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Abstract The vast majority of stochastic optimization problems require the ap-
proximation of the underlying probability measure, e.g., by sampling or using
observations. It is therefore crucial to understand the dependence of the optimal
value and optimal solutions on these approximations as the sample size increases
or more data becomes available. Due to the weak convergence properties of se-
quences of probability measures, there is no guarantee that these quantities will
exhibit favorable asymptotic properties. We consider a class of infinite-dimensional
stochastic optimization problems inspired by recent work on PDE-constrained op-
timization as well as functional data analysis. For this class of problems, we provide
both qualitative and quantitative stability results on the optimal value and opti-
mal solutions. In both cases, we make use of the method of probability metrics.
The optimal values are shown to be Lipschitz continuous with respect to a minimal
information metric and consequently, under further regularity assumptions, with
respect to certain Fortet-Mourier and Wasserstein metrics. We prove that even
in the most favorable setting, the solutions are at best Hölder continuous with
respect to changes in the underlying measure.

Keywords Stability, Stochastic Programming, Optimization under Uncertainty,
Probability Metrics, PDE-Constrained Optimization, Functional Data Analysis

Mathematics Subject Classification (2010) 49J20, 49J50, 49J55, 90C15,
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1 Introduction

In stochastic optimization, stability usually refers to the continuity properties of
optimal values and solution sets as mappings from a set of probability measures,
endowed with a suitable distance, into the extended reals and solution space,
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respectively, see [16]. The distance on the space of probability measures must be
selected in order to allow the estimation of differences of the relevant functions,
which depend on probability measures. There exists a wide variety of possible
distances of probability measures based on various constructions [13,19]. In the
present context, distances with ζ-structure introduced first in [19] appear as a
natural choice. For a given metric space Ω such a distance is of the form

dF(P,Q) = sup
f∈F

∣∣∣∣∫
Ω

f(ω) dP(ω)−
∫
Ω

f(ω) dQ(ω)

∣∣∣∣ , (1)

where F is a family of Borel measurable functions from Ω to R and P, Q are Borel
probability measures on Ω. Note that the distance dF is non-negative, symmetric
and satisfies the triangle inequality. It also satisfies dF(P,P) = 0 and is, thus, a
probability metric in the sense of [19]. However, dF(P,Q) = 0 only implies P =
Q, when the family F is rich enough. Hence, dF is a semi-metric in the usual
terminology, in general.

The smallest relevant family F of Borel measurable functions in our stability
studies contains only those functions which appear in the stochastic optimization
problem under consideration. In this case, dF may be called the minimal informa-
tion (m.i.) distance. Stability results with respect to such m.i. distances serve as
the starting point (i) to study stability with respect to the weak convergence of
probability measures and (ii) to enlarge the family F properly by functions sharing
essential analytical properties with the original ones. The latter strategy may lead
to probability metrics that enjoy desirable properties like dual representations and
convergence characterizations.

This method of probability metrics provides quantitative statements on the
stability of solutions and optimal values of stochastic programming problems. Nev-
ertheless, the existing theory has not been developed for optimization problems
in which the design or decision variables may be infinite-dimensional, as is the
case in PDE-constrained optimization under uncertainty. By including infinite-
dimensional feasible sets, we introduce a number of complications; in particular,
the loss of norm compactness of the feasible set, even in the case of convex, closed,
and bounded feasible sets.

After fixing some essential notation in Section 2, we state the class of infinite-
dimensional stochastic optimization problems for which we study stability in the
subsequent sections in Section 3. Section 4 contains qualitative results by providing
conditions that imply convergence of optimal values and solutions if the underlying
sequence of probability distribution converges to a limit distribution in some sense.
In Section 5 we show that optimal values and solutions even allow Lipschitz or
Hölder estimates in terms of the ζ-distance. In Section 6 we argue that the stability
analysis of the preceding sections applies to certain stochastic PDE-constrained
optimization problems.

2 Notation and Preliminary Results

We assume throughout that Ω is a complete separable metric space, i.e., Polish
space, and F the associated Borel σ-algebra. In addition, we will work exclusively
with Borel probability measures P : F → [0, 1]. that ensure (Ω,F ,P) is a complete
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probability space. In particular, if Ω is finite, then F must be the power set of
Ω. For the abstract portion of our results, we will always assume that Θ is a real
separable Hilbert space and Θad ⊂ Θ is a nonempty, closed, and convex set. Given
an appropriately chosen integrand f : Θ×Ω → R, we will consider the potentially
infinite dimensional stochastic optimization problems:

ν(P) := inf
θ∈Θad

∫
Ω

f(θ, ω) dP(ω). (2)

Here, we also introduce the notion of optimal value function ν as a function from
the space of all Borel probability measures P(Ω) into R. This potentially extended
real-valued function will play a key role in our discussions. If necessary, we will
denote the expectation by either E or if it is not clear in context EP to denote the
dependence on the measures P.

Given a complete probability space (Ω,F ,P) and a real Banach space W , we
recall the definition of the Bochner space Lp(Ω,F ,P;W ) p ∈ [1,∞) as the space
of (equivalence classes) of strongly measurable functions v, which map Ω into
W and satisfy

∫
Ω
‖v(ω)‖pW dP(ω) < +∞, cf. [9]. If p = ∞, then L∞(Ω,F ,P;W )

consists of essentially bounded W -valued strongly measurable functions. In both
cases Lp(Ω,F ,P;W ) is a Banach space with the natural norm(s)

‖v‖Lp(Ω,F,P;W ) =

{ [
E‖v‖pW

]1/p
, for p ∈ [1,∞),

ess supω∈Ω ‖v(ω)‖W , for p =∞.

In the special case when W = R, we simply write Lp(Ω,F ,P). As usual norm
convergence will be typically denote by →, whereas ⇀ signifies weak convergence
and

∗
⇀ weak-star convergence.

