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AN INTERIOR-POINT APPROACH FOR SOLVING RISK-AVERSE
PDE-CONSTRAINED OPTIMIZATION PROBLEMS WITH
COHERENT RISK MEASURES

S. GARREIS*, T. M. SUROWIEC ', AND M. ULBRICH #

Abstract. The prevalence of uncertainty in models of engineering and the natural sciences ne-
cessitate the inclusion of random parameters in the underlying partial differential equations (PDEs).
The resulting decision problems governed by the solution of such random PDEs are infinite dimen-
sional stochastic optimization problems. In order to obtain risk-averse optimal decisions in the face
of such uncertainty, it is common to employ risk measures in the objective function. This leads to
risk-averse PDE-constrained optimization problems. We propose a method for solving such prob-
lems in which the risk measures are convex combinations of the mean and conditional value-at-risk
(CVaR). Since these risk measures can be evaluated by solving a related inequality-constrained opti-
mization problem, we suggest a log-barrier technique to approximate the risk measure. This leads to
a new continuously differentiable convex risk measure: the log-barrier risk measure. We show that
the log-barrier risk measure fits into the setting of optimized certainty equivalents of Ben-Tal and
Teboulle and the expectation quadrangle of Rockafellar and Uryasev. Using the differentiability of
the log-barrier risk measure, we derive first-order optimality conditions reminiscent of classical pri-
mal and primal-dual interior point approaches in nonlinear programming. We derive the associated
Newton system, propose a reduced symmetric system to calculate the steps, and provide a sufficient
condition for local superlinear convergence in the continuous setting. Furthermore, we provide a
T'-convergence result for the log-barrier risk measures to prove convergence of the minimizers to the
original nonsmooth problem. The results are illustrated by a numerical study.

Key words. Risk-Averse, PDE-Constrained Optimization, Risk Measures, Uncertainty Quan-
tification, Stochastic Optimization, Interior-Point Methods, Conditional Value-at-Risk, Gamma Con-
vergence
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1. Introduction. Uncertainty is an unavoidable component of practically every
complex or data-driven system arising in engineering and the natural sciences. For
example, we encounter uncertainty as a result of noisy data measurements, unknown
operating parameters, or even unclear assumptions in the modeling of subsurface flows
[18, 49], plate tectonics and ice sheet models [35, 48], and next-generation aeronautics
designs [8]. In the context of optimization and optimal control, we are tasked with
optimizing constrained systems of partial differential equations (PDEs) laden with
uncertain inputs, which may arise in the coefficients as well as the bulk and boundary
data. This has led to a growing interest in stochastic PDE-constrained optimization.

Whenever we are faced with making a decision under uncertainty, it is important
to obtain optimal designs, decisions, or controls that are somehow robust or risk-
averse to risky or tail events. Despite having been primarily developed for finite
dimensional optimization problems, the stochastic programming literature offers a
number of approaches for risk-averse decision-making under uncertainty, see, e.g.,
[7, 36, 46] and the many references therein. For instance, one might try to solve a
minimization problem with stochastic order constraints based on a benchmark design
as in probabilistic programming, e.g., [16, 37]. Another approach would be to minimize
a kind of worst-case expectation of the quantity of interest or objective function
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over a class of probability measures as in distributionally robust optimization, e.g.,
[17, 45, 47]. Yet another possibility is to employ risk measures, see, e.g., [38, 42, 43] as
well as [46, Chap. 6], which allows a broad degree of flexibility and yields structures
that may be more familiar to researchers working in PDE-constrained optimization
or optimal control.

In this paper, we take the latter approach and follow the framework developed in
[30, 32] for risk-averse PDE-constrained optimization. Thus, we consider the following
abstract infinite dimensional stochastic optimization problem:

(11) min RIT(S(2))] + o(2),

where z € Z are deterministic decisions (designs, controls, etc.), Z.q is the admissible
set, p is a function modeling the cost of z, R is a functional that maps a set of random
variables X € X into R := RU {+00} called a risk measure, and J is an uncertain
objective function, quantity of interest, or cost that depends on the z-dependent
solution of the PDE with uncertain inputs, denoted throughout by S(z). Note that
S(z) itself is a random field. We use (€2, F,P) to denote a probability space and the
expectation by E, i.e., if X : @ — R is a random variable then E[X] = [, X (w)dP(w).

