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AN INTERIOR-POINT APPROACH FOR SOLVING RISK-AVERSE1

PDE-CONSTRAINED OPTIMIZATION PROBLEMS WITH2

COHERENT RISK MEASURES3

S. GARREIS ∗, T. M. SUROWIEC † , AND M. ULBRICH ‡4

Abstract. The prevalence of uncertainty in models of engineering and the natural sciences ne-5
cessitate the inclusion of random parameters in the underlying partial differential equations (PDEs).6
The resulting decision problems governed by the solution of such random PDEs are infinite dimen-7
sional stochastic optimization problems. In order to obtain risk-averse optimal decisions in the face8
of such uncertainty, it is common to employ risk measures in the objective function. This leads to9
risk-averse PDE-constrained optimization problems. We propose a method for solving such prob-10
lems in which the risk measures are convex combinations of the mean and conditional value-at-risk11
(CVaR). Since these risk measures can be evaluated by solving a related inequality-constrained opti-12
mization problem, we suggest a log-barrier technique to approximate the risk measure. This leads to13
a new continuously differentiable convex risk measure: the log-barrier risk measure. We show that14
the log-barrier risk measure fits into the setting of optimized certainty equivalents of Ben-Tal and15
Teboulle and the expectation quadrangle of Rockafellar and Uryasev. Using the differentiability of16
the log-barrier risk measure, we derive first-order optimality conditions reminiscent of classical pri-17
mal and primal-dual interior point approaches in nonlinear programming. We derive the associated18
Newton system, propose a reduced symmetric system to calculate the steps, and provide a sufficient19
condition for local superlinear convergence in the continuous setting. Furthermore, we provide a20
Γ-convergence result for the log-barrier risk measures to prove convergence of the minimizers to the21
original nonsmooth problem. The results are illustrated by a numerical study.22

Key words. Risk-Averse, PDE-Constrained Optimization, Risk Measures, Uncertainty Quan-23
tification, Stochastic Optimization, Interior-Point Methods, Conditional Value-at-Risk, Gamma Con-24
vergence25

AMS subject classifications. 49J20, 49J50, 49J55, 49K20, 49K45, 90C15.26

1. Introduction. Uncertainty is an unavoidable component of practically every27

complex or data-driven system arising in engineering and the natural sciences. For28

example, we encounter uncertainty as a result of noisy data measurements, unknown29

operating parameters, or even unclear assumptions in the modeling of subsurface flows30

[18, 49], plate tectonics and ice sheet models [35, 48], and next-generation aeronautics31

designs [8]. In the context of optimization and optimal control, we are tasked with32

optimizing constrained systems of partial differential equations (PDEs) laden with33

uncertain inputs, which may arise in the coefficients as well as the bulk and boundary34

data. This has led to a growing interest in stochastic PDE-constrained optimization.35

Whenever we are faced with making a decision under uncertainty, it is important36

to obtain optimal designs, decisions, or controls that are somehow robust or risk-37

averse to risky or tail events. Despite having been primarily developed for finite38

dimensional optimization problems, the stochastic programming literature offers a39

number of approaches for risk-averse decision-making under uncertainty, see, e.g.,40

[7, 36, 46] and the many references therein. For instance, one might try to solve a41

minimization problem with stochastic order constraints based on a benchmark design42

as in probabilistic programming, e.g., [16, 37]. Another approach would be to minimize43

a kind of worst-case expectation of the quantity of interest or objective function44
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over a class of probability measures as in distributionally robust optimization, e.g.,45

[17, 45, 47]. Yet another possibility is to employ risk measures, see, e.g., [38, 42, 43] as46

well as [46, Chap. 6], which allows a broad degree of flexibility and yields structures47

that may be more familiar to researchers working in PDE-constrained optimization48

or optimal control.49

In this paper, we take the latter approach and follow the framework developed in50

[30, 32] for risk-averse PDE-constrained optimization. Thus, we consider the following51

abstract infinite dimensional stochastic optimization problem:52

(1.1) min
z∈Zad

R[J (S(z))] + ℘(z),53

where z ∈ Z are deterministic decisions (designs, controls, etc.), Zad is the admissible54

set, ℘ is a function modeling the cost of z, R is a functional that maps a set of random55

variables X ∈ X into R := R ∪ {+∞} called a risk measure, and J is an uncertain56

objective function, quantity of interest, or cost that depends on the z-dependent57

solution of the PDE with uncertain inputs, denoted throughout by S(z). Note that58

S(z) itself is a random field. We use (Ω,F ,P) to denote a probability space and the59

expectation by E, i.e., if X : Ω→ R is a random variable then E[X] =
∫

Ω
X(ω)dP(ω).60

There have been a number of recent contributions to PDE-constrained optimiza-61

tion under uncertainty in theory, algorithms, and numerical approximation schemes,62

e.g., [14, 41, 50]. However, the overwhelming majority of work on numerical approxi-63

mation and solution algorithms has been for the risk-neutral case in which R = E.64

The risk-neutral case provides solutions z? that perform well on average. There-65

fore, employing such a decision z? is only reasonable if a task is to be performed many66

times over. Despite this, there is still no way of accounting for possibly catastrophic67

tail events. In contrast, we choose a class of risk measures particularly suited to yield68

solutions z? that mitigate tail risk.69

For literature on numerical approximation schemes, we highlight here the work on70

reduced-order model approaches [12, 13], spatial multigrid algorithms with sparse-grid71

collocation [10, 11], low-rank tensor approximation [6, 24], and numerical solution and72

optimization methods based on Taylor expansions [1, 20, 21, 22, 34]. Unlike numerical73

approximation, the literature is rather scarce on dedicated optimization algorithms74

for PDE-constrained optimization under uncertainty. In addition to [1, 20, 34], we75

point to [28, 29] for a globally convergent trust-region algorithm based on adaptive76

sparse grids. Though the latter was developed for the risk-neutral case with Zad = Z,77

it can be easily extended to include smooth risk measures and bound constraints Zad.78

Risk-averse PDE-constrained optimization, i.e., where R[X] > E[X] for all non-79

constant random variables X, is much more recent both from a theoretical and al-80

gorithmic perspective, see, e.g., [1, 6, 27, 30, 31, 32, 34]. In [30, 31], variational81

regularization techniques are developed that allow the application of algorithms for82

smooth PDE-constrained optimization, as mentioned above, whereas [32] presents a83

general existence and optimality theory. Although [27, 34] take the perspective of84

robust optimization, i.e., R[X] = supω∈Ω |X(ω)|, we mention it here as any solutions85

obtained using this method would be clearly risk-averse.86

The goal of this paper is to develop an interior-point method for the solution of87

(1.1) when R (a non-smooth risk measure) is defined by88

(1.2) R[X] := inf
t∈R
{t+ E[v(X − t)]} ,89

where v : R→ R is given by90

(1.3) v(s) = max{a1s, a2s}, a1 ∈ [0, 1) and a2 ∈ (1,∞).91
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Here, v is a so-called scalar regret function (negative utility function) that implies a92

certain aversion to risk when used in (1.2). Our approach combines modern techniques93

of interior-point methods for infinite dimensional PDE-constrained optimization prob-94

lems as in [24, 44, 53, 54] with the available theory of risk-averse PDE-constrained95

optimization mentioned above.96

In particular, the choice of the scalar regret function implies that R is a so-called97

coherent risk measure generated by the expectation quadrangle, see [39] as well as the98

earlier work [4] and [5]. This includes the popular conditional value-at-risk functional99

CVaRβ (also called average value-at-risk, expected shortfall, tail expectation), which100

is more intuitively defined as a tail expectation by101

CVaRβ [X] := 1
1−β

∫ 1

β

F−1
X (α)dα, β ∈ (0, 1),102

where F−1
X (α) is the α-quantile (value-at-risk) of the random variable X, β := (a2 −103

1)/a2, and a1 = 0. In fact, the form of v implies that R in this paper is any convex104

combination of the expected value and CVaR, but not the expected value alone.105

In light of the assumptions on R, we may rewrite (1.1) in an alternative form by106

introducing slacks t ∈ R, W ∈ X , and two inequality constraints:107

(1.4)

min
(z,W,t)∈Zad×X×R

t+ E[W ] + ℘(z) s.t.

{
W ≥ a1(J (S(z))− t), P-a.a. ω ∈ Ω,
W ≥ a2(J (S(z))− t), P-a.a. ω ∈ Ω.

108

This is a commonplace reformulation often used in stochastic programming. Neverthe-109

less, although we have removed the nonsmoothness from the objective, (1.4) retains110

the complexity introduced by R due to the potentially non-convex inequality con-111

straints. Moreover, there are no available algorithms for stochastic PDE-constrained112

optimization problems with nonlinear state constraints; even in this local/global set-113

ting where the state S(z) is treated globally in the sense that J “integrates out” the114

spacial dependence and locally in that W −ai(J (S(z))− t) ∈ X is a random variable.115

Of course, if S is affine and J is convex with respect to the usual partial order on X ,116

then these constraints would be convex.117

Inspired by the success of interior-point methods for parameteric variational in-118

equalities in [24], we propose an approach in which we (approximately) solve a se-119

quence of µ-dependent (µ > 0) log-barrier-approximations of (1.4) given by120

(1.5) min
(z,W,t)∈Zad×X×R

E
[
t+W − µ

∑
i=1,2

ln(W − ai(J (S(z))− t))
]

+ ℘(z).121

Depending on the explicit structure, the subproblems can be solved by either a semis-122

mooth Newton method, see e.g., [26, 51, 52], if Zad is defined by simple bound con-123

straints, or a trust-region approach as in [28, 29].124

As an added bonus of the proposed optimization method, we obtain a new class125

of risk measures, which we refer to as “log-barrier” risk measures. The log-barrier risk126

functionals can be shown to arise from the expectation quadrangle for a certain choice127

of scalar regret function v. This allows us to analyze the associated optimization prob-128

lems by leveraging the analysis in [32]. For instance, we obtain familiar primal and129

primal-dual optimality systems as in traditional interior-point approaches. Furthe-130

more, the log-barrier risk measures are amenable to either a traditional sample-based131

