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OPTIMAL CONTROL OF PERFECT PLASTICITY
PART I: STRESS TRACKING*

CHRISTIAN MEYER' AND STEPHAN WALTHER'

Abstract. The paper is concerned with an optimal control problem governed by the rate-
independent system of quasi-static perfect elasto-plasticity. The objective is to optimize the stress
field by controlling the displacement at prescribed parts of the boundary. The control thus enters
the system in the Dirichlet boundary conditions. Therefore, the safe load condition is automatically
fulfilled so that the system admits a solution, whose stress field is unique. This gives rise to a well
defined control-to-state operator, which is continuous but not Gateaux-differentiable. The control-to-
state map is therefore regularized, first by means of the Yosida regularization and then by a second
smoothing in order to obtain a smooth problem. The approximation of global minimizers of the
original non-smooth optimal control problem is shown and optimality conditions for the regularized
problem are established. A numerical example illustrates the feasibility of the smoothing approach.

Key words. Optimal control of variational inequalities, perfect plasticity, rate-independent
systems, Yosida regularization, first-order necessary optimality conditions, Dirichlet control problems

AMS subject classifications. 49J20, 49K20, 74C05

1. Introduction. We consider the following optimal control problem governed
by the equations of quasi-static perfect plasticity at small strain:

min  J(o,f) == (o, 0) + %HZH%Z(&),

st. —dive=0 in €,

oc=C(V'u—2) in Q,

(P) z € Ol (q)(0) in Q,
U =up on I'p,
ov =20 on 'y,

u(0) =ug, o(0)=09 in €.
and up =Gl+a, £(0)=4T)=0.

Herein, u : (0,7)xQ — R™, n = 2,3, is the displacement field, while o, z : (0,T)xQ —
R™ "™ are stress tensor and plastic strain. The boundary of 2 is split in two disjoint
parts I'p and I'y with outward unit normal v. Moreover, C is the elasticity tensor
and () denotes the set of feasible stresses. The initial data ug and o are given
and fixed. The Dirichlet data up arises from an artificial control variable ¢ through
a linear operator G in combination with a given offset a. In principle, G could be an
arbitrary linear operator (fulfilling certain assumptions, see below), but in section 6
it is chosen to be the solution operator of linear elasticity which is the reason for
calling ¢ pseudo forces. Finally, X, is a suitably chosen control space and o > 0 a
fixed Tikhonov regularization parameter. The objective ¥ only contains the stress
field and neither the displacement nor the plastic strain. This is why the optimal
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2 C. MEYER AND S. WALTHER

control problem (P) is termed stress tracking problem. A mathematically rigorous
version of (P) involving the functions space and a rigorous notion of solutions for the
state equation will be formulated in section 4 below. The precise assumptions on the
data are given in section 2. Regarding to a detailed description and derivation of the
plasticity model, we refer to [19].

Let us shortly comment on our choice of the control variable £. It is well known
that the system of perfect plasticity only admits a solution under a certain additional
assumption, also known as safe load condition, see e.g. [21, 5]. This condition roughly
says that the applied loads must allow for the existence of a stress field that fulfills
the balance of momentum and at the same time stays in the interior of the feasible
set (). Thus, if one uses exterior loads as control variables, the safe load condi-
tion arises as additional constraint in the optimal control problem, but, at least up
to our knowledge, it is an open question how to deal with this additional constraint.
We therefore choose the Dirichlet displacement as control variables and set the ex-
terior loads in the balance of momentum to zero. Then the safe load condition is
automatically fulfilled, but we are faced with a Dirichlet boundary control problem.
Problems of this kind provide a particular challenge, since “standard” L2-type spaces
lead to regularity issues, see e.g. [3, 15]. To overcome this challenge, we introduce the
Dirichlet data as the trace of an H'-function in the domain 2, as also proposed e.g. in
[4, 7]. In our approach, the H!-function arises as a solution of another linear elliptic
equation hidden behind the operator G. The inhomogeneity in this equation, i.e., the
pseudo force ¢, then serves as control variable. By the last constraints in (P), it is
forced to vanish at the beginning and in the end time. These additional constraints
are motivated by the application we have in mind: in practice, one is often interested
in reaching a desired shape and, at the same time, optimizing the stress distribution
at end time (e.g., keeping it as small as possible). The desired shape is given in form
of the offset a and the condition ¢(T) = 0 ensures that it is indeed reached at end
time. At the beginning of the process, control variable is also assumed to vanish
(£(0) = 0), but in between it is allowed to alter the process in order to optimize the
stress distribution. More general control constraints are possible as well and can eas-
ily be incorporated into our analysis, but, to keep the discussion concise, we restrict
ourselves to this particular setting.

The present paper is the first of two papers. In a companion paper [17], we draw
our attention to the displacement tracking problem. While the stress tracking may
be seen more important from an application point of view and allows a comparatively
comprehensive analysis, the displacement tracking is mathematically more interesting
and by far more challenging. This is due to the lack of uniqueness and regularity of
the displacement field in case of perfect plasticity, see e.g. [21, 22].

Let us put our work into perspective. Optimal control of elasto-plastic defor-
mation has been considered from a mathematical perspective in various articles, in
particular concerning the static case, see e.g. [12, 14] and the references therein. When
it comes to the (physically much more reasonable) quasi-static case however, the lit-
erature becomes rather scarce. The only contributions in this field we are aware of
are [23, 24, 25, 26, 16]. However, all of these works deal with problems involving
hardening, which essentially simplifies the analysis. Quasi-static elasto-plasticity falls
into the class of rate-independent systems. The mathematical properties of such a
system strongly depend on the underlying energy functional. If the latter is uniformly
convex, then the system admits a unique and time-continuous (differential) solution
in the energy space. This however changes, if the energy lacks convexity, and it is even
not clear how to define a solution in this case. For an overview over rate-independent
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OPTIMAL CONTROL OF PERFECT PLASTICITY 3

processes and the various notions of solutions, we refer to [18]. Hardening leads to a
uniform convex energy functional. In contrast to this, perfect plasticity may be seen
as limit case in this respect, since the energy is convex, but not uniformly convex.
Therefore, as already mentioned above, parts of the solution, namely displacement
and plastic strain, lack uniqueness and regularity, whereas the stress is unique and
provides the regularity expected for the uniformly convex case. This behavior carries
over to the optimal control problem. It turns out that, as long as the stress tracking
is considered, the optimal control problem can be treated by similar techniques as in
case with hardening and one obtains comparable results concerning existence of opti-
mal solution and their approximation via regularization. For the case with hardening,
this has been elaborated in [24, 25, 26]. This however changes, if the displacement
tracking is considered, as we will see in the companion paper. To the best of our
knowledge, our two papers are the first contributions dealing with optimal control of
perfect plasticity, and it is remarkable that the stress tracking allows for similar re-
sults as in the case with hardening, whereas the non-uniform convexity of the energy
takes its full effect when it comes to the displacement tracking.

The paper is organized as follows: After introducing our notation and standing
assumptions in section 2, we turn to the analysis of the state system in section 3.
We establish the existence of a solution by means of the Yosida regularization of the
convex subdifferential Ok (), which is afterwards also used for the regularization of
the optimal control problem. The underlying analysis follows the lines of [21], but
we slightly extend the known results and therefore present the arguments in detail.
Section 4 is then devoted to the proof of existence of an optimal solution and its
approximation via Yosida regularization. The regularized optimal control problems
are still not smooth, since the control-to-state map is not Gateaux-differentiable in
general. Therefore, we show for the special case of the von Mises yield condition how
to obtain a differentiable problem by means of a second smoothing. This allows us to
derive optimality conditions involving an adjoint equation in section 5. In section 6,
we first specify the operator G and deduce the particular form of the gradient of
the objective functional reduced to the control variable only. Based on that, we
have implemented a gradient descent method. The paper ends with an illustrative
numerical example.

2. Notation and Standing Assumptions. We start with a short introduction
in the notation used throughout the paper.

Notation. Given two vector spaces X and Y, we denote the space of linear and
continuous functions from X into Y by £(X,Y). If X =Y, we simply write £(X).
The dual space of X is denoted by X* = L(X,R). If H is a Hilbert space, we
denote its scalarproduct by (-,-). For the whole paper, we fix the final time T' >
0. For t > 0 we denote the Bochner space of square-integrable functions on the
time interval [0,¢] by L?(0,t; X), the Bochner-Sobolev space by H'(0,t; X) and the
space of continuous functions by C([0,¢]; X) and abbreviate L?(X) := L*(0,T; X),
HY(X):=HY0,T;X) and C(X) := C([0,T); X). When G € L(X;Y) is a linear and
continuous operator, we can define an operator in £(L?*(X);L?(Y)) by G(u)(t) :=
G(u(t)) for all u € L*(X) and for almost all ¢ € [0, 7], we denote this operator also
by G, that is, G € L(L?*(X);L?*(Y)), and analog for Bochner-Sobolev spaces, i.e.,
G € L(HY(X); H'Y). Given a coercive operator G € L(H) in a Hilbert space H, we
denote its coercivity constant by vg, i.e., (Gh,h) g > y¢|h||% for all h € H. With
this operator we can define a new scalar product, which induces an equivalent norm,
by H x H 3 (h1,h2) — (Ghi,hs)y € R. We denote the Hilbert space equipped
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4 C. MEYER AND S. WALTHER

with this scalar product by Hg, that is (hq, hQ)HG = (Ghi,hg)y forall hy,hy € H. If

p € [1, o0], then we denote its conjugate exponent by p’, that is %+ i = 1. Finally, by

R2?*", we denote the space of symmetric matrices and ¢, C' > 0 are generic constants.