In our stability analysis, we make use of distances with ζ-structure on P(Ω)
having the form (1). We will refer to these objects as ζ-distances for brevity. Given
a family F of Borel measurable functions from Ω into R, the ζ-distance dF on (Ω,F)
is a highly flexible structure that allows us to define so-called minimal information
distances and Fortet-Mourier metrics; each defined in the text below. Properties
of ζ-distances like a characterization of its maximal generator and its relation to
weak convergence of probability measures can be found in [12,17]. Recall that
a sequence of probability measures {PN} on (Ω,F) is said to narrowly/weakly
converge to the probability measure P provided

EPN [f ]→ EP[f ] ∀f ∈ C0
b (Ω),

where C0
b (Ω) is the space of all bounded continuous functions on Ω. A family F of

Borel measurable functions is called P-uniformity class if

lim
N→∞

dF(P,PN ) = 0

holds for each sequence {PN} of probability measures converging weakly to P. For
example, it is known that F is a P-uniformity class if F is uniformly bounded and
P({ω ∈ Ω : F is not equicontinuous at ω}) = 0 [17].

Finally, we recall that given a σ-algebra F along with a nominal σ-finite σ-
additive positive measure P on Ω, e.g., a Borel probability measure P ∈ P(Ω), the
dual space of L∞(Ω,F ,P) can be identified with the space of all finitely additive
signed measures ba(Ω) on F absolutely continuous with respect to P, see e.g., [6].
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3 The Optimization Problem

In order to carry out the stability analysis, we restrict the class of allowable in-
tegrands f(θ, ω). These restrictions will henceforth be taken as standing assump-
tions. The particular class considered in this paper is inspired by applications in
PDE-constrained optimization under uncertainty in which the PDE is given by
a linear elliptic partial differential equation with random coefficients, righthand
side, and/or boundary conditions. We refer the reader to [11] for an overview of
the state-of-the-art theory including more general objective functions and risk mea-
sures. In addition, many problems in functional data analysis exhibit practically
the same form used below, see e.g., [15].

Let V and H be real Hilbert spaces such that V embeds continuously into H,
and θd ∈ H. For θ ∈ Θ and ω ∈ Ω, let Σ(ω)θ = S(ω)θ − s(ω), where S(ω) : Θ → V

is bounded and linear in θ independently of ω and s(ω) ∈ H. We then define

f(θ, ω) :=
1

2
‖Σ(ω)θ − θd‖2H =

1

2
‖S(ω)θ − (θd + s(ω))‖2H

Furthermore, we assume that for every θ ∈ Θ (or θ ∈ Θad) and any P ∈ P(Ω)

f(θ, ·) ∈ L1(Ω,F ,P)

This implicitly adds mild regularity assumptions on S and s that are typically
fulfilled when S is related to the solution of a parametric elliptic PDE, e.g.,
S(·)θ, s(·) ∈ L2(Ω,F ,P;V ). Then for α > 0, we consider the optimization prob-
lems

inf
θ∈Θad

F (θ) :=
1

2
EP[f(θ)] +

α

2
‖θ‖2Θ. (3)

Theorem 1 Problem (3) admits a unique solution θP ∈ Θad for every P ∈ P(Ω).

Proof For existence, it suffices to prove F is proper, convex, lower-semicontinuous
and coercive, cf. e.g., [2, Sec. 3.3]. Since f(θ, ·) ∈ L1(Ω,F ,P) for any θ ∈ Θad and
f ≥ 0, F is proper. Convexity follows directly from the P-a.e. convexity of θ 7→
f(θ, ω)+ α

2 ‖θ‖
2
Θ and the monotonicity of the expectation EP. Lower semicontinuity

is a result of Fatou’s lemma: Let θk → θ in Θ. Then since f ≥ 0 and f(θk, ·)→ f(θ, ·)
P-a.s. (by the assumptions on S) we have

lim inf
k

EP[f(θk)] +
α

2
‖θk‖2Θ ≥ EP[lim inf

k
f(θk)] +

α

2
‖θ‖2Θ = EP[f(θ)] +

α

2
‖θ‖2Θ.

Since EP[f(θ, ·)] ≥ 0 for all θ ∈ Θad, F is coercive. Given F is proper, convex,
and lower semicontinuous, F is weakly lower semicontinuous, as well. Since F is
coercive, the level set {θ ∈ Θad |F (θ) ≤ α0 } , where θ0 ∈ Θad and α0 := F (θ0),
is weakly sequentially compact. It then follows from the direct method that (3)
admits a solution θP. Given α > 0, F is strictly convex. Hence, θP is unique. ut
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4 Qualitative Stability

In this section, we provide stability results that ensure the approximating optimiza-
tion problems obtained by replacing P by another probability measure Q ∈ P(Ω)
will converge in some sense to the original problem. In particular, we show that the
solutions θQ will strongly converge to θP provided Q converges to P with respect to
a properly chosen ζ-distance. This basic result serves as the foundation needed to
prove continuity of the solutions with respect to narrow convergence of probability
measures. However, in order to do the latter, additional regularity properties will
be required on the integrands with respect to ω. These stability results are in some
sense more versatile than the quantitative results below. Nevertheless, they do not
provide us with a rate of convergence.

Theorem 2 In the context of Theorem 1, suppose we are given a sequence {PN} with

PN ∈ P(Ω) and a probability measure P ∈ P(Ω) such that dF(PN ,P)→ 0, where F is

any class of measurable functions from Ω into R large enough to contain f(θ, ·) for any

θ ∈ {θN : N ∈ N} ∪ {θP} with θN := θPN . Then θN → θP strongly in Θ as N → +∞.

Remark 1 The obvious candidate for the set F would be to choose the collection
of all possible integrands f(θ, ·) : Ω → R indexed by θ ∈ Θad. In terms of the
associated ζ-distance, this would result in what is referred to in [13,14,16] as the
minimal information metric.

