µ2)⟨max{0, y2}, φ⟩L2 = ⟨f(µ2), φ⟩V ′,V ∀φ ∈W (5)

add a zero and rearrange the terms to obtain

⟨c(µ1)∇y1 − c(µ2)∇y2,∇φ⟩L2 + a(µ1)⟨max{0, y1} −max{0, y2}, φ⟩L2

+ (a(µ1)− a(µ2))⟨max{0, y2}, φ⟩L2 = ⟨f(µ1)− f(µ2), φ⟩V ′,V .
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Now, we test with φ = y1 − y2 ∈ W , use the monotonicity of the max operator,
the Cauchy-Schwarz inequality and nonnegativity of a to obtain that

c(µ1)∥∇(y1 − y2)∥2L2 ≤ |a(µ1)− a(µ2)|∥max{0, y2}∥L2∥y1 − y2∥L2

+ ∥f(µ1)− f(µ2)∥V ′∥y1 − y2∥V + |c(µ1)− c(µ2)|∥∇y2∥L2∥∇(y1 − y2)∥L2 .

The Poincaré inequality yields the V -estimate

c(µ1)

C1
∥y1 − y2∥2V ≤ |a(µ1)− a(µ2)|∥max{0, y2}∥L2∥y1 − y2∥L2

+ ∥f(µ1)− f(µ2)∥V ′∥y1 − y2∥V + |c(µ1)− c(µ2)|∥∇y2∥L2∥∇(y1 − y2)∥L2 ,

where the Lipschitz continuity of the coefficient functions gives

c(µ1)

C1
∥y1 − y2∥2V ≤

(La∥y2∥L2 + Lf + Lc∥∇y2∥L2)∥y1 − y2∥V ∥µ1 − µ2∥Rp .

(6)

Applying the Poincaré inequality once more, we obtain the estimate

∥y2∥2V ≤ C1∥∇y2∥2L2 . (7)

We test (5) with φ = y2 and end up with

⟨c(µ2)∇y2,∇y2⟩L2 + ⟨a(µ2)max{0, y2}, y2⟩L2︸ ︷︷ ︸
≥ 0

= ⟨f(µ2), y2⟩V ′,V

due to the monotonicity of the max operator, thus

c(µ2)∥∇y2∥2L2 ≤ ⟨f(µ2), y2⟩V ′,V . (8)

Now, we combine equations (7) and (8), obtaining that

∥y2∥V ≤ C1

c(µ2)
∥f(µ2)∥V ′ .

We combine that with (6) and (8), divide by ∥y1− y2∥V , use positivity of the lower
bound of c and rearrange terms to obtain that

∥y1 − y2∥V ≤ C1

C2

(
Lc + LaC1

C2
∥f(µ2)∥V ′ + Lf

)
∥µ1 − µ2∥Rp .

If a and c are constant, then La = Lc = 0, which yields (3) with the usual
convention of 0 · ∞ = 0. Otherwise P is compact and we can form the supremum,
which is attained as a maximum due to the compactness.
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Remark 2.3. 1) The Lipschitz constant LS is explicitly computable for a given
domain Ω whose Poincaré constant CP is known. This can be used to get the
quantities in the convergence rate of the RB-to-FE distance, cf. Theorem 2.7.

2) Higher regularity of the right hand side f induces higher regularity of the so-
lutions. In this section, we are not concerned with these effects. The upcoming
optimization section, however, is quite reliant on the corresponding effect in
the optimization formulation.

3) Notice that the solution operator SW is generally not Gâteaux differentiable
(cf. [9, Section 6]), but Hadamard differentiable for a and c constant, as shown
in [8, Theorem 22].

2.1 RB Analysis for the State Equation

For the RB analysis, we will assume that we are able to approximate the analytical
solution of (2) with W = V arbitrarily well using finite dimensional FE spaces Vh ⊂
V endowed by the V -topology. Accordingly, the solution yh(µ) of (2) with W = Vh
will be considered the reference solution. We follow the classical offline/online
splitting approach (cf., e.g., [12, 18]), where the RB space is generated via a greedy
algorithm in an offline phase so that the RB solutions with respect to this basis can
be computed quickly later on in the online phase. The offline basis computation
for an error indicator ∆(Vℓ, µ) that satisfies

∥yh(µ)− yℓ(µ)∥V ≤ ∆(Vℓ, µ) for all µ ∈ Ptrain,

where yh(µ) ∈ Vh and yℓ(µ) ∈ Vℓ denote the FE and RB solutions, respectively, is
described in Algorithm 1.

Algorithm 1: Greedy RB Method for PDE.
Require :Discrete training set of parameters Ptrain ⊂ P,

error tolerance εtol > 0

Return :RB parameters Pℓ, reduced basis Ψℓ, RB space Vℓ
Set ℓ = 0, P0 = ∅, Ψ0 = ∅, V0 = {0};
while εℓ B max{∆(Vℓ, µ) |µ ∈ Ptrain} > εtol do

Compute µℓ+1 ∈ argmax{∆(Vℓ, µ) |µ ∈ Ptrain};
Set Pℓ+1 = Pℓ ∪ {µℓ+1} and ψℓ+1 = yh (µℓ+1);
Orthonormalize ψℓ+1 against Ψℓ;
Set Ψℓ+1 = Ψℓ ∪ {ψℓ+1};
Define Vℓ+1 = Vℓ ⊕ span (ψℓ+1) and ℓ = ℓ+ 1;

Note that the indicator ∆(Vℓ, µ) is an essential component of the algorithm and
should be easily evaluable. In our case, the monotonicity of the max term allows
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us to derive a residual-based error estimator that only depends on the RB solution
and can thus be evaluated without solving the possibly costly FE discretized PDE.

Proposition 2.4. Let Assumptions 1.1 and 2.1 hold and ey(µ) B yh(µ)− yℓ(µ).
Then

∥ey(µ)∥V ≤ ∆y
w(Vℓ, µ) B

C1

C2
∥Resyℓ (µ)∥V ′

h
(9)

for every µ ∈ P with C1 = 1 + C2
P , C2 = inf{c(µ)|µ ∈ P} and the residual

Resyℓ : P → V ′
h given by

⟨Resyℓ (µ), φ⟩V ′
h,Vh

B ⟨f(µ), φ⟩V ′,V − c(µ)⟨∇yℓ(µ),∇φ⟩L2

− a(µ)⟨max{0, yℓ(µ)}, φ⟩L2 for all φ ∈ Vh.

Proof. Let µ ∈ P be fixed. Then the FE solution yh(µ) satisfies the equation

c(µ)⟨∇yh(µ),∇φ⟩L2 + a(µ)⟨max{0, yh(µ)}, φ⟩L2 = ⟨f(µ), φ⟩V ′,V (10)

for all φ ∈ Vh and ey(µ) is in Vh. We use the Poincaré inequality, the monotonicity
of the max term and (10) to obtain that

C2

C1
∥ey(µ)∥2V ≤ c(µ)∥∇ey(µ)∥2L2

≤ c(µ)∥∇ey(µ)∥2L2 + a(µ)⟨max{0, yh(µ)} −max{0, yℓ(µ)}, yh(µ)− yℓ(µ)⟩L2

= c(µ)⟨∇yh(µ),∇ey(µ)⟩L2 + a(µ)⟨max{0, yh(µ)}, ey(µ)⟩L2

− c(µ)⟨∇yℓ(µ),∇ey(µ)⟩L2 − a(µ)⟨max{0, yℓ(µ)}, ey(µ)⟩L2

= ⟨f(µ), ey(µ)⟩V ′,V − c(µ)⟨∇yℓ(µ),∇ey(µ)⟩L2 − a(µ)⟨max{0, yℓ(µ)}, ey(µ)⟩L2

= ⟨Resyℓ (µ), e
y(µ)⟩

V ′
h,Vh

≤ ∥Resyℓ (µ)∥V ′
h
∥ey(µ)∥V ,

which gives (9).

Remark 2.5. The error estimation requires us to compute the dual norm of the
residual, which is equal to the primal norm of the V -Riesz representative of the
residual. To compute the Riesz representative, we need to solve a FE discretized
linear elliptic PDE. Depending on the exact application, this may end up being more
costly than computing the true error, e.g., when the reduced basis of the greedy RB
method ends up being large in comparison to the size of the training set Ptrain and
the semilinear PDE can be solved with few semismooth Newton iterations.

As a direct consequence of Proposition 2.4, we obtain the reproduction-of-solutions
property and the vanishing-error-bound property, which are classical RB results.
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Corollary 2.6. Let Assumptions 1.1 and 2.1 hold. Assume that for a given µ ∈ P

the FE solution yh(µ) ∈ Vh belongs to Vℓ. Then the corresponding RB solution
yℓ(µ) ∈ Vℓ satisfies
1) yh(µ) = yℓ(µ),
2) ∆y

w(Vℓ, µ) = 0.