Standing Assumptions. The following standing assumptions are tacitly as-
sumed for the rest of the paper without mentioning them every time.

Domain. The domain } C R", n € N, n > 2, is bounded with Lipschitz boundary
I". The boundary consists of two disjoint measurable parts I'y and I'p such that
I' =TnyUT'p. While I'y is a relatively open subset, I'p is a relatively closed subset of
I' with positive measure. In addition, the set QUTI 'y is regular in the sense of Groger,
cf. [6].

Spaces. Throughout the paper, by LP(€; M) we denote Lebesgue spaces with
values in M, where p € [1,00] and M is a finite dimensional space. To shorten
notation, we abbreviate

HP = LP(Q;R™*™)  and H := H>
Given p € [1,00], the Sobolev space of vector-valued functions with values in R™ is
denoted by

VP = WHP(Q;R") and V:= V2
Furthermore, set

WP (Q;R™
@21) VB =Tdla 9 € O R, supp(@) NTp =0} %0 yp =12,

Moreover, we assume that X is a real Banach space, X, is a Hilbert space and
that X, is compactly embedded into X. The elements in X and X, are called pseudo
forces. Based on these spaces, the control space is defined by

H(X.) :={t € H'(X,): £(0) = 4(T) = 0}.

Coefficients. The elasticity tensor and the hardening parameter satisfy C,B &€
L(REXY) and are symmetric and coercive, i.e., there exist constants ¢ > 0 and b > 0

such that
(Co,0)gnxn > ¢ ||0'||]§?><n and  (Bo,0)gnxn > b ||a||]§?m

for all o € R*™. In addition we set A := C~' and note that (Ao,o)gnxn >
WHUH%QX" for all o € R7*™ holds. Let us note that C and B could also depend
on the space, however, to keep the discussion concise, we restrict ourselves to this
setting.

Initial data. For the initial stress field og, we assume that oy € HP, where p > 2
is specified in Lemma 3.12 below. The initial displacement will be given by the initial
Dirichlet data (at least in the regularized case), see subsection 3.2 below.

Operators. Throughout the paper, V*® := %(V +VT) : VP — HP denotes the
linearized strain. Its restriction to V7 is denoted by the same symbol and, for the
adjoint of this restriction, we write — div := (V*)* : #¥' — V5"

Let K C H be a closed and convex set. We denote the indicator function by

0, 7T7€K

I - H 0,00},
K — {0, 00} TH{OO, rd K.

This manuscript is for review purposes only.
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OPTIMAL CONTROL OF PERFECT PLASTICITY 5

By 0Ix : H — 27 we denote the subdifferential of the indicator function. For A > 0,
the Yosida regularization is given by

1
I, :H — R, THﬁHT—ﬂ'K(T)H%{,

where 7 is the projection onto IC in H, and its Fréchet derivative is

OL\(7) = %(T —

When A = 0 we define I, = Iy := Ix. For a sequence {\, }nen C (0,00) we abbreviate
In = I)\n.
Optimization Problem. By

a .
T HYH) % HY(X) 5 R, J(0,0) = (o, 0) + Sl

we denote the objective function. We assume that ¥ : H'(H) x H(X,) — R is weakly
lower semicontinuous, continuous and bounded from below and that the Tikhonov
paramenter « is a positive constant. Finally, G is a linear and continuous operator
from X to V and a € H*(V) is given.

3. State Equation. We begin our investigation with the state equation. At first
we give the definition of a reduced solution, that is, a notion of solutions involving only
the stress. Then we provide some results concerning this definition. In subsection 3.2
we prove the existence of such a solution by regularization.

The formal strong formulation of the state equation reads

(3.1a) —dive =0 in €,
(3.1b) oc=C(Vu—2) in Q,
(3.1c) z € Ol (q)(0) in €,
(3.1d) u=up on I'p,
(3.1e) ov =20 on 'y,
(3.1f) u(0) = up, a(0) = o9 in €.

Herein, equation (3.1a) is the balance of momentum, (3.1b) is the additive split of the
symmetric gradient of the displacement (the strain) into an elastic part e = Ao and
a plastic part z. The inclusion (3.1c) is the flow rule, saying that the plastic part of
the strain only changes when the stress o has reached the yield boundary, that is, the
boundary of K().

3.1. Definitions and Auxiliary Results. The definition of a reduced solution
of (3.1) consists of two parts, the equilibrium condition and the flow rule (resp. flow
rule inequality). The equilibrium condition is the weak formulation of (3.1a) and
(3.1e), while the flow rule can be seen as a weak formulation of (3.1c).

DEFINITION 3.1 (Equilibrium condition). We define the set of stresses which ful-
fill the equilibrium condition as

E(Q) :=ker(div) = {r € H: (1,V*p)y =0 Vo € Vp}.

DEFINITION 3.2 (Admissible stresses). Let K C RI*™ be a closed and convex
set. We define the set of admissible stresses as

KQ):={reH :7(z) € K fa.a x€Q}.

This manuscript is for review purposes only.
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6 C. MEYER AND S. WALTHER

For the rest of this section, we impose the following

AssuMPTION 3.3 (Dirichlet data and initial condition).

(i) We fix the Dirichlet displacement up € H*(V) and assume that the initial
condition fulfills og € £(2) N KC(Q).

(ii) The sequence {up ntnen C HY(V) fulfills up ,, — up in H'(V), up ., — up
in L2(V) and up n(T) = up(T) in V.

We are now in a position to give the definition of a reduced solution to (3.1).

DEFINITION 3.4 (Reduced solution of the state equation). A function o € H(H)
is called reduced solution of (3.1) (with respect to up), if, for almost all t € (0,T),
it holds

(3.2a) o(t) € E() NK(Q),
(3.2b) (Ao (t) — Voup(t), T — a(t)), >0 Yre&(Q)nK(Q),
(3.2¢) o(0) = og.

The inequality in (3.2b) will be frequently termed as flow rule inequality.

Note that the definitions above correspond to [13, Plasticity Problem II] and
the definition given in [21, 1.4 Formulations. Résultats]. In order to formally derive
the flow rule from (3.1c), one replaces z by V*u — Ao and use the definition of the
subdifferential to obtain the variational inequality

(Ao(t) — Vou(t), —o(t)),, >0 VreK(Q) and fa.a. ¢t €[0,T].

Restricting now the test functions to £(Q2) NK(2), one can exchange V*u with Vup,
which eliminates the unknown displacement.

We also mention that in [5] the problem of perfect plasticity was analyzed in the
context of quasistatic evolutions, also called emergetic solutions of rate-independent
systems. The definition given therein is equivalent to the one in [21, 1.4 Formulations.
Résultats] (cf. also [5, Theorem 6.1 and Remark 6.3]) and thus equivalent to ours. This
definition was also used in [1].

Let us proceed with some results concerning the definition above. We start with
the uniqueness of the stress.

LEMMA 3.5 (Uniqueness of the stress). Assume that 01,09 € H'(H) are two
reduced solutions of (3.1). Then o1 = 0.

Proof. This can be easily seen as in [13, Theorem 1] by testing (3.2b) with o
respectively o9, adding both equations and integrating over time. 0

LEMMA 3.6. Let 0 € H'(H) be a reduced solution of (3.1). Then

o113, = (V¥up(1),5(t)),,
holds for almost all t € [0,T].

Proof. There exists a set N C [0,7] with measure zero, such that

. ot+h)—0c(h) . . o
]%11)% B —— o(t) and (Ao (t) — Voup(t), — a(t)))H >0
forall t € [0,7]\ N and all 7 € K£(Q) N E(Q) (for the first property we refer to [23,
Theorem 3.1.40]). Testing this inequality with o(t = h) for a fixed t € (0,7) \ N and
a sufficient small h, dividing by h and letting h — 0, we obtain the desired equation.O

This manuscript is for review purposes only.



OPTIMAL CONTROL OF PERFECT PLASTICITY 7

Since the conditions in K(2) and £() are pointwise in time and independent of
the time, one immediately deduces the following

LEMMA 3.7 (Time dependent flow rule inequality). Let o € H*(H). Then

(A[f —Viup, 7 — O’)L2(,H) >0
(3.3)
V1 € L*(H) with 7(t) € £(Q) NK(Q) f.a.a. t €[0,T]

holds if and only if (3.2b) holds.

We end this section with a continuity result for reduced solutions (supposed they
exists, which will be shown in the next section by means of regularization). For this
purpose, we need two auxiliary results.

LEMMA 3.8. Let {an}tnen C R and {7, }nen € HY(H) such that 7,(0) = o9
for alln € N and a, — a in R and 7, — 7 in HY(H). Moreover, assume that

an < — (A%R,Tn) ) for alln € N. Then a < — (A%,T) holds.