Proof We first show {θN} is uniformly bounded in Θ. Indeed, we have

α

2
‖θN‖2Θ ≤ EPN [f(θN )] +

α

2
‖θN‖2Θ ≤ EPN [f(θ)] +

α

2
‖θ‖2Θ θ ∈ Θad. (4)

For any fixed θ ∈ Θad, it follows from the hypotheses that

EPN [f(θ)] = EPN [f(θ)]− EP[f(θ)] + EP[f(θ)] ≤ dF(PN ,P) + EP[f(θ)] (5)

Substituting this into (4) we obtain the bound

α

2
‖θN‖2Θ ≤ dF(PN ,P) + F (θ) θ ∈ Θad.

Since dF(PN ,P)→ 0, {θN} is bounded in Θ. Therefore, there exists a θ̂ ∈ Θad and
a weakly convergent subsequence {θN`

} such that θN`
⇀ θ̂ as `→ +∞.

For fixed P, it follows from the proof of Theorem 1 that EP[f(·)] : Θ → R is
weakly lower semicontinuous. Therefore,

EP[f(θ̂)] +
α

2
‖θ̂‖2Θ ≤ lim inf

`
EP[f(θN`

)] +
α

2
‖θN`

‖2Θ

≤ lim inf
`

[
EPN`

[f(θN`
)] +

α

2
‖θN`

‖2Θ + EP[f(θN`
)]− EPN`

[f(θN`
)]
]

≤ lim inf
`

[
EPN`

[f(θN`
)] +

α

2
‖θN`

‖2Θ + dF(PN`
,P)
]

= lim inf
`

[
EPN`

[f(θN`
)] +

α

2
‖θN`

‖2Θ
]
.

(6)
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It then follows from (6), the optimality of θN`
, and (5) that for any θ ∈ Θad we

have:
EP[f(θ̂)] +

α

2
‖θ̂‖2Θ ≤ lim inf

`

[
EPN`

[f(θN`
)] +

α

2
‖θN`

‖2Θ
]

≤ lim inf
`

[
EPN`

[f(θ)] +
α

2
‖θ‖2Θ

]
≤ lim inf

`
dF(PN`

,P) + EP[f(θ)] +
α

2
‖θ‖2Θ

= EP[f(θ)] +
α

2
‖θ‖2Θ.

(7)

Hence, θP = θ̂. Since θP is unique and the previous arguments hold for all weakly
convergent subsequences of {θN}, we have θN ⇀ θP = θ̂ as N → +∞. It remains
to prove ‖θN − θP‖Θ → 0.

Clearly we have the inequality

lim inf
N

‖θN‖Θ ≥ ‖θ̂‖Θ (8)

by weak lower semicontinuity of the norm ‖·‖Θ. On the other hand, by rearranging
terms, the definition of θN and feasibility of θ̂ yield

α

2
‖θN‖2Θ ≤

α

2
‖θ̂‖2Θ + EPN [f(θ̂)]− EPN [f(θN )]

=
α

2
‖θ̂‖2Θ + EPN [f(θ̂)]− EPN [f(θN )] + EP[f(θN )]− EP[f(θN )]

≤ α

2
‖θ̂‖2Θ + EPN [f(θ̂)]− EP[f(θN )] + dF(PN ,P)

=
α

2
‖θ̂‖2Θ + EPN [f(θ̂)]− EP[f(θ̂)] + EP[f(θ̂)]− EP[f(θN )] + dF(PN ,P)

≤ α

2
‖θ̂‖2Θ + 2dF(PN ,P) + EP[f(θ̂)]− EP[f(θN )]

Therefore, we again appeal to the weak lower semicontinuity of EP[f(·)] on Θ to
obtain

lim sup
N

α

2
‖θN‖2Θ ≤

α

2
‖θ̂‖2Θ + lim sup

N

[
2dF(PN ,P) + EP[f(θ̂)]− EP[f(θN )]

]
=
α

2
‖θ̂‖2Θ + EP[f(θ̂)]− lim inf

N
[f(θN )]]

≤ α

2
‖θ̂‖2Θ + EP[f(θ̂)]− EP[f(θ̂)]

=
α

2
‖θ̂‖2Θ.

(9)

Combining (8) and (9), we have ‖θN‖Θ → ‖θ̂‖Θ. Then since Θ is a Hilbert space
and θN ⇀ θ̂, the assertion follows. ut

An alternative perspective on qualitative stability is offered by our next result.
Here, we will prove convergence of the sequence of minimizers under different
data assumptions on the integrands and a different form of weak convergence of
measures. We note that in PDE-constrained optimization under uncertainty these
assumptions are less restrictive than they may appear. It particular, we do not
require f(θ, ·) : Ω → R to be continuous as is needed below for the Fortet-Mourier
metric. The caveat here is the requirement that PN is absolutely continuous with
respect to P.
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Theorem 3 In addition to the standing assumptions, fix some P ∈ P(Ω) and suppose

that for all θ ∈ Θad f(θ, ·) ∈ L∞(Ω,F ,P). Assume furthermore that the superposition

operator Φ : Θ → L∞(Ω,F ,P) defined by

Φ(θ)(ω) := f(θ, ω)

is completely continuous. Let {PN} ⊂ P(Ω) such that

1. for all N ∈ N PN << P (PN is absolutely continuous with respect to P) and

2. PN → P with respect to the weak-star topology on (L∞(Ω,F ,P))∗.

Then θN → θP.

