
Priority Programme 1962

A Switching Cost Aware Rounding Method for
Relaxations of Mixed-Integer Optimal Control

Problems

Felix Bestehorn, Christoph Hansknecht, Christian Kirches, Paul Manns

Non-smooth and Complementarity-based
Distributed Parameter Systems:
Simulation and Hierarchical Optimization

Preprint Number SPP1962-124

received on October 15, 2019



Edited by
SPP1962 at Weierstrass Institute for Applied Analysis and Stochastics (WIAS)

Leibniz Institute in the Forschungsverbund Berlin e.V.
Mohrenstraße 39, 10117 Berlin, Germany

E-Mail: spp1962@wias-berlin.de

World Wide Web: http://spp1962.wias-berlin.de/

http://spp1962.wias-berlin.de/


A switching cost aware rounding method for relaxations of
mixed-integer optimal control problems

Felix Bestehorn
Christoph Hansknecht

Christian Kirches
Paul Manns

Institute for Mathematical Optimization
Technische Universität Carolo-Wilhelmina zu Braunschweig, Germany

{f.bestehorn,c.hansknecht,c.kirches,paul.manns}@tu-braunschweig.de

Abstract— This article investigates a class of Mixed-Integer
Optimal Control Problems (MIOCPs) with switching costs.
We introduce the problem class of Minimal-Switching-Cost
Optimal Control Problems (MSCP) with an objective function
that consists of two summands, a continuous term depending
on the state vector and an encoding of the discrete switching
costs. State vectors of Mixed-Integer Optimal Control problems
can be approximated by means of sequences of roundings
of appropriate relaxations, which often result in a switching
cost blow-up. We reformulate the problem such that trading
convergence of the state vector against increasing switching
costs is possible, which then allows to conserve known con-
vergence properties of previous approaches for Mixed-Integer
Optimal Control approximations. To demonstrate the findings
and applicability, we present validating numerical results and
the trade-off capability of our approach for a benchmark
problem.

I. INTRODUCTION

Due to their wide range of practical applications Mixed-
Integer Optimal Control Problems (MIOCPs, also known as
switched or hybrid systems) have been gaining considerable
attention in recent years. The scope of applications ranges
from the shifting of gears in a car [4], [11], supply chain
networks [12], chemical engineering [5], to renewable energy
[2]. A survey has been provided by Zhu and Antsaklis [25].

In this article we are interested in investigating the control
of dynamic processes associated with discrete switches and
switching costs. Several frameworks to approach MIOCPs
with discrete switches have been proposed in recent years,
using e.g. outer convexification [8], time transformation [17]
or mixed-integer programming (MIP) approaches [23]. In the
aforementioned publications, costs for switching have not
been included into the objective functional of the MIOCP.
Kirches et al. [9] recently proposed a framework, which
penalizes switches through an L1 regularization term. In this
article, we generalize switching costs by allowing different
values for different states that are switched on and off as
well as different costs for switching them off and on, thus
allowing a penalization of switching costs in a more flexible
way.

A. The model problem

In this article we will study the prototypical Minimal-
Switching-Cost Optimal Control Problem (MSCP), given by

min
y,v

J(y) + C(v) (MSCP)

s.t.
ẏ = f(y,v)

y(0) = y0

v(t) ∈ {v1, . . . , vM} for t ∈ [0, T ].

The state vector trajectory solving the considered dynamics
is denoted by y and vector of the discrete-valued control
trajectory that enters the dynamics on the right hand side is
denoted by v. We note that the following considerations are
amenable to having additional continuously-valued control
vector trajectories. However, for the sake of simplicity, we
consider only discrete-valued controls in this article.

Regarding the initial value problem constraining (MSCP),
we assume that f is Lipschitz continuous in the first argu-
ment, which yields the existence of an absolutely continuous
solution y of the state equation, see [3]. The objective is the
sum of two terms. The first term J depends on the state
vector and does not play an important role in the remainder.
The second term C will encode switching costs as they arise
in the aforementioned applications. We will assume a certain
structure of C for our rounding algorithm in Section III-A.