L2(H L2(H)

Proof. Using the lower weakly semicontinuity of || - |3, and the linear and con-
tinuous embedding H'(H) < C(H), we deduce

.. . .. 1
hnrr_1>1£f (ATvu T’I’L)LZ(’H) = 5 hnlglo%f ||Tn(T)||%-[A - EHUOH?{A

1 1 .
IO, = Sllool, = (A7,7) 2y

Y

which immediately gives the claim. 0

LEMMA 3.9. Let H be a Hilbert space, v,7 € H*(H) and {v, fnen, {Tn}nen C
HY(H) such that 7, — 7 in H*(H), 7,(0) — 7(0), v, = v in L2(H), v,(0) — v(0)

and v, (T) — v(T) in H. Then (bn,m)L2 — (0, 7) holds true.

(H) L2(H)

Proof. This follows immediately from integration by parts:

(i)naTn)Lg(H) = - (vn,'i—n)Lz(H) + (vn(T)’Tn(T))H - (vn(0)7Tn(0))H
- = (’U’%)LZ’(H) + (U(T)7T(T)>H - (U(O)vT(O))H = (i)7T)L2(H) ’

where we used the linear and continuous embedding H'(H) < C(H) to see that
T (t) = 7(t) in H for t € {0,T}. O

PROPOSITION 3.10 (Continuity properties of reduced solutions). Let us assume
that o,, € H'(H) is the reduced solution of (3.1) with respect to up,y for everyn € N.
Then there exists a reduced solution o € HY(H) of (3.1) with respect to up and
on — o in HY(H). Moreover, if up n, — up in H*(V), then o, — o in H'(H).

Proof. According to Lemma 3.6 (and 0,(0) = 09), 0, is bounded in H!(H),
hence, there exists a subsequence, again denoted by o, and a weak limit ¢ such that
0, — o in HY(#H). Thanks to the linear and continuous embedding H'(H) < C(H),
we have o, (t) — o(t) in H for all t € [0, T], therefore, since £(2) and K(2) are weakly
closed, o(t) € £(2) N K(Q) for all t € [0,T] and o(0) = 0.

In order to prove that o fulfills the flow rule inequality, we use Lemma 3.7. To
this end we choose an arbitrary 7 € L*(H) with 7(t) € £(Q) N K(2) for almost all
t € [0,T]. Defining

Qp = (VSiLDm,an)LQ(H) + (V%D,n - Aé’n,T) L2(H)

This manuscript is for review purposes only.



8 C. MEYER AND S. WALTHER

we see that a, < — (Ady,, an)LQ(H) holds for all n € N. Thus, using Lemma 3.9 to
see that (V%D,n, an)Lz(H) — (V%D, a) L2 () (here we need in particular up ,(T) —
up(T)), Lemma 3.8 implies that (3.3) holds. Thanks to Lemma 3.5 we obtain the

convergence o, — o in H'(H) for the whole sequence by standard arguments.
Ifup, — up in H'(V), then we obtain ||07, ]| 12(3,) = |0 ]| £2(3,) from Lemma 3.6,
which gives the strong convergence. O

Remark 3.11. It is also possible to consider perturbations in the initial condition,
that is, o, in Proposition 3.10 is a reduced solution of (3.1) with respect to the initial
condition og , (and the Dirichlet displacement up ), where {og n }nen C E(Q)NK(Q)
is a sequence such that og, — oo in H. In this case Lemma 3.8 can be proven
analogously and the proof of Proposition 3.10 does not change.

3.2. Regularization and Existence. In this section, we establish the existence
of a reduced solution by means of regularization. We underline that similar results
have already been obtained in the literature, see e.g. [21, 1.4 Formulations. Résultats,
Probléme quasi statique en plasticité parfaite]. However, since we slightly extend
these results (as explained in Remark 3.23 below), we present the full proofs for the
convenience of the reader.

We consider the following regularized version of the state equation (3.1):

(3.4a) —dive, =0 in Q,
(3.4b) on = C(Viu, — z) in Q,
(3.4¢) zn € 0L (0p — enB2y) in Q,
(3.44d) Up = UDp on I'p,
(3.4e) onv =0 on Iy,
(3.4f) un(0) =up,(0)  0,(0) =09 in Q,
where the sequence {(g,,, A\y) bnen C R?\ {0} fulfills £,,, A, > 0, (g5, Ay) — 0 and
(3.5) (00 — enB(Vup »(0) — Aoy)) € K(Q),
whenever A\, = 0. We emphasize that the following settings are possible
A >0, €,=0 (vanishing viscosity),
A=0, €,>0 (vanishing hardening),
An >0, en >0 (mixed vanishing viscosity and hardening).

Let us recall that I, = I, and I,, = Iy = Ixq) when A, = 0. When A, > 0
the inclusion a € 9I,,(b) is simply an equation, a = 91,(b), for a,b € H. In section 5
below, we aim to apply the results of [16, section 5] to derive first-order optimality
conditions. For this purpose, because of differentiability reasons, a norm gap is needed
and therefore, we define solutions to (3.4) in LP-type spaces (although, in this section,
we only need p = 2). The following result of [10] serves as a basis therefor:

LEMMA 3.12. There exists p > 2, such that for all p € [p/,7], £ € (Vg)* and
up € VP, there exists a unique u € VP of the following linear elasticity equation:

(CV*u, VoC)y = (6,C) YCEVE,  u—up eV,
We define the associated solution operator

(3.6) T (V)" x VP — VP, (0, up) — u,

This manuscript is for review purposes only.
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OPTIMAL CONTROL OF PERFECT PLASTICITY 9

which we denote by the same symbol for different values of p. For every p € [P/,D|, it
is linear and continuous.

Proof. For the case p > 2, the claim is a direct consequence [10, Theorem 1.1 and
Remark 1.3]. The case p < 2 then follows by duality. 0

Given the integrability exponent p, our definition of a solution to (3.8) reads as
follows:

DEFINITION 3.13. Let n € N and p € [2,p], where D is from Lemma 3.12, when
An > 0 and p = 2 when A\, = 0. Moreover, assume that up, € H'(VP). Then a
tuple (Un, O, 2n) € HY(VE X HP x HP) is called solution of (3.4), if, for almost all
t€(0,7), it holds

(3.72) —divo,(t) =0 in (VB)*,
(3.7b) on(t) = C(Voun(t) — za(t))  in HP,
(3.7¢) in(t) € 0L (0n(t) — enBen(t)) in HP,
(3.7d) un(t) —upn(t) € Vh,

(3.7¢) (ttn, 0)(0) = (p . (0), 70) in VP x HP.

In order to analyze (3.4) we will apply the results from [16, section 3].

DEFINITION 3.14. Let p be as in Definition 3.13. We define the linear and con-
tinuous operator

Qn : HP — HP, 23 (C + £,B)z — CV*T(— div Cz,0),

where T is the solution operator from (3.6).

Let us note again that for this section only the case p = 2 is needed. However,
the following holds also when p # 2, which we will use in section 5 below.

PROPOSITION 3.15 (Transformation into an EVI). Let p again be as in Defini-
tion 3.13 and T the solution operator from (3.6). Then (un, 0y, 2,) € HY (VP x HP x
HP) is a solution of (3.7) if and only if z,, is a solution of

(3.8) 2y € 0L, (CV T (0,up,n) — Qnzn), 2, (0) = Vup »(0) — Aoy,

and u,, and o, are defined through u, = T (—div(Cz,),up n) and o, = C(Viu,—2,).
Moreover, if £, > 0, then Q,, is coercive.

Proof. In view of the definition of @, and 7T, we only have to verify that the
initial conditions are fulfilled. Clearly, if (uy,0n,2,) is a solution of (3.7), z,(0) =
Voup »(0) — Aoy follows immediately from (3.7b). On the other hand, if z, is a
solution of (3.8), then og € £() implies

un(0) = T(—=div(Cz,(0)), up n(0)) = T (= div(CV?up ,(0)), up »(0))

hence, uy,(0) = up »(0) and 0,(0) = C(V*up ,(0) — 2,(0)) = oo.
Let us now investigate the coercivity of @,,. Using the definition of 7 one obtains

(C(zn — VT (—div(Cz,),0)), 2n) 3 = ll2n — VST(—div((Czn),O))H%_[C,

which immediately yields the coercivity of @), when &, > 0. 0

This manuscript is for review purposes only.
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We are now in the position to deduce existence and uniqueness for (3.7). When
An = 0, Proposition 3.15 allows us to apply [16, Theorem 3.3] (where we set R =
T (0, -); note that all requirements for [16, Theorem 3.3] can be easily checked by using
Proposition 3.15 and the fact that Rup ,,(0)—Qn2,(0) = co—,B(Vup »(0)—Aoy) €
K(€2), see (3.5)). In case of A\, > 0, existence and uniqueness follows immediately by
Banach’s contraction principle applied to the integral equation associated with (3.8)
(so that, in this case, (3.5) is not needed). Altogether we obtain

COROLLARY 3.16. For every n € N there exists a unique solution (U, oy, 2n) €
HYV x H x H), of (3.7). In the rest of this section we tacitly use this notation to
denote the solution of (3.7).

Remark 3.17. We note that the existence of a solution for (3.7) is a classical
result that can also be found in the literature, see e.g. [8]. However, since we need
the transformation from Proposition 3.15 later anyway in Propositions 4.9 and 5.6
and the existence of a solution is an immediate consequence thereof, we presented the
above corollary for convenience of the reader.

Remark 3.18. We moreover point out that, in case of A\, > 0, the global Lipschitz
continuity of 0I,, allows to establish the existence of a unique solution to (3.7) for less
regular data. Since this does however not hold for the limit problem (3.2), we cannot
make any use of this in the upcoming analysis.