Monte-Carlo approximation, cf. [46, Chap. 5], or the low-rank tensor approximation132

developed in [24].133
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The rest of the paper is structured as follows. In Section 2 we provide the nec-134

essary notation and data assumptions. Afterwards, in Section 3 we analyze the log-135

barrier risk measure Rµ. Then in Section 4, we summarize several important results136

from the literature and prove the existence of a solution to the approximating problems137

and derive associated optimality conditions. We show that the optimality conditions138

can be rewritten as a purely primal or primal-dual system reminiscent of classical139

interior-point methods. In Section 5, we provide a thorough analysis of the Newton140

system for the continuous, i.e., function-space setting. This is followed by an asymp-141

totic analysis of Rµ as µ ↓ 0 in Section 6, where we employ several results and ideas142

from the theory of Γ-convergence to finally demonstrate the convergence of minimiz-143

ers as µ ↓ 0. Finally, in Section 7, we demonstrate the viability of the approach by144

solving a model problem numerically.145

2. Notation, Assumptions, and Preliminary Results.146

2.1. Spaces of Random Variables. Let Ω be a non-empty set and F an as-147

sociated σ-algebra. Throughout the text, (Ω,F ,P) denotes a complete probability148

space, where the set-function P : F → [0, 1] is a probability measure. Whenever it is149

clear in context, we use “a.e.” and “a.a.” to denote “almost everywhere” and “almost150

all”, respectively. Furthermore, we denote the expectation of some random variable151

X : Ω→ R by E[X] :=
∫

Ω
X(ω)dP(ω).152

We will make assumptions below that require the random quantities to have a cer-153

tain degree of integrability. Therefore, we make use of Bochner spaces to characterize154

the random quantities. We recall that the Bochner space Lp(Ω,F ,P;W ) comprises all155

strongly measurable functions from (Ω,F ,P) into some Banach space W with p finite156

absolute moments p ∈ [1,∞). L∞(Ω,F ,P;W ) is the space of P-essentially bounded157

W -valued strongly measurable functions, cf. [25] for a full discussion. When endowed158

with the corresponding norm given by:159

‖v‖Lp(Ω,F,P;W ) = E [‖v‖pW ]
1/p

for p ∈ [1,∞) or ‖v‖L∞(Ω,F,P;W ) = ess sup
ω∈Ω

‖v(ω)‖W160
161

Lp(Ω,F ,P;W ) is a Banach space. As is commonly the case, we use the convention162

Lp(Ω,F ,P) = Lp(Ω,F ,P;R),163

whenever W = R. For readability, we will often use the simplifying notation164

X := Lp(Ω,F ,P).165

In addition, if p = 1, then we identify X ∗ = (L1(Ω,F ,P))∗ with L∞(Ω,F ,P).166

2.2. General Spaces. We assume that the deterministic decision space Z and167

solution space U are real reflexive Banach spaces. The associated feasible/admissible168

set of decisions is denoted by Zad ⊂ Z and is assumed to be nonempty, closed, and169

convex. Given two real Banach spaces X and Y , we denote the space of bounded170

linear operators from X into Y by L(X,Y ). Of course, if Y = R, then X∗ := L(X,R)171

denotes the topological (continuous) dual space of X and 〈·, ·〉X∗,X denotes the as-172

sociated duality pairing. For some bounded linear operator A ∈ L(X,Y ) we denote173

by A∗ ∈ L(Y ∗, X∗) the adjoint (dual, conjugate) operator of A. Strong convergence174

(w.r.t. the norm topology) is denoted by “→”, whereas “⇀” denotes weak and “
∗−⇀”175

weak∗ convergence.176

4

This manuscript is for review purposes only.



2.3. Risk Measures. As mentioned in the introduction, we assume that the risk177

measure R given in (1.2) is generated by a scalar regret (negative utility) function178

v : R → R. This goes back to an idea of Ben-Tal and Teboulle [4, 5], see also179

[39], in which the term optimized certainty equivalent (OCE) was used. We provide180

the following result as a summary of the basic construction and properties of the181

associated risk measure.182

Theorem 2.1. Let X := L1(Ω,F ,P) and let v : R → R be closed, convex and183

increasing such that184

(2.1) v(0) = 0 and v(x) > x ∀x 6= 0.185

For X ∈ X , suppose that V(X) := E[v(X)] and define R : X → R by186

R(X) := inf
t∈R
{t+ V(X − t)}.187

Then V : X → R is proper, closed, convex, and fulfills188

V(X) > E[X] ∀X 6= 0 P-a.e. and lim
k→∞

{V(Xk)− E[Xk]} = 0 =⇒ lim
k→∞

E[Xk] = 0.189

The statistic, S(X) ⊂ R, given by190

S(X) := argmin
t∈R

{t+ V(X − t)}191

is a non-empty compact interval for any X ∈ X . In addition, R : X → R is proper,192

closed, convex, and satisfies193

(Invariance on Constants) : R(C) = C for all C ∈ R.(2.2a)194

(Risk Aversion) : R(X) > E[X] for all non-constant X ∈ X .(2.2b)195

(Translation Equivariance) : R(X + C) = R(X) + C for all C ∈ R.(2.2c)196

(Monotonicity) : X ≤ X ′ P-a.a. ω ∈ Ω =⇒ R(X) ≤ R(X ′).(2.2d)197198

Proof. See [32, Section 2.4] and [32, Appendix] for a rigorous derivation in general199

Lebesgue spaces.200

We will exploit the statement of Theorem 2.1 in our analysis of the log-barrier risk201

measure. Note also that R in the previous theorem is a regular measure of risk in the202

sense of Rockafellar and Uryasev and satisfies three of the four axioms of coherent203

measures of risk. If, in addition, R is positively homogeneous, then it is a coherent204

risk measure, cf. [3].205

3. The Log-Barrier Risk Measure. Returning to the discussion leading up206

to (1.5) in the introduction, we restrict our attention to R as defined in (1.2), which207

we restate here for convenience. Let X ∈ X (assuming p = 1), then208

R(X) = inf
t∈R

E[t+ max{a1(X − t), a2(X − t)}].209

Clearly, we can use the same transformation as in (1.4) and obtain210

R(X) = inf
t∈R,W∈X

{E[t+W ] |W ≥ ai(X − t), P-a.a. ω ∈ Ω, i ∈ {1, 2}} .211
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This is then approximated by the log-barrier risk measure212

Rµ(X) := inf
t∈R,W∈X

{
E
[
t+W − µ

2∑
i=1

ln(W − ai(X − t))
]

+ ζ(µ)
}
, µ > 0,213

where214

(3.1) ζ(µ) := µ
(
ln
(
a2−a1
a2−1 µ

)
+ ln

(
a2−a1
1−a1 µ

)
− 2
)
∈ R215

is a constant shift needed to ensure that (2.1) holds. This ultimately leads to (1.5).216

Next, we introduce the functional Fµ : X × X × R→ R given by217

Fµ(X,W, t) := E[t+W − µ ln(W − a1(X − t))− µ ln(W − a2(X − t)) + ζ(µ)].218

219

Proposition 3.1. For every µ > 0 and any X ∈ X , we have220

inf
t∈R,W∈X

Fµ(X,W, t) = inf
t∈R

E[ inf
w∈R

fµ(X(·), w, t)],221

where fµ : R× R× R→ R is defined by222

(3.2) fµ(x,w, t) := t+ w − µ ln(w − a1(x− t))− µ ln(w − a2(x− t)) + ζ(µ).223

for (x,w, t) ∈ R3.224

Proof. We first observe that225

(3.3) inf
t∈R,W∈X

Fµ(X,W, t) = inf
t∈R

inf
W∈X

E[fµ(X(·),W (·), t)].226

Continuing, we will use the theory of normal integrands, cf. [40, Chap. 14], to prove227

the assertion. To this aim, note that the space X = L1(Ω,F ,P) is decomposable in228

the sense of [40, Def. 14.59] and, as a probability measure, P is σ-finite. Next, given229

some fixed X ∈ X and t ∈ R, we claim that the function f̂µ : Ω× R→ R defined by230

f̂µ(·, w) := fµ(X(·), w, t)231

is a normal integrand in the sense of [40, Def. 14.27]. Indeed, the mapping232

R2 3 (x,w) 7→ fµ(x,w, t)233

is lower semicontinuous and jointly convex (independently of ω ∈ Ω). Furthermore,234

int dom (fµ(·, ·, t)) 6= ∅ and the mapping Ω 3 ω 7→ fµ(x,w, t) is trivially measurable235

for all w ∈ R, as fµ(x,w, t) is independent of ω ∈ Ω. Hence, the mapping236

Ω× R2 3 (ω, x,w) 7→ fµ(x,w, t)237

is a normal integrand by [40, Proposition 14.39]. Moreover, the composition rule [40,238

Prop. 14.45(c)] implies that f̂µ is a normal integrand. Finally, letting239

W̃ := max{a1(X − t), a2(X − t), 0}+ 1 ∈ X ,240

we see that the critical components of f̂µ(·, W̃ (·)) remain bounded P-a.e. due to the241

fact that242

W̃ −ai(X− t) ≥ 1 and ln(W̃ −ai(X− t)) ≤ max{a1(X− t), a2(X− t), 0}−ai(X− t).243
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Hence, there exists W̃ ∈ X such that
∫

Ω
f̂µ(·, W̃ (·))dP(Ω) <∞, and we can apply the244

“interchangeability theorem” [40, Thm. 14.60] to derive245

inf
W∈X

E[fµ(X(·),W (·), t)] = inf
W∈X

∫
Ω

f̂µ(ω,W (ω))dP(ω)246

=

∫
Ω

inf
w∈R

{
f̂µ(ω,w)

}
dP(ω) = E[ inf

w∈R
fµ(X(·), w, t)].247

248

This shows the desired result together with (3.3).249

In light of Proposition 3.1, we consider for each t ∈ R, P-a.a. ω ∈ Ω, and x = X(ω)250

the one-dimensional problem251

min
w∈R

fµ(x,w, t),252

where the unknown w stands for W (ω). Due to the explicit structure of fµ, we can253

obtain a useful closed formula for the unique optimal solution w as a function of x, t.254

As a result, we will obtain a new scalar regret (negative utility) function vµ.255

Proposition 3.2. Fix µ > 0, t ∈ R, ω ∈ Ω, and set x = X(ω). The function256

R 3 w 7→ fµ(x,w, t) with fµ defined in (3.2) has the unique minimizer257

(3.4) w = wµ(x− t) := µ+
(a1+a2)(x−t)+

√
(a2−a1)2(x−t)2+4µ2

2 .258

Proof. Let ϕ(·) := fµ(x, ·, t). Clearly, ϕ : R → R is finite, convex, and continu-259

ously differentiable provided w > ai(x− t) (i ∈ {1, 2}), where260

ϕ′(w) = 1− µ
w−a1(x−t) −

µ
w−a2(x−t) .261

After some elementary computations, we see that the equation ϕ′(w) = 0 has one262

root given by w in (3.4); whereas the other root263

µ+ 1
2

(
(a1 + a2)(x− t)−

√
(a2 − a1)2(x− t)2 + 4µ2

)
264

would violate the feasibility requirement that w > ai(x− t), i.e., the objective would265

be equal to +∞. The assertion follows.266

In order to prove that Rµ is generated by the expectation quadrangle/as an267

optimized certainty equivalent, we will need the following short technical lemma.268

Lemma 3.3. Let w : R→ R be a given function and d ∈ R a constant. Then the269

function ŵ : R→ R, ŵ(s) := w(s+ d)− d induces the same risk measure as w.270

Proof. Fix X ∈ X and observe that271

inf
t∈R
{t+ E[ŵ(X − t)]} = inf

t∈R
{t+ E[w(X − t+ d)− d]} t̃=t−d= inf

t̃∈R
{t̃+ E[w(X − t̃)]}.