B. Contribution

We propose a novel approach towards MIOCPs with
switching costs. This extends current modeling frameworks
for MIOCPs and allows to generate solutions trading ap-
proximation of optimal state vector trajectory of a relaxed
problem against reducing switching costs. We demonstrate
this behavior by comparing our method with an established
rounding method for approximation of state vectors of
MIOCPs.

C. Structure of the remainder

We continue with a summary of the approximation
methodology, which we use as the starting point for our
considerations. Then, we introduce our rounding method and
show how it fits in the described approximation framework.
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In Section IV, we describe and analyze the results of
a computational example, which we use to evaluate our
rounding method. We close with Section V, in which we
draw a conclusion and summarize the method’s benefits and
drawbacks, which we identified in the results.

II. RELATED WORK

Our method is developed along the ideas of Sager et
al. [6], [10], [20], [22]. The authors of the aforementioned
publications solve Mixed-Integer Optimal Control Problems
(MIOCPs) by executing the following steps:

1) Reformulate the problem by means of partial outer
convexification.

2) Solve a continuous relaxation of the MIOCP.
3) Compute a rounding on some discretization grid to

obtain a discrete-valued control trajectory from the
continuously-valued one.

The first step serves to replace the integer-valued variables
by discrete-valued variables that are designed to switch on
and off the different realizations of the dynamics f(·, vi) en-
coded by the vi. The equivalent partial outer convexification
reformulation of (MSCP) reads

min
y,ω

J(y) + C

(
M∑
i=1

ωivi

)
(BC)

s.t.

ẏ =
∑M

i=1 ωif(y, vi)
y(0) = y0

ω(t) ∈ {0, 1}M for t ∈ [0, T ]∑M
i=1 ωi(t) = 1 for t ∈ [0, T ].

Quite naturally, the continuous relaxation arises by relaxing
the last two constraints to convex combinations, specifically
we obtain

min
y,α

J(y) + C

(
M∑
i=1

αivi

)
(RC)

s.t.

ẏ =
∑M

i=1αif(y, vi)
y(0) = y0

α(t) ∈ [0, 1]M for t ∈ [0, T ]∑M
i=1αi(t) = 1 for t ∈ [0, T ].

The key approximation property given in the literature above
is summarized in the following proposition.

Proposition 2.1 (see [15]): Let f(·, vi) : Rny → Rny

be Lipschitz continuous for all i ∈ {1, . . . ,M}. Let α ∈
L∞((0, T ),RM ) be given and (ω(h))h ⊂ L∞((0, T ),RM )
satisfy the convergence property

sup
t∈(0,T )

∥∥∥∥∫ t

0

α− ω(h)

∥∥∥∥
∞
→ 0 (1)

for h→ 0. Then,
y(h) → y

if y denotes the solution of the IVP in (RC) and the y(h)

denote the solutions of the IVPs in (BC). �
Proposition 2.1 has severe consequences. In particular the
following corollary is of high value.

Corollary 2.2 (see [15]): Let the assumptions of Proposi-
tion 2.1 hold. Let J be continuous with respect to y. Then,

J(y(h))→ J(y) for h→ 0.

�
Thus, if (y,α) was a minimizer of (RC), J(y) can be
approximated arbitrarily well by means of binary-valued
controls ω(h). Moreover, if the second term in the objective
is not present, the minimum of (RC) and the infimum of
(BC) coincide.

We note that the result is constructive, since there are
rounding algorithms satisfying this property, such as Sum-
Up Rounding, (see [10], [20]), Next-Forced Rounding (see
[7]), or the family of Combinatorial Integral Approximation
algorithms (see [22]).

We will compare our results against one of them, namely
the rounding algorithm (SUR) that has been analyzed in [10],
[20]. It has been used successfully for practical applications
in the past, see [11], [24], and is introduced in the definition
below.

Definition 2.3 (Alg. (SUR)): Let α ∈ L∞((0, T ),RM )
satisfy the last two constraints of (RC). Let t0 < . . . < tN
be a grid discretizing (0, T ) with 0 < tk − tk−1 ≤ h for all
k ∈ {1, . . . , N}.