Having proved the existence of a solution to (3.4) we proceed with the analysis
for the limit case n — oo. For this purpose we need the following result, which is an
immediate consequence of [2, Lemme 3.3].

LEMMA 3.19. Let A >0 and 7 € H*(H). Then

b
/ (£(1).7(1)),, dt = In(7(b)) — In(7(a))

holds for all £ : [0,T] — H such that £(t) € OI\(T(t)) for almost all t € [0,T] and all
0<a<b<T.

Now we will establish a priori estimates and then turn to the existence of a solution
to the state equation (3.1).

LEMMA 3.20 (A priori estimates). The inequalities

(3.9) 160l Z2 20,y +nllZnll 2y < (s VD) 123y
and
(3.10) Ln(on(t) = enBzn(1) < 6nllz200 V2 ip mll 220

hold for alln € N and all t € [0,T].
Proof. We use the fact that o,,(t) € £() (thus 0,,(¢t) € £(Q2)) to obtain

(Adn(t), 60 (1)) 5, + €n (Galt), Bin(0)),, + (), 6at) — eaBin(1)),,
= (Adu(t) + Za (), 5u(D),, = (Voita(t), 5u(D)),, = (Vinn(t),6alt)),,

for almost all ¢ € [0,T]. Integrating this equation with respect to time, applying
Lemma 3.19 and using (09 — €,B2,(0)) € K£() yields
(3.11)

16 l1720,6:34,) + Enll2nllE2(0 4940) + In(0n(8) = enB2n(t) = (00, V*UD,n) 129 120

This manuscript is for review purposes only.
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for all t € [0,7]. The inequalities (3.9) and (3.10) now follow from this equation
(using I, > 0 to get (3.9)). d

LEMMA 3.21. Let w € H and {wy, }neny C H such that w, — w in H and assume
that the sequence I,(w,,) is bounded. Then w € K(£2).

Proof. Clearly, the mapping H > 7 — |7 — mc(q)(7)[|7, € R is convex and con-
tinuous and thus weakly lower semicontinuous, hence,

0 < flw — micgey ()|, < liminf [Je, — oy () [, = lim inf 2,1, () = 0,

which implies w = 7 (o) (w). O

THEOREM 3.22 (Existence and approximation of a reduced solution).  Under
Assumption 3.3, there exists a unique reduced solution o € H'(H) of (3.1) and it
holds o, — o in HY(H). Furthermore, if up, — up in H'(V), then o, — o in
HY(H).

Proof. The proof basically follows the lines of the one of Proposition 3.10. Ac-
cording to Lemma 3.20, the sequences {o,}nen and {\/€,2n}nen are bounded in
H'(H) (note that 0,(0) = 0¢ and /2,2,(0) = \/2,(V*up »n(0) — Aog) — 0). There-
fore there exists a subsequence, again denoted by o, and a weak limit o € H'(H)
such that o, — ¢ and o, + ¢,Bz, — o in Hl(H) Due to the linear and continuous
embedding H'(H) — C(H) we arrive at o, (t) — o(t) and o, (t) + £,B2,(t) — o(t)
in H for all ¢ € [0,T]. Hence, since £(Q) is weakly closed and o, (t) € £(Q2) for all
n € N, we obtain o(t) € £(Q) for all ¢ € [0,T]. Moreover, according to Lemma 3.20,
I,(0,(t) — €,B2,(t)) is bounded and thus, Lemma 3.21 gives o(t) € K(Q) for all
t e 0,7

As in the proof of Proposition 3.10, we again employ Lemma 3.9 to verify the
flow rule in the form (3.3). To this end we choose an arbitrary 7 € L?(H) with
T(t) € £(Q) N K(NQ) for almost all ¢ € [0,T] and obtain

T (3.7¢) T .
0= / L(r(t))dt > / L(00(8) = 2Bz (0)dt + (507 = 0+ 20B20) 12 g
0 0

(3.7b) ¢ € s .
= ?n (zn(T)lezn(T))H - ?n (Zn(0)>an(0))H + (V Uy — Aoy, T — U")LQ(H)
En

Z _? (Zn(o)aBZn(O))’H + (vSuD,n - AO’n, T — an)Lz(H) )

where we have used the monotonicity of the subdifferential, the positivity of I,,, the
coercivity of B, the fact that 7,0, € £(Q2), and 4, —p,, € L*(Vp). This time we set

En

ap = = (2n(0), B2, (0)) 5, + (V*Up,n, an)LQ(H) + (V*Uup,, — Ac}n,T)LQ(H)
and observe that, by means of v/£z,(0) — 0 and Lemma 3.9,
— (Aén,an)Lz(H) >a, = a:i= (V%D, O')Lz(H) + (VSQD — Ao, T)LZ(H)

as n — 0o. Hence, Lemma 3.8 implies that the weak limit o indeed satisfies (3.3).
Since the reduced solution is unique by Lemma 3.5, a standard argument gives the
weak convergence of the whole sequence.

If up,, = up in H'(V), then Lemma Lemma 3.20 and Lemma 3.6 imply

<12 e -2 . -2 . . 5 -
||U||L2(HA) < hnn_1>1£f HUNHL?(HA) < h:ln_i‘ip ”URHL?(HA) < h?_iljp (Um \Y UD,n)Lz(H)

= (6, V%un) 12 gq) = 612234,

This manuscript is for review purposes only.
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12 C. MEYER AND S. WALTHER

which yields the desired strong convergence. ]

Remark 3.23. In contrast to Theorem 3.22, the results in [21] only cover the case
of constant Dirichlet data up and A, > 0, &, = 0 (i.e., without hardening) and only
prove weak convergence of the stresses for this case.

Remark 3.24. In case of the strong convergence up , — up in H'(V), one addi-
tionally obtains \/,2, — 0 in HY(H), I,(0, — €,Bz,) — 0 in L?*() and I,, (0, (t) —
enBz,(t)) — 0 for all ¢t € [0,7T]. This follows from (3.11) by similar arguments as used
at the end of the proof of Theorem 3.22.

4. Existence and Approximation of Optimal Controls. We now turn to
the optimization problem (P). Let us first give a rigorous definition of our optimal
control problem based on our previous findings. Relying on Theorem 3.22, the rigorous
counterpart of (P) reads as follows:

. a /
min  J(o, ) ;= V(o,l) + §H£HL2(XC)7
(P) st. e Hy(X,), oe€H'(V)

and o is a reduced solution of (3.1) w.r.t. up = G¢ + a.

For the rest of the paper, we impose the following assumption on the data in (P):

ASSUMPTION 4.1 (Initial condition and pseudo force). We assume that the
initial condition fulfills oo € E(Q) NK(Q) and fix a “Dirichlet-offset” a € H*(V).

4.1. Existence of Optimal Controls. According to Theorem 3.22 there exists
for every up € H'(V) a unique reduced solution o € H'(H) of (3.1) (we can simply
choose &, =0 and up , = up for every n € N). This leads to the following

DEFINITION 4.2 (Solution operator for the state equation). For a given ¢ € Hg(X,)
there exists a unique reduced solution o of (3.1) with respect to up = G¢+ a. We
denote the associated solution operator by

S: HNX,) — H' (H), (o

COROLLARY 4.3 (Continuity properties of the solution operator). The solution
operator S : H3(X,.) — H(H) is weakly and strongly continuous, that is,

(i) €, — € in H}(X.) = S(,) — S(0) in HY(H) and

(ii) £n — € in HY(X.) = S(l,) = S(0) in H*(H).

Proof. Let us assume that ¢, — ¢ in H3(X.) C H'(X,). Since X, is compactly
embedded into X', H'(X,) is compactly embedded into C'(X) and hence, G¢,, — G/
in L2(V) and (Gf,)(t) — (G€)(t) in V for all ¢t € [0,T], in particular for ¢t = T.
We conclude that the sequence up , := G¥, + a fulfills (ii) in Assumption 3.3 with
up := G¢+ a. The claim then follows from Proposition 3.10. 0

Given the (weak) continuity properties of S, one readily deduces the following

THEOREM 4.4 (Existence of optimal solutions). There exists at least one global
solution of (P).

Proof. The assertion follows from the standard direct method of the calculus of
variations using the coercivity of the Tikhonov term in the objective with respect to
£, the weakly lower semicontinuity of J, and the weak continuity of S. Note that
H}(X.) is weakly closed due to the continuous embedding H'(X,.) < C(X.). ]

This manuscript is for review purposes only.
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Remark 4.5. Corollary 4.3 and Theorem 4.4 also hold when H{ (X.) is replaced by
any other weakly closed subset of H'(X,.). The set H}(X.) is motivated by practical
applications (as explained in the introduction) and will be used in our numerical
experiments in section 6.

4.2. Convergence of Global Minimizers. Let us proceed with the approx-
imation of global solutions to (3.1). Additionally to Assumption 4.1 we impose the
following assumption for the rest of this section.

AsSUMPTION 4.6 (Regularization parameters). Let {(g,, An) }nen C R2\{0} be a
sequence such that e,, Ay, > 0, (€4, An) = 0 and (09+e,B(Acg—CV*T(0,0a))) € £(Q),
whenever \, = 0.