272

Proposition 3.4. For every µ > 0 and any X ∈ X , we have273

Rµ(X) = inf
t∈R
{t+ E[vµ(X − t)]} ,274

where275

(3.5) vµ(s) := wµ(s)− µ ln(wµ(s)− a1s)− µ ln(wµ(s)− a2s) + ζ(µ)276

and wµ is given by (3.4).277
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Proof. By Proposition 3.1, we have278

Rµ(X) = inf
t∈R,W∈X

Fµ(X,W, t) = inf
t∈R

E[ inf
w∈R

fµ(X(·), w, t)].279

Then using (3.4), we obtain280

Rµ(X) = inf
t∈R

E[fµ(X(·),WX,t(·), t)],281

where for P-a.a. ω ∈ Ω282

(3.6) WX,t(ω) := µ+ 1
2

(
(a1 + a2)(X(ω)− t) +

√
(a2 − a1)2(X(ω)− t)2 + 4µ2

)
.283

Substituting this formula into the previous relation yields the assertion.284

In our next result, we prove the necessary properties of the new scalar regret function285

vµ that allow us to apply the results of Subsection 2.3, along with those of Subsec-286

tion 4.2 below, to Rµ and the associated optimization problems.287

Proposition 3.5. For any µ > 0, the scalar regret function vµ : R→ R is twice288

continuously differentiable, strictly convex, strictly increasing. In addition, we have289

(3.7) |vµ(s)− vµ(s′)| ≤ a2 |s− s′|, ∀s, s′ ∈ R.290

Proof. Let s ∈ R. Using basic calculus techniques, one can show after some291

computation, cf. [23], that vµ ∈ C2(R) with derivatives292

v′µ(s) = w′µ(s)− µ w′µ(s)−a1
wµ(s)−a1s − µ

w′µ(s)−a2
wµ(s)−a2s ,(3.8)293

v′′µ(s) = µ(a2−a1)2

2µ
√

(a2−a1)2s2+4µ2+(a2−a1)2s2+4µ2
,(3.9)294

295

where296

w′µ(s) = a1+a2
2 + (a2−a1)2s

2
√

(a2−a1)2s2+4µ2
.297

Therefore, vµ is proper and, since v′′µ(s) > 0 for all s ∈ R, vµ is strictly convex.298

Turning to monotonicity, since a2 > a1 we have299

lim
s→−∞

w′µ(s) = a1+a2
2 − |a2−a1|2 = a1 and lim

s→+∞
w′µ(s) = a1+a2

2 + |a2−a1|
2 = a2.300

Moreover,301

w′µ(s)−a1
wµ(s)−a1s =

a2−a1
2 +

(a2−a1)2s

2
√

(a2−a1)2s2+4µ2

µ+
(a2−a1)s

2 +

√
(a2−a1)2s2+4µ2

2

−→ 0 (as s→ ±∞).302

As s→ +∞, the numerator tends to a2 − a1, but the denominator goes to +∞. For303

s → −∞, the numerator becomes 0 and the denominator tends to µ. An analogous304

argument can be applied to the term
w′µ(s)−a2
wµ(s)−a2s . This yields the limits305

(3.10) lim
s→−∞

v′µ(s) = a1 and lim
s→+∞

v′µ(s) = a2.306

Consequently, since v′µ is strictly increasing (v′′µ > 0), we have307

(3.11) v′µ(R) = (a1, a2) ⊂ (0,∞).308

As a result, vµ itself is strictly increasing. Combining these facts along with the309

mean-value theorem yields (3.7). This completes the proof.310
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We may now prove the following essential corollary.311

Corollary 3.6. For every µ > 0, the log-barrier risk measure Rµ is proper,312

closed, convex and satisfies properties (2.2a)-(2.2d). In addition, Rµ : X → R, i.e.313

Rµ is finite-valued on L1(Ω,F ,P) and therefore, subdifferentiable.314

Proof. Let X ∈ X (p = 1). Then by (3.7) and the monotonicity of the expectation315

we have316

Rµ(X) = inf
t∈R
{t+ E[vµ(X − t)]} ≤ E[vµ(X) + vµ(0)− vµ(0)]

≤ E[|vµ(X)− vµ(0)|] + |vµ(0)| ≤ a2E[|X|] + |vµ(0)| < +∞.
317

In order to apply Theorem 2.1, we recall from Lemma 3.3 that vµ(s) can be replaced318

by319

(3.12) v̂µ(s) := vµ(s+ d(µ))− d(µ), d(µ) := 2−a1−a2
(1−a1)(a2−1)µ ∈ R.320

Clearly, v̂µ(s) retains all the properties of vµ that we proved in Proposition 3.5. It321

remains to show that v̂µ fulfills (2.1). One readily shows by a simple calculation, cf.322

[23], that323

(3.13) v̂µ(0) = 0 and v̂′µ(0) = 1.324

Note that ζ(µ) and the choice of d(µ) ensure that v̂µ(0) = 0. This and the strict325

convexity of v̂µ imply326

v̂µ(s) > s for all s ∈ R \ {0}.327

The rest follows from Proposition 3.5 as an immediate consequence of Theorem 2.1.328

In order to obtain explicit optimality conditions suitable for the development of an329

optimization algorithm, we derive an explicit formula for ∂Rµ. We start by ana-330

lyzing the log-barrier regret function. Afterwards, we prove that Rµ is Hadamard331

differentiable.332

Proposition 3.7. Let µ > 0 and define the log-barrier regret functional Vµ :333

Lr(Ω,F ,P)→ R by334

Vµ(X) := E[vµ(X)],335

where r ∈ [1,∞].Then Vµ is Hadamard differentiable. If r > 1, then Vµ is continuously336

(Fréchet) differentiable. In both cases, the associated gradient takes the form337

(3.14) ∇Vµ(X) = v′µ(X),338

where v′µ(X) is the superposition operator generated by the scalar function v′µ.339

Proof. The assertion follows a standard argument for differentiating integral func-340

tionals. We briefly sketch the main points here. Let X,H ∈ L1(Ω,F ,P) and τ > 0.341

Then342

Vµ(X + τH)− Vµ(X) = E [vµ(X + τH)− vµ(X)] .343

Now, for P-a.a. ω ∈ Ω, we have the pointwise limit344

τ−1 ((vµ(X + τH))(ω)− (vµ(X))(ω))
τ↓0
= (v′µ(X)H)(ω).345

In addition, it follows from (3.7) that346

|τ−1 ((vµ(X + τH))(ω)− (vµ(X))(ω)) | ≤ a2|H(ω)| ∈ L1(Ω,F ,P).347
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Hence, Vµ is (Gâteaux) directionally differentiable. Furthermore, since for P-a.a. ω ∈348

Ω, we have349

(3.15) a1 < v′µ(X(ω)) < a2,350

V ′µ(X;H) is continuous and linear in H and therefore, Vµ is Gâteaux differentiable.351

Due to local Lipschitz continuity, Vµ is Hadamard differentiable.352

Finally, letting r > 1, we consider the superposition operator generated by v′µ. By353

Proposition 3.5, v′µ is a Carathéodory function. Then, using (3.15), the superposition354

operator generated by v′µ maps all of Lr(Ω,F ,P) into L∞(Ω,F ,P) and consequently355

Ls(Ω,F ,P), where 1/s + 1/r = 1. The continuity of ∇Vµ(X) = v′µ(X) follows from356

Krasnoselskii’s theorem, see, e.g., [2]. Therefore, Vµ is continuously (Fréchet) differ-357

entiable, see, e.g., [9, pp. 35-36].358

We can now obtain a more explicit formula for the gradient of the log-barrier risk359

measure.360

Proposition 3.8. Let µ > 0 and X = L1(Ω,F ,P). Then Rµ : X → R is361

Hadamard differentiable with gradient362

∇Rµ(X) = v′µ(X − Sµ(X)) ∈ L∞(Ω,F ,P),363

where Sµ(X) is the associated statistic, i.e.,364

Sµ(X) = argmin
t∈R

{t+ E[vµ(X − t)]}.365

Proof. By Corollary 3.6, Rµ is finite, closed, and convex and therefore, continu-366

ous, see, e.g., [19, Chap. 1. Thm. 2.5] or [46, Prop. 6.6]. It follows that ∂Rµ(X) 6= ∅367

for all X ∈ X . Next, fix X ∈ X and select an arbitrary ϑ ∈ ∂Rµ(X). By definition,368

we have369

Rµ(Y )−Rµ(X) ≥ E[ϑ(Y −X)], ∀Y ∈ X .370

We can estimate the lefthand side of this inequality from above by using our knowledge371

of the statistic Sµ(X). Consider the one-dimensional optimization problem372

inf
t∈R
{ϕµ(t) := E[t+ vµ(X − t)]} .373

By Proposition 3.5, ϕµ is strictly convex and differentiable. Therefore, since Sµ(X)374

is a compact connected interval (cf. Theorem 2.1), it must be a singleton. It follows375

that376

E[ϑ(Y −X)] ≤ Sµ(X) + E[vµ(Y − Sµ(X))]− (Sµ(X) + E[vµ(X − Sµ(X))])