Proof As noted in Section 2, each Q ∈ P(Ω) is an element of (L∞(Ω,F ,P))∗

provided Q << P. The rest of the proof mirrors that of Theorem 2. Given the
sequence of minimizers {θN} we immediately obtain a uniform bound on ‖θN‖
from (4) since for any θ ∈ Θad f(θ, ·) ∈ L∞(Ω,F ,P) and PN

∗
⇀ P. As before, we

let {θN`
}∞`=1 denote the weakly convergent subsequence and θ̂ the associated weak

limit.
Turning now to the estimate derived in (6), we see that

EP[f(θ̂)] +
α

2
‖θ̂‖2Θ ≤ lim inf

`
EP[f(θN`

)] +
α

2
‖θN`

‖2Θ

≤ lim inf
`

[
EPN`

[f(θN`
)] +

α

2
‖θN`

‖2Θ + EP[f(θN`
)]− EPN`

[f(θN`
)]
]

= lim inf
`

[
EPN`

[f(θN`
)] +

α

2
‖θN`

‖2Θ
]
.

(10)
Here, Φ(θNl

) → Φ(θ̂) strongly in L∞(Ω,F ,P) due the assumption of complete

continuity. Therefore, both EP[f(θN`
)] and EPN`

[f(θN`
)] converge to EP[f(θ̂)].

As in the proof of Theorem 2, we obtain optimality of θ̂ by adapting the
inequality (7), i.e., for every θ ∈ Θad we have

EP[f(θ̂)] +
α

2
‖θ̂‖2Θ ≤ lim inf

`

[
EPN`

[f(θN`
)] +

α

2
‖θN`

‖2Θ
]

≤ lim inf
`

[
EPN`

[f(θ)] +
α

2
‖θ‖2Θ

]
= EP[f(θ)] +

α

2
‖θ‖2Θ.

(11)

Here, the regularity of the integrand ensures that EPN`
[f(θ)] converges to EP[f(θ)];

from which it follows that θ̂ = θP. As in the proof of Theorem 2, we can again
argue that the entire sequence {θPN } weakly converges to θP.

In order to prove norm convergence, we note that

α

2
‖θN‖2Θ ≤

α

2
‖θ̂‖2Θ + EPN [f(θ̂)]− EPN [f(θN )]

Then by the complete continuity and regularity assumptions, we have

lim sup
N

α

2
‖θN‖2Θ ≤ lim sup

N

α

2
‖θ̂‖2Θ + EPN [f(θ̂)]− EPN [f(θN )] = lim sup

N

α

2
‖θ̂‖2Θ.

This completes the proof. ut
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Next, we return to the setting using probability metrics to obtain some im-
portant implications of the Theorem 2 under further regularity assumptions on
the integrands. In our setting, we recall that the space of all (Borel) probability
measures with finite p-th moments is defined by

Pp(Ω) :=

{
P ∈ P(Ω)

∣∣∣∣ ∫
Ω

d(ω0, ω)pdP(ω) < +∞
}
,

for some arbitrary ω0 ∈ Ω. We recall that a sequence {PN} ⊂ Pp(Ω) converges
weakly (narrowly) provided for all ϕ ∈ C0

b (Ω)

EPN [ϕ]→ EP[ϕ] and EPN [d(ω0, ·)p]→ EP[d(ω0, ·)p]

as N → ∞. This type of weak convergence shares an intimate link with a certain
class of ζ-distances known as Fortet-Mourier metrics. To start, for p ∈ [1,∞), we
define the sets Fp(Ω) of locally Lipschitz functions with a certain p-related growth
condition by

Fp(Ω) := {f : Ω → R |

|f(ω1)− f(ω2)| ≤ max{1, d(ω1, ω0)p−1, d(ω2, ω0)p−1}d(ω1, ω2) ∀ω1, ω2 ∈ Ω
}
.

We then define the Fortet-Mourier metric of order p for two measures P,Q ∈ Pp(Ω)
by

ζp(P,Q) = dFp(Ω)(P,Q).

In particular, ζp is equivalent to the so-called Kantorovich-Rubinstein functional
with cost function given by

c(ω1, ω2) = max{1, d(ω1, ω0)p−1, d(ω2, ω0)p−1}d(ω1, ω2).

(see [13, Theorem 5.3.3] along with the discussion on page 93 in [13]). Furthermore,
it follows from [13, Theorem 6.2.1] that {PN} ⊂ Pp(Ω) converges weakly (narrowly)
to P ∈ Pp(Ω) if and only if ζp(PN ,P)→ 0 as N → +∞. We may therefore connect
Theorem 2 directly to the weak convergence of probability measures.

Proposition 1 In the setting of Theorem 2, suppose there exists a p ∈ [1,∞) and

some L > 0 such that

F = Fp(Ω) and

{
1

L
f(θ, ·) : Ω → R | θ ∈ Θad

}
⊂ F.

Then the solution mapping Pp(Ω) 3 Q 7→ θQ ∈ Θad is continuous with respect to weak

(narrow) convergence of probability measures on Pp(Ω).

Proof After rescaling the integrands by 1/L > 0, this is a direct consequence of
Theorem 2 in light of the preceding arguments. ut

Finally, we note that an alternative means of obtaining the sequential conver-
gence result in Proposition 1 would be to appeal to the link between the weak
topology on Pp(Ω) and the topologies generated by the well-known Wasserstein
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distance Wp of order p. Let γi (i = 1, 2) be the projection onto the first or sec-
ond term of Ω × Ω, respectively, and for π ∈ P(Ω × Ω) denote the marginals by
πi := π#γi := π ◦ γ−1

i . Then the Wasserstein distance of order p is given by

W p
p (P,Q) = inf

{∫
Ω×Ω

d(ω1, ω2)pdπ(ω1, ω2)
∣∣∣π ∈ P(Ω ×Ω), π1 = P and π2 = Q

}
.

For this distance we have the estimate:

ζp(P,Q) ≤
(

1 +

∫
Ω

d(ω0, ω)p dP(ω) +

∫
Ω

d(ω0, ω)p dQ(ω)

) p−1
p

Wp(P,Q) (12)

Therefore, if we start with a sequence of Borel probability measures {PN} and
P ∈ P(Ω) such that Wp(PN ,P) → 0, then we obtain the same statement as in
Proposition 1. However, as shown in [14] the convergence in the Wasserstein metric
is potentially strictly slower than in the Fortet-Mourier metric.