Then, the binary-valued step function

ω : [0, T ]→ {0, 1}M ,

ωi(t) :=

{
1, if i = i∗(k)
0, else for all t ∈ [tk−1, tk)

is constructed iteratively for 1 ≤ k ≤ N by the following
rule to determine the rounding index i∗(k) for the interval
[tk−1, tk):

i∗(k) := argmaxi∈{1,...,M} {γk,i} ,

γk,i :=

∫ tk

0

αi(t) dt−
∫ tk−1

0

ωi(t) dt.
(SUR)

Algorithm (SUR) indeed satisfies (1), which is proven in
[10] for the case of equidistant grids. This is stated in the
following proposition.

Proposition 2.4: Let the assumptions of Definition 2.3
hold. Let ω(h) be constructed from α by means of (SUR) for
an equidistant discretization of [t0, tf] with h = (tf− t0)/N .
Then it holds that

sup
t∈[0,T ]

∥∥∥∥∫ t

0

α(s)− ω(h)(s) ds

∥∥∥∥
∞
≤

M∑
`=2

1

`
h.

In particular, (1) is satisfied. �

III. A SWITCH-COST AWARE ROUNDING
ALGORITHM

Equipped with the findings from Section II, we make the
following observation. Instead of minimizing the left side
of (1), which is e.g. achieved by means of a mixed-integer
linear program (MILP) in [22], we can write the left hand
side as a constraint into an optimization problem and insert
an objective that minimizes the costs C for a given h. By



means of this methodology, we can conserve the convergence
property (1), but reduce the costs C in practice. Of course,
the costs C can still be unbounded as the satisfaction of (1)
may necessitate infinitely many switches when driving h→
0. However, we will obtain a means to trade the convergence
off against the increase of the switching costs. This result is
particularly useful for the applications mentioned in Section
I, seeing as mechanical systems often do not allow for h to
become arbitrarily small in practice.

A. Preparations

Now, we set forth and formalize this idea. Let 0 <
t0 < . . . < tN = T be a grid discretizing (0, T ) with
maximum grid coarseness h := max1≤k≤N tk − tk−1 and
let α ∈ L∞((0, T ),RM ) satisfy the last two constraints of
(RC). We introduce the following quantities and variables

hk := tk − tk−1,

αk :=
1

hk

∫ tk

tk−1

α(t) dt ∈ [0, 1]M ,

ωk ∈ {0, 1}M ,
εk ∈ {0, 1}M ,
λk ∈ {0, 1}M ,

for k ∈ {1, . . . , N} for hk, αk and ωk and k ∈ {1, . . . , N−
1} for εk and λk. Here, αk denotes the value of α averaged
over the k-th interval, ωk is the desired output of the
rounding to indicate which realization vi of the discrete states
is switched on in which interval, εk,i will indicate a switch
on of the i-th state from interval k−1 to k and λk switch off
of the i-th state. Clearly, we can reconstruct the function ω
from the ωk as ω =

∑M
k=1 χ[tk−1,tk)ωk, where χA denotes

the characteristic function for the set A. Furthermore, we
take a discrete view on C and assume that it can be written
as

C

(
M∑
i=1

N−1∑
k=1

χ[tk−1,tk)ωk,ivi

)
=

N−1∑
k=1

M∑
i=1

ciεk,i + diλk,i,

with ci, di ≥ 0, which corresponds to an integration of the
switch on/off costs of the predefined states with respect to
Dirac measures at the jumps.