= E[vµ(Y − Sµ(X))− vµ(X − Sµ(X))].
377

Setting Y = X + τH for some τ > 0 and H ∈ X , we now have378

E[ϑH] ≤ τ−1E[vµ(X + τH − Sµ(X))− vµ(X − Sµ(X))]379

Passing to the limit as τ ↓ 0 yields380

E[ϑH] ≤ E[v′µ(X − Sµ(X))H], ∀H ∈ X .381

Since this holds for the entire space X , we have ϑ = v′µ(X − Sµ(X)).382
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Recall that by the Fenchel-Young inequality, ϑ ∈ ∂Rµ(X) if and only if Rµ(X) +383

R∗µ(ϑ) = E[ϑX], where R∗µ is the usual Fenchel conjugate of Rµ. In particular,384

ϑ ∈ dom (R∗). One can then show, cf. [32, Prop B.4] that ϑ = v′µ(X − Sµ(X)) ∈385

L∞(Ω,F ,P) fulfills386

v′µ(X −Sµ(X)) ≥ 0 P-a.e., E[v′µ(X −Sµ(X))] = 1, E[v∗µ(v′µ(X −Sµ(X)))] < +∞.387

This implies that ϑ (the so-called risk indicator) is a probability density.388

4. Existence and Optimality Conditions. In this section, we use the analysis389

ofRµ from the previous section to prove the existence of minimizers and derive explicit390

optimality conditions.391

4.1. Random Fields and Objective Functionals. As noted in the introduc-392

tion, u = S(z) is the random field solution for some PDE or system of PDEs with393

random inputs. It is essential that S, as a mapping from z into some Bochner space,394

fulfills sufficient continuity and differentiability properties in order to guarantee exis-395

tence of solutions to (1.1). As in [32], we make the following assumptions:396

Assumption 4.1 (Properties of the solution map).397

1. S(z) is unique for all z ∈ Zad.398

2. S(z) : Ω→ U is strongly F-measurable for all z ∈ Zad.399

3. There exist a nonnegative increasing function ρ : [0,∞) → [0,∞) and a400

nonnegative random variable C ∈ Lq(Ω,F ,P) with q ∈ [1,∞] satisfying401

‖S(z)‖U ≤ Cρ(‖z‖Z) P-a.e. ∀ z ∈ Zad.402

4. If zn ⇀ z in Zad, then S(zn) ⇀ S(z) in U P-a.e.403

5. There exists an open set V ⊆ Z with Zad ⊆ V such that the solution map404

V 3 z 7→ S(z) : V → Lq(Ω,F ,P;U) is continuously differentiable.405

For readability, we will denote this “stochastic” state space by406

U := Lq(Ω,F ,P;U),407

where q is from Assumption 4.1.3. Moreover, we note that the first three conditions408

ensure S(z) ∈ U for any decision z ∈ Zad. In fact, Assumptions 4.1.1.-4. imply that409

S is weakly continuous in sense that410

zn
Z
⇀ z =⇒ S(zn)

U
⇀ S(z).411

These conditions will generally be enough to prove existence of minimizers (As. 4.1.1.-412

4.) for (1.1) and derive optimality conditions (As. 4.1.5.) as discussed in [32]. Fur-413

thermore, they can be readily verified for a wide variety of random PDEs, e.g., linear414

elliptic PDE with random coefficients. The situation is potentially more involved for415

nonlinear PDE, see e.g., [33] for a recent study.416

Turning now to the objective function, we will assume that J is generated by a417

parametrized function J : U × Ω → R. Recall that for some mapping u : Ω → U , J418

generates a nonlinear superposition operator419

[J (u)](ω) := J(u(ω), ω),420

In order to prove existence of a solution and derive optimality conditions, we will need421

the following assumptions.422
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Assumption 4.2 (Properties of J : U × Ω→ R).423

1. J is a Carathéodory function, i.e., J(·, ω) is continuous for P-a.a. ω ∈ Ω and424

J(u, ·) is measurable for all u ∈ U .425

2. If 1 ≤ p, q < ∞, then there exists a ∈ Lp(Ω,F ,P) with a ≥ 0 P-a.e. and426

c > 0 such that427

(4.1) |J(u, ω)| ≤ a(ω) + c‖u‖q/pU ∀u ∈ U.428

If 1 ≤ p <∞ and q =∞, then the uniform boundedness condition holds: for429

all c > 0 there exists γ = γ(c) ∈ Lp(Ω,F ,P) such that430

(4.2) |J(u, ω)| ≤ γ(ω) for P-a.a. ω ∈ Ω ∀u ∈ U, ‖u‖U ≤ c.431

3. J(·, ω) is convex for P-a.a. ω ∈ Ω.432

Note that Assumptions 4.2.1.-2. guarantee by Krasnoselskii’s theorem that J : U → X433

is continuous under appropriate assumptions on p, q, see e.g., [2]. Together with As-434

sumption 4.2.3., we can prove that J : U → X is Gâteaux directionally differentiable,435

[32, Thm. 3.9]. For further smoothness, we require at least local Lipschitz continuity436

of J : U → X and more structure.437

4.2. Existence and Optimality Theory. In this subsection, we briefly state438

the necessary general existence and optimality results.439

Theorem 4.3. Let Assumptions 4.1 and 4.2 hold. Moreover, suppose that R :440

X → R is generated as in Theorem 2.1 and ℘ : Z → R be proper, closed, and convex.441

Finally, suppose that either Zad is bounded or z 7→ R(J (S(z))) + ℘(z) is radially442

unbounded on Zad, i.e., zk ∈ Zad such that ‖zk‖Z → +∞ implies R(J (S(zk))) +443

℘(zk)→ +∞.444

1. If either R is finite-valued on all of X or int dom (R) 6= ∅, then (1.1) has an445

optimal solution z?.446

2. If, in addition, J : U → X is locally Lipschitz and ℘ is Gâteaux directionally447

differentiable, then there exists ϑ? ∈ ∂R(J (S(z?))) such that following first-448

order optimality condition holds:449

(4.3) E[J ′(S(z?);S′(z?)(z − z?))ϑ?] + ℘′(z?; z − z?) ≥ 0 ∀ z ∈ Zad.450

where ∂R(J (S(z?))) ⊂ X ∗ is the usual subdifferential of R at J (S(z)).451

Proof. See [32, Prop. 3.12, Prop. 3.13].452

4.3. Analysis of the Log-Barrier Optimization Problems.453

Theorem 4.4. Let Assumptions 4.1 and 4.2 hold and set X = L1(Ω,F ,P). Fur-454

thermore, suppose that ℘ : Z → R is be proper, closed, and convex. Then for every455

µ > 0, the optimization problem456

(4.4) min
z∈Zad

Rµ(J (S(z))) + ℘(z)457

admits a solution z? ∈ Zad provided either Zad is bounded or z 7→ Rµ(J (S(z)))+℘(z)458

is radially unbounded on Zad.459

Proof. In light of Corollary 3.6, this is a direct consequence of Theorem 4.3.460

Similarly, we can also leverage the results of Section 3 to derive optimality con-461

ditions.462
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Theorem 4.5. Let Assumptions 4.1 and 4.2 hold, set X = L1(Ω,F ,P), and fix463

µ > 0. Furthermore, suppose that ℘ : Z → R is proper, closed, and convex and464

assume an optimal solution z? to (4.4) exists. If J : U → X is locally Lipschitz and465

℘ is Gâteaux directionally differentiable, then there exists t? ∈ R such that466

E[J ′(S(z?);S′(z?)(z − z?)) v′µ(J (S(z?))− t?)] + ℘′(z?; z − z?) ≥ 0 ∀ z ∈ Zad,
(4.5a)

467

E[v′µ(J (S(z?))− t?)] = 1.(4.5b)468469

Proof. According to Theorem 4.3, there exists ϑ? ∈ ∂R(J (S(z?))) such that470

E[J ′(S(z?);S′(z?)(z − z?))ϑ?] + ℘′(z?; z − z?) ≥ 0, ∀ z ∈ Zad.471

Moreover, by Proposition 3.8,472

ϑ? = v′µ(J (S(z?))− Sµ(J (S(z?))))473

and474

Sµ(J (S(z?)) = argmin
t∈R

{t+ E[vµ(J (S(z?))− t)]}.475

The (unique) statistic Sµ(J (S(z?)) can be equivalently described by the first-order476

necessary and sufficient conditions for this one-dimensional optimization problem,477

which are given by (4.5b). The rest follows by substitution with t? = Sµ(J (S(z?)).478

The conditions (4.5) are rather abstract. In order to develop a viable, i.e., imple-479

mentable, numerical optimization algorithm, we need to “unfold” these conditions480

to obtain a more amenable optimality system. In the sequel, we assume, in addi-481

tion to the hypotheses of Theorem 4.5, that J and ℘ admit gradients ∇J and ∇℘,482

respectively, and that Z is a real Hilbert space. Furthermore, we set483

g(z) := (J ◦ S)(z) and g′(z) = J ′(S(z)) ◦ S′(z).484

Then by substitution into (4.5), we have485

〈E[v′µ(g(z?)− t?)g′(z?)] + ℘′(z?), z − z?〉 ≥ 0 ∀ z ∈ Zad.486

Since Z is assumed to be a Hilbert space and Zad is a nonempty, closed, and convex487

set, the previous variational inequality can be rewritten as488

(4.6) z? = ProjZad

(
z? − c(E[v′µ(g(z?)− t?)∇g(z?)] +∇℘(z?)