5 Quantitative Stability

As mentioned above, quantitative stability provides us with Lipschitz or Hölder-
type estimates of the optimal values and solutions. This is first done using the
“weakest” possible ζ-distance dF in which F is directly related to the integrands
without additional regularity assumptions on the dependence on ω. Further esti-
mates related to Fortet-Mourier and Wasserstein metrics then follow as corollaries
under Lipschitz conditions on the integrands.

Theorem 4 Under the standing asusmptions, let P,Q ∈ P(Ω) and let F be any set of

Borel measurable functions that contains gθ(·) := f(θ, ·), where θ = θP and θQ. Then

we have the estimates:

|ν(Q)− ν(P)| ≤ dF(Q,P) (13)

‖θQ − θP‖ ≤ 2

√
2

α
dF(Q,P). (14)

Proof For the Lipschitz estimate (13), we observe that

|ν(Q)− ν(P)| = max{ν(Q)− ν(P), ν(P)− ν(Q)}

= max{EQ[f(θQ)] +
α

2
‖θQ‖2 − EP[f(θP)]− α

2
‖θP‖2,

EP[f(θP)] +
α

2
‖θP‖2 − EQ[f(θQ)]− α

2
‖θQ‖2}

≤ max{EQ[f(θP)]− EP[f(θP)],EP[f(θQ)]− EQ[f(θQ)]}
≤ max{|EQ[f(θP)]− EP[f(θP)]|,

|EP[f(θQ)]− EQ[f(θQ)|}
≤dF(Q,P).
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For the Hölder estimate on the solution mapping (14), we start by letting δ :=
dF(Q,P) and observing that

2δ ≥ δ + |ν(Q)− ν(P)|
≥ δ + ν(Q)− ν(P)

= δ + EQ[f(θQ)] +
α

2
‖θQ‖2 − EP[f(θP)]− α

2
‖θP‖2

= δ ± (EP[f(θQ)] +
α

2
‖θQ‖2) + EQ[f(θQ)] +

α

2
‖θQ‖2 − EP[f(θP)]− α

2
‖θP‖2

= δ − (EP[f(θQ)]− EQ[f(θQ)])

+ EP[f(θQ)] +
α

2
‖θQ‖2 − EP[f(θP)]− α

2
‖θP‖2

≥ EP[f(θQ)] +
α

2
‖θQ‖2 − EP[f(θP)]− α

2
‖θP‖2 (15)

Using to the quadratic term α
2 ‖ · ‖

2, the convexity of the integrand f(·, ω), the
convexity of Θad, and optimality of θP, we have

EP[f(θP)] +
α

2
‖θP‖2 ≤ EP[f(θP/2 + θQ/2)] +

α

2
‖θP/2 + θQ/2‖2

≤ 1

2
(EP[f(θP)] +

α

2
‖θP‖2)+

1

2
(EP[f(θQ)] +

α

2
‖θQ‖2)− α

8
‖θP − θQ‖2.

It follows that

EP[f(θQ)] +
α

2
‖θQ‖2 − EP[f(θP)]− α

2
‖θP‖2 ≥

α

8
‖θQ − θP‖2 (16)

Combining (16) with (15) above yields

‖θQ − θP‖ ≤
√

8δ

α
= 2

√
2dF(Q,P)

α

as was to be shown. ut

We may now return to the results at the end of Section 4 in order to derive
quantitative stability results using the familiar Fortet-Mourier and Wasserstein
distances.

Corollary 1 In the setting of Theorem 4, suppose there exists a p ∈ [1,∞) and some

L > 0 such that

F = Fp(Ω) and

{
1

L
f(θ, ·) : Ω → R | θ ∈ Θad

}
⊂ F.

Then the following estimates hold for the associated Fortet-Mourier metric:

|ν(Q)− ν(P)| ≤ ζp(Q,P), ‖θQ − θP‖ ≤ 2

√
2

α
ζp(Q,P).

Consequently, the following estimates hold for the Wasserstein metric Wp:

|ν(Q)− ν(P)| ≤ c(ω0,P,Q)Wp(Q,P),

‖θQ − θP‖ ≤ 2

√
2

α
c(ω0,P,Q)Wp(Q,P).

Here, we set c(ω0,P,Q) =
(
1 +

∫
Ω
d(ω0, ω)pdP(ω) +

∫
Ω
d(ω0, ω)pdQ(ω)

) p−1
p .
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6 An Application to PDE-Constrained Optimization under Uncertainty

We conclude the discussion with an example from PDE-constrained optimization
under uncertainty to demonstrate the applicability of our results. For the purpose
of discussion, we start with an arbitrary Borel probability measure P in order to
introduce the problem. The notation mirrors in part that of [11]. For readability,
we indicate the associated quantities in the general discussions above.

Our goal is twofold. Under reasonable data assumptions, we will define a class of
integrands F, which allow us to use the m.i. metric in our stability results to prove
convergence of optimal values and optimal solutions under weak convergence of a
sequence of measures {PN}. Afterwards, assuming the underlying function spaces
are replaced by finite-dimensional subspaces defined by a standard finite-element
discretization, we derive an a priori-type error bound and argue that the fully
discrete problems convergence to the original continuous problems.

We will consider a class of optimization problems in which we seek to minimize
the objective function

J (u, z) :=
1

2

∫
Ω

∫
D

|u(x, ω)− ũd(x)|2 dxdP(ω) +
α

2

∫
D

|z(x)|2 dx

=
1

2
EP[‖u− ũd‖2L2(D)] +

α

2
‖z‖2L2(D)

(17)

subject to the conditions that z ∈ L2(D) satisfies the pointwise bilateral constraints
(denoted by Zad)

a(x) ≤ z(x) ≤ a(x) a.e. x ∈ D

and for z ∈ Zad, u solves a random partial differential equation (PDE), which we
define below.