Proof. Part 1) follows from the proof of Proposition 2.4. Furthermore, we derive
Part 2) directly from the definition of the residual and Part 1).

Similarly, we can show convergence of the RB solutions to the FE solution, as the
parameters used in the reduced basis fill the parameter set.

Theorem 2.7. Let Assumptions 1.1 and 2.1 hold and let (Pℓ)ℓ∈N ⊂ P denote a
sequence of parameter subsets and hℓ B sup{dist(µ,Pℓ) |µ ∈ P}. Then

sup
µ∈P

∥yh(µ)− yℓ(µ)∥V ∈ O(hℓ).

Proof. For ℓ ∈ N and µ ∈ P, we can choose µ∗ ∈ argmin{∥µ− µ̃∥Rp | µ̃ ∈ Pℓ}. Now,
we use the Lipschitz continuity of the solution operator SW and its independence
of the chosen space W (Proposition 2.2) and the reproduction of solutions property
(Corollary 2.6 1)) to obtain that

∥yh(µ)− yℓ(µ)∥V
≤ ∥yh(µ)− yh(µ

∗)∥V + ∥yh(µ∗)− yℓ(µ
∗)∥V + ∥yℓ(µ)− yℓ(µ

∗)∥V
≤ 2LS ∥µ− µ∗∥Rp ≤ 2LShℓ,

which yields the claim.

Hence, if the sequence Pℓ gets dense in P, i.e., lim
ℓ→∞

hℓ = 0, the RB solutions

converge to the FE solution. As a direct consequence, we can obtain an a-priori
error bound.

Corollary 2.8. Let Assumptions 1.1 and 2.1 hold, let Ptrain ⊂ P be a discrete set
with filling distance htrain and let the RB greedy algorithm (Algorithm 1) terminate
with tolerance εtol. Then

∥yh(µ)− yℓ(µ)∥V ≤ 2LShtrain + εtol.

Proof. Analogously to the proof of Theorem 2.7.
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2.2 Numerical Results for the State Equation

As we have seen in Section 2, several classical RB results hold for the PDE in
question – including convergence and error estimation results. The proofs of these
results were virtually independent of the nonsmoothness property of the max
operator and the solution operator to the PDE. The crucial properties were the
monotonicity of the max operator and the Lipschitz continuity of the solution
operator to the PDE. We will confirm the results of the previous section numerically
in this one and use a carefully constructed example to show that the nonsmoothness
effects of the PDE are in fact the limiting factor for the RB performance in practice.
Additionally, we will show a theoretical bound on the condition number of the RB
system. Let us mention that the example settings introduced in this section will be
reused in Section 3.4.

For our numerical experiments, we fix the domain Ω = (0, 1)2 and consider
P1-type FE on a Friedrichs-Keller triangulation of the domain. The measure of
fineness of the grids will be h > 0, which denotes the inverse number of square cells
per dimension – i.e., the grid will have 2/h2 triangles. From here on out, we write
the coefficient vector of the piecewise linear interpolant on the grid vertices of a
function z : Ω → R in typewriter font (i.e., z ∈ RN ) and use the same font for the
matrices in the discretized settings. Dealing with the nonlinear max term, we resort
to mass lumping for this term in order to be able to evaluate it componentwisely.
Inevitably, this introduces a numerical discretization error. Its effects decrease with
increasing fineness of the discretization but increase with the coefficient function a
that scales the nonlinearity. The corresponding stiffness matrix K ∈ RN×N , mass
matrix M ∈ RN×N , lumped mass matrix M̃ ∈ RN×N and the right hand side
f(µ) ∈ RN are given from the FE ansatz functions φi, i = 1, . . . , N as

Ki,j =

((∫
Ω

∇φi · ∇φjdx

))
, fi(µ) =

(
⟨f(µ), φi⟩V ′,V ,

Mi,j =

((∫
Ω

φiφjdx

))
, M̃ = diag

(
1

3

∣∣supp(φi)
∣∣ : i = 1, . . . , N

)
.

The discretization leaves us with the following FE and RB systems:

c(µ)Kyh(µ) + a(µ)M̃max{0, yh(µ)} − f(µ) = 0 in RN ,

c(µ)ΨTℓ KΨℓyℓ(µ) + a(µ)ΨTℓ M̃max{0,Ψℓyℓ(µ)} − ΨTℓ f(µ) = 0 in Rℓ,

where Ψ ∈ RN×ℓ = [ψ1| . . . |ψℓ] is the matrix whose columns are the FE coefficient
vectors of the reduced basis functions. These finite dimensional systems are solved
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with a standard semismooth Newton method, where the iteration matrices are

Hh(yh(µ)) B c(µ)K + a(µ)M̃Θ(yh(µ)),

Hℓ(yℓ(µ)) B c(µ)ΨTℓ KΨℓ + a(µ)ΨTℓ M̃Θ(Ψℓyℓ(µ))Ψℓ,

with Θ B Θ0, where Θx : RN → RN×N maps a vector to the diagonal matrix that
takes the Heaviside function with functional value x at 0 evaluated for each entry
of the vector as its diagonal entries.

The RB Newton matrix possesses the favorable property that its condition
number is bounded independently of the current iterate and the dimension of the
RB system.

Proposition 2.9. Let Q ∈ RN×N be symmetric and positive definite and let
Ψℓ ∈ RN×ℓ represent a reduced basis that is orthonormal with respect to the scalar
product induced by Q. Then the condition number of the Newton matrix Hℓ(yℓ(µ))

is bounded independently of ℓ, yℓ and µ.

Proof. First, we fix ℓ, yℓ and µ and define H = Hℓ(yℓ(µ)) ∈ Rℓ×ℓ. Since K is
symmetric and positive definite, the matrix M̃Θ(Ψℓyℓ(µ)) is symmetric and positive
semidefinite, the functions c(µ) > 0, a(µ) ≥ 0 and rank(Ψℓ) = ℓ, the matrix H is
symmetric and positive definite. Therefore, we can compute cond2(H) = λmax/λmin,
where λmax ≥ λmin > 0 are the largest and smallest eigenvalue, respectively, of H.
For an element v ∈ Rℓ with

w B Ψℓv =

ℓ∑
i=1

viψi ∈ RN ,

where ψi is the i-th column of Ψℓ, we define ∥w∥Q = ⟨Qw,w⟩1/2RN . This gives

∥w∥2Q = ⟨Qw,w⟩RN =

ℓ∑
i,j=1

vivj ⟨Qψi,ψj⟩RN︸ ︷︷ ︸
=δij

=

ℓ∑
i=1

v2i = ∥v∥2Rℓ .

Since all finite dimensional norms are equivalent, there are (generally N -dependent)
constants κ1, κ2 > 0 such that

1

κ1
∥ · ∥Q ≤ ∥ · ∥K ≤ κ1 ∥ · ∥Q,

1

κ2
∥ · ∥Q ≤ ∥ · ∥RN ≤ κ2 ∥ · ∥Q.

Now let v ∈ Rℓ be an eigenvector of H for eigenvalue λmax. We have that

λmax∥v∥2Rℓ = ⟨Hv, v⟩Rℓ

= c(µ)⟨Kw,w⟩RN + a(µ)⟨M̃Θ(Ψℓyℓ(µ))w,w⟩RN

≤ c(µ)∥w∥2K + a(µ)∥M̃∥∥w∥2RN ≤ c(µ)κ21∥w∥2Q + a(µ)∥M̃∥κ22∥w∥2Q.
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Since ∥w∥Q = ∥v∥Rℓ , we can conclude that

λmax ≤ c1 B κ21 max
µ∈P

c(µ) + κ22∥M̃∥max
µ∈P

a(µ) <∞.

Now let v ∈ Rℓ be an eigenvector of H corresponding to λmin. Then, since
M̃Θ(Ψℓyℓ(µ)) is positive semidefinite, we can conclude that

λmin∥v∥2Rℓ = ⟨Hv, v⟩Rℓ = c(µ)⟨Kw,w⟩RN + a(µ)⟨M̃Θ(Ψℓyℓ(µ))w,w⟩RN︸ ︷︷ ︸
≥0

≥ c(µ)⟨Kw,w⟩RN ≥ c(µ)

κ21
∥w∥2Q.

Again, using ∥w∥Q = ∥v∥Rℓ , we can conclude that

λmin ≥ c2 B
min{c(µ)|µ ∈ P}

κ21
> 0,

which yields cond2(H) ≤ c1/c2 for c1 and c2 independent of ℓ, yℓ and µ.