)
, c > 0,489

where ∇g(z?) = S′(z?)∗∇J (S(z?)) and ∇℘(z?) are the Riesz representations of the490

derivatives g′(z?) and ℘′(z?) in Z. Continuing, if Zad = Z, then we obtain the usual491

gradient equation (in Z∗):492

(4.7) E[v′µ(g(z?)− t?)∇g(z?)] +∇℘(z?) = 0.493

Next, we recall that494

(4.8) Wg(z?),t? = µ+ 1
2

(
(a1 + a2)(g(z?)− t?) +

√
(a2 − a1)2(g(z?)− t?)2 + 4µ2

)
495

is the (pointwise a.e. unique) solution to496

1− µ
w−a1(g(z?)−t?) −

µ
w−a2(g(z?)−t?) = 0,497

13

This manuscript is for review purposes only.



see (3.6). Thus, rather than using the explicit form for Wg(z?),t? we replace it by498

(re)introducing the variable W ∈ X and adding the equation499

(4.9) 1− µ
W?−a1(g(z?)−t?) −

µ
W?−a2(g(z?)−t?) = 0 P-a.e.500

to the optimality system. Note that one can derive the following pointwise inequality:501

(4.10) W ? − ai(g(z?)− t?) > µ.502

We can now simplify the risk indicator formula. Indeed, given W ?, we have503

v′µ(g(z?)− t?) = w′µ(g(z?)− t?)− µ w′µ(g(z?)−t?)−a1
W?−a1(g(z?)−t?) − µ

w′µ(g(z?)−t?)−a2
W?−a2(g(z?)−t?)

= w′µ(g(z?)− t?)
(

1− µ
W?−a1(g(z?)−t?) −

µ
W?−a2(g(z?)−t?)

)
+ µ

(
a1

W?−a1(g(z?)−t?) + a2
W?−a2(g(z?)−t?)

)
= µ

(
a1

W?−a1(g(z?)−t?) + a2
W?−a2(g(z?)−t?)

)
.

504

This leads to the following result.505

Proposition 4.6. In addition to the hypotheses of Theorem 4.5, assume that Z506

is a real Hilbert space and J and ℘ admit gradients ∇J and ∇℘, respectively. Then507

there exist t? ∈ R, W ? ∈ X such that508

z? − ProjZad

(
z? − c

(
E
[
µ
∑
i=1,2

ai∇g(z?)
W?−ai(g(z?)−t?)

]
+∇℘(z?)

))
= 0, c > 0,(4.11a)509

µ
∑
i=1,2

1
W?−ai(g(z?)−t?) − 1 = 0 P-a.e.,(4.11b)510

µE
[∑
i=1,2

ai
W?−ai(g(z?)−t?)

]
− 1 = 0(4.11c)511

512

Proof. This is a direct result of the preceeding discussion.513

As an alternative to (4.11), we can also consider the equivalent primal dual optimality514

system by introducing slack variables νi given by νi := µ
W?−ai(g(z?)−t?) . In light of515

(4.10), we have νi ∈ L∞(Ω,F ,P) and νi > 0 P-a.e. as would perhaps be expected516

since ϑ? ∈ X ∗ = L∞(Ω,F ,P).517

Proposition 4.7. In addition to the hypotheses of Theorem 4.5, assume that Z518

is a real Hilbert space and that J and ℘ admit gradients ∇J and ∇℘, respectively.519

Then there exist t? ∈ R, W ? ∈ X , ν?i ∈ X ∗ (i = 1, 2) such that520

z? − ProjZad
(z? − c (E [(a1ν

?
1 + a2ν

?
2 )∇g(z?)] +∇℘(z?))) = 0, c > 0,(4.12a)521

(ν?1 + ν?2 )− 1 = 0 P-a.e.,(4.12b)522

E [(a1ν
?
1 + a2ν

?
2 )]− 1 = 0,(4.12c)523

ν?i (W ? − ai(g(z?)− t?)) = µ P-a.e..(4.12d)524525

5. Newton System. Let Zad = Z and set X = L∞(Ω,F ,P). Assume that both526

g : Z → X and ℘ : Z → R are twice continuously differentiable. (4.12) with c = 1527
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reads528

F 1(z, t,W, ν1, ν2) := E [(a1ν1 + a2ν2)∇g(z)] +∇℘(z) = 0 ∈ Z,(5.1a)529

F 2(z, t,W, ν1, ν2) := E [(a1ν1 + a2ν2)]− 1 = 0 ∈ R,(5.1b)530

F 3(z, t,W, ν1, ν2) := (ν1 + ν2)− 1 = 0 ∈ X ,(5.1c)531

F 4(z, t,W, ν1, ν2) := ν1(W − a1(g(z)− t))− µ = 0 ∈ X ,(5.1d)532

F 5(z, t,W, ν1, ν2) := ν2(W − a2(g(z)− t))− µ = 0 ∈ X .(5.1e)533534

From the above considerations we have W ? ∈ X and W ? − ai(g(z?)− t?) ≥ µ a.s. as535

well as ν?i ∈ X and 0 < µ
‖W?−ai(g(z?)−t?)‖X ≤ ν?i ≤ 1 a.s. due to (5.1d) and (5.1e)536

for the solution (z?, t?,W ?, ν?1 , ν
?
2 ) of this system. Therefore, it makes sense to keep537

Vi := W − ai(g(z)− t) and νi uniformly positive during the solution process.538

Lemma 5.1. The function F : Z ×R×X ×X ×X → Z ×R×X ×X ×X defined539

in (5.1) is continuously differentiable. Leaving off (z, t,W, ν1, ν2), we have540

F 1
z s = E

[
(a1ν1 + a2ν2)∇2g(z)s

]
+∇2℘(z)s ∈ Z,541542

543 F 1
ν1δ1 = E[a1δ1∇g(z)] ∈ Z,
F 2
ν1δ1 = E[a1δ1] ∈ R,
F 3
ν1δ1 = δ1 ∈ X ,

F 1
ν2δ2 = E[a2δ2∇g(z)] ∈ Z,
F 2
ν2δ2 = E[a2δ2] ∈ R,
F 3
ν2δ2 = δ2 ∈ X ,

544

545

546
F 4
z s = −a1(∇g(z), s)Zν1 ∈ X ,

F 4
t τ = a1τν1 ∈ X ,

F 4
t S = ν1S ∈ X ,

F 4
ν1δ1 = (W − a1(g(z)− t))δ1 ∈ X ,

F 5
z s = −a2(∇g(z), s)Zν2 ∈ X ,

F 5
t τ = a2τν2 ∈ X ,

F 5
t S = ν2S ∈ X ,

F 5
ν2δ2 = (W − a2(g(z)− t))δ2 ∈ X ,

547

548

and the remaining derivatives are zero.549

Proof. Note that the pointwise multiplication operator X ×X 3 (V,W ) 7→ VW ∈550

X is continuously differentiable and its derivative w.r.t. V is represented by W and551

vice versa. Applying the chain rule yields the desired result.552

We now write ∇2h(z, ν1, ν2) := E
[
(a1ν1 + a2ν2)∇2g(z)

]
+ ∇2℘(z). With the com-553

puted derivatives, the Newton equation reads554 
∇2h(z, ν1, ν2) 0 0 E[a1∇g(z)·] E[a2∇g(z)·]

0 0 0 E[a1·] E[a2·]
0 0 0 I I

−a1ν1(∇g(z), ·)Z a1ν1 ν1 V1 0
−a2ν2(∇g(z), ·)Z a2ν2 ν2 0 V2



s
τ
S
δ1
δ2

 = −F555

As long as νi is uniformly positive a.s., i.e., ν−1
i ∈ X , we can multiply the fourth line556

by −ν−1
1 pointwisely, the fifth line by −ν−1

2 , and multiply the second and third one557

by −1 to obtain the equivalent symmetric system558


∇2h(z,ν1,ν2) 0 0 E[a1∇g(z)·] E[a2∇g(z)·]

0 0 0 −E[a1·] −E[a2·]
0 0 0 −I −I

a1(∇g(z),·)Z −a1 −I −ν−1
1 V1 0

a2(∇g(z),·)Z −a2 −I 0 −ν−1
2 V2

( s
τ
S
δ1
δ2

)
=


−E[(a1ν1+a2ν2)∇g(z)]−∇℘(z)

E[a1ν1+a2ν2]−1
(ν1+ν2)−1

(W−a1(g(z)−t))−µν−1
1

(W−a2(g(z)−t))−µν−1
2


(5.2)

559

560
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Lemma 5.2. Let νi ∈ X and Vi = W − ai(g(z)− t) ∈ X be uniformly positive for561

i ∈ {1, 2}. If the operator562

∇2h(z, ν1, ν2) = E
[
(a1ν1 + a2ν2)∇2g(z)

]
+∇2℘(z) : Z → Z563

is coercive, the Newton operator defined in (5.2) has a bounded inverse.564

Proof. We apply the bounded inverse theorem. Since ν−1
i Vi ∈ X , the operator is565

linear and bounded as a map from Z×R×X×X×X to itself. Therefore, it is sufficient566

to show that it is bijective. Consider the Newton equation with general right-hand side567

(rz, rt, rW , rν1 , rν2) ∈ Z×R×X ×X ×X . Since Ti := νiV
−1
i ∈ X by assumption, the568

last two lines can be uniquely solved for δi = −Tirνi + aiTi(∇g(z), s)Z − aiτTi− TiS,569

respectively, given (s, τ, S). This yields the reduced, symmetric Newton system570 (
? −E[(a21T1+a22T2)∇g(z)] −E[(a1T1+a2T2)∇g(z)·]

−E[(a21T1+a22T2)(∇g(z),·)Z ] (a21E[T1]+a22E[T2]) E[(a1T1+a2T2)·]
−(a1T1+a2T2)(∇g(z),·)Z a1T1+a2T2 T1+T2

)(
s
τ
S

)
=

(
rz+E[(a1T1rν1+a2T2rν2 )∇g(z)]
rt−E[a1T1rν1 ]−E[a2T2rν2 ]

rW−T1rν1−T2rν2

)
=:

(
r̂z
r̂t
r̂W

)(5.3)571

with ? = ∇2h(z, ν1, ν2)+E[(a2
1T1 +a2

2T2)(∇g(z), ·)Z∇g(z)]. Ti are uniformly positive.572

Hence, the third row can be solved for573

S = (T1 + T2)−1
(
rW − T1rν1 − T2rν2 + (a1T1 + a2T2)(∇g(z), s)Z − a1τT1 − a2τT2

)
.574

This yields the further reduced, symmetric system575

(5.4)(
∗11 ∗12

∗21 ∗22

)(
s
τ

)
=
(
r̂z+E[(a1T1+a2T2)(T1+T2)−1(rW−T1rν1−T2rν2 )∇g(z)]

r̂t−E[(a1T1+a2T2)(T1+T2)−1(rW−T1rν1−T2rν2 )]