There have been a number of recent contributions to PDE-constrained optimiza-
tion under uncertainty in theory, algorithms, and numerical approximation schemes,
e.g., [14, 41, 50]. However, the overwhelming majority of work on numerical approxi-
mation and solution algorithms has been for the risk-neutral case in which R = E.

The risk-neutral case provides solutions z* that perform well on average. There-
fore, employing such a decision z* is only reasonable if a task is to be performed many
times over. Despite this, there is still no way of accounting for possibly catastrophic
tail events. In contrast, we choose a class of risk measures particularly suited to yield
solutions z* that mitigate tail risk.

For literature on numerical approximation schemes, we highlight here the work on
reduced-order model approaches [12, 13], spatial multigrid algorithms with sparse-grid
collocation [10, 11], low-rank tensor approximation [6, 24], and numerical solution and
optimization methods based on Taylor expansions [1, 20, 21, 22, 34]. Unlike numerical
approximation, the literature is rather scarce on dedicated optimization algorithms
for PDE-constrained optimization under uncertainty. In addition to [1, 20, 34], we
point to [28, 29] for a globally convergent trust-region algorithm based on adaptive
sparse grids. Though the latter was developed for the risk-neutral case with Z,4 = Z,
it can be easily extended to include smooth risk measures and bound constraints Z,q.

Risk-averse PDE-constrained optimization, i.e., where R[X] > E[X] for all non-
constant random variables X, is much more recent both from a theoretical and al-
gorithmic perspective, see, e.g., [1, 6, 27, 30, 31, 32, 34]. In [30, 31], variational
regularization techniques are developed that allow the application of algorithms for
smooth PDE-constrained optimization, as mentioned above, whereas [32] presents a
general existence and optimality theory. Although [27, 34] take the perspective of
robust optimization, i.e., R[X] = sup,cq | X (w)|, we mention it here as any solutions
obtained using this method would be clearly risk-averse.

The goal of this paper is to develop an interior-point method for the solution of
(1.1) when R (a non-smooth risk measure) is defined by

(1.2) R[X] = inf {t + E[v(X )]},

where v : R — R is given by
(1.3) v(s) = max{ais,ass}, a1 € [0,1) and as € (1,00).
2
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Here, v is a so-called scalar regret function (negative utility function) that implies a
certain aversion to risk when used in (1.2). Our approach combines modern techniques
of interior-point methods for infinite dimensional PDE-constrained optimization prob-
lems as in [24, 44, 53, 54] with the available theory of risk-averse PDE-constrained
optimization mentioned above.

In particular, the choice of the scalar regret function implies that R is a so-called
coherent risk measure generated by the expectation quadrangle, see [39] as well as the
earlier work [4] and [5]. This includes the popular conditional value-at-risk functional
CVaRg (also called average value-at-risk, expected shortfall, tail expectation), which
is more intuitively defined as a tail expectation by

1
CVaRj(X] = 1L, //3 Fil(a)da, B e (0,1),

where Fy'() is the a-quantile (value-at-risk) of the random variable X, 3 := (ag —
1)/aq, and a1 = 0. In fact, the form of v implies that R in this paper is any convex
combination of the expected value and CVaR, but not the expected value alone.

In light of the assumptions on R, we may rewrite (1.1) in an alternative form by
introducing slacks t € R, W € X, and two inequality constraints:
(1.4)
W >a1(J(S(z)) —t), P-aa weQ,

min t+EW]+ p(z) s.t. { W > as(J(S(2) —t), P-aa. weQ.

(2,W,t)EZaqa X X XR
This is a commonplace reformulation often used in stochastic programming. Neverthe-
less, although we have removed the nonsmoothness from the objective, (1.4) retains
the complexity introduced by R due to the potentially non-convex inequality con-
straints. Moreover, there are no available algorithms for stochastic PDE-constrained
optimization problems with nonlinear state constraints; even in this local/global set-
ting where the state S(z) is treated globally in the sense that J “integrates out” the
spacial dependence and locally in that W —a;(J(S(z)) —t) € X is a random variable.
Of course, if S is affine and J is convex with respect to the usual partial order on X,
then these constraints would be convex.