To be precise, let D ⊂ Rn be an open, bounded Lipschitz domain, V = H1
0 (D)

the classical Sobolev space with inner product (·, ·)V , and V ? = H−1(D) its dual
with norm ‖ · ‖? und dual pairing 〈·, ·〉. In addition, let H = L2(D) with inner
product (·, ·)H . Furthermore, let Ω be a metric space with metric ρ and Borel
σ-field F and let P be a Borel probability measure.

Within this framework, we consider the bilinear form a(·, ·;ω) : V × V → R
defined by

a(u, v;ω) =

∫
D

n∑
i,j=1

bij(x, ω)
∂u(x)

∂xi

∂v(x)

∂xj
dx

where ω ∈ Ω. The associated random PDE can be defined pointwise as:

a(u, v;ω) =

∫
D

(z(x) + g(x, ω))v(x)dx for P-a.e. ω ∈ Ω,

for all test functions v ∈ C∞0 (D), z varying in a constraint set Zad ⊂ H, and
g, bij : D ×Ω → R, which are assumed to be at least measurable in Ω and square
(Lebesgue) integrable in D.

In order to use our stability results in this context, we will need further data
assumptions on the bilinear form. For each ω ∈ Ω, we let A(ω) : V → V ? be the
mapping

〈A(ω)u, v〉 = a(u, v;ω) (∀u, v ∈ V ).



12

The existence of A(ω) as a bounded linear operator is due to the Riesz represen-
tation theorem and the Lax-Milgram lemma based on the following assumptions.
First, we impose the condition that there exist L > γ > 0 such that

γ

n∑
i=1

y2i ≤
n∑

i,j=1

bij(x, ω)yiyj ≤ L
n∑
i=1

y2i (∀y ∈ Rn)

for all x ∈ D and P-a.e. ω ∈ Ω. This implies that each bij is essentially bounded
in D×Ω with respect to the associated product measure. Moreover, the mapping
A(ω) : V → V ? is uniformly positive definite (with constant γ) and uniformly
bounded (with constant L) with respect to P-a.e. ω ∈ Ω, i.e.,

γ‖u‖2V ≤ 〈A(ω)u, u〉 ≤ L‖u‖2V (∀u ∈ V ).

In addition, the inverse mapping A(ω)−1 : V ? → V is again uniformly positive
definite (with constant 1

L ) and uniformly bounded (with constant 1
γ ) with respect

to P-a.e. ω ∈ Ω.
Under these data assumptions, we may now define a class of integrands for

the m.i. metric for which dF(PN ,P) → 0 for any sequence of Borel probability
measures {PN} that converges weakly to P. To this end, we define the functions
f : Zad ×Ω → R by

f(z, ω) =
1

2
‖A(ω)−1(z + g(ω))− ũd‖2H =

1

2
‖A(ω)−1z − (ũd −A(ω)−1g(ω))‖2H

=
1

2

∫
D

([A(ω)−1z](x)− (ũd(x)− [A(ω)−1g(·, ω)](x)))2dx.

Our aim is to derive conditions implying that the class F = {f(z, ·) : z ∈ Zad} is
uniformly bounded and equicontinuous, and consequently a P-uniformity class, cf.
[17].

Lemma 1 In addition to the standing assumptions, suppose that ũd ∈ H and g ∈
L2(Ω,F ,P;V ?). Then for some C > 0 we have

|f(z, ω)| ≤ C(1 + ‖g(ω)‖2?) (P- a.e. ω ∈ Ω, z ∈ Zad)

Proof For z ∈ Zad and ω ∈ Ω we obtain

|f(z, ω)| ≤
(
‖A(ω)−1z‖2H + ‖ũd −A(ω)−1g(ω)‖2H

)
≤
(
‖A(ω)−1z‖2H + 2‖ũd‖2H + 2‖A(ω)−1g(ω)‖2H

)
≤
(
‖A(ω)−1z‖2V + 2‖A(ω)−1g(ω)‖2V + 2‖ũd‖2H

)
≤
(
c

γ
(‖z‖2? + 2‖g(ω)‖2?) + 2‖ũd‖2H

)
,

where we used the Poincaré-Friedrichs inequality twice (with some constant c) and
the uniform boundedness of ‖A(ω)−1‖ by 1

γ . Since z varies in the bounded set Zad,
there is a positive constant C such that the assertion holds.

Lemma 1 provides us with a uniform bound on all functions in F. The proof of
the following Lemma makes use of a result in [8]. Since this book is not readily
available in English, we provide it and a short proof in the appendix.
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Lemma 2 In addition to the assumptions of Lemma 1, suppose there is a constant

C > 0 such that√√√√ n∑
i,j=1

|bij(x, ω)− bij(x, ω′)|2 ≤ Cρ(ω, ω′) (∀ω, ω′ ∈ Ω).

Then for any g ∈ V ? and ω, ω′ ∈ Ω we have

‖A(ω)−1g −A(ω′)−1g‖V ≤
t

1− κ(t)
C‖g‖?ρ(ω, ω′) ∀t ∈

(
0,

2γ

L2

)
,

where κ(t) =
√

1− 2γt+ L2t2.