)
=:

(
r̃z
r̃t

)
576

with577

∗11 = ∇2h(z, ν1, ν2) + E[(a2
1T1 + a2

2T2)(∇g(z), ·)Z∇g(z)]578

− E[(a1T1 + a2T2)2(T1 + T2)−1(∇g(z), ·)Z∇g(z)]579

= ∇2h(z, ν1, ν2) + (a2 − a1)2E[U(∇g(z), ·)Z∇g(z)],580

∗12 = −E[(a2
1T1 + a2

2T2)∇g(z)] + E[(a1T1 + a2T2)2(T1 + T2)−1∇g(z)]581

= −(a2 − a1)2E[U∇g(z)],582

∗21 = −(a2 − a1)2E[U(∇g(z), ·)Z ]583

∗22 = (a2
1E[T1] + a2

2E[T2])− E[(a1T1 + a2T2)2(T1 + T2)−1] = (a2 − a1)2E[U ],584585

where U := T1T2(T1 + T2)−1 = (T−1
1 + T−1

2 )−1 =
(
ν−1

1 V1 + ν−1
2 V2

)−1
. This function586

is uniformly positive by assumption and therefore ∗22 > 0 so that the system can be587

solved for588

τ = (a2 − a1)−2E[U ]−1
(
r̃t + (a2 − a1)2E[U(∇g(z), s)Z ]

)
.589

This gives the equation590

∇2h(z, ν1, ν2)s+ (a2 − a1)2E[U(∇g(z), s)Z∇g(z)]

− (a2 − a1)2E[U ]−1 E[U(∇g(z), s)Z ]E[U∇g(z)]

= r̃z + E[U ]−1E[U∇g(z)]
(
r̃t + (a2 − a1)2E[U(∇g(z), s)Z ]

)(5.5)591
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for the control step s. Let now EU [X] := E[U ]−1E[UX] be the expectation w.r.t. the592

probability measure induced by the random variable E[U ]−1U . With this definition,593

the left-hand side operator applied to s is594

∇2h(z, ν1, ν2)s+ (a2 − a1)2E[U ]
(
EU [(∇g(z), s)Z∇g(z)]− EU [(∇g(z), s)Z ]EU [∇g(z)]

)
595

= ∇2h(z, ν1, ν2)s+ (a2 − a1)2E[U ] CovU [(∇g(z), s)Z ,∇g(z)].596597

Taking the Z inner product of this quantity and s yields598

(∇2h(z, ν1, ν2)s, s)Z+(a2−a1)2E[U ] VarU [(∇g(z), s)Z ] ≥ (∇2h(z, ν1, ν2)s, s)Z ≥ γ‖s‖2Z599

for some γ > 0 by assumption. Hence, (5.5) has a unique solution s, from which we600

can compute the unique solution (s, τ, S, δ1, δ2) of the full Newton system from the601

above considerations.602

Remark 5.3. If ν1 and ν2 solve (5.1d) and (5.1e), respectively, we have Ti =603

µ(W − ai(g(z) − z))−2. Inserting this into the reduced Newton system (5.3) yields604

exactly the barrier-Newton system for the reduced version of (5.1), i.e., the one where605

(5.1d) are (5.1e) solved for νi and the result is inserted into the remaining equations.606

Analogously, we can additionally solve (5.1c) for W using (4.8) and reduce the system607

further. The Newton equation for this system is then of the form (5.4).608

Remark 5.4. The assumptions in Lemma 5.2 are very natural, at least for convex609

optimal control problems: The uniform positivity of the variables is ensured during the610

algorithm. If ∇2g(z) is positive (semidefinite) a.s. (e.g., if g is the convex reduced611

tracking term) and ∇2℘(z) is coercive (e.g., if ℘(z) = α
2 ‖z‖

2
Z), the operator is coercive.612

6. Γ-Convergence of Rµ to R. In order to argue that solutions of the approx-613

imating optimization problems converge to a solution of the original risk-averse opti-614

mization problem, we make use of several techniques from the theory of Γ-convergence,615

see, e.g., [15]. We recall that a sequence of functionals {ϕk} on a topological space616

X Γ-converges to a functional ϕ : X → R, denoted by ϕk
Γ→ ϕ provided the following617

two conditions hold:618

1. ∀x ∈ X , ∀ {xk} ⊂ X such that xk → x we have lim infk ϕk(xk) ≥ ϕ(x).619

2. ∀x ∈ X , ∃ {xk} such that xk → x and lim supk ϕk(xk) ≤ ϕ(x).620

Note the theory is sufficiently general so that we may use rather coarse topologies621

on the spaces of random variables if necessary. We make the standing assumptions622

throughout that X is a topological vector space with the property that623

X ⊂ L1(Ω,F ,P).624

In order to prove that Rµ
Γ→ R we use a result that combines several statements and625

remarks from [15]. For convenience, we state this here:626

Proposition 6.1. Let X be a topological space and suppose that {Fk} with Fk :627

X → R is a sequence of lower-semicontinuous functionals. If {Fk} is an increasing628

sequence of functionals that converges pointwise to F , then F is lower-semicontinuous629

and Fk
Γ→ F .630

Proof. This follows from [15, Prop. 5.4] as pointed out in [15, Remark 5.5].631

We will need the following technical lemma concerning the smoothed scalar regret632

functions. As argued above, we use the shifted smoothed scalar regret function v̂µ to633

generate Rµ.634
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Lemma 6.2. Let µ > 0 and v̂µ : R→ R be defined as in (3.12), (3.5) by v̂µ(s) :=635

vµ(s+ d(µ))− d(µ) with d(µ) = 2−a1−a2
(1−a1)(a2−1)µ. Then the following properties hold:636

1. v̂µ(s) ≤ v(s) for all s ∈ R.637

2. limµ→0+ v̂µ(s) = v(s) for all s ∈ R.638

3. |v̂µ(s)− v̂µ(s′)| ≤ a2 |s− s′| for all s, s′ ∈ R.639

4. For all µ, ν > 0 such that µ ≤ ν we have v̂ν(s) ≤ v̂µ(s) for all s ∈ R.640

Proof. See Appendix A.641

This immediately gives us the following corollary.642

Corollary 6.3. Under the standing assumptions, {Rµ}µ>0 is an increasing se-643

quence of functionals as µ ↓ 0, i.e., for every X ∈ X we have Rη(X) ≤ Rµ(X)644

provided 0 < µ ≤ η.645

Proof. According to Lemma 6.2.4, for any random variable X ∈ X , every t ∈ R,646

and P-a.a. ω ∈ Ω we have647

t+ v̂η(X(ω)− t) ≤ t+ v̂µ(X(ω)− t)648

provided 0 < µ ≤ η. Consequently, we obtain649

(6.1) Rη(X) = inf
t∈R

t+ E[v̂η(X − t)] ≤ inf
t∈R

t+ E[v̂µ(X − t)] = Rµ(X) (0 < µ ≤ η).650

Hence, {Rµ} is an increasing sequence of functionals.651

Continuing, for any X ∈ X and µ > 0, we define the function hXµ : R→ R by652

hXµ (t) := t+ E[v̂µ(X − t)].653

654

Lemma 6.4. In addition to the standing assumptions, we consider
{
hXµ
}
µ∈(0,C]

655

for some fixed C > 0 independent of X. Then hXµ
Γ→ hX given by656

hX(t) := t+ E[v(X − t)].657

and
{
hXµ
}
µ∈(0,C]

is equi-coercive, i.e., for all r ∈ R there exists a compact subset658

Kr ⊂ R such that
{
t ∈ R : hXµ (t) ≤ r

}
⊂ Kr for all µ ∈ (0, C].659

Remark 6.5. By [15, Proposition 7.7], it suffices to prove the existence of some660

coercive lower semicontinuous function Ψ : R → R such that hXµ ≥ Ψ for every661

µ ∈ (0, C].662

Proof. As seen in the proof of Corollary 6.3,
{
hXµ
}
µ∈(0,C]

is an increasing class663

of functionals as µ ↓ 0. To see that hXµ converges pointwise to hX , we note that by664

Lemma 6.2.2 we have v̂µ(X(ω)−t)→ v(X(ω)−t) as µ ↓ 0. Furthermore, Lemma 6.2.3,665

we have666

|v̂µ(X(ω)− t)− v̂µ(0)| = |v̂µ(X(ω)− t)| ≤ a2|X(ω)− t|667

Therefore, applying Lebesgue’s dominated convergence theorem, we see that hXµ con-668

verges to hX pointwise in t. Since v is Lipschitz with constant a2, we can readily669

show that hX is Lipschitz with constant 1 + a2 and therefore, lower semicontinuous.670

Then by Proposition 6.1, hXµ
Γ→ hX as µ ↓ 0.671
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Finally, we prove equi-coercivity by demonstrating the existence of a coercive mi-672

norant as mentioned in Remark 6.5 above. In the argument below, let ε ∈ (0,min{a2−673

1, 1−a1}). As noted in the proof of Proposition 3.5 and used in the proof of Lemma 6.2,674

v̂′C is strictly monotonically increasing and for s > 0, we have v̂′C(s) ∈ (1, a2). There-675

fore, by continuity of v̂′C and (3.10), there exists some s2 > 0 such that v̂′C(s2) =676

a2 − ε > 1. Similarly, we can find some s1 < 0, such that v̂′C(s1) = a1 + ε < 1. By677

convexity, differentiability, and montonicity in µ of v̂µ we have for any µ ∈ (0, C]:678

v̂µ(s) ≥ v̂C(s) ≥ v̂C(s1) + (a1 + ε)(s− s1) ∀ s ∈ R,
v̂µ(s) ≥ v̂C(s) ≥ v̂C(s2) + (a2 − ε)(s− s2) ∀ s ∈ R.