Inspired by the success of interior-point methods for parameteric variational in-
equalities in [24], we propose an approach in which we (approximately) solve a se-
quence of p-dependent (p > 0) log-barrier-approximations of (1.4) given by

15) ot Bl W 3 V0 T(S() ~ )] +0(e).

Depending on the explicit structure, the subproblems can be solved by either a semis-
mooth Newton method, see e.g., [26, 51, 52|, if Z,4 is defined by simple bound con-
straints, or a trust-region approach as in [28, 29].

As an added bonus of the proposed optimization method, we obtain a new class
of risk measures, which we refer to as “log-barrier” risk measures. The log-barrier risk
functionals can be shown to arise from the expectation quadrangle for a certain choice
of scalar regret function v. This allows us to analyze the associated optimization prob-
lems by leveraging the analysis in [32]. For instance, we obtain familiar primal and
primal-dual optimality systems as in traditional interior-point approaches. Furthe-
more, the log-barrier risk measures are amenable to either a traditional sample-based
Monte-Carlo approximation, cf. [46, Chap. 5], or the low-rank tensor approximation
developed in [24].
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The rest of the paper is structured as follows. In Section 2 we provide the nec-
essary notation and data assumptions. Afterwards, in Section 3 we analyze the log-
barrier risk measure R,. Then in Section 4, we summarize several important results
from the literature and prove the existence of a solution to the approximating problems
and derive associated optimality conditions. We show that the optimality conditions
can be rewritten as a purely primal or primal-dual system reminiscent of classical
interior-point methods. In Section 5, we provide a thorough analysis of the Newton
system for the continuous, i.e., function-space setting. This is followed by an asymp-
totic analysis of R, as p | 0 in Section 6, where we employ several results and ideas
from the theory of I'-convergence to finally demonstrate the convergence of minimiz-
ers as u | 0. Finally, in Section 7, we demonstrate the viability of the approach by
solving a model problem numerically.

2. Notation, Assumptions, and Preliminary Results.

2.1. Spaces of Random Variables. Let 2 be a non-empty set and F an as-
sociated o-algebra. Throughout the text, (2, F,IP) denotes a complete probability
space, where the set-function P : F — [0, 1] is a probability measure. Whenever it is
clear in context, we use “a.e.” and “a.a.” to denote “almost everywhere” and “almost
all”, respectively. Furthermore, we denote the expectation of some random variable
X :Q—Rby E[X] := [, X(w)dP(w).

We will make assumptions below that require the random quantities to have a cer-
tain degree of integrability. Therefore, we make use of Bochner spaces to characterize
the random quantities. We recall that the Bochner space LP(Q2, F,P; W) comprises all
strongly measurable functions from (€2, 7, P) into some Banach space W with p finite
absolute moments p € [1,00). L (2, F,P; W) is the space of P-essentially bounded
W-valued strongly measurable functions, cf. [25] for a full discussion. When endowed
with the corresponding norm given by:

1
0]l Lo, powy = E [l0]B]"7 for p € [1,00) or |[v]| Lo rpw) = 55 SUp [[v(w)lw
we

LP(Q, F,P; W) is a Banach space. As is commonly the case, we use the convention
L*(Q, F,P) = LP(Q, F,P;R),
whenever W = R. For readability, we will often use the simplifying notation
X :=LP(Q, F,P).

In addition, if p = 1, then we identify X* = (L}(Q, F,P))* with L>(Q, F,P).