Our code is implemented in Python3 and uses FENICS [1] for the matrix assembly.
Sparse memory management and computations are implemented with SciPy [24].
All computations below were run on an Ubuntu 18.04 notebook with 12 GB main
memory and an Intel Core i7-4600U CPU.

Example 2.1. For the first numerical example, we set P = [−2, 2]2, c(µ) = 1,
a(µ) = 10 and the right hand sides f(µ) (to be understood as L2-functions
mapping (x1, x2) ∈ Ω to R embedded into V ′) as

f(µ)(x1, x2) = 10

{
µ1x1x2, for x = (x1, x2) and x1 ≤ 1

2 ,

µ2x
2
1x

2
2, otherwise.

(11)

The right hand side and corresponding solution are shown in Figure 1 for two
values of µ. Note that the right hand side is linear in the parameter µ.
We fix a training set of 121 and a test set of 196 equidistant points in P, where both
sets are chosen disjointly. We solve the FE system for each parameter in the test
set and compare the results to those from solving the corresponding RB systems
generated from offline phases that use the true V -error or the error estimator on
the training set, respectively. The semismooth Newton iterations in both the FE
and the RB computations for a parameter are started using the solution for the
closest parameter in the test set whose solution is already known as an initial value
(warm starting). The semismooth Newton method terminates when the tolerance
of 10−8 is reached for the dual norm of the residual and the RB error tolerance is
set to 10−4. The results for different grids with step size h = 1/100, 1/200, 1/400
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Fig. 1: Example 2.1. Right hand side (top) and FE solution (bottom) for parameters µ =

(2,−2) (left column) and µ = (−2, 2) (right column) for 1/h = 400.

per dimension can be found in Table 1.
First of, we can note that all of the average V -errors on the test set are below
the given tolerance of the offline phase that generated the reduced basis from the
training set. Further, the average number of semismooth Newton iterations for
solving the FE/RB systems appears to be independent of the step size h and very
close for the FE and RB systems. Additionally, in this example, the size of the
reduced basis is independent of the step size h (compare with Table 3 for different
results). Keep in mind that the very small number of about two semismooth
Newton steps per system solve is due to the warm starting. Without warm starting,
the average number of semismooth Newton steps per solve is around four to five
iterations with the zero function as an initial guess. As the number of cells per
dimension doubles in our implementation, the speed-up through RB on the test
set approximately doubles as well, reaching up to a factor of 250. This means that
if 130 or more online solves are required, the RB approach including its offline
cost comes out ahead of the FE approach in computational time. As mentioned
in Remark 2.5, due to the nonlinearity of the PDE, an evaluation of the error
estimator means that we have to solve a linear PDE on FE level. As the number of
semismooth Newton iterations per nonlinear solve is quite low in this example, it
turns out that the RB approach based on the true V -error ends up outperforming
the approach based on the error estimator in the offline phase and, as it works
on a smaller reduced basis, in the online phase as well. Nonetheless, the error
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FE Results
1/h avg. iterations avg. time (s)
100 2.03 0.49

200 2.03 3.22

400 2.02 21.88

offline/online RB (true V -error)
1/h avg. iterations avg. speed-up toff (s) avg. error |Ψ|
100 2.02 71.00 70.00 2.38 · 10−5 17

200 2.02 127.60 402.90 2.34 · 10−5 17

400 2.02 250.36 2793.68 2.32 · 10−5 17

offline/online RB (estimator)
1/h avg. iterations avg. speed-up toff (s) avg. error |Ψ|
100 2.02 51.38 379.02 1.15 · 10−5 26

200 2.02 98.60 2264.12 1.11 · 10−5 26

400 2.02 189.65 16994.40 1.10 · 10−5 26

Tab. 1: Example 2.1. The first part of the table shows the average number of required
semismooth Newton iterations for computing the FE solutions to the PDE for each param-
eters in the test set and the average required time. The second and third parts show the
average number of semismooth Newton iterations, the average online speed-up, the required
computational time for the offline phase toff , the average true error ∥yh − yℓ∥V and the size
of the reduced basis generated in the offline phase with the true error and error estimator,
respectively.

estimator is useful to estimate the error in the online phase as shown in Table 2.
The effectivity – the quotient of the estimated and the true error – appears to be

1/h avg. true V -error avg. effectivity time true V -error (s) speed-up estimator
100 2.38 · 10−5 1.97 96.69 4.32

200 2.34 · 10−5 1.99 628.16 4.10

400 2.32 · 10−5 1.99 4242.60 4.10

Tab. 2: Example 2.1. Performance of true error and error estimator with reduced basis from
strong greedy on test set.

mesh independent. The speed-up is approximately four. This independence of the
step size can be expected, since the main difference between true error and error
estimator is whether a linear or a nonlinear PDE needs to be solved on FE level.
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Again, a larger speed-up cannot be achieved, since the error estimator cannot be
implemented in a parameter separable fashion. See also Remark 2.5.

Example 2.2. In the second example, we set P = [0, 3], c(µ) = 1 and a(µ) = 8π2µ.
In contrast to Example 1, the right hand side will be nonlinear in the parameter
and we ensure that nonsmoothness effects occur by constructing a corresponding
known solution that passes through zero on nonnegligible parts of the domain when
the parameter µ varies. We construct the appropriate right hand side by applying
the partial differential operator to the solution. To that end, we denote the four
quarters of our domain as

Q0 B
[
0,

1

2

]
×
[
0,

1

2

]
, Q1 B

[
1

2
, 1
]
×
[
0,

1

2

]
,

Q2 B
[
1

2
, 1
]
×
[
1

2
, 1
]
, Q3 B

[
0,

1

2

]
×
[
1

2
, 1
]
,

and define

g : R2 → R, x = (x1, x2) 7→ sin2(2πx1) sin
2(2πx2),

b1 : P → R, µ 7→ 1− 2 (min {max {µ, 2} , 3} − 2) ,

b2 : P → R, µ 7→ −1 + 2 (min {max {µ, 1} , 2} − 1) ,

b3 : P → R, µ 7→ 1− 2min {max {µ, 0} , 1} .

We construct the sought out analytical solution of the PDE as

y(µ) : Ω → R, x = (x1, x2) 7→


0, x ∈ Q0,

b1(µ)g(x), x ∈ Q1,

b2(µ)g(x), x ∈ Q2,

b3(µ)g(x), x ∈ Q3.

(12)

The solution is designed as nonconstant in three quarters of the domain. We divide
the parameter space into three equal parts with P = [0, 3] = [0, 1]∪ [1, 2]∪ [2, 3]. As
the parameter passes through either of the thirds of the parameter space, it flips the
sign of a “bump” function with support in one of the quarters, which is prescribed
by g. The change in the sign is given by the functions bi, which are piecewise linear.
Thus the amplitude of the bump changes linearly as well. Accordingly, the solution
passes through 0 on an entire quarter of the domain whenever the parameter hits
the middle of either of the thirds of the parameter interval. The solution is twice
continuously differentiable in space, therefore the corresponding right hand side is
given by f(µ) B −∆y(µ)+8π2µmax{0, y(µ)}, where the Laplacian can be taken in
the strong sense. The solution for some parameters and the functions bi can be seen
in Figure 2. We select a training set of 60 and a disjoint test set of 100 equidistant
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Fig. 2: Example 2.2. Functions bi (left) and FE solution for parameters µ = 0 (middle) and
µ = 3 (right) for 1/h = 400.

points in P = [0, 3] for this example. The semismooth Newton iterations in both
the FE and the RB computations for a parameter are warm started as previously.
The semismooth Newton method terminates when the tolerance of 10−8 is reached
for the dual norm of the residual and the RB error tolerance is set to 10−4. The
results for different grids with step size h = 1/100, 1/200, 1/400 per dimension can
be found in Table 3. As in Example 2.1, the average RB error on the test set is
below the tolerance imposed on the training set. Additionally, the average number
of semismooth Newton iterations appears to be mesh independent in this example
as well. Again, the low number of average iterations is due to warm starting. As
the number of cells in the grid increases, the number of functions in the reduced
basis decreases in this example. This effect is unsurprising since the discretization
captures the effects of the continuous PDE more accurately with increased fineness
of the grids. As we know the solution, we expect three independent parts, i.e.,
an RB with at least three functions. When the discretization is taken to have
1024 square cells per dimension, the RB computed using the true error actually
reaches this “lower bound”. We do not include the full computational results for
this discretization here because the computation was run on a different system, so
there is no comparability. The speed-up can be observed to roughly double as the
number of cells per spatial dimension doubles as well, similarly to Example 2.1.
Also as in Example 2.1, we can observe that the reduced basis approach with
the true error outperforms the approach using the error estimator. The favorable
effectivity of the error estimator on the test set carries over from Example 2.1, see
Table 4, and the speed-up factor seems to be slightly below four as well, though
the factor is not quite as stable for coarser grids in comparison to Example 2.1.
This might be due to the nonconstant size of the reduced basis. Recall that the
constructed solution y(µ) to the PDE in this example has the three bumps that
are flipped with the change of sign occurring at 0.5, 1.5 and 2.5 – the midpoints of
the intervals [0, 1], [1, 2] and [2, 3] that the parameter space splits up into. These
are the points, where the nonlinearity and nondifferentiability of the max operator
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FE Results
1/h avg. iterations avg. time (s)
100 2.45 0.52