DEFINITION 4.7 (Solution operator for the regularized state equation). Accord-
ing to Corollary 3.16, for every (en, \n), there exists a unique solution (Un,opn, 2n) €
HYV xH xH) of (3.4) with respect to up = GL+a € HY (V) for a given £ € H(X,).
We may thus define the solution operator

Sp: HY (X.) = HY(H), 0 o,

With the regularized solution operator at hand, we define the following regularized
version of (P) for a given tuple (g,, \,,) of regularization parameters:

(P,) min  J(Sn(£), 0).

LEHE(X,)

DEFINITION 4.8. Given the operator G € L(X,V) and the solution mapping T
from (3.6), we define the linear and continuous operator

Re L(X;H), € CV*T(0,GY).

We denote the restriction of this operator to X. with the same symbol. Moreover, we
set A= CV*T(0,a) € H'(H).

PROPOSITION 4.9 (Existence of optimal solutions of the regularized problems).
For every n € N, there exists a global solution of (P,,).

Proof. Using Proposition 3.15 and the definition of R one obtains that (u,,, oy, 2,,) €
HY(V x H x H) is a solution of (3.4) with respect to up = G¢ + a with £ € H}(X.),
if and only if z, is a solution of

(4.1) zn €O, (RU+ A — Qnzn),  2,(0) = Va(0) — Aoy

(where @, is as defined in Definition 3.14) and w,, and o, are determined through z,
via

(4.2) up =T (=div(Cz,),G¢0+a) and o, =C(Viu, — 2z,).

Note that ¢ € H}(X,) implies £(0) = 0, which leads to the initial condition in (4.1),
and that R((0) + A(0) — Qn2n(0) = 0¢ + €,B(Acy — 2A(0)) € K(), according to
Assumption 4.6. We next show the weak continuity of the solution operator of (4.1),
denoted by 8%, as a mapping from HY(X.) to HY(H). In case of A\, = 0 (and
thus €, > 0), (4.1) corresponds to an evolution variational inequality with a maximal
monotone operator as for instance discussed in [16, section 3]. The continuity proper-
ties thereof are stated in [16, Theorem 3.10]. Since in particular @,, is coercive when

This manuscript is for review purposes only.
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14 C. MEYER AND S. WALTHER

€, > 0 as shown in Proposition 3.15, all assumptions of this theorem are fulfilled
except for the offset 2, which is zero in [16]. It is however easily seen that this does
not affect the underlying analysis such that this continuity result together with the
compact embedding of H'(X,) in L*(X) yields the desired weak continuity of S,

If A\, > 0, then 01, is a Lipschitz continuous mapping from H to H, which,
together with Gronwall’s inequality, gives the Lipschitz continuity of the solution
mapping of (4.1) from L?(X) to H'(H), cf. [16, proof of Proposition 4.4]. Together
with the compactness of H'(X,.) < L?(X), this yields the weak continuity of S in
this case.

Since all operators in (4.2) are linear (resp. affine) and continuous in their re-
spective spaces, the weak continuity of Sff) carries over to solution mapping S,, from
Definition 4.7. Now the assertion can be proven analogously to the proof of Theo-
rem 4.4 by means of the standard direct method of the calculus of variations. ]

PROPOSITION 4.10 (Approximation properties of the solution operators). The
following two properties hold:

(i) £, — € in H}(X.) = Sn(ln) — S() in HY(H),

(ii) €, — £ in H3(X,) = Sn(ln) = S() in HY(H).

Proof. The proof is the same as the proof of Corollary 4.3, except that we employ
Theorem 3.22 instead of Proposition 3.10. 0

THEOREM 4.11 (Approximation of global minimizers). Let {{,}nen be a se-
quence of global minimizers of (P,). Then every weak accumulation point of {{n }nen
is a strong accumulation point and a global minimizer of (P). Moreover, there exists
an accumulation point.

Proof. The proof follows standard arguments using the continuity properties in
Proposition 4.10. Let us nonetheless shortly sketch the proof for convenience of the
reader. Since V¥ is bounded from below by our standing assumptions, the Tikhonov
term in the objective together with the constraints in H{(X.) imply that the se-
quence {£,} is bounded in H}(X.). Since X, is assumed to be a Hilbert space, there
exists a weakly converging subsequence with weak limit £ € Hg(X,). Due to Propo-
sition 4.10(i), the associated states S, (¢,) converge weakly to the reduced solution
7 = S(f), and the weak lower semicontinuity of the objective ensures the global
optimality of (7, 7).

From Proposition 4.10(ii), we moreover deduce that S, (f) — & in H'(#) such
that the continuity of ¥ implies

J(@,¢) < liminf J(S,,(€n), £n) < limsup J(S,(4n), £,) < limsup J(S,(¢),€) = J(7, 1),

n—oo n—00 n—00

i.e., the convergence of the objective. Since both components of the objective are

weakly lower semicontinuous, we obtain ||0,||12(x,) = [[€]| 12(x.), which in turn implies
strong convergence.

As the above reasoning applies to every weakly convergent subsequence, we deduce
that every weak accumulation point is actually a strong one and a global minimizer
of (P), which completes the proof. 0

5. Optimality Conditions. Unfortunately, the Yosida regularization does in
general not yield a Gateaux-differentiable control-to-state mapping. We will demon-
strate this for a particular case of the set of admissible stresses below. Therefore,
in order to derive an optimality system by the standard adjoint calculus, a further
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smoothing is necessary, which will be addressed next.

5.1. Differentiability of the Regularized Control-to-State Mapping. We
consider now the regularized system (3.4) for a fixed n € N and set (g, ) := (e, A\p).
Accordingly, we also abbreviate @ := @,, (see Definition 3.14).

For the construction of the smoothing of the Yosida regularization and its differ-
entiability properties, we impose the following assumption for the rest of this section:

ASSUMPTION 5.1 (Smoothing of the Yosida regularization).
(i) We fizp € (2,p] in Lemma 3.12.
(i) The operator G is linear and continuous from X, to VP and the Dirichlet-offset
satisfies a € HY(VP).
(iii) We assume A > 0 (note that € = 0 is possible).
(iv) The set K from Definition 3.2 is given in terms of the von Mises yield con-

dition, i.e.,
(5.1) K :={r e RV |7P|p <4},
where TP = 7 — L tr(7)I is the deviator of T € RI*"™, v > 0 denotes the

ingtial uniazxial yield stress, and |- | is the Frobenius norm.

A straightforward calculations shows that, in case of the von Mises yield condition,
the Yosida-approximation of 0lxq) is given by

_ 1 v D
oI\(7) = )\max{(),l— P }T )

cf. e.g. [9]. Herein, with a slight abuse of notation, we denote the Nemyzki operator in
L (Q) associated with the pointwise maximum, i.e., R 3 7 — max{0,7} € R, by the
same symbol. In addition, we set max{0,1 —~/r} :=0, if r = 0. As indicated above,
we indeed observe that 0TI is still a non-smooth mapping, giving in turn that the asso-
ciated solution operator of the regularized state equation is not Gateaux-differentiable.
We therefore additionally smoothen the Yosida-approximation to obtain a differen-
tiable mapping:

1
(5.2) As :H —H, T>—>XmaX5(1— i )TD,

where

maxs : R > R

for a fixed § € (0,1). Again, we denote the Nemyzki operator associated with maxs
by the same symbol. One easily checks that maxs € C'(R) and that

653) I45(7) = O ()l <

for all 7 € H. Furthermore, we denote the restriction of As to HP by the same symbol.
Let us now turn to the smoothed state equation and the associated optimization
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16 C. MEYER AND S. WALTHER

problem. The smoothed state equation reads

(5.4a) —dive(t) =0 in (Vg)*,
(5.4Db) o(t) = C(Vou(t) — 2(t)) in HP,
(5.4c) z(t) = As(o(t) — eBz(t)) in HP,
(5.4d) u(t) —up(t) € Vh,

(5.4e) (u,0)(0) = (up(0),00) in VP x HP.

As in the proofs of Proposition 4.9 resp. Proposition 3.15, in the case up = G¢ + a,
this system can equivalently be transformed into

(5.5a) z=As(RI+A - Qz), z(0) = V?a(0) — Aoy,
(5.5b) u="T(—div(Cz),Gl + a), o=C(Vu-—2),

where @, R, and 2 are defined as in Definition Definition 3.14 and Definition 4.8.
Again, we used ¢ € H}(AX,) implying £(0) = 0 for the initial condition in (5.5a). As
in case of the Yosida regularization in Corollary 3.16, the existence of solutions to
(5.5) can again be deduced from Banach’s fixed point theorem owing to the global
Lipschitz continuity of As. This time, we consider the fixed point mapping associated
with the integral equation corresponding to (5.5a) as a mapping in L?(0,T; HP). Note
in this context that, by virtue of Assumption 5.1(ii) and Lemma 3.12, @ and R are
mappings from H? and X, respectively, to HP and 2 € H*(HP). This gives rise to
the following

DEFINITION 5.2 (Smoothed solution operator). For £ € Hg(X,.) there ezists a
unique solution (u, 0, z) of (5.4) with respect to up = Gl+a. We denote the associated
solution operator by

Ss : HY (X.) — HY(HP) (0.
Of course, this operator also depends on A and €, but we suppress this dependency to
ease notation.
Given S;, the smoothed optimal control problem reads as follows:

P i .
(Ps) e ) J(S5(€),0)

The existence of optimal solution to (Ps) follows form standard arguments completely
analogous to Proposition 4.9. Let us shortly interrupt the derivation of optimality
conditions for (Ps) in order to briefly address the convergence of global minimizers.