Proof First we study the dependence of A(ω)u on ω. Let u, v ∈ V and ω, ω′ ∈ Ω.

|〈(A(ω)−A(ω′))u, v〉| =

∣∣∣∣∣∣
∫
D

n∑
i,j=1

(bij(x, ω)− bij(x, ω′))
∂u(x)

∂xi

∂v(x)

∂xj
dx

∣∣∣∣∣∣
=
∣∣(B(·;ω, ω′)∇u(·),∇v(·)

)∣∣
≤
∫
D

‖B(x;ω, ω′)‖|∇u(x)||∇v(x)|dx

≤ sup
x∈D
‖B(x;ω, ω′)‖‖u‖V ‖v‖V ,

where B(x;ω, ω′) denotes the n× n-matrix

B(x;ω, ω′) = (bij(x, ω)− bij(x, ω′))i,j=1,...,n

with Frobenius norm ‖B(x;ω, ω′)‖, ∇u the gradient of u in the sense of Sobolev
and |∇u| its Euclidean norm. Hence, we obtain

‖(A(ω)−A(ω′))u‖? ≤ ‖u‖V sup
x∈D

√√√√ n∑
i,j=1

|bij(x, ω)− bij(x, ω′)|2 ≤ C‖u‖V ρ(ω, ω′).

Next we consider the mapping Kt(ω)u = u− tJ−1(A(ω)u− g) for some t ∈ (0, 2γL2 ),
ω ∈ Ω, g ∈ V ? and any u ∈ V . Then it follows from Proposition 2 that

‖Kt(ω)u−Kt(ω)u′‖V ≤ κ(t)‖u− u′‖V

for any u, u′ ∈ V and κ(t) =
√

1− 2tγ + t2L2 < 1. Furthermore, the unique fixed
point of Kt(ω) belongs to the ball around zero with radius

r =
‖Kt0− 0‖V

1− κ(t)
=

t

1− κ(t)
‖J−1g‖V =

t

1− κ(t)
‖g‖?.

For any u ∈ V and ω, ω′ ∈ Ω we have

‖Kt(ω)u−Kt(ω′)u‖V = t‖J−1(A(ω)−A(ω′))u‖V = t‖(A(ω)−A(ω′))u‖?

and apply Proposition 3 from the appendix with P = Ω, X = B(0, r) = {u ∈ V :
‖u‖V ≤ r}, F (p, u) = Kt(ω)u and F (p′, u) = Kt(ω

′)u. We obtain

‖x̄(g, ω)− x̄(g, ω′)‖ ≤ t

1− κ(t)
Crρ(ω, ω′)

where x̄(g, ω) = A(ω)−1g and r = t
1−κ(t)‖g‖?. This completes the proof.
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We now have enough results to prove that F constitutes a P-uniformity class,
which is a direct consequence of the following theorem.

Theorem 5 In addition to the hypotheses of Lemma 2, assume g ∈ L∞(Ω,F ,P;H)
and there exists C̄ > 0 such that

|g(x, ω)− g(x, ω′)| ≤ C̄ρ(ω, ω′) (∀ω, ω′ ∈ Ω, a. e. in D).

Then F is uniformly bounded and equi-Lipschitz continuous with respect to ρ on Ω.

Proof For any z ∈ Zad and ω′ ∈ Ω let F (z, ω) = A(ω)−1(z + g(ω)) − ũd. Our
assumptions imply that F (·, ·) is P-a.s. uniformly bounded in H by some constant
Ĉ (see the proof of Lemma 1). Furthermore, we obtain for any z ∈ Zad and
ω, ω′ ∈ Ω:

|f(z, ω)− f(z, ω′)|=1

2
(‖F (z, ω)‖H + ‖F (z, ω′)‖H)|‖F (z, ω)‖H − ‖F (z, ω′)‖H |

≤Ĉ‖F (z, ω)− F (z, ω′)‖H
≤Ĉ(‖(A(ω)−1 −A(ω′)−1)z‖V + ‖A(ω)−1g(ω)−A(ω′)−1g(ω′)‖V ),

where we used the uniform boundedness and the Poincaré-Friedrichs’ inequality.
For the first term on the right-hand side we argue as in Lemma 2. The second
term is estimated by

‖A(ω)−1g(ω)−A(ω′)−1g(ω′)‖V ≤ ‖(A(ω)−1 −A(ω′)−1)g(ω)‖V
+‖A(ω′)−1(g(ω)− g(ω′))‖V

Now, we use again Lemma 2 for the first term and both Lemma 1 and the assump-
tion on g for the second. Combining these observations, we obtain the assertion.

Theorem 5 establishes the P-uniformity of F under relatively mild assumptions.
In particular, we do not require the terms bij and g to be smooth in any way with
respect to ω. Of course in many interesting applications, see e.g. [4,3], one can
demonstrate much higher regularity of F (z, ω) = A(ω)−1(z + g(ω)) − ũd in ω for
each z ∈ Zad if some smoothness of bij and g is in fact available. And though
the presence of ‖ · ‖2L2(D) in f(z, ω) rules out 1-Lipschitz continuity, as required
by estimates using the Wasserstein distances, the quantitative estimates using the
Fortet-Mourier metric, e.g., ζ2, which are incidentally strictly sharper than the
Wasserstein estimates, are still applicable provided the local growth conditions for
functions in Fp(Ω) are fulfilled. On the other hand, as a general point of critique,
the minimal information metric along with Theorems 4 and 5 preclude the need
to enlarge the set of integrands F in order make use of the rougher estimates given
by the Fortet-Mourier estimates.

This brings us to our second goal of this section. In order to solve optimization
problems of the type

min EP[f(z)] +
α

2
‖z‖2H over z ∈ Zad

with f ∈ F numerically, not only P but the decision variables z and the under-
lying partial differential equation must be approximated. In order words, using a
finite-sample-based approximation PN of P and a finite-element discretization for
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the deterministic quantities in H and V , we would typically consider the finite-
dimensional problems of the type:

min
1

2

N∑
i=1

πi[‖(Ahi )−1(zh)− uhd,i‖
2
L2(D)] +

α

2
‖zh‖2L2(D) over zh ∈ Zhad. (18)

Here, Ahi is defined from A(ω) by replacing ω with a realization ωi and V by a finite-
dimensional subspace Vh derived by a standard finite-element approximation. The
term uhd,i = (Ahi )−1(ghi − ũd,h) and Zhad is an approximate of Zad using a finite-
element approximation of H.