2.2. General Spaces. We assume that the deterministic decision space Z and
solution space U are real reflexive Banach spaces. The associated feasible/admissible
set of decisions is denoted by Z,q4 C Z and is assumed to be nonempty, closed, and
convex. Given two real Banach spaces X and Y, we denote the space of bounded
linear operators from X into Y by £(X,Y"). Of course, if Y = R, then X* := L(X,R)
denotes the topological (continuous) dual space of X and (-,-)x~ x denotes the as-
sociated duality pairing. For some bounded linear operator A € £(X,Y’) we denote
by A* € L(Y™*, X*) the adjoint (dual, conjugate) operator of A. Strong convergence
(w.r.t. the norm topology) is denoted by “—”, whereas “—” denotes weak and “=”
weak™® convergence.
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2.3. Risk Measures. As mentioned in the introduction, we assume that the risk
measure R given in (1.2) is generated by a scalar regret (negative utility) function
v : R — R. This goes back to an idea of Ben-Tal and Teboulle [4, 5], see also
[39], in which the term optimized certainty equivalent (OCE) was used. We provide
the following result as a summary of the basic construction and properties of the
associated risk measure.

THEOREM 2.1. Let X := L'(Q, F,P) and let v : R — R be closed, convex and
increasing such that

(2.1) v(0)=0 and v(x)>zxVz#0.
For X € X, suppose that V(X) := E[v(X)] and define R : X — R by

R(X) := }Qﬂg{t +V(X —-1t)}

Then V : X — R is proper, closed, convex, and fulfills
V(X)>E[X] VX #0P-a.e. and klirn V(X)) -EXi]} =0 = klim E[X;] = 0.
—00 —00

The statistic, S(X) C R, given by

S(X) := ar;ggéin {t+ V(X —t)}

is a non-empty compact interval for any X € X. In addition, R : X — R is proper,
closed, convex, and satisfies

(2.2a) (Invariance on Constants) : R(C) = C for all C € R.

(2.2b)  (Risk Aversion) : R(X) > E[X] for all non-constant X € X.
(2.2c) (Translation Equivariance) : R(X +C) =R(X) + C for all C € R.
(2.2d)  (Monotonicity) : X < X'P-a.a. we Q= R(X) <R(X").

Proof. See [32, Section 2.4] and [32, Appendix] for a rigorous derivation in general
Lebesgue spaces. O

We will exploit the statement of Theorem 2.1 in our analysis of the log-barrier risk
measure. Note also that R in the previous theorem is a regular measure of risk in the
sense of Rockafellar and Uryasev and satisfies three of the four axioms of coherent
measures of risk. If, in addition, R is positively homogeneous, then it is a coherent
risk measure, cf. [3].

3. The Log-Barrier Risk Measure. Returning to the discussion leading up
to (1.5) in the introduction, we restrict our attention to R as defined in (1.2), which
we restate here for convenience. Let X € X' (assuming p = 1), then

R(X) = inf E[t + max{a; (X — t), az(X — )}].

Clearly, we can use the same transformation as in (1.4) and obtain

= > a;(X —t), P-aa. j .
R(X) teR{I&EGX{E[t+W]|W_aZ(X t), P-aa. we Q, i € {1,2}}

5
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This is then approximated by the log-barrier risk measure

2
Ru(X) = teRiI‘};eX{E[t W =S (W — (X =) + ¢} w0,
’ i=1
where
(3.1) C(p) = u(ln(%u) + ln(af_;aall,u) -2)€eR

is a constant shift needed to ensure that (2.1) holds. This ultimately leads to (1.5).
Next, we introduce the functional F, : X x X x R — R given by

Fu(X,Wit) := B[t + W — p In(W — a1 (X = 1)) — pp (W — ag(X — 1)) + ()]

PROPOSITION 3.1. For every p > 0 and any X € X, we have

e O WD) = R X0, B

where f,, : R xR xR — R s defined by
(3.2) fulz,w,t) :=t+w—pn(w—a(z—1t) — pIn(w —as(x —1t)) + ().
for (z,w,t) € R3.

Proof. We first observe that

(3.3) i FL(X. W) = inf inf, E[£,(X(). W().0).