200 2.41 3.51

400 2.31 24.02

offline/online RB (true V -error)
1/h avg. iterations avg. speed-up toff (s) avg. error |Ψ|
100 2.40 57.54 43.57 4.81 · 10−5 24

200 2.32 131.92 266.68 3.98 · 10−5 19

400 2.26 378.26 1763.79 2.80 · 10−5 16

offline/online RB (estimator)
1/h avg. iterations avg. speed-up toff (s) avg. error |Ψ|
100 2.39 47.26 177.29 3.64 · 10−5 29

200 2.37 115.46 1050.11 2.08 · 10−5 24

400 2.28 220.90 6427.29 1.46 · 10−5 19

Tab. 3: Example 2.2. The first part of the table shows the average number of required
semismooth Newton iterations for computing the FE solutions to the PDE for each param-
eters in the test set and the average required time. The second and third parts show the
average number of semismooth Newton iterations, the average online speed-up, the required
computational time for the offline phase toff , the average error ∥yh − yℓ∥V and the size
of the reduced basis generated in the offline phase with the true error and error estimator,
respectively.

1/h avg. true V -error avg. effectivity time true V -error (s) speed-up estimator
100 4.81 · 19−5 2.08 66.93 2.66

200 3.98 · 10−5 2.08 384.70 3.43

400 2.80 · 10−5 2.13 2489.67 3.78

Tab. 4: Example 2.2. Performance of true error and error estimator with reduced basis from
strong greedy on test set.

really influences the behavior of the solutions. Looking at Figure 3, we can observe
that the true error and the error estimator over the test set are highest at these
points of nondifferentiability, which suggests that reducing the information of the
nondifferentiability in the PDE is the dominating task in the model order reduction.
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Fig. 3: Example 2.2. True error and error estimator over test set Ptest with reduced basis
from strong greedy on test set for 1/h = 400.

3 MOR for the Optimal Control Problem

This section addresses the RB-based model order reduction for the PDE constrained
optimal control problem (P). Specifically, we will combine the pseudo semismooth
Newton approach employed in [8, 9] with reduced basis techniques applied to the
state ȳ and the adjoint state p̄ for solving the first order system

Φ(ȳ, p̄, µ̄) B

−∆ȳ +max{0, ȳ} − Bµ̄
−∆p̄+ 1{ȳ>0}p̄− j′(ȳ)

B∗p̄+ σAµ

 = 0, (13)

which is to be understood as a problem in V ′×V ′×Rp. The PSN iterations ignore
the nondifferentiable indicator function in the linearization of the residual. The
system matrix for this system at an iterate (y, p, µ) therefore reads as−∆+ 1{y>0} 0 −B

−j′′(y) −∆+ 1{y>0} 0

0 B∗ σA

 .

If distributed controls in L2(Ω) are considered in the optimization problem (P) with
B being the canonical embedding L2(Ω) ↪→ H−1(Ω) and ∥·∥A is replaced by ∥·∥L2 ,
then (13) is a strong necessary first-order system for minimizers of (P), as shown
in [9], in the sense that it is equivalent to the variational inequality characterizing
purely primal first-order stationarity. Given our setting of Assumption 1.1 and
finite dimensional controls in (P), solutions to (13) are generally stationary in a
slightly weaker sense (see also [8]).

We derive an error estimator and -indicator for the primal and the adjoint state
in (13). Further, we present a classical offline/online RB approach and a novel
adaptive RB approach that combines the PSN iterations and online updates of the
reduced basis. This section should be understood as a numerical study comparing
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both approaches and analytical results will be limited to the error estimator and
indicator.

Note that contrary to the assumptions made in the previous section, we do not
assume any constraints on the parameter set P = Rp in this section, the reason
being that while we can identify a parameter region of interest in the forward
problem beforehand, it is quite unclear, where the optimal parameter µ in the
optimization problem will be located. However, since P is nonempty and closed,
the setting of the first-order system’s state equation satisfies Assumption 2.1 and
is therefore covered by the analysis in the previous section.

Remark 3.1. In [9], system (13) is reduced to the state and the adjoint state by
eliminating the parameter using the last line in the system. However, the reduced
system involves the operator BB∗, whose discretized matrix form is dense, intro-
ducing memory issues for our algorithms – which use sparse matrix structure when
possible – in practice. Hence, we will keep the original three-line-system (13) in
the state, adjoint and parameter as is.

3.1 Offline / Online RB Approach

The classical offline/online RB approach is similar to that in Section 2. As mentioned
above, we are dealing with P = Rp here, but the offline phase of the standard
offline/online RB approach requires a discrete, compact training set to generate the
reduced basis. In practice, we will therefore use a discrete subset of a heuristically
fixed box centered at the origin that is “sufficiently large” in some sense, i.e. by
including all PSN iterates as well as the optimal parameter, as the training set
Ptrain ⊂ Rp.

Remark 3.2. When the state dependent part of the cost functional j is bounded
from below by ξ, it is possible to compute a compact set of parameters that includes
all possible optimal parameters. Starting with an arbitrary µ0 ∈ Rp, we have that

J (y(µ), µ) ≥ ξ +
σ

2
∥µ∥2A > J (y(µ0), µ0).

for all µ ∈ Rp with ∥µ∥2A > 2(J (y(µ0), µ0) − ξ)/σ. Thus we can choose the set
{µ ∈ Rp : ∥µ∥2A ≤ 2(J (y(µ0), µ0)− ξ)/σ}.
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We use a common reduced basis Ψℓ and reduced space Vℓ for state and adjoint.
Accordingly, we end up with the following algorithm for the offline phase of the
reduced basis method in the optimal control problem.

Algorithm 2: Greedy RB Method for First-Order System.
Require :Discrete training set of parameters Ptrain ⊂ P,

error tolerance εtol > 0

Return :RB parameters Pℓ, reduced basis Ψℓ, RB space Vℓ
Set ℓ = 0, P0 = ∅, Ψ0 = ∅, V0 = {0};
while εℓ B max{∆(Vℓ, µ) |µ ∈ Ptrain} > εtol do

Compute µℓ+1 ∈ argmax{∆(Vℓ, µ) |µ ∈ Ptrain};
Set Pℓ+1 = Pℓ ∪ {µℓ+1}, ψ

y
ℓ+1 = yh (µℓ+1) and

ψp
ℓ+1 = ph (µℓ+1);

Orthonormalize
(
ψy
ℓ+1, ψ

p
ℓ+1

)
against Ψℓ;

Set Ψℓ+1 = Ψℓ ∪ ({ψy
ℓ+1, ψ

p
ℓ+1} \ {0});

Define Vℓ+1 = Vℓ ⊕ span(ψy
ℓ+1, ψ

p
ℓ+1) and ℓ = ℓ+ 1;

Again, the symbol ∆(Vℓ, µ) denotes either the true error or an error indicator with
respect to a given RB space Vℓ. Since we apply the basis reduction on the state
and the adjoint, the true error combines both errors, i.e.,

eℓ(µ) =

(
ey(µ)

ep(µ)

)
ℓ

B

(
yh(µ)− yℓ(µ)

ph(µ)− pℓ(µ)

)
,

∥eℓ(µ)∥ B ∥yh(µ)− yℓ(µ)∥V + ∥ph(µ)− pℓ(µ)∥V .

A residual based error indicator will be addressed in the section after next. Once the
offline phase is completed, we solve the FE/RB discretized version of the first-order
system (13) with the PSN approach.