B. The ILP for rounding

Now, we can state the switch-cost aware rounding heuris-
tic in the ILP Switching-Cost Aware Rounding Problem

(SCARP) below.

min
ωk,i,εk,i,λk,i

N−1∑
k=1

M∑
i=1

ciεk,i + diλk,i (SCARP)

+

M∑
i=1

ciω1,i +

M∑
i=1

diωN,i

s.t.
M∑
i=1

ωk,i = 1 for all k ∈ {1, . . . , N}

−Kh ≤
k∑

`=1

h`(α`,i − ω`,i) ≤ Kh

for all k ∈ {1, . . . , N}, i ∈ {1, . . . ,M}
ωk+1,i − ωk,i ≤ εk,i

for all k ∈ {1, . . . , N − 1}, i ∈ {1, . . . ,M}
ωk,i − ωk+1,i ≤ λk,i

for all k ∈ {1, . . . , N − 1}, i ∈ {1, . . . ,M}
ωk,i, εk,i,λk,i ∈ {0, 1} for all i, k

We immediately obtain the following proposition that guar-
antees the convergence of the corresponding state vector
sequences with the theory summarized in Section II.

Proposition 3.1: Let K ≥ 1. Let α ∈ L∞((0, T ),RM )
satisfy the last two constraints of (RC). Let t0 < . . . < tN be
a grid discretizing (0, T ) with h := max1≤k≤N (tk − tk−1).
Then, (SCARP) has a solution. Consider the function ω(h) :=∑M

k=1 χ[tk−1,tk)ω
(h)
k with the ω(h)

k,i solving (SCARP). Then,

sup
t∈(0,T )

∥∥∥∥∫ t

0

α(s)− ω(s) ds
∥∥∥∥
∞
≤ Kh

. In particular, (1) holds true.
Proof: We note that the sup in the desired estimate is

actually a max as the integral is an absolutely continuous op-
eration. As ω is a binary-valued piecewise constant function
on the intervals (tk−1, tk) and α is positive and entrywise
bounded by 1, the functions t 7→

∫ t

tk−1
αi−ωi are monotone

for t ∈ (tk−1, tk). Consequently, the supremum (maximum)
of the left hand side of (1) is attained at the grid points tk.
Furthermore, we observe∫ tk

0

αi − ωi =

k∑
`=1

h`(α`,i − ω`,i)

for all i. Combining these two observations gives

sup
t

∥∥∥∥∫ t

0

α− ω
∥∥∥∥
∞

= max
k,i

∣∣∣∣∣
k∑

`=1

h`(α`,i − ω`,i)

∣∣∣∣∣
Thus, by the bound ±Kh on the right term in (SCARP),
any feasible point of (SCARP) implies the desired bound
for the reconstructed step function. It remains to show that
a feasible point exist. The algorithm Next-Forced Rounding,
see [7], produces some (ωk,i)1≤k≤N,1≤i≤M that satisfies the
constraint with constant K = 1. For the other constraints
observe that setting εk,i = λk,i = 1 for all i, k does the job.
Hence, a feasible point of (SCARP) exists and as only finitely



many feasible points for (SCARP) may exist, (SCARP) has
a solution.
In the proof, we use the results for Next-Forced Rounding,
despite the fact that the algorithm is not very widely used,
because its results for the bound with K = 1 are asymptot-
ically (for M →∞) tight.

C. Interpretation of (SCARP)

As mentioned before, (SCARP) allows to trade the state
vector approximation off against the switching costs. Usually,
the maximal frequency for switching is subject to some
physical (mechanical or electrical) constraints, which will
determine h. Thus, from the setup of (SCARP), it is clear
that the parameter governing the trade-off is K.

A high value of K leaves more room for the ILP solver to
find a solution with low switching costs while a value close to
1 will not leave much room for switching cost minimization
and most likely result in a high value of the second term in
the objective.

Note that for high values of K and N , we expect (SCARP)
to become prohibitively hard to compute as we assume it
can be reduced to a knapsack problem, which is known to
be weakly NP-hard. We defer the analysis to future work.

IV. COMPUTATIONAL EXAMPLE

A. Setup

To illustrate the effect of introducing discrete switching
costs and to compare the proposed modeling approach with
an established method for MIOCP, we use the Lotka-Volterra
benchmark fishing problem introduced in [21], which can be
found in a benchmark library1 for MIOCPs [19]. The prob-
lem without the additional discrete switching cost summand
in the objective reads

min
y,ω

∫ tf

t0

(y0(t)− 1)2 + (y1(t)− 1)2dt (LV)

s.t.