Continuing, we will use the theory of normal integrands, cf. [40, Chap. 14], to prove
the assertion. To this aim, note that the space X = L'(Q, F,P) is decomposable in
the sense of [40, Def. 14.59] and, as a probability measure, P is o-finite. Next, given
some fixed X € X and ¢t € R, we claim that the function fu : ) x R — R defined by

fli('v w) = fM(X()’ w, t)
is a normal integrand in the sense of [40, Def. 14.27]. Indeed, the mapping
R? 3 (z,w) — fulz,w,t)

is lower semicontinuous and jointly convex (independently of w € Q). Furthermore,
int dom (f,,(+,-,t)) # 0 and the mapping Q@ > w — f,(z, w,t) is trivially measurable
for all w € R, as fu(x,w,t) is independent of w € Q. Hence, the mapping

QxR?3 (w,z,w) = fu(z,w,t)

is a normal integrand by [40, Proposition 14.39]. Moreover, the composition rule [40,
Prop. 14.45(c)] implies that f, is a normal integrand. Finally, letting

W= max{a1(X —t),a2(X — t),0} +1 € X,

we see that the critical components of ﬁ(, W (-)) remain bounded P-a.e. due to the
fact that

W—a;(X—t)>1and In(W —a;(X —t)) < max{a; (X —t),as(X —1),0} —a; (X —t).
6
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Hence, there exists W € X' such that Jo fu(, W())dIP(Q) < 00, and we can apply the
“interchangeability theorem” [40, Thm. 14.60] to derive

inf, B[, (X(). W ()] = it | fiw, W(w)dP)

Wex Wex
= [ int {0} 4P = Blint (X000
This shows the desired result together with (3.3). 0

In light of Proposition 3.1, we consider for each t € R, P-a.a. w € Q, and z = X (w)
the one-dimensional problem

?eiﬁ Ju(z,w,t),

where the unknown w stands for W(w). Due to the explicit structure of f,, we can
obtain a useful closed formula for the unique optimal solution w as a function of z, t.
As a result, we will obtain a new scalar regret (negative utility) function v,,.

PROPOSITION 3.2. Fiz u > 0, t € R, w € Q, and set v = X(w). The function
R > ww— fu(x,w,t) with f, defined in (3.2) has the unique minimizer

(3.4) w=wy(x—1t):=p+ (a1+a2)(IftH\/(‘;Z7‘“)2(964)2#;#2 )

Proof. Let ¢(-) := fu(x,-,t). Clearly, ¢ : R — R is finite, convex, and continu-
ously differentiable provided w > a;(z —t) (i € {1,2}), where

@l(w) =1- wfalu(zft) - wfazﬂ(wft)'

After some elementary computations, we see that the equation ¢’(w) = 0 has one
root given by w in (3.4); whereas the other root

g ((a1 +ag)(z —t) — /(az — a1)2(z — t)? —|—4p,2)

would violate the feasibility requirement that w > a;(x — t), i.e., the objective would
be equal to +00. The assertion follows. 0

In order to prove that R, is generated by the expectation quadrangle/as an
optimized certainty equivalent, we will need the following short technical lemma.

LEMMA 3.3. Let w: R — R be a given function and d € R a constant. Then the
function @ : R = R, @W(s) := w(s + d) — d induces the same risk measure as w.

Proof. Fix X € X and observe that

t=t—

inf {t + E[@(X — )]} = nf {t + Efw(X ~ 1 +d) —d]} "= Cinf {f + Elw(X — )]}

teR

PROPOSITION 3.4. For every p > 0 and any X € X, we have

Ro(X) = inf {t +Blu, (X )]},
where

(3.5) v,(s) = wu(s) — p In(w,(s) —ars) — p In(w,(s) — azs) + ¢(1)
and w,, is given by (3.4).
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Proof. By Proposition 3.1, we have

RulX) = el e Tl 10 = IR JuX 0w, 8]

Then using (3.4), we obtain
Ru(X) = inf EL(X (), W), )],
where for P-a.a. w € Q
(86) Waxa(w) = put 3 ((ar +a2)(X(w) — 1) + /a2 — a 2K (@) — 02 + 4122).

Substituting this formula into the previous relation yields the assertion. |

In our next result, we prove the necessary properties of the new scalar regret function
v, that allow us to apply the results of Subsection 2.3, along with those of Subsec-
tion 4.2 below, to R, and the associated optimization problems.