679

Therefore, it holds that680

681

t+ v̂µ(X(ω)− t) ≥682

t+ max{(a1 + ε)((X(ω)− t)− s1) + v̂C(s1), (a2 − ε)((X(ω)− t)− s2) + v̂C(s2)},683684

independently of ω. Consequently, we have685

686

hXµ (t) ≥ max{(1− (a1 + ε))t+ v̂C(s1) + (a1 + ε)(E[X]− s1),687

(1 + ε− a2)t+ v̂C(s2) + (a2 − ε)(E[X]− s2)}.688689

Hence, for |t| → ∞ we have hXµ (t)→ +∞. The assertion follows.690

Finally, we may combine the results above to prove the main variational conver-691

gence result.692

Theorem 6.6. Under the assumptions of Lemma 6.4, we have Rµ
Γ→ R.693

Proof. By Corollary 6.3, {Rµ} is increasing as µ ↓ 0. Moreover, by [15, Thm.694

7.8], the Γ-convergence of hXµ to hX , the equi-coercivity of
{
hXµ
}

, and the definition695

of the risk measures R, Rµ yields the following relation696

R(X) = inf
t∈R

t+ E[v(X − t)] = inf
t∈R

hX(t) = lim
µ↓0

inf
t∈R

hXµ (t) = lim
µ↓0
Rµ(X).697

Hence, Rµ → R pointwise. The assertion then follows from Proposition 6.1.698

In light of Theorem 6.6, we can now prove the convergence of approximating699

minimizers.700

Theorem 6.7. Let Assumptions 4.1 and 4.2 hold and set X = L1(Ω,F ,P). Fur-701

thermore, suppose that ℘ : Z → R is proper, closed, and convex and S is com-702

pletely continuous. For any sequence µk ↓ 0, suppose that zk minimizes fµk(z) :=703

Rµk(J (S(z))) + ℘(z) over Zad. Then any weak accumlation point of {zk} minimizes704

f(z) := R(J (S(z))) + ℘(z) over Zad.705

Proof. As argued in the proof of Theorem 6.6, Rµk converges pointwise to R.706

Moreover, by assumption F (z) := J (S(z)) is completely continuous. Fixing an arbi-707

trary k ∈ N, we have708

Rµk(F (z)) + ℘(z) ≥ Rµk(F (zk)) + ℘(zk)709

for all z ∈ Zad. In light of the complete continuity of F , if zkj ⇀ z? in Z, then710

F (zkj )→ F (z?) in X . Therefore, it follows from the pointwise and Γ-convergence of711
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Rµk to R along with the weak lower-semicontinuity of ℘ that:712

R(F (z)) + ℘(z) = lim
kj→∞

Rµkj (F (z)) + ℘(z) ≥ lim inf
kj→∞

Rµkj [F (zkj )] + ℘(zkj )713

≥ R[F (z?)] + ℘(z?)714715

for any z ∈ Zad, as was to be shown.716

Remark 6.8. The complete continuity of S is often guaranteed by the fact that717

Z is a more regular function space that embeds compactly into the image space of718

the differential operator. For instance, Z = L2(D) embeds compactly into H−1(D).719

Moreover, the existence of weak accumulation points of sequences of solutions can720

typically be obtained by either the coercivity of ℘ or the boundedness of the set Zad.721

Since these are often the situations encountered in PDE-constrained optimization, the722

additional data assumptions in Theorem 6.7 are arguably mild. In the event that S is723

not completely continuous, one can still obtain the above result when more structure724

of J is available, e.g., when J is convex with respect to the partial order on X .725

Remark 6.9. Theorem 6.7 makes no assumptions about the convexity of the op-726

timization problems. However, it is clear that in the non-convex case, the previous727

results guarantees a certain consistency of the approximation in terms of global so-728

lutions only, which may be computationally very difficult to obtain. For convergence729

of stationary points in the context of a variational smoothing technique for regular730

measures of risk, we refer the reader to [31].731

7. Implementation and Numerical Results. We consider the optimal con-732

trol of an elliptic PDE with uncertain coefficients. For this purpose, let D ⊂ Rn be a733

bounded Lipschitz domain. Let κ ∈ L∞(D × Ω) be an uncertain coefficient function,734

which fulfils κ ≤ κ(x, ω) ≤ κ for a.a. (x, ω) ∈ D × Ω with 0 < κ ≤ κ < ∞. We735

consider the PDE736

(7.1) A(ω)u(ω) = Bz,737

where u(ω) ∈ H1
0 (D) is the state, z ∈ L2(D) = Z is the control, and738

A(ω) : H1
0 (D)→ H−1(D), 〈A(ω)u, v〉H−1(D),H1

0 (D) :=

∫
D

κ(x, ω)∇u · ∇v dx739

B : L2(D)→ H−1(D), 〈Bz, v〉H−1(D),H1
0 (D) :=

∫
D

zv dx.740
741

Under the assumption on κ, A(ω) is uniformly elliptic and (7.1) has a unique solution742

S(z)(ω) = A(ω)−1Bz for a.a. ω ∈ Ω. In particular, we have S(z) ∈ L∞(Ω;H1
0 (D)).743

Inserting it into a tracking functional, we have744

g(z)(ω) := 1
2‖ιS(z)(ω)− q̂‖2L2(D),745

with the embedding ι : H1
0 (D) ↪→ L2(D) and the desired state q̂ ∈ L2(D). We746

conclude that g(z) ∈ L∞(Ω) so that the theory from section 5 is applicable. We let747

γ > 0 and set ℘(z) = γ
2 ‖z‖

2
Z . Therefore, since g is convex, Lemma 5.2 can be applied,748

see Remark 5.4.749

We compute the derivatives of g by the adjoint approach and discretize the prob-750

lem by linear finite elements (for D) and Monte Carlo (for Ω). To speed up the751

evaluation of the samples of g and ∇g, we use a rather exact surrogate model in752
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which the state and adjoint equation are solved by a polynomial chaos discretization753

in tensor product form with a suitable low-rank tensor solver for the discretized sys-754

tem, see [24]. The objective function and its gradient are computed using efficient755

low-rank tensor calculus. The required quantities are then sampled from the tensors756

in parallel. The remaining computations are done with the sampled quantities. We757

approximate the Hessian by the reference operator: ∇2g(z)(ω) ≈ ∇2g(z)(ω̄), where758

ω̄ :=
∫

Ω
ω dP(ω).759

We initialize the algorithm with the risk-neutral control z0, i.e., the solution of760

(1.1) using R ≡ E, which is computed by a Newton-CG method using low-rank tensor761

computations as in [24]. Additonally, we choose t0 = E[g(z0)], µ0 ≥ µ > 0 (µ0 = 10762

in our tests), and compute W0, ν0
1 , ν0

2 from (5.1c), (5.1d), (5.1e). In each iteration763

the Newton step that solves (5.2) is computed approximately. In our experiments, we764

found that solving the reduced version (5.4) by CG yields the best computing time and765

most accurate results. We stopped the CG iteration whenever the relative residual766

fell below 10−2; using 10−8 yielded only slight decreases in the overall iteration counts767

but actually required more CPU time. The variables z and t are updated using the768

Newton steps, and the updated auxiliary variables W , ν1, and ν2 are computed so that769

they solve (5.1c), (5.1d), (5.1e), which ensures uniform positivity. Additionally, this770

procedure is equivalent to applying Newton’s method to a reduced problem, namely771

min
z∈Z,t∈R

t+ E[vµk(g(z)− t)] + ℘(z),772

see Remark 5.3. We update µk+1 = max{µfac µk, µ}, with µfac ∈ (0, 1) (µfac = 0.5 in773

our tests). The algorithm is stopped if µk = µ and the norm of the optimality system774

residual is below 10−4.775

We set Ω = (−1, 1)d, d ∈ N, equipped with the uniform distribution, D =776

(−1, 1)2 ⊂ R2, and κ(x, ω) = 1 +
∑d
i=1 ωiηi1Di(x) with ηi ∈ (0, 1) and the sub-777

domains Di ⊂ D covering the domain D. More concretely, the Di are vertical strips778

of the same size and ηi = ηmin + i−1
d−1 (ηmax−ηmin), i.e., the deviation in the coefficient779

increases from left to right. In our tests, we have d = 4, ηmin = 0.4, and ηmax = 0.7.780

Our implementation could be easily adapted for larger d, which would only result781

in longer runtimes for the tensor computations and sampling. The desired state is782

q̂(x) = 1, and we have 16641 FE nodes and 20000 Monte Carlo samples.783

We perform different tests, in which we vary one of the parameters µ (log-barrier784

parameter), β (quantile parameter), and λ (convex combination paramter). We start785

with µ ∈ {0.1, 0.01, 0.001}, β = 0.95, and λ = 1.0 to investigate the influence of the786

log-barrier parameter in this setting. Since the difference in the resulting cumulative787

distribution functions (CDFs) of the random variable objective g(z∗)+℘(z∗) obtained788

with µ = 0.01 and µ = 0.001 is hardly recognizable, we proceed with µ = 0.001 in the789

following tests and do not decrease the log-barrier parameter further.790

Figure 1 shows the CDFs of g(z?)(·) for different values of β with λ = 1.0 and791

µ = 0.001, i.e., we minimize a smoothed version of CVaRβ . In this plot, the expected792

value is marked by “×+”, CVaR0.5 and CVaR0.9 by “+”, and CVaR0.8 and CVaR0.95793

by “×”. As expected, the cheaper deterministic and risk-neutral controls yield better794

α-quantiles for α < 0.75. However, the risk-averse controls clearly dominate for higher795

values of α relating to the tail. Thus, g(z?)(·) in the risk-averse cases is expected to796

be markedly smaller than the risk-neutral/deterministic for tail events.797

Finally, Table 1 shows the number of iterations, computing time, and time spent798

for solving PDEs with a low-rank tensor method, sampling from tensors in parallel,799

and solution of the Newton system as well as the required CG iterations. Since we800
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Fig. 1: Cumulative distribution function of the random variable objective function
for different optimal controls with β ∈ {0.95, 0.9, 0.8, 0.5}.