PROPOSITION 5.3. Let {\,} C R*\ {0} be a sequence converging to zero and
assume for simplicity that €, = 0 for alln € N. Suppose moreover that the smoothing
parameter 6, is chosen such that

(5.6) 60 = 0(An) = oA exp (— T1%l00)),

Let {¢,,} denote a sequence of solutions of (Ps) with A = X\, and § = §,,. Then every

weak accumulation point is actually a strong one and a minimizer of (P). In addition,
there is an accumulation point.
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Proof. In principle, we only need to estimate the difference in the solution of (3.4)
and (5.4). For this purpose, we use the equivalent formulations in (3.8) and (5.5) to
see that (5.3) gives

12a(t) = 25(8) [l < [|OIN(RE(E) + A — Q(25(1))) — As(RE(E) + A — Q(25(1))) 1 n
+ 1OIN(RE(E) + 2 — Q(z25(1))) — OIN(RE(E) + 24 — Q(2x(1))) [l

1Q|vd

1
= AN1-90) BN 1@l 2301125 () — 2x(E) [

such that Gronwall’s inequality in turn implies

(57) ||:n<t>—é5<t>||ﬂg<”Q”;<H>Texp(Q”WT)H) 23

X AN1=0)

We observe that the error induced by the additional smoothing is independent of the
control ¢. Therefore, if A and ¢ are coupled as indicated in (5.6), then the conver-
gence results from Proposition 4.10 readily carry over to the solution operator with
additional smoothing and we can use exactly the same arguments as in the proof of
Theorem 4.11 to establish the claim. a

Remark 5.4. The above proof is completely along the lines of [16, Sections 4.2
and 7.4], but we have briefly presented it for convenience of the reader. We underline
that we do not claim that the coupling of A and § in (5.6) is optimal.

The next lemma covers the differentiability of As. Although the function maxs
slightly differs from the one in [16, Section 7.4], it is straight forward to transfer the
analysis thereof to our setting giving the following

LEMMA 5.5 (Differentiability of Ag, [16, Lemma 7.24 & Corollary 7.25]). The
operator As is continuously Fréchet differentiable from HP to H and its directional
derivative at T € HP in direction h € H is given by

1 gl gl 1 gl
/ _ / D, 1D\_D D
A(;(T)h—xmaxtg (1— |TD\F>|TD|%(T chP)T + 5 max; (1— |7'D|F)h .
Moreover, for every T € HP, A5(T) can be extended to an operator in L(H;H), which
is self-adjoint and satisfies || A5(7)|| 2%y < C with a constant independent of T.

PROPOSITION 5.6 (Differentiability of the smoothed solution operator).  The
solution operator Ss is Fréchet differentiable from H}(X.) to HY(H). Its directional
derivative at ¢ € HJ(X,) in direction h € H§(X.), denoted by 7 = Si(0)h, is the
second component of the unique solution (v,7,n) € H*(V x H x H) of

(5.8a) —divr(t) =0 in (Vp)*,
(5.8b) 7(t) = C(V3u(t) — n(t)) in H,
(5.8¢) 0(t) = As(o(t) — eBz(t))(r(t) — eBn(t)) inH,
(5.8d) v(t) — (Gh)(t) € Vp,

(5.8¢) (v, 7)(0) = (0,0) inV x H.

where (u, 0, z) is the solution of (5.4) associated with up = G¢ + a.

Proof. We again employ the equivalent formulation in (5.5). The operator differ-
ential equation in (5.5a) has exactly the form as the one investigated in [16, Section 5],
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except that there is an additional offset 2l and () is not coercive, if € = 0. It is however
easily seen that these differences have no influence on the sensitivity analysis in [16,
Section 5]. While it is rather evident that the constant offset does not play any role
in this context, the coercivity of @ is only needed in [16] to verify the existence of
solutions, if As is replaced by 0l (q), and is not used for the sensitivity analysis of
the smoothed equation. All in all, we see that, thanks to Lemma 5.5, [16, Theorem
5.5] is applicable giving that the solution mapping of (5.5a) is Fréchet-differentiable
from H{(X.) to H'(H) and its derivative at ¢ in direction h is the unique solution of

= A5(RC+A = Qz)(Rh — Qn), n(0) =0.

Since all mappings in (5.5b) are linear and affine, respectively, they are trivially
Fréchet-differentiable in their respective spaces and the respective derivatives are given
by v = T(—div(Cn),Gh) and 7 = C(V*v —n). In view of the definition of T, R, and
Q, we finally end up with (5.8). |

5.2. Adjoint Equation. We now choose a concrete objective function, namely
1 -
(5.9 J:HY(H) x Hy(X) = R, (0:0) = 5llo(T) = allz + S Ml 2(x.),

where o > 0 is a Tikhonov paramenter and o4 € H a given desired stress. The transfer
of the upcoming analysis to other Fréchet-differentiable objectives is straightforward,
but, in order to keep the discussion concise and since the objective in (5.9) is certainly
of practical interest, we restrict ourselves to this particular setting. The smoothed
optimization problem then reads

i J(Ss(0),0).
(Ps) e (Ss5(0),¢)

In the following, we will derive first-order necessary optimality conditions for this
problem involving an adjoint equation.

DEFINITION 5.7 (Adjoint equation). Let (0,2) € H*(H x H) be given. Then the
adjoint equation is given by

(5.10a) —divCV?w,(t) = —div CAS(a(t) — eBz(t))p(t) in (Vp)*,
(5.10Db) wy(t) € Vp,

(5.10c) o(t) = (C+eB)As(o(t) — eBz(t))p(t) — CV w,(t)  in H,
(5.10d) ¢(T) = C(o(T) — 04 — Vwr) in M,
(5.10e) —divCViwr = —divC(a(T) — 04) in (Vp)*,
(5.10f) wr € Vp.

A triple (wy, o, wr) € H'(Vp) x HY(H) x Vp is called adjoint state, if it fulfills (5.10)
for almost all t € (0,T).

LEMMA 5.8. For every (0,z) € HY(H x H), there exists a unique adjoint state.

Proof. Thanks to the definition of @ and 7 in Definition 3.14 and Lemma 3.12,
the adjoint equation is equivalent to

(5.11) ¢ = QA5(0 —eBz)p, cp(T):(C[J(T)defV T(—div(C(o (T)fad)),())].
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This is an operator equation backward in time, whose existence again follows from
Banach’s contraction principle thanks to the boundedness of A§(oc — eBz) as an op-
erator from H to H by Lemma 5.5. Alternatively, the existence of solutions to (5.11)
can be deduced via duality, cf. [16, Lemma 5.11]. 0

With the help of the adjoint state we can express the derivative of the so-called
reduced objective, defined by

Fs: Hé(XC) - Rv L J(S(g(e),E),

in a compact form, as the following result shows:

ProPOSITION 5.9 (Differentiability of the reduced objective function). The re-
duced objective Fs is Fréchet differentiable from Hg(X,) toR. Its directional derivative
at £ € HY(X,) in direction h € H}(X,) is given by

(5.12)  F5(Oh = 0,J(0,)S5(O)h+ 0eT (0, 0)h = (a,h) 20y + (8 h) 1
where q € L?(X,) is defined by

(5.13) q:=G"[—divC(Aj(c — eBz)p — Vow,)]

and (u,0,z) is the solution of (5.4) associated with ¢ and (wy, @, wr) is the corre-

sponding adjoint state.

Proof. We define ¥ : H}(X,) 2 ¢ — 3||Ss(€)(T) — 04ll3, € R. According to
Proposition 5.6 and the chain rule, ¥ is Fréchet-differentiable. If we denote by (u, o, 2)
and (v, 7,n) the solutions of (5.4) and (5.8), respectively, and the adjoint state by
(wy, @, wr), then we obtain for its directional derivative

V' (Oh = (o(T) = 0a, 7(T))y
= (C(o(T) — 04 — Vwr), V*u(T) —n(T)),, (by (5.8a), (5.10f), and (5.8b))
= (C(o(T) — 04 — Vwr),V°Gh(T))
—((T),n(T))y,  (by (5.10e), (5.8d), and (5.10d))
= —((T),n(T))n (since h € H}(X,)).

For the last term we find

(e(T),n(T))n
(so(T),n(T)) = ((0),m(0)x (by (5.8¢) and (5.8b))
= (¢, 77)L + (¢, U)L?(H)
= (( +5]B%)A5(a —eBz)p — CVw,, )L2(H)
+ (0, Aj(0 — eBz)(1 — 515377))L2(H) (by (5.10¢) and (5.8c¢))

—(CV*wy,m)r2(n) + (CAs(0 — eBz)p, Vov)r2(3)  (by (5.8b))
—(CV*wy,n — V0 + V°Gh)r2(3)
+ (CA5(0 — B2)p, VGh) 2 (3) (by (5.10a) and (5.8d))
= (Vowy, 7) 123
+ (C(VPw, — Aj(0 — eB2)y), VGh) 120 (by (5.8b))

—(a,h)r2(x.) (by (5.8a) and (5.13)).
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20 C. MEYER AND S. WALTHER

Note that Aj(c —eBz) € L™(L(H)) by Lemma 5.5 and G* maps V* to X = A,
which give the asserted regularity of q. 0

THEOREM 5.10 (KKT-Conditions for (Ps)). Let £ € H}(X,.) be locally optimal
for (Ps) with associated state (u,0,z) € HY (VP x HP x HP). Then there exists an
adjoint state (wy,, o, wr) € H*(Vp) x H'(H) x Vp such that { satisfies for almost all
t € (0,T) the boundary value problem

(5.14) ad?l(t) =q(t) in X., £0)=T)=0

with q as defined in (5.13). This in particular implies that { € H*(X,.).
Proof. If £ € H}(X,) is a local minimizer of (Ps), then Proposition 5.9 implies

Oz(é, il)LQ(XC) + (q, h)L2(Xc) =0 Vhe Hé(?(c).