PROPOSITION 3.5. For any p > 0, the scalar regret function v, : R — R is twice
continuously differentiable, strictly convezx, strictly increasing. In addition, we have

(3.7) lvu(s) —vu(s")| <azls— |, Vs, s €R.

Proof. Let s € R. Using basic calculus techniques, one can show after some
computation, cf. [23], that v, € C?(R) with derivatives

w’ (s)—a w!, (s)—a
(38) ’U:L(S) = w&(s) —H w:(s)—alls —H w:(s)—a;s’
e plaz—ai)?
(39> UH(S) - 2/1\/(a2fa1)282+4#2+(a2*a1)252+4,u2’
where .
w;(s) — wtay | (az—a1)*s

2 2\/(a27a1)252+4p,2 ’
Therefore, v, is proper and, since vj,(s) > 0 for all s € R, v, is strictly convex.

Turning to monotonicity, since as > a; we have

lim w(s) = @te 2 al — g and lim o/, (s) = “tee 4 leecal o)
S——00 H() 2 2 1 s——+o0o ”() 2 2 2
Moreover,
az—as (az—a1)’s
w! (s)—ay 2 2/(az—a1)2s2+4u?
u _
TROET ——— — 0 (as s = F+o0).
w (az—a1)s \/(az—al) s2+4p
pt 3 + b}

As s — +00, the numerator tends to as — aj, but the denominator goes to +o0o. For
$ — —o00, the numerator becomes 0 and the denominator tends to p. An analogous

Wu(8) =02 rppic vields the limits

argument can be applied to the term TR OETE
"

: 1 . ’
(3.10) gl}r_ﬂoo UM(S) = Qi and slgi-noo UM(S) = Q9.

/
14

Consequently, since v}, is strictly increasing (vj; > 0), we have

(3.11) v, (R) = (a1,a2) C (0,00).

As a result, v, itself is strictly increasing. Combining these facts along with the

mean-value theorem yields (3.7). This completes the proof. O
8
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We may now prove the following essential corollary.

COROLLARY 3.6. For every p > 0, the log-barrier risk measure R, is proper,
closed, convex and satisfies properties (2.2a)-(2.2d). In addition, R, : X — R, i.e.
R, is finite-valued on L* (0, F,P) and therefore, subdifferentiable.

Proof. Let X € X (p =1). Then by (3.7) and the monotonicity of the expectation
we have

Ru(X) = inf {t+Efu, (X — ]} < E[ou(X) + 0,(0) — 0, (0)]
< E[0,(X) — 0, (0)]] + [0 (0)] < a2B[IX[] + [0, (0)] < +oc.

In order to apply Theorem 2.1, we recall from Lemma 3.3 that v,(s) can be replaced
by

(812)  Bu(s) = vuls 4 d(u) —d(p), d(n) = T € R,

Clearly, v,,(s) retains all the properties of v, that we proved in Proposition 3.5. It
remains to show that v, fulfills (2.1). One readily shows by a simple calculation, cf.
[23], that

(3.13) 9,(0) = 0 and ,(0) = 1.

Note that ((u) and the choice of d(u) ensure that v,(0) = 0. This and the strict
convexity of v, imply
Uu(s) > s for all s € R\ {0}.

The rest follows from Proposition 3.5 as an immediate consequence of Theorem 2.1.0

In order to obtain explicit optimality conditions suitable for the development of an
optimization algorithm, we derive an explicit formula for OR,. We start by ana-
lyzing the log-barrier regret function. Afterwards, we prove that R, is Hadamard
differentiable.

PROPOSITION 3.7. Let p > 0 and define the log-barrier regret functional V,, :
L"(Q,F,P) >R by
Vu(X) = E[vu(X)],

wherer € [1,00]. ThenV,, is Hadamard differentiable. If r > 1, then 'V, is continuously
(Fréchet) differentiable. In both cases, the associated gradient takes the form

(3.14) VWV, (X) = ’UI/L(X),

where v,,(X) is the superposition operator generated by the scalar function vj,.
Proof. The assertion follows a standard argument for differentiating integral func-

tionals. We briefly sketch the main points here. Let X, H € L'(92, F,P) and 7 > 0.