3.2 Adaptive RB Approach

As any of the classical offline/online greedy RB approaches, the method described
in the previous subsection suffers from a number of drawbacks. The curse of
dimensionality leads to an exponential growth in the offline phase’s computation
time, which is detrimental for high dimensional parameter spaces. This means that
even if the online speed-up is significant, the computational effort of the offline
phase can make the overall computational time of the RB approach exceed that
of the standard FE problem. Additionally, choosing a compact trainings set that
includes the optimal parameter for the offline phase is nontrivial. These drawbacks
are avoided in the adaptive RB approach that we propose in this section. The
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method starts out with an initial starting guess for the solution and alternates PSN
iterations and RB updates in order to improve the quality of the approximations of
FE elements by RB elements and of the FE solutions with the PSN iterates using
local information, where local refers to the information at each of the iterates the
PSN algorithm reaches. Since all of the model order reduction work is taken care of
along the way, it is clear that this approach is geared towards accelerating a single
solve of the first-order system without the added expense of an offline phase – it is
quite complementary to the offline/online approach in that sense. When only few,
but more that one, solves of the first-order system are required, e.g. for varying
Tikhonov parameter σ in the cost functional, reusing the basis generated in the first
solve is of course an option that will likely outperform offline/online approaches
due to their large offline cost. The adaptive approach is somewhat similar to that
in [19], where trust region methods are combined with an adaptive RB approach.
Our complete algorithm is described in Algorithm 3.

Algorithm 3: Adaptive RB Method for First-Order System.
Require : Initial parameter µ0 ∈ Rp, error tolerances εN , εRB > 0 for

RB and PSN, weight 1 > η > 0, nfix ≥ 0

Return :RB approximation (yn, pn, µn) of FE solution (yh, ph, µh)

Set ℓ = 0 (number of basis updates);
Set n = 0 (number of PSN iterations);
Set P0 = ∅, Ψ0 = ∅, V0 = ∅;
Set y0 = yh(µ0), p0 = ph(µ0);
while ∆(Vℓ, µn) > εRB or ∥Φ(yn, pn, µn)∥ > εN do

if ℓ > 0 and (∆(Vℓ,µn)−εRB)+
εRB

< ηn
(∥Φ(yn,pn,µn)∥−εN )+

εN
then

Get (yn+1, pn+1, µn+1) from PSN step w.r.t. Ψℓ;
Set n = n+ 1;

else
Compute ψy

ℓ+1 = y(µn) and ψp
ℓ+1 = p(µn);

Orthonormalize (ψy
ℓ+1, ψ

p
ℓ+1) against Ψℓ;

Set Pℓ+1 = Pℓ ∪ {µn}, Ψℓ+1 = Ψℓ ∪
(
{ψy

ℓ+1, ψ
p
ℓ+1} \ {0}

)
,

Vℓ+1 = Vℓ ⊕ span
(
ψy
ℓ+1, ψ

p
ℓ+1

)
;

Set ℓ = ℓ+ 1;
Get (yn+nfix , pn+nfix , µn+nfix) from nfix PSN steps w.r.t. Ψℓ;
Set n = n+ nfix;
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The algorithm exploits a balancing of the fact that the PSN residual needs to be
small only if the RB approximation is sufficiently accurate and vice versa. Starting
from the initial guess, the algorithm repeatedly checks whether the RB or the PSN
tolerance are violated. If so, the relative violation of the tolerances is compared and
depending on their magnitude, either further PSN iterations are applied or the basis
is updated. We include a biasing factor ηn with 0 < η < 1 in the comparison of the
violations, which ensures that an improvement of the RB approximation quality
is favored over additional PSN steps as the number of PSN iterations increases.
In the early stages of the PSN iterations – where the residual is large and we are
comparatively far from a solution and PSN updates are relatively coarse – the
algorithm therefore benefits from small system sizes due to the small reduced bases.
With increasing proximity to a solution, the RB approximation quality is increased
to avoid pointless PSN steps on systems that do not capture the dynamics of the
solution sufficiently well. By updating the reduced basis locally – i.e., along the
PSN iterates, which are expected to exhibit behavior similar to that of the solution
– we increase the quality of the RB approximation of the solution compared to a
“one-size-fits-all” type offline/online approach.

Since the evaluation of the error indicator and basis updates are computationally
expensive themselves and increase the computational cost in each of the system
solves of the PSN steps, we perform a fixed number nfix of PSN steps whenever
the reduced basis is updated to ensure that some progress towards the solution
is made before the basis is expanded. This is of course an additional parameter
that requires dialing in, but the numerical results in Section 3.4 suggest that
choosing this parameter greater than one can indeed be beneficial. Note that, while
enlarging the reduced basis increases the system size, both the basis updates and
the evaluation of the true error usually gain efficiency as the iterations progress
because current RB iterates (embedded into the FE space) can be used as initial
guesses for the solves that have to be performed on FE level. In practice, we will
see that use of the true V -error can outperform an indicator derived below, which
is in part due to this behavior.

3.3 Error Estimator and Indicator

Error estimators for the RB approximation of the first-order system need to address
the errors in the state and the adjoint, i.e., ∥yh(µ)−yℓ(µ)∥V and ∥ph(µ)−pℓ(µ)∥V .
Of course, the more general results for the state in Proposition 2.4 that we derived
in Section 2 carry over straightforwardly in this setting. For the adjoint state, the
situation is more complicated. Due to the discontinuous indicator function in the
adjoint equation, straightforward estimation is quite limited. The primary result
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based on Lipschitz continuity in the cost functional is summarized in the following
lemma.

Lemma 3.3. Let Assumption 1.1 hold and let j′ be Lipschitz continuous with
constant γ > 0. Then

∥ph(µ)− pℓ(µ)∥V ≤ C1

(
γ∆y

w(Vℓ, µ) + ∥Respℓ (µ)∥V ′
h
+ ∥pℓ(µ)∥L2

)
for all µ ∈ P, where CP is the Poincaré constant of the domain, C1 = 1+C2

P and
the adjoint residual Respℓ : P → V ′

h is defined as

⟨Respℓ (µ), φ⟩V ′
h,Vh

B ⟨j′(yℓ(µ)), φ⟩V ′,V −⟨∇pℓ(µ),∇φ⟩L2 −⟨1{yℓ(µ)>0}pℓ(µ), φ⟩L2

for all φ ∈ Vh.

Proof. With ep(µ) = ph(µ)− pℓ(µ), the Poincaré inequality implies that

∥ep(µ)∥2V
C1

≤ ∥∇ (ep(µ)) ∥2L2

≤ ∥∇ep(µ)∥2L2 + ⟨1{yh(µ)>0}ep(µ), ep(µ)⟩L2

= ⟨j′(yh(µ)), ep(µ)⟩V ′,V − ⟨∇pℓ(µ),∇ep(µ)⟩L2

− ⟨1{yh(µ)>0}pℓ(µ), ep(µ)⟩L2 .

Here, we have used the adjoint equation in the last equality. Now, we utilize the
assumption on j′ and Proposition 2.4 to conclude that

∥ep(µ)∥2V
C1

≤ ⟨j′(yh(µ))− j′(yℓ(µ)), ep(µ)⟩V ′,V + ⟨j′(yℓ(µ)), ep(µ)⟩V ′,V

− ⟨∇pℓ(µ),∇ep(µ)⟩L2 − ⟨1{y(µ)>0}pℓ(µ), ep(µ)⟩L2

≤ γ∥ey(µ)∥V ∥ep(µ)∥V + ⟨j′(yℓ(µ)), ep(µ)⟩V ′,V

− ⟨∇pℓ(µ),∇ep(µ)⟩L2 − ⟨1{yℓ(µ)>0}pℓ(µ), ep(µ)⟩L2

+ ⟨
(
1{yℓ(µ)>0} − 1{yh(µ)>0}

)
pℓ(µ), ep(µ)⟩L2

≤
(
γC∥Resyℓ (µ)∥V ′

h
+ ∥Respℓ (µ)∥V ′

h

+ ∥(1{yℓ(µ)>0} − 1{yh(µ)>0})pℓ(µ)∥L2

)
∥ep(µ)∥V .