Thus the second distributional time derivative of £ is a regular distribution in L?(X,.),
namely ¢, which is just (5.14). |

Remark 5.11. An optimality condition for the original non-smooth optimal con-
trol problem (P) could be derived by passing to the limit A,4 N\, 0 in the regularized
optimality system (5.10) and (5.14). This has been done for the case with hardening
in [26] and for a scalar rate-independent system with uniformly convex energy in [20].
The optimality systems obtained in the limit are comparatively weak compared to
what can be derived by regularization in the static case, see [11] for the latter. We
expect that results similar to [26] can also be obtained in case of (P). This would
however go beyond the scope of this paper and is subject to future research.

6. Numerical Experiments. The last section is devoted to the numerical so-
lution of the smoothed problem (Pjs). We start with a concrete realization of the
operator G mapping our control variable in form of the pseudo-force ¢ to the Dirichlet
data. Given the precise form of the operator G, we can use Proposition 5.9 to obtain
an implementable characterization of the gradient of the reduced objective, see Algo-
rithm 6.1 below. We moreover describe the discretization of the involved PDEs and
report on numerical results.

6.1. A Realization of the Operator G. Let us recall the assumptions imposed
on G throughout the paper: G is a linear and continuous operator from X to } and
from X, to VP with some p € (2,p] and a Hilbert space X., which is compactly
embedded in X. In principle, there are various ways to realize such an operator, for
instance by means of convolution. As we are dealing with a problem in computational
mechanics anyway, we choose G to be the solution operator of a particular linear
elasticity problem. For this purpose, we split 02 into two disjoint measurable parts
Ap and Ay, called pseudo Dirichlet boundary and pseudo Neumann Boundary. As
for I'p and T'y, we require that Ay is relatively open in 92, while Ap is relatively
closed and has positive measure. Moreover, we assume that 2 U Ay is regular in the
sense of Groger. Therefore, according to [10], there is an index P such that, for every
p € [P, p], the linear elasticity equation

(6.1) (CV*0, V) = (b,C) VCEVE, vel?
admits a unique solution in V¥ for every right hand side b € (V2)*. Herein, V¥ is

defined as V¥, in (2.1) with Ap instead of I'p. Depending on the precise geometrical
structure, the index p may well differ from the one in Lemma 3.12, but, in order to
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ease the notation, we assume that both are equal (just take the minimum of both,
which is still greater two). As in section 5, we fix p € (2, ] in what follows and assume
in addition that p < 2n/(n—1). Furthermore, we require that I'p C Ay and that I'p
and Ap have positive distance to each other, i.e.,

2 ist(I'p,Ap) = inf — .
(6.2) dist(T'p, Ap) N |z —¢&] >0
Similarly to (3.6), we denote the linear and continuous solution operator of (6.1)

by Ta : (Vf{/)* — V}. This operator will also be considered as a mapping from
Vi = (V})* to Vs := V3, which we denote by the same symbol. Since p < 2n/(n—1)
by assumption, Sobolev embeddings and trace theorems give that the embedding and
trace operator

E:V o L2(QRY), tr: V2 — L*(Ax;R)
are compact. With these definitions at hand, we define X and X, by
(6.3) X:=V; and X, :=L*(Q;R") x L*(Ay;R")

so that, due to the compactness of E and tr, we indeed have that X, is compactly

embedded in (Vf{,)* — X. Moreover, considered as an operator from X = V} to V, we

simply set G := Ty, while, with a slight abuse of notation, we define G as an operator
from X, to V} by

(6.4) G:=Tro (E" tr"),

ie., given (f,g) € ¢, G is the solution operator of (6.1) with (b,¢) = (f,()z2(:rn) +
(9.¢)r2(Ayrn)- Note that, since X, — (Vf)*, this equation indeed admits a solu-
tion in V. Moreover, the following result shows that our control space X, is “large
enough”:

LEMMA 6.1. There holds T (0, H*>(Q;R™)) C T(0,G(X.)), where T is the solution
operator from (3.6).

Proof. Due to (6.2), there is a function ¢ € C*°(R™;R) such that 0 < ¢ < 1,

¢ =1onTpand ¢ =0 on Ap. Let up € H?*(Q;R") be arbitrary and define
ap = ¢up € H*(R™) N VY. From construction of ¢ it follows that such that

T(0,up) = T(0,4p) holds. Moreover, if we define f := —divCV*up € L*(;R")
and g := trCV%up € L?(An;R"™), then G(f,g) = up and hence, T(0,G(f,9)) =
T(0,up), which proves the assertion. O

Let us now investigate the precise structure of the gradient of the reduced objec-
tive for this particular realization of G.

LEMMA 6.2. Let ,h € H}(X,) be arbitrary and denote the components of £ and
h by bo, hg € HI(L?(Q;R™)) and fy,hy € HY(L*(An;R™)). Then

(6.5) Fg(ah:/oT/Q({HaéQ)-hgdx+/OT/AN(¢+aéN)-ANds,

with 1 € H>(VA) N HY(Va) defined by

(6.6) W(t) = /Ot /O o(r) dr ds — ;/OT /0 o(r) dr ds,
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22 C. MEYER AND S. WALTHER

where q € L?(Vy) denotes the solution of
(6.7) (CVq(t), V'O)n = (C(A5(o(t) = eB2(t)p(t) = V', (1)), VC) - V¢ € V.

Thus the Riesz representation of Ff(€) w.r.t. the H} (X.)-scalar product is (E1, tr )+
al.

Proof. The definition of G in (6.4) yields for q as defined in (5.13)
(6.8) q=(E,tr)Ty [ — divC(Aj(0c — eBz)p — Vow,)].

Now, since ¢, w, € C([0,T]; H x Vp) by Lemma 5.8, we have [— div C(A§(c —eBz)p—
Vew,)|(t) € Vi for allt € [0,T]. As Ta : Vi — V4 is self adjoint due to the symmetry
of C, the definition of ¢ via (6.7) thus implies g = (Eq, tr ¢) and hence, (5.12) becomes

L. T T
Fg(e)h:a(e,h)m(xc)+/ /q.hQ d:pdtJr/ / q-hy dsdt.
0 Q 0 AN

Since 921 = ¢ by construction, integration by parts in time implies the assertion. O

The precise structure of q in (6.8) together with the gradient equation in (5.14)
immediately gives the following regularity result:

COROLLARY 6.3. If G is chosen as in (6.4), then the set of local minimizers of
(Ps) is a subset of H?(Vy) N HE(Vy).

The characterization of the Riesz representation of the gradient of the reduced
objective in Lemma 6.2 is of course crucial for the construction of gradient based
optimization methods. We observe that, if we start with an initial guess for the control
of the form (E/lg,tréy) with a function £y € H%(Vx) N H{(Va), then the gradient
update will preserve this structure, i.e., the next iterate ¢1 := £y — oo (o + aly) with a
suitable step size o9 > 0 will again be an element of H*(V,)NH{} (Va). Note moreover
that, due to the additional regularity of locally optimal controls in Corollary 6.3, it
makes perfectly sense to restrict to control functions in H2(Vx)NHE(Vy). The overall
computation of the reduced gradient by means of the adjoint approach is given as a
pseudo-code in Algorithm 6.1.

Algorithm 6.1 Computation of the Reduced Gradient

Require: control function ¢ € H2(VA) N H(Va)
1:  Compute the Dirichlet data up by solving for all t € [0, T]

(«:st(t),vson=/Q£(t)-gdx+ 0t)-Cds VCeVE.

AN

Compute the state (u, o, z) as solution of (5.4) with up from step 1.
Solve the adjoint equation in (5.10) with solution (w,,, ¢, wr).
Compute ¢ as solution of (6.7).

Integrate ¢ according to (6.6) to obtain .

return ¢ 4+ af as Riesz representative of Fj(¢).

AN 4

Based on Algorithm 6.1, gradient-based first-order optimization algorithm like
the classical gradient descent method or nonlinear CG methods can be used to solve
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the smoothed problem (Pj). For the computations in subsection 6.4 below, we used
a standard gradient method with an Armijo line search. As termination criterion, we
require that the norm of the gradient is smaller than the tolerance TOL = 5e-04. If
this criterion is not met, the algorithm will stop after 100 iterations. Note that the
natural scalar product (and associated norm) for the termination criterion as well as
for the step size control is

(9,0 22y = (9, 0) L2 (L2 (irn)) + (9, €) L2(L2 (D iR7)) -

6.2. Discretization. In order to obtain an implementable algorithm, we need to
discretize the PDEs in Algorithm 6.1. We follow the “first optimize, then discretize”-
approach, i.e., we discretize the continuous gradient as given in Algorithm 6.1, see
Remark 6.4 below.