ẏ0 = y0 − y0y1 − c0y0

∑M
i=1 ωivi,

ẏ1 = −y1 + y0y1 − c1y1

∑M
i=1 ωivi,

y(t0) = (0.5, 0.7, 0)T ,
ω(t) ∈ {0, 1}M for t ∈ [t0, tf],∑M

i=1 ωi(t) = 1 for t ∈ [t0, tf].

We have already phrased the dynamics in convexified form.
For our computations, we used the values c0 = 0.4, c1 = 0.2
and [t0, tf] = [0, 12],M = 3. The problem is particularly
suited as an example for our study as the relaxed solution
of (LV) contains a singular arc [18] and was thoroughly
investigated under different aspects [18], [21], [22]. The
discrete control realizations are v1 = 1, v2 = 0.2 and
v3 = 0.0.

The addition of switching costs to the objective of (LV)
could be interpreted as the necessity of a fisher to rent
equipment, i.e. for ω2(t) = 1 the fisher uses a fishing rod,
while for ω1(t) = 1 he uses a fishing net. We modeled

1The library consisting of problems along with their descriptions may be
found at www.mintoc.de

the switching costs as described in Section III and for our
computations, which are evaluated below, (SCARP) was
solved with switch on costs c = (2 1 0)T , switch off costs
d = (0.1 0.1 0)T and K = 5

6 , the constant from Proposition
2.4.

B. Computational setup

We solved the continuous relaxation of (LV) by means
of a first discretize, then optimize methodology, using direct
multiple shooting to discretize the dynamics (see [1] for
details on the topic) employing the solver MUSCOD-II, see
[13]. We solved (SCARP) using version 8.1 of the GUROBI
optimizer, see [14], All computations were conducted on an
Intel Core i7-965 clocked at 3.20 Ghz.

C. Validation against (SUR)

We computed the solution of (RC) disregarding the switch-
ing costs for the setup from Section IV-A for two tracking-
type objectives, one with L1-regularized control JL1 , and
one without regularization JNO, in formulas:

JNO(y) =

∫ T

0

(y0(t)− 1)2 + (y1(t)− 1)2 dt,

JL1(y) = JNO(y) + η

∥∥∥∥∥
M∑
i=1

αivi

∥∥∥∥∥
L1

.

In our computations, the regularizing constant was chosen as
η = 0.01. This yielded the trajectories αL1 and αNO. Then,
we computed roundings ω(h)

R,A from αR for the rounding
algorithms A ∈ {(SUR), (SCARP)}, the relaxations R ∈
{L1, NO} and equidistant discretizations of (t0, tf) with h ∈
{2−1(tf − t0), . . . , 2−10(tf − t0)}.

The state equation has been solved for these ω(h)
R,A and

compared to the state trajectory for the corresponding αR
using the relative error

d
(h)
R,A =

supt

∥∥∥y(ω(h)
R,A(t))− y(αR)(t))

∥∥∥
2

supt ‖y(αR)(t))‖2
.

For both regularizations, the accuracy of the state vector
approximation by means of (SUR) is very similar to the one
of (SCARP). There is almost no difference with respect to
the different regularizations. This is visualized in Figure 1.

10−210−1100101
10−3

10−2

10−1

100

h

d(h) (SCARP),L1

(SUR),L1

(SCARP),NO

(SUR),NO

Fig. 1. Validation of theoretical results regarding the approximations of the
state vectors of (RC) for (SCARP) (green) and (SUR) (blue) with (dashed)
and without (dotted) L1 regularization. The grey line visualizes the desired
linear decrease of the error.

www.mintoc.de


As the solution operator of the Lotka-Volterra IVP is
nonlinear, we cannot expect monotone decrease of the error
for all iterations.

We observe a similar behavior for the objectives, where
we compute the relative error as

e
(h)
R,A =

|JR(y(ω(h)
R,A))− JR(y(αR))|
|JR(y(αR))|

.

This is visualized in Figure 2.