This especially implies that

∥ph(µ)− pℓ(µ)∥V ≤ C1

(
γ∆y

w(Vℓ, µ) + ∥Respℓ (µ)∥V ′
h

+ ∥(1{yℓ(µ)>0} − 1{yh(µ)>0})pℓ(µ)∥L2

)
,

(14)

and boundedness of the absolute value of the difference of the indicator functions
yields the claim.
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The obvious problem with this bound is the dependence on the L2-error of the RB
adjoint state, which can cause overestimation of the true adjoint error even if we
have convergence of the RB to the FE solution. The reason that we get stuck with
this undesirable term is that we estimate the difference of the indicator functions in
(14) very coarsely by its L∞-upper bound. The difference of the indicator functions
is intrinsically difficult to handle analytically because of their discontinuous behavior
and the fact that the difference multiplied with an FE function generally is no
longer in the FE space. Note, however, that using the previous result numerically,
we would depend on quadrature rules in order to actually compute the L2-norm
term – in our case this would be realized by the mass lumping approach. It turns
out that we can improve on the results presented in the previous lemma when
we work in this mass lumped setting. To that end, we introduce some additional
notation. Since the notation for functions and their coefficient vectors are inevitably
going to mix in the following, recall that we introduced the typewriter font for
coefficient vectors in Subsection 2.2. For the product of an indicator function and a
Vh-function z, we let εM̃(z) B

∣∣ ∥z∥L2 − (zT M̃z)
1
2

∣∣ denote the error introduced by
replacing the L2-norm with the mass lumping quadrature. Note that this is a grid
dependent quantity, of course. Additionally, we introduce the shorthand notation

g±εM̃(µ) B Ψℓyℓ(µ)±
(
∆y

w(Vℓ, µ) + εM̃ (yh(µ)− yℓ(µ))
)
M̃− 1

2 1 ∈ RN , (15)

g±(µ) B Ψℓyℓ(µ)±
(
∆y

w(Vℓ, µ)
)
M̃− 1

2 1 ∈ RN , (16)

where 1 ∈ RN denotes the vector of all ones. For improved readability, we will
notationally suppress the functions’ and vectors’ dependencies on the parameter
µ for the remainder of this subsection. With these quantities, we can obtain the
following estimate that is based on the discrete implementation. Note that the only
remaining dependence on any FE function in the right hand side of this statement
is in the mass lumping error. We will disregard this dependence further down the
line to obtain a reasonable (mesh dependent) error indicator.

Lemma 3.4. Let Assumption 1.1 hold, j′ be Lipschitz continuous with constant
γ > 0 and C1 = 1 + C2

P , where CP is the Poincaré constant. Then

∥ph(µ)− pℓ(µ)∥V ≤ ∆p
w,εM̃

(Vℓ, µ) for every µ ∈ P

with the term

∆p
w,εM̃

(Vℓ, µ) B C1

(
γ∆y

w(Vℓ, µ) + ∥Respℓ (µ)∥V ′
h
+ εM̃

(
(1{yℓ>0} − 1{yh>0})pℓ

)
+
[ (

Θ(g+εM̃)Ψℓpℓ
)T

M̃Θ1(−Ψℓyℓ)
(
Θ(g+εM̃)Ψℓpℓ

)
+
((

Θ(Ψℓyℓ)−Θ(g−εM̃)
)
Ψℓpℓ

)T
M̃Θ(Ψℓyℓ)

((
Θ(Ψℓyℓ)−Θ(g−εM̃)

)
Ψℓpℓ

) ] 1
2
)
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and Θ = Θ0 with Θx as defined in Section 2.2.

Proof. From (14), replacing the exact L2-norm by the mass lumped computation,
we immediately obtain that

∥ph(µ)− pℓ(µ)∥V ≤ C1

(
γ∆y

w(Vℓ, µ) + ∥Respℓ (µ)∥V ′
h

+
[(
(Θ(Ψℓyℓ)−Θ(yh))Ψℓpℓ

)T
M̃
(
(Θ(Ψℓyℓ)−Θ(yh))Ψℓpℓ

)] 1
2

+ εM̃
(
(1{yℓ>0} − 1{yh>0})pℓ

) )
.

We split up the mass lumped norm term in the middle into the parts corresponding
to the index sets of the nonpositive and positive nodal values of the RB state
embedded into the FE space, which gives(

(Θ(Ψℓyℓ)−Θ(yh))Ψℓpℓ
)T

M̃
(
(Θ(Ψℓyℓ)−Θ(yh))Ψℓpℓ

)
=
(
Θ(yh)Ψℓpℓ

)T
M̃Θ1(−Ψℓyℓ)

(
Θ(yh)Ψℓpℓ

)
+
(
(Θ(Ψℓyℓ)−Θ(yh))Ψℓpℓ

)T
M̃(Θ(Ψℓyℓ))

(
(Θ(Ψℓyℓ)−Θ(yh))Ψℓpℓ

)
.

To get rid of the dependency on the FE solution yh, we derive componentwise
upper and lower bounds that depend on RB quantities only. Using the quadrature
error and the state’s error estimate in Proposition 2.4, we obtain that[

(yh − Ψℓyℓ)
T M̃ (yh − Ψℓyℓ)

] 1
2 ≤ ∥ (yh − yℓ) ∥V + εM̃ (yh − yℓ)

≤ ∆y
w(Vℓ, µ) + εM̃ (yh − yℓ)

= C1∥Resyℓ (µ)∥V ′
h
+ εM̃ (yh − yℓ) ,

and since M̃ is a positive definite diagonal matrix, we gather that

|(yh − Ψℓyℓ)i| ≤
C1∥Resyℓ (µ)∥V ′

h
+ εM̃ (yh − yℓ)

M̃
1/2
ii

.

Accordingly, we obtain that

(yh)i ≤ (Ψℓyℓ)i + |(yh − Ψℓyℓ)i| ≤ (Ψℓyℓ)i +
C1∥Resyℓ (µ)∥V ′

h
+ εM̃ (yh − yℓ)

M̃
1/2
ii

,

(yh)i ≥ (Ψℓyℓ)i − |(yh − Ψℓyℓ)i| ≥ (Ψℓyℓ)i −
C1∥Resyℓ (µ)∥V ′

h
+ εM̃ (yh − yℓ)

M̃
1/2
ii

.

With g±εM̃ as introduced in (15) and the splitting of the nonpositive and positive
components of the RB solution, we combine these estimates to finalize the proof
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because(
(Θ(Ψℓyℓ)−Θ(yh))Ψℓpℓ

)T
M̃
(
(Θ(Ψℓyℓ)−Θ(yh))Ψℓpℓ

)
≤
(
(Θ(g+εM̃))Ψℓpℓ

)T
M̃(Θ1(−Ψℓyℓ))

(
(Θ(g+εM̃)))Ψℓpℓ

)
+
(
(Θ(Ψℓyℓ)−Θ(g−εM̃))Ψℓpℓ

)T
M̃(Θ(Ψℓyℓ))

(
(Θ(Ψℓyℓ)−Θ(g−εM̃))Ψℓpℓ

)
.

The term ∆p
w,εM̃

(Vℓ, µ) still depends on FE solutions, which are costly to compute
and, to make matters worse, enter in the complicated grid dependent quadrature
error. Its evaluation therefore remains intractable in practice, unless a tight upper
bound on the quadrature error can be derived. We do not provide such a result and
do not expect that one is easily obtainable. In the numerical results of the next
subsection, we instead assume that the mass lumping quadrature error is small
compared to the other error sources in our computation and use the term

∆p
w(Vℓ, µ) B C1

(
γ∆y

w(Vℓ, µ) + ∥Respℓ (µ)∥V ′
h

+
[ (

Θ(g+)Ψℓpℓ
)T

M̃Θ1(−Ψℓyℓ)
(
Θ(g+)Ψℓpℓ

)
+
((

Θ(Ψℓyℓ)−Θ(g−)
)
Ψℓpℓ

)T
M̃Θ(Ψℓyℓ)

((
Θ(Ψℓyℓ)−Θ(g−)

)
Ψℓpℓ

) ] 1
2
)
,

as an adjoint error indicator, which is the result of assuming that all quadrature
errors in ∆p

w,εM̃
vanish and which is easily evaluable. Interestingly, we obtain the

reproduction of the solution results analogously to Corollary 2.6 in the PDE analysis
for both the combined error indicators ∆y,p

w,εM̃
(Vℓ, µ) = ∆y

w(Vℓ, µ) + ∆p
w,εM̃

(Vℓ, µ)

and ∆y,p
w (Vℓ, µ) = ∆y

w(Vℓ, µ) +∆p
w(Vℓ, µ), which motivates the use of the latter in

the numerics.

Corollary 3.5. Let the assumptions of Lemma 3.4 hold and µ ∈ Rp with yh,
ph ∈ Vℓ. Then
1) yh = yℓ and ph = pℓ,
2) ∆y,p

w,εM̃
(Vℓ, µ) = ∆y,p

w (Vℓ, µ) = 0.

Proof. 1) yh = yℓ follows from Corollary 2.6-1). For the adjoint, we use the fact
that yh = yℓ and ep = ph − pℓ ∈ Vℓ to conclude that

0 ≤ ⟨∇ep,∇ep⟩L2 + ⟨1{yℓ>0}ep, ep⟩L2 = j′(yh)− j′(yℓ) = j′(yℓ)− j′(yℓ) = 0,

where the first inequality follows from the coercivity of the adjoint equation.
2) The equality ∆y

w(Vℓ, µ) = 0 follows from Corollary 2.6-2). We infer from
1) that, since the quadrature error of the constant zero function vanishes,
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∆y,p
w,εM̃

(Vℓ, µ) = ∆y,p
w (Vℓ, µ) and additionally ∥Respℓ (µ)∥V ′

h
= 0. Furthermore,

since ∆y
w(Vℓ, µ) = 0, we can conclude that g+ = g− = Ψℓyℓ. This implies

∆p
w(Vℓ, µ) = ∆p

w,εM̃
(Vℓ, µ) = 0 and thus ∆y,p

w,εM̃
(Vℓ, µ) = ∆y,p

w (Vℓ, µ) = 0.