β (CVaR quantile parameter): 0.5 0.8 0.9 0.95

number of iterations (updates of the initial control): 17 18 18 31

computing time (total, in minutes): 8.9 9.4 9.3 16.1

time spent for low-rank tensor computations: 46.5% 45.9% 46.2% 47.2%

time spent for sampling from low-rank tensors: 47.0% 48.6% 47.7% 46.7%

time spent for solution of Newton system: 5.4% 4.4% 5.0% 5.0%

average number of CG iterations (Newton system): 2.9 1.7 1.9 2.0

Table 1: Computing times and statistics for different values of β.

are always solving similar PDEs, similar tensor ranks are sufficient for the desired801

accuracy and the amount of time spent for the low-rank tensor computations and802

sampling is rather the same for all tested values of β. Furthermore, the CG method803

for solving the Newton system performs always comparably well. The total number of804

iterations is only increased in the case β = 0.95. Here, the constant approximation of805

the Hessian ∇2g(z) in ∇2h(z, ν1, ν2) (see Lemma 5.2) seems to yield worse directions806

so that reaching the region of fast convergence is harder.807
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Appendix A. Proof of Lemma 6.2.942

Proof. Statement 3. follows immediately from (3.7).943

For 1., we start by noting that v(0) = 0 = v̂µ(0) and v̂′µ(0) = 1, see (3.13).944

Moreover, for s > 0, we have v̂′µ(s) ∈ (1, a2), see the derivation of (3.11). Therefore,945

v̂µ(s) =

∫ s

0

v̂′µ(τ)dτ < a2s = v(s).946
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This follows analogously for the case when s < 0, using in part the fact that v̂′µ(s) ∈947

(a1, 1).948

In order to prove 2., we need several arguments. We recall that949

wµ(s) = µ+ 1
2 (a1 + a2)s+ 1

2

√
(a2 − a1)2s2 + 4µ2950

and observe that951

lim
µ→0+

wµ(s) = 1
2 (a1 + a2)s+ 1

2 |a2 − a1| |s| = max{a1s, a2s}.952
953

follows from a1 < a2 and considering s ≤ 0 and s ≥ 0 separately. Furthermore, we954

consider the limit limµ→0+ µ · ln(wµ(s)− a1s). We use955

lim
µ→0+

wµ(s)− a1s = 1
2 (a2 − a1)s+ 1

2 |a2 − a1| |s| = (a2 − a1) max{0, s}.956

For s > 0 it follows that limµ→0+ µ · ln(wµ(s)− a1s) = 0. In the case s = 0, we have957

limµ→0+ µ · ln(wµ(s)− a1s) = limµ→0+ µ · ln(2µ) = 0. For s < 0 we get958

lim
µ→0+

µ ln(wµ(s)− a1s)959

= lim
µ→0+

µ ln
(
µ+ a2−a1

2 s+ 1
2 |a2 − a1||s|+ µ2

|a2−a1||s| + o(µ2)
)

=960

= lim
µ→0+

µ ln
(
µ+ µ2

(a2−a1)|s| + o(µ2)
)

= 0961
962

Summarizing, we have limµ→0+ µ · ln(wµ(s)− a1s) = 0 for all s. Analogously, it963

follows that limµ→0+ µ · ln(wµ(s)− a2s) = 0.964

Next, we see that965

lim
µ→0+

ζ(µ) = lim
µ→0+

µ
(
ln
(
a2−a1
a2−1 µ

)
+ ln

(
a2−a1
1−a1 µ

)
− 2
)

= 0966

holds. Finally, we have limµ→0+ vµ(s) = v(s) for all s ∈ R and hence limµ→0+ v̂µ(s) =967

v(s) as well due to d(µ)→ 0 as µ→ 0.968

In order to prove 4., we investigate the sign properties of the derivatives of vµ as969

a function of µ > 0 for fixed s ∈ R. We start by observing that970

∂µvµ(s) = ∂µwµ(s)−ln(wµ(s)−a1s)−µ ∂µwµ(s)
wµ(s)−a1s−ln(wµ(s)−a2s)−µ ∂µwµ(s)

wµ(s)−a2s+ζ ′(µ),971

where ∂µwµ(s) = 1 + 2µ√
(a2−a1)2s2+4µ2

and ζ ′(µ) = ln(a2−a1a2−1 µ) + ln(a2−a11−a1 µ). Next,972

writing β = a2 − a1 > 0, γ =
√
β2s2 + 4µ2 > 0 and α+ = βs+γ

2 , α− = −βs+γ
2 , we973

have974

wµ(s)− a1s = µ+ α+,975

wµ(s)− a2s = µ+ α−,976

(wµ(s)− a1s)(wµ(s)− a2s) = (µ+ α+)(µ+ α−) = µ(2µ+ γ),977

∂µwµ(s) = 2µ+γ
γ .978

979

By substitution, the derivative of vµ becomes980

∂µvµ(s) = 2µ+γ
γ − µ γ+2µ

γ(µ+α+) − µ
γ+2µ

γ(µ+α−) − ln
(
µ(2µ+ γ)

)
+ ln

(
β2

(1−a1)(a2−1)µ
2
)

981

= µ(2µ+γ)2−µ(γ+2µ)(2µ+α−+α+)
γ(µ+α+)(µ+α−) + ln

(
β2µ

(1−a1)(a2−1)(2µ+γ)

)
982

= ln
(

(a2−a1)2µ

(1−a1)(a2−1)
(

2µ+
√

(a2−a1)2s2+4µ2
)).983

984
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Now consider v̂µ(s) = vµ(s+ d(µ))− d(µ). Then,985

∂µv̂µ(s) = v′µ(s+ d(µ))d′(µ) + ∂µvµ(s+ d(µ))− d′(µ),986

where v′µ(s) = w′µ(s)−µ w′µ(s)−a1
wµ(s)−a1s−µ

w′µ(s)−a2
wµ(s)−a2s with w′µ(s) = a1+a2

2 + β2s
2γ . We simplify987

v′µ(s) = a1+a2
2 + β2s

2γ − µ
β
2 +

β2s
2γ

µ+α+
− µ

−β2 +
β2s
2γ

µ+α−
988

= a1+a2
2 + β2s

2γ − µ
(
β
2 ( 1

µ+α+
− 1

µ+α−
) + β2s

2γ ( 1
µ+α+

+ 1
µ+α−

)
)

989

= a1+a2
2 + β2s

2γ − µ
(
β
2
α−−α+

µ(2µ+γ) + β2s
2γ

2µ+α−+α+

µ(2µ+γ)

)
= a1+a2

2 + β2s
4µ+2γ990

991

Now, writing s̃ = s + d(µ), γ̃ =
√
β2s̃2 + 4µ2, ρ1 = 1 − a1 > 0, and ρ2 = a2 − 1 > 0992

so that d(µ) = ρ1−ρ2
ρ1ρ2

µ =: κµ, we get993

∂µv̂µ(s) =
(
a1+a2

2 + β2s̃
4µ+2γ̃ − 1

)
κ+ ln

(
β2µ

ρ1ρ2

(
2µ+γ̃)

)
994

= κ
2

(
ρ2 − ρ1 + β2s̃

2µ+γ̃

)
+ ln

(
β2µ

ρ1ρ2

(
2µ+γ̃

)).995

996

We compute997

lim
µ→+∞

∂µv̂µ(s) = κ
2

(
ρ2 − ρ1 + β2κ

2+
√
β2κ2+4

)
+ ln

(
β2

ρ1ρ2(2+
√
β2κ2+4)

)
= κ

2

(
ρ2 − ρ1 + β2κρ1ρ2

β2

)
+ ln(1) = 0.

(A.1)998

We have used that β = ρ1 + ρ2 and thus999

2 +
√
β2κ2 + 4 = 2 +

√
(ρ1+ρ2)2(ρ1−ρ2)2+4ρ21ρ

2
2

ρ21ρ
2
2

= 2 +
ρ21+ρ22
ρ1ρ2

= β2

ρ1ρ2
.1000

The second derivative is1001

∂2
µµv̂µ(s) = κ

2
(2µ+γ̃)β2κ−β2s̃(2+γ̃′)

(2µ+γ̃)2 + ρ1ρ2(2µ+γ̃)
β2µ

ρ1ρ2(2µ+γ̃)β2−β2µρ1ρ2(2+γ̃′)
ρ21ρ

2
2(2µ+γ̃)2

1002

= (2µ+γ̃)β2κ2−β2s̃(2+γ̃′)κ
2(2µ+γ̃)2 + (2µ+γ̃)−µ(2+γ̃′)

µ(2µ+γ̃)1003

= µ(2µ+γ̃)β2κ2−µβ2s̃(2+γ̃′)κ+2(2µ+γ̃)2−2µ(2µ+γ̃)(2+γ̃′)
2µ(2µ+γ̃)21004

1005

with γ̃′ = β2s̃κ+4µ√
β2s̃2+4µ2

= β2κs̃+4µ
γ̃ . The numerator is1006

2µ2β2κ2 + µβ2κ2γ̃ − 2µβ2κs̃− µβ2κs̃γ̃′1007

+ 8µ2 + 8µγ̃ + 2γ̃2 − 8µ2 − 4µ2γ̃′ − 4µγ̃ − 2µγ̃γ̃′1008

= 2µ2β2κ2 + µ(β2κ2 + 4)γ̃ − 2µβ2κs̃− µ (β2κs̃+4µ)2

γ̃ + 2(β2s̃2 + 4µ2)− 2µ(β2κs̃+ 4µ)1009

= 2µ2β2κ2 + µ(β2κ2 + 4)γ̃ − 4µβ2κ(s+ κµ)− µ (β2κs̃+4µ)2

γ̃ + 2β2(s+ κµ)2
1010

= 2β2s2 + 1
γ̃

(
µ(β2κ2 + 4)(β2s̃2 + 4µ2)− µ(β2κs̃+ 4µ)2

)
1011

= 2β2s2 + µ
γ̃

(
β4κ2s̃2 + 4µ2β2κ2 + 4β2s̃2 + 16µ2 − β4κ2s̃2 − 8µβ2κs̃− 16µ2

)
1012

= 2β2s2 + µ
γ̃

(
4µ2β2κ2 + 4β2s̃2 − 8µβ2κs̃

)
= 2β2s2 + 4µ

γ̃ (µβκ− βs̃)2 ≥ 0.10131014

Therefore, having 2µ(2µ + γ̃)2 > 0, ∂2
µµv̂µ(s) ≥ 0 holds for all s ∈ R and µ > 0 so1015

that ∂µv̂µ(s) is increasing w.r.t. µ. Hence, together with (A.1), ∂µv̂µ(s) ≤ 0 follows1016

for all s ∈ R, µ > 0. This completes the proof.1017
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