For piecewise constant approximations of the control z, the original ideas date
back to Falk [7], see the recent chapter [1] for a quick reference. For another more
recent, comprehensive treatment see [18] (for a posteriori error estimates) as well
as the monograph [10, Chap. 3] and the many references therein. Therefore, for
the sake of argument, we may assume that if D, B, g, a, b, and ũd are sufficiently
regular, then there exists a (random variable) CN ≥ 0 along with a real q ∈ (0, 3/2]
such that

‖zhPN
− zPN ‖H ≤ CNh

q ω ∈ Ω. (19)

Here, the dependence on N results from the fact that the typical estimates, see
e.g., [1, Thm. 10], depend on constants related to the coefficients of the PDE, the
righthand side g, and ud, which is stochastic. Therefore, in the estimate (19), CN
is related to a realization of a random sample of length N . Using (19), we can
apply Theorem 4 and the triangle inequality to obtain the estimate

‖zP − zhPN
‖L2(D) ≤ 2

√
2α−1/2dF(P,PN )1/2 + CNh

q. (20)

It should also be noted that for piecewise constant approximations of Zhad, we
can only expected q = 1. The case for q = 3/2 requires a significant amount of
regularity, and q ∈ (1, 3/2) depends on both the regularity as well as the type of
discretization. In light of Theorem 5, (20) guarantees the convergence of the fully
discrete solutions zhPN

to the original infinite dimensional solution, provided h ↓ 0,
and PN → P weakly.

7 Conclusion

We have shown that a number known results for stability of stochastic programs
with finite-dimensional decision spaces can be carried over to infinite dimensions,
provided certain convexity conditions are satisfied. As perhaps expected the best
possible growth rates for the convergence of solutions using probability metrics are
of Hölder-type. Our analysis gives rise to a number of possible future directions
and open questions. For example, we consider a setting that is primarily related
to risk-neutral problems, whereas problems using typically non-smooth risk mea-
sures in the objective are of significant interest for robust engineering design. In
addition, the assumptions on the objective and linear operator Σ are essential for
the qualitative stability analysis as the infinite-dimensional setting often requires
us to make use of the weak topology. Without such regularity properties, it is
unclear how to proceed in general. Finally, in order to develop adaptive numerical
optimization methods based on estimates of the type (20), we need to more closely
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investigate the convergence of dF(PN ,P) for the class of functions F used in Section
6. and specific approximations PN .
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A Results from Fixed Point Theory

The following is a result can be found in the monograph [8]. We provide a translation here
along with a short proof for the reader’s convenience

Proposition 2 (Lemma 3.1 in [8]) Let V be a Hilbert space with inner product (·, ·), dual
V ? and dual pairing 〈·, ·〉, b ∈ V ?, A : V → V ? a strongly monotone (with constant γ > 0) and
Lipschitz continuous (with modulus L > 0) operator, and J : V → V ? the duality mapping,
i.e., 〈Ju, v〉 = (u, v), ∀u, v ∈ V .

Then the mapping Kt : V → V given by

Ktx = x− tJ−1(Ax− b)

is a contraction with constant 0 < κ(t) < 1, where

κ(t) =
√

1− 2γt+ L2t2

and t ∈ (0, 2γ
L2 ). Moreover, the unique fixed point of Kt is the unique solution of Ax = b and

belongs to the ball around zero with radius r = (1−κ(t))−1‖Kt0−0‖ = t(1−κ(t))−1‖A0−b‖?.

Remark 2 Note that minκ(t) = L−1
√
L2 − γ2 and, hence, κ(t) is typically close to 1.

Proof Let x, x′ ∈ H. Then

‖Ktx−Ktx′‖2 = ‖x− x′‖2 − 2t(J−1(Ax−Ax′), x− x′) + t2‖J−1(Ax−Ax′)‖2

= ‖x− x′‖2 − 2t〈Ax−Ax′, x− x′〉+ t2‖Ax−Ax′‖2?
≤ (1− 2tγ + t2L2)‖x− x′‖2 = κ2(t)‖x− x′‖2.

Clearly, 0 < κ(t) < 1 iff t ∈ (0, 2γ
L2 ). Furthermore, the unique solution x̄(b) of Ax = b satisfies

‖x̄(b)‖ = ‖Ktx̄(b)‖ ≤ ‖Ktx̄(b)−Kt0‖+ ‖Kt0− 0‖ ≤ κ(t)‖x̄(b)‖+ ‖Kt0− 0‖,

from which immediately obtain the estimate

‖x̄(b)‖ ≤
‖Kt0− 0‖
1− κ(t)

=
t

1− κ(t)
‖A0− b‖?.

This finishes the proof.

The following result can be found, e.g., in [5].

Proposition 3 (Theorem 1A.4 in [5]) Let P be a metric space with metric ρ and X a
complete metric space with metric d. Let F : P×X → X and assume that there exist α ∈ (0, 1)
and λ > 0 such that

d(F (p, x), F (p, x′)) ≤ αd(x, x′) (∀x, x′ ∈ X, p ∈ P )

d(F (p, x), F (p′, x)) ≤ λρ(p, p′) (∀p, p′ ∈ P, x ∈ X).

Then, for each p ∈ P , there exists a unique fixed point x(p) of F (p, ·) in X and we have the
estimate

d(x(p), x(p′)) ≤
λ

1− α
ρ(p, p′) (∀p, p′ ∈ P ).
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8. Gajewski, H., Gröger, K., Zacharias, K.: Nichtlineare Operatorgleichungen und Opera-
tordifferentialgleichungen. Akademie-Verlag, Berlin (1974). Mathematische Lehrbücher
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