3.4 Numerical Results for the Optimal Control Problem

Compared to the analytical results for the model order reduction of the PDE
constraint in Section 2, there are quite few analytical results on the optimal control
problem in the previous subsections. This is largely due to the fact that the indicator
function in the adjoint equation essentially prevents the straight-forward derivation
of an analytical a-posteriori error estimate. However, with the additional use of
the discretization structure, the error indicator derived in Lemma 3.4 offers a way
to deal with error indication in the numerics. Furthermore, the parameter space
is no longer necessarily compact in the optimization setting, which is typically a
fundamental assumption for the offline/online reduced basis method. The adaptive
RB approach introduced in Section 3.2 is designed to circumvent this issue. In this
subsection, we present numerical results based on the true V -error computation
and the error indicator derived in Lemma 3.4, comparing the two approaches for a
truly finite dimensional parameter space and showing the promising performance
of the adaptive RB method for an inherently infinite dimensional control problem,
which usually breaks offline/online RB approaches.

For the remainder of this section, we will assume that j(y) B 1
2∥y− y

d∥2L2 and
write B ∈ RN×p for the matrix corresponding to the discretized linear operator
B : Rp → V ′. As in Section 2.2, we fix Ω = (0, 1)2 and consider P1-type finite
elements on a Friedrichs-Keller triangulation of the domain in the discretization. We
maintain the mass lumping procedure in the nonlinear max term and the indicator
function and obtain the following FE and RB systems from the discretization
procedures applied to (13):

Kȳh + M̃max{0, ȳh} = Bµ̄ in RN ,

Kp̄h + M̃Θ(ȳh)p̄h = M(ȳh − yd) in RN ,

BT p̄h + σAµ̄ = 0 in Rp,

ΨTℓ KΨℓȳℓ + ΨTℓ M̃max{0,Ψℓȳℓ} = ΨTℓ Bµ̄ in Rℓ,

ΨTℓ KΨℓp̄ℓ + ΨTℓ M̃Θ(Ψℓȳℓ)p̄ℓ = ΨTℓ M(Ψℓȳℓ − yd) in Rℓ,

BTΨℓp̄ℓ + σAµ̄ = 0 in Rp.
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These finite dimensional systems are solved with the PSN method described in the
beginning of this section. The FE and RB system matrices at iterates (yh, ph, µ),
(yℓ, pℓ, µ) read as:K+ M̃Θ(yh) 0 −B

−M K+ M̃Θ(yh) 0

0 BT σA

 ,

Ψ
T
ℓ KΨℓ + ΨTℓ M̃Θ(Ψℓyℓ)Ψℓ 0 −ΨTℓ B

−ΨTℓ MΨℓ ΨTℓ KΨℓ + ΨTℓ M̃Θ(Ψℓyℓ)Ψℓ 0

0 BTΨℓ σA

 .

As for the numerical results in Section 2, our code is implemented in Python3
and uses FENICS [1] for the matrix assembly. Sparse memory management and
computations are implemented with SciPy [24]. All computations below were run
on an Ubuntu 18.04 notebook with 12 GB main memory and an Intel Core i7-4600U
CPU.

Example 3.1. For the first numerical example of this section, we reuse the setting of
Example 2.1, i.e., we set P = [−2, 2]2, c(µ) = 1, a(µ) = 10 (note that this does not
change the analysis) and the right hand side as defined in (11). Additionally, we
use yd(x) =

(
1
2 − x1

)
sin(πx1) sin(πx2) for x = (x1, x2) ∈ Ω, A = I2 the identity

in R2 and σ = 10−3. As previously, we fix a training set of 121 and a test set of
196 equidistant points in P, where both sets are chosen disjoint. The initial value
in all computations is set to µ0 = [1, 1]. We keep the tolerances fixed at 10−4 for
the RB error, at 10−8 for the semismooth Newton method and now additionally
at 10−6 for the PSN method. The desired state, solution state and solution adjoint
computed with finite elements are shown in Figure 4. The results of the different
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Fig. 4: Example 3.1. Desired state (left), FE solution state (middle) and FE solution adjoint
(right) for 1/h = 400.

approaches for different grids with step size h = 1/100, 1/200, 1/400 per dimension
can be found in Table 5. For the adaptive RB approach, all parameter combinations
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(η, nfix) ∈ { 0.5, 0.25 } × { 1, 2, 3, 4 } are tested and the best, worst and average
performances are stated. First of, we can again note that all of the V -errors are
below the given tolerance of the offline/online and adaptive RB method, respectively.
The error indicator’s overestimation leads to only slightly smaller errors in the
offline/online approach but produce significantly lower errors, larger reduced bases
and slower speed-up in the adaptive RB approach, compared to the true error
computation. Additionally, the reduced bases for the adaptive RB approach are
much smaller than those for the offline/online approach and contain only six or
eight elements, depending on the utilized error indicator. This also suggests that a
basis of only two more elements is enough to largely reduce the V -errors in the
adaptive case. Furthermore, the size of the basis in the adaptive RB seems to
be independent of the chosen parameters η and nfix and the step size h in the
adaptive RB approach. As before, the number of PSN iterations for solving the
FE/RB systems appears to be independent of the step size h and is the same for
the full FE system and the offline/online RB approach. Of course, this number
differs for the adaptive RB approach with its prescribed number of nfix fixed PSN
steps per basis update. In general, the speed-up in the online phase disregarding the
offline computational time in the classical RB approach is, as expected, far greater
than that of the adaptive RB approach (up to two orders of magnitude). Also as
in the previous examples, the true V -error outperforms the error indicator in the
RB greedy procedure. It is worth mentioning that for step size h = 1/400, the
offline/online RB approach with true V -error still requires less total computation
time than the FE approach even if the offline time is taken into account. For the
adaptive RB approach, the results show significant speed-ups in all cases, which
increase with a factor of about three to four when the step size h is divided by
two. When we consider best and average performance, computations using the true
V -error are always faster compared to the error indicator, but when we consider
worst performance the error indicator always slightly outperforms the true V -error.
Note that the average speed-up is much closer to the best speed-up than it is to the
worst, especially for the true error. Additionally, the worst performance is always
achieved for the case nfix = 1 and mostly for η = 0.5, which can be expected,
since in this case an evaluation of the (costly) error indicator is necessary in every
iteration. Accordingly, choices nfix ∈ { 2, 3 }, where the algorithm reduces the
norm of the residual in the new updated RB space considerably before updating
the basis further, are arguably more practical.

We conclude that the adaptive RB approach can be suitable to solve the first-
order system and outperform the classical offline/online approach, which is generally
a suboptimal choice when only few solves of the problem are required. The new
method computes solutions whose approximation quality of the FE solutions can be
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controlled well at a speed-up of up to 40 using a reduced basis with comparatively
few elements.

The performance and effectivity for the error indicator is shown in Table 6. We
can observe that the effectivity appears to be mesh dependent here – in contrast to
the effectivity of the analytical estimator in Section 2. This is be expected because
the indicator includes grid dependent parts and the mass lumping error is ignored.
Regardless, even for large h, the performance is reasonable and it improves for finer
grids. The lower speed-up of approximately two, compared to the speed-up of four
in Section 2, is due to the fact that the adjoint equation is linear. Therefore solving
the linear system for the error estimator does not save time compared to solving
the adjoint equation. Of course, the computation of the state remains nonlinear –
hence the remaining speed-up.

Example 3.2. The second example in this section is designed to show that the
adaptive approach presented above can overcome the curse of dimensionality that
comes with classical offline/online approaches for large parameter spaces. We
consider an FE discretized approximation of the standard optimal control problem
where (P) is considered with distributed L2(Ω) controls on the right hand side of
the PDE and an ∥ · ∥L2 -regularization term in the cost functional – and therefore
an inherently infinite dimensional setting. We set p = N , A = B = M as the mass
matrix and yd(x1, x2) as the solution of (12) in Section 2.2 for µ = 0 – i.e., the
function consisting of three bumps on three quarters of the domain. This implies
that

p̄h =
1

σ
µ̄

in the FE system. Accordingly, the reduced basis can be used to approximate the
parameter space itself because the adjoint and the parameter are linear dependent
in the solution. Additionally, we set σ = 10−4 and for increased influence of the
nonsmoooth term, we set a(µ) = 100 as the scaling parameter in front of the max
term (note that this does not change the analysis). The different settings for η, nfix
and the grids remain the same as they were in Example 3.1. In Figure 5, the desired
state, FE solution state and FE solution adjoint are shown.