Let us begin with the discretization in space. The computational domain is dis-
cretized by means of a regular triangulation, which exactly fits the boundary (which
does not cause any trouble in our test scenarios, since our computational domain
is polygonally bounded). For the displacement-like variables u, w,, wr, and g, we
use standard continuous and piecewise linear finite elements, whereas the stress- and
strain-like variables o, z, and ¢ are discretized by means of piecewise constant ansatz
functions. The state system is reduced to displacement and plastic strain only by elim-
inating the stress field by means of (5.4b). We are aware that this type of discretization
will in general lead to locking effects, but we assume that these can be neglected, as
we do not consider “thin” computational domains. A suitable discretization of state
and adjoint equation accounting for locking is however essential, especially in case of
stress tracking, and therefore subject to future research.

Concerning the time discretization, we apply an implicit Euler scheme to (5.4c)
and (5.10c). The numerical integration for the computation of ¥ and the evaluation
of the objective is performed by an exact integration of the linear interpolant built
upon the iterates of the implicit Euler scheme.

To solve the discretized equations in every iteration of the implicit Euler scheme,
we use the finite element toolbox FEniCS (version 2018.1.0). The nonlinear state
equation is solved by the FEniCS’s inbuilt Newton-solver with a relative and absolute
tolerance of 10710,

Remark 6.4. Let us emphasize that our “first optimize, then discretize”-approach
leads to a mismatch between the discretization of the derivative of the reduced ob-
jective in function space and the derivative of the discretized objective. Thus, the
“gradient” computed by means of a discretization of Algorithm 6.1 does not coincide
with the true discrete gradient. In our numerical experiments, it however turned
out that, as expected, this mismatch only plays a role for large time step sizes (as
expected) and small values of A, see Table 2 below.

6.3. The Test Setting. For our numerical test, we choose the following data:

Domain. The two-dimensional computational domain is set to Q := (0,4) x
(0,1) C R? with the boundaries I'p := [{0} U {4}] x [0,1], Ap := [1,3] x [{0} U{1}]
and FN = 0N \ FD, AN = 0N \ AD.
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Elasticity tensor, hardening and smoothing parameters. We choose typical mate-
rial parameters of steel:

E =210 [kN/mm2] (Young’s modulus),
v=03 (Poisson’s ratio),

E
A=Y ~121.1538 [kN/mm?]

1+v)(1-2v)
~ 80.7692 [kN/mm”]

(Lamé parameters),

h=579,

v =0.45 [kN/ mmz] (uniaxial yield stress)

and define the elasticity tensor by Ce := Atr(e)I + 2u € for all e € RT*™.

In our numerical tests, we set ¢ = 0 such that there is no hardening. We again
underline that this case is covered by our analysis, see Assumption 4.6 and 5.1(iii).

The smoothing parameter § of the max-function in (5.2) is set to 1078, During
the numerical experiments, it turned out that this parameter appears to have only
little influence on the results and the performance of the algorithm so that we simply
fix it to this value.

End time and initial condition. We set T'=1 and o9 = 0.

Desired Dirichlet displacement. The offset in the Dirichlet condition is chosen to
be a(t) :=ta., where a.(z,y) := 55 (z — 2,0) for (z,y) € Q.

Optimization problem. We set the desired stress to zero, i.e., o4 = 0, and the
Tikhonov parameter o to 1074,

The above setting is motivated by the following application-driven optimization
problem: The aim of the optimization is to reach a desired displacement of the Dirich-
let boundary (given by a.) and, at the same time, to minimize the overall stress
distribution at end time. For this reason, the left and right boundary of the body
occupying €2 is pulled apart constantly in time. The control ¢ (respectively up) can
alter this process for ¢ € (0,7), but at the end (and also the beginning) the control
is zero, hence, the position of the Dirichlet boundary at ¢ = T is predefined, namely
by the desired a.. The minimization of the stress at end time is reflected by setting
04 = 0 and choosing a comparatively small Tikhonov parameter.

6.4. Numerical Results. Let us finally present the numerical results. In order
to assess the impact of the Yosida regularization, we vary the parameter A\ and consider
the distance of the stress field to the feasible set () at the end of the iteration as
an indicator for the effect of the regularization. To be more precise, given the feasible
set of the von Mises yield condition in (5.1) and a discrete solution oy, we compute

D

t —

distx := esssup M.
(t,2)€(0,T)xQ Y

Furthermore, we evaluate the error induced by the inexact computation of the reduced
gradient caused by the first-optimize-then-discretize approach. It turned out that this
error is entirely induced by the time discretization while the spatial discretization had
no effect here (which is to be expected, as we used a Galerkin scheme). Therefore,
we vary the time step size and use the difference between in the (inexact) directional
derivative and a difference quotient as error indicator. To describe this in detail, let
1, denote the (discrete) control variable in the last iteration and denote the inexact
reduced gradient computed by the discretized counterpart of Algorithm 6.1 by gp.
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Then we compute

(9ns —gn)max) — 7 (Fs(lh — 7 gn) — Fs(ln))
T_I(Fg(fh—Tg}J _Fé(gh)) ’

err —=

i.e., we compute the relative error of the directional derivative in the anti-gradient
direction (which is also our search direction). The step size in the difference quotient
is set to 7 = 1078,

Table 1 shows the numerical results for different values of A\. For the computations,
we chose an equidistant time step size by dividing [0,7] in n; = 128 intervals of the
same length. The spatial mesh is equidistant, too, with n, = 64 elements in horizontal
and n, = 16 in vertical direction. Recall that we focus on the last iteration of the
gradient method, that is, either the norm of the gradient was smaller than TOL = 5e-04
(i-e., {gn: —9n) 1 (x.) = —TOL2 = —2.5-107) or the 100th iteration was reached. We

A H iteration ‘ (gh, _gh>H5(XC) ‘ Fs(lp—7 !J:)—Fs (Ln) ‘ err ‘ distx
0.001 100 -4.7174e-07 -4.8520e-07 0.027751 | 0.00048
0.01 25 -2.0089e-07 -2.0869e-07 0.037369 | 0.00192

0.1 33 -2.4687e-07 -2.5552e-07 0.033854 | 0.01781
1 58 -2.1643e-07 -2.1790e-07 0.006773 | 0.13652
10 100 -2.0106e-06 -2.0122e-06 0.000833 | 0.62584

100 62 -2.4884e-07 -2.4876e-07 0.000338 | 5.31148

Table 1: Comparison of the numerical results for different values of .

observe that the adjoint approach becomes less accurate for small values of A reflecting
the non-smoothness of the limit problem. Furthermore, the relative distance of |0 |
to the yield stress « decreases when A decreases, illustrating the efficiency Yosida-
regularization.

In Table 2, we analyze the impact of the number of time steps on the last iteration
of the gradient method. The spatial mesh is again equidistant with n, = 64 and
n, = 16 and we set A = 1. We observe that, as expected, the relative error of the

ng H iteration ‘ (gns —9n) v (x.) ‘ F‘S(é”'ngT")fF‘s(eh) ‘ err ‘ distx
4 55 -2.4601e-07 -3.1816e-07 0.226817 | 0.0502
8 51 -2.3590e-07 -2.8903e-07 0.183828 | 0.0478
16 52 -2.4577e-07 -2.6541e-07 0.074012 | 0.0497
32 45 -2.4318e-07 -2.5225e-07 0.035941 | 0.1066
64 7 -2.4627e-07 -2.5056e-07 0.017121 | 0.1017
128 58 -2.1643e-07 -2.1790e-07 0.006773 | 0.1365
256 34 -2.4476e-07 -2.4562e-07 0.003481 | 0.1417
512 48 -2.2542e-07 -2.2541e-07 0.000045 | 0.1318
1024 43 -1.9258e-07 -1.9225e-07 0.001736 | 0.1339
2048 41 -2.3150e-07 -2.3165e-07 0.000662 | 0.1339

Table 2: Comparison of the numerical results for different numbers of time steps.
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directional derivative decreases when the number of time steps increases such that the
error caused by the first-optimize-then-discretize approach disappears if the time step
size goes to zero. Moreover, for larger number of time steps, the time discretization
has no effect on the feasibility of the stress (which is of course mainly influenced by
the Yosida parameter as seen before).

We end the description of our numerical results with the time evolution of the
stress field after optimization. For these computations, we set A\ = 1, ny = 256,
ng = 128, and n, = 32. The result of the optimization after 150 iterations in form of
the stress field at selected time points is shown in Figure 2. We observe that until

——

00 02 04 06 08 1.0

Fig. 1: Legend; values in [kN/me].

n; = 84 the norm of the stress increases constantly in time. Afterwards, between
ny = 84 and ny; = 240, the yield surface is reached and the norm of the stress stays
almost constant. Moreover, until n, = 240 the beam is slowly but constantly pulled
apart. From n; = 240 on, the beam is fast pressed together and the norm of the stress
shrinks to almost zero as desired. Figure 3 shows a zoom to the left Dirichlet boundary.
We observe that the optimal displacement of the Dirichlet boundary is not constant
in vertical direction. Instead there is a slight curvature of the Dirichlet boundary, i.e.,
the optimal Dirichlet displacement pulling the beam in horizontal direction slightly
varies in vertical direction during the evolution.
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