10−210−1100101
10−6

10−3

100

h

e(h) (SCARP),L1

(SUR),L1

(SCARP),NO

(SUR),NO

Fig. 2. Validation of theoretical results regarding the approximations of
the objective of (RC) for (SCARP) (green) and (SUR) (blue) with (dashed)
and without (dotted) L1 regularization.

Note that for L1-regularization, the objective converges
although it depends on α, which is not covered by our
statements on (MSCP) and its reformulation and relaxation.
This follows easily from Proposition 2.4 in our setting, but
is not true in general, see [16].

We also compute the switching costs

C
(h)
R,A = C

(
M∑
i=1

ω
(h)
R,A

)
and observe that the switching costs of the roundings com-
puted with (SCARP) are a lower bound for the switching
costs of the roundings computed with (SUR) although (SUR)
is already optimal in some cases. For both algorithms, the
switching costs increase with the grid refinements. This is
visualized in Figure 3.

10−210−1100101
100

101

102

h

C(h)

(SCARP),L1

(SUR),L1

(SCARP),NO

(SUR),NO

Fig. 3. Switching costs for (SCARP) (green) and (SUR) (blue) with
(dashed) and without (dotted) L1 regularization.

D. Influence of the tradeoff parameter K

In the setting from Section IV-C, we also computed
solutions of (SCARP) for relaxed bounds on the approxi-
mation constraint, in particular, we used the choices K ∈

5
6 · {1, 1.5, 2}. The switching costs in the optimal solution
sink with the increase of K, which is visualized in Figure
4, while the state vector approximation is less accurate,
which is visualized in Figure 5. Increasing the parameter

10−210−1100
100

101

102

h

C(h)

(SUR),K = 5
6

(SCARP),K = 5
6

(SCARP),K = 5
4

(SCARP),K = 5
3

Fig. 4. Switching costs (L1-regularized case) for (SUR) (dashed) and
(SCARP) (dotted) for K = 5

6
, 5
4
, 5
3

.

10−210−1100101

10−2

10−1

100

h

d(h) (SUR),K = 5
6

(SCARP),K = 5
6

(SCARP),K = 5
4

(SCARP),K = 5
3

Fig. 5. Approximations of the state vectors (L1-regularized case) of (RC)
for (SUR) (dashed) and (SCARP) (dotted) for K = 5

6
, 5
4
, 5
3

.

K increases the computational effort GUROBI has to spend
significantly. This is visualized in Figure 6 for the case of
the L1 regularized relaxation. The results are similar for the
unregularized relaxation.

10−210−1100

100

105

h

s

(SCARP),K = 5
6

(SCARP),K = 5
4

(SCARP),K = 5
3

Fig. 6. Compute time of (SCARP) in case of the L1 regularization.

V. CONCLUSION

We presented an alternative rounding approach that allows
make a trade-off between approximation of the optimal
state vector trajectory of a relaxed problem that ignores the
switching costs and the possible requirement of reducing the
switching costs.



The numerical results validate our theoretical findings in
several regards. As solutions of (SCARP) will exploit the
boundaries of the approximation constraint to reduce the
switching costs, it seems likely that (SUR) yields a better
approximation of the state vector y and objective term J
obtained by solving (RC) without switching costs. As (SUR)
computes a feasible point for (SCARP), its switching costs
have to exceed the optimal switching costs computed by
solving (SCARP). Both considerations can be observed in
the plots in Section IV-C. Furthermore, the switching costs
increase very fast when the grid is refined. This is also
expected as the fact that supt

∥∥∥∫ t

0
α− ω

∥∥∥ has to be driven
to zero can only occur by more and more frequent switching
in intervals where α(t) /∈ {0, 1}M .

The results in Section IV-D show that we can indeed trade
in a decrease in state vector approximation quality (factor of
2 when doubling K for N = 1024) for much better switching
costs (factor of 4 when doubling K for N = 1024).

Finally, we highlight that (SUR) is an O(N) algorithm that
can easily be used for real-time applications, which is not
that easy for (SCARP) because we have to solve an ILP in
this case, which can have much higher computational costs.
As the number of feasible points grows with the increase
of K, we have to invest higher compute times to obtain the
solutions of (SCARP).
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