Remark 3.6. Note that while A = B = M will not be a diagonal matrix as asked
for in Assumption 1.1, the diagonality requirement has been solely for the purpose
of obtaining a reasonable sense of stationarity for the solutions of (13) in the finite
dimensional control case. In the case of L2(Ω) controls with L2(Ω) regularization
treated in this example, (13) is a strong stationarity system by the results shown
in [9].
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Fig. 5: Example 3.2. Desired state (left), FE solution state (middle) and FE solution adjoint
(right) for 1/h = 400.

For the reasons stated above, the offline/online RB approach will not be compared
here. Instead, only the adaptive RB approach and the standard FE solution process
are compared in Table 7.
First, note that again the number of PSN iterations seems to be mesh-independent
in the FE formulations. The iterations in the adaptive approach also show mesh-
independence when best performances are compared with best performances of
finer/coarser grids, etc. This time, though, the number of (average) iterations for
the adaptive RB approach is about twice as large as in the previous example.
This is also the case for the size of the reduced basis, which always contains 12
elements for the true error and between 14 and 16 elements for the error indicator.
Compared to the previous example, the additional basis elements do not increase
the quality of the results significantly. A richer reduced basis was to be expected
due to the underlying high dimensional structure of the problem. The resulting
speed-ups are not as high as in the previous example and do not increase as quickly
as before when h is decreased. While it is reasonable to assume that this is due to
the difficulties with the reduced basis approximation, note that the computational
time for solving the FE systems does not increase as strongly as before as h is
decreased either – compare 765.69 seconds with 4008.98 seconds total in the last
example for the finest grid. Nonetheless, a speed-up of close to four can be obtained
and the FE setting never outperforms the adaptive RB approach. This shows that
the adaptive RB approach can be used as a reasonable approach when RB model
order reduction on very high dimensional parameter spaces is desired.

4 Conclusion

We have established an a-posteriori error estimator and presented corresponding
numerical considerations for classical offline/online RB approaches for solving a
generalized version of the constraining nonsmooth PDE of (P) efficiently. The
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results show promising speed-up while suggesting that the nonsmooth and nonlinear
behavior of the max term in the PDE is in fact the part that is most difficult to
capture in the RB approximation. For the first-order system to the optimal control
problem (P) itself, we have proposed a novel adaptive RB pseudo semismooth
Newton approach that creates the required reduced bases adaptively as the PSN
algorithm progresses, using local information along the PSN iterates. The adaptive
approach is complementary to standard offline/online approaches in the sense that
it offers reasonable to large speed-up in online computations without the additional
penalty of offline computation times.
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FE
1/h it. time (s)
100 4 8.96

200 4 146.28

400 4 4008.98

offline/online RB (true V -error)
1/h it. speed-up toff (s) ∥ey∥V ∥ep∥V |Ψ|
100 4 70.67 98.03 2.67 · 10−5 3.75 · 10−5 60

200 4 373.75 523.89 1.28 · 10−5 3.42 · 10−5 58

400 4 1544.93 3427.74 7.66 · 10−6 3.36 · 10−5 58

offline/online RB (indicator)
1/h it. speed-up toff (s) ∥ey∥V ∥ep∥V |Ψ|
100 4 30.45 1054.56 1.28 · 10−5 2.25 · 10−5 84

200 4 235.92 6770.66 4.75 · 10−6 2.09 · 10−5 84

400 4 1105.49 47892.43 2.09 · 10−6 1.98 · 10−5 84

adaptive RB (true V -error)
1/h (η, nfix) it. speed-up ∥ey∥V ∥ep∥V |Ψ|

100

best (0.25, 3) 9 3.81 2.38 · 10−5 5.69 · 10−6 6

worst (0.25, 1) 6 2.14 2.08 · 10−5 5.63 · 10−6 6

avg. 8.25 3.35 2.22 · 10−5 5.65 · 10−6 6

200

best (0.25, 2) 6 10.35 1.96 · 10−5 4.44 · 10−6 6

worst (0.5, 1) 6 5.88 1.96 · 10−5 4.44 · 10−6 6

avg. 8.25 9.18 2.12 · 10−5 4.64 · 10−6 6

400

best (0.25, 3) 9 40.87 2.26 · 10−5 4.23 · 10−6 6

worst (0.5, 1) 6 22.85 1.94 · 10−5 3.83 · 10−6 6

avg. 8.25 36.14 2.09 · 10−5 3.90 · 10−6 6

adaptive RB (indicator)
1/h (η, nfix) it. speed-up ∥ey∥V ∥ep∥V |Ψ|

100

best (0.5, 2) 12 2.73 3.87 · 10−10 7.35 · 10−10 8

worst (0.5, 1) 6 2.35 1.09 · 10−8 6.05 · 10−8 8

avg. 10.25 2.63 3.02 · 10−9 1.64 · 10−8 8

200

best (0.25, 2) 8 7.22 7.14 · 10−11 4.38 · 10−10 8

worst (0.5, 1) 6 6.26 8.73 · 10−9 4.86 · 10−8 8

avg. 10.25 7.07 1.35 · 10−9 7.81 · 10−9 8

400

best (0.25, 2) 8 28.14 2.95 · 10−11 4.13 · 10−10 8

worst (0.5, 1) 6 24.38 2.38 · 10−9 2.24 · 10−6 8

avg. 10.25 27.50 4.12 · 10−10 4.74 · 10−9 8

Tab. 5: Example 3.1. The first part of the table shows the number of required pseudo
semismooth Newton iterations for computing the FE solution to the first-order system and
the required time. The second and third parts show the performance of the offline/online
RB approach including the offline computation time toff The fourth and fifth parts show
the best, worst and average performance of the adaptive RB algorithm over all (η, nfix) ∈
{ 0.5, 0.25 } × { 1, 2, 3, 4 } using the true V -error and error estimator, respectively.
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1/h avg. true V -error avg. effectivity time true V -error (s) speed-up indicator
100 4.85 · 10−5 36.85 114.36 2.32

200 4.58 · 10−5 70.08 697.43 2.27

400 4.53 · 10−5 133.18 4933.28 2.18

Tab. 6: Example 3.1. Performance of true error and error indicator with reduced basis from
strong greedy on test set.

FE
1/h it. time (s)
100 5 10.80

200 5 84.18

400 5 765.69

adaptive RB (true V -error)
1/h (η, nfix) it. speed-up ∥ey∥V ∥ep∥V |Ψ|

100

best (0.5, 3) 18 2.63 2.28 · 10−5 9.27 · 10−8 12

worst (0.25, 1) 9 1.47 3.27 · 10−5 4.79 · 10−7 12

avg. 16 2.14 2.22 · 10−5 1.37 · 10−7 12

200

best (0.25, 3) 18 2.90 1.41 · 10−5 8.47 · 10−7 12

worst (0.5, 1) 9 1.73 1.74 · 10−5 8.70 · 10−7 12

avg. 15.87 2.43 1.35 · 10−5 5.01 · 10−7 12

400

best (0.25, 4) 24 3.92 1.02 · 10−5 5.24 · 10−8 12

worst (0.5, 1) 9 2.32 9.79 · 10−6 6.47 · 10−8 12

avg. 15.87 3.31 1.12 · 10−5 1.13 · 10−7 12

adaptive RB (indicator)
1/h (η, nfix) it. speed-up ∥ey∥V ∥ep∥V |Ψ|

100

best (0.5, 3) 21 1.88 4.11 · 10−7 3.05 · 10−9 14

worst (0.5, 1) 10 1.51 1.58 · 10−6 7.14 · 10−9 16

avg. 18.12 1.72 1.17 · 10−6 7.84 · 10−9 14.25

200

best (0.2, 3) 21 2.06 1.01 · 10−5 8.55 · 10−7 14

worst (0.5, 1) 9 1.88 1.09 · 10−5 8.55 · 10−7 14

avg. 18 1.99 9.62 · 10−6 8.56 · 10−7 14

400

best (0.25, 3) 21 2.76 2.57 · 10−7 1.17 · 10−9 14

worst (0.5, 1) 10 2.27 1.41 · 10−6 6.47 · 10−9 16

avg. 18.12 2.64 4.98 · 10−6 4.56 · 10−8 14.25

Tab. 7: Example 3.2. The first part of the table shows the number of required PSN itera-
tions for computing the FE solution to the first-order system and the required time. The
second and third parts show the best, worst and average performance of the adaptive RB
algorithm over all (η, nfix) ∈ { 0.5, 0.25 } × { 1, 2, 3, 4 } using the true V -error and error
indicator, respectively.
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