Then
V(X 4 7H) = V,(X) = E[0,(X +7H) — 0,(X)].

Now, for P-a.a. w € (2, we have the pointwise limit
T (0u(X + 7H)) (W) = (0,(X)) (@) = (v, (X)H) ().
In addition, it follows from (3.7) that

7 (v (X + 7H)) () = (X)) () | < az|H(w)| € L'(Q, F, P).
9
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381

382

Hence, V,, is (Géateaux) directionally differentiable. Furthermore, since for P-a.a. w €
Q, we have

(3.15) a1 < v, (X (w)) < ag,

V,,(X; H) is continuous and linear in H and therefore, V,, is Géateaux differentiable.
Due to local Lipschitz continuity, V), is Hadamard differentiable.

Finally, letting » > 1, we consider the superposition operator generated by vL. By
Proposition 3.5, UL is a Carathéodory function. Then, using (3.15), the superposition
operator generated by v, maps all of L"(Q2, F,P) into L>°(£2, F,P) and consequently
L*(Q, F,P), where 1/s + 1/r = 1. The continuity of VV,(X) = v, (X) follows from
Krasnoselskii’s theorem, see, e.g., [2]. Therefore, V, is continuously (Fréchet) differ-
entiable, see, e.g., [9, pp. 35-36]. O

We can now obtain a more explicit formula for the gradient of the log-barrier risk
measure.

PROPOSITION 3.8. Let pp > 0 and X = L'(Q,F,P). Then R, : X — R is
Hadamard differentiable with gradient

VRW(X) = v, (X = Su(X)) € L=(Q, F,P),
where S, (X) is the associated statistic, i.e.,

Su(X) = ar;gé%in {t + E[v,(X —t)]}.

Proof. By Corollary 3.6, R, is finite, closed, and convex and therefore, continu-
ous, see, e.g., [19, Chap. 1. Thm. 2.5] or [46, Prop. 6.6]. It follows that OR,(X) # 0
for all X € X. Next, fix X € & and select an arbitrary 9 € OR,(X). By definition,
we have

Ru(Y)—Ru(X)>EW(Y - X)], VY edi.

We can estimate the lefthand side of this inequality from above by using our knowledge
of the statistic S,(X). Consider the one-dimensional optimization problem

inf {pa(t) == Blt + va(X — 1))},

By Proposition 3.5, ¢,, is strictly convex and differentiable. Therefore, since S,,(X)
is a compact connected interval (cf. Theorem 2.1), it must be a singleton. It follows
that

ER(Y — X)] < 8u(X) + E[v, (Y — Su(X))] = (Su(X) + Efvu (X — Su(X))])
=E[v,(Y = Su(X)) — vu(X = Su(X))].

Setting Y = X 4+ 7H for some 7 > 0 and H € X', we now have
E[0H] < 7 Elo,(X + 7H — §,(X)) - 0,(X — 8,(X))]
Passing to the limit as 7 | 0 yields
E[YH] < E[v, (X — S,(X))H], VHEeX.

Since this holds for the entire space X', we have ¥ = v, (X — §,(X)). d
10
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Recall that by the Fenchel-Young inequality, ¥ € R, (X) if and only if R, (X) +
R} (¥) = E[YX], where R}, is the usual Fenchel conjugate of R,. In particular,
¥ € dom (R*). One can then show, cf. [32, Prop B.4] that ¢ = v} (X — S,(X)) €
L>(Q, F, P) fulfills

v, (X =8,(X)) 20 P-ae., Elv,(X-8,(X))]=1, E[v;(v,(X—-8,(X)))] < +oo.

This implies that 9 (the so-called risk indicator) is a probability density.

4. Existence and Optimality Conditions. In this section, we use the analysis
of R,, from the previous section to prove the existence of minimizers and derive explicit
optimality conditions.

4.1. Random Fields and Objective Functionals. As noted in the introduc-
tion, u = S(z) is the random field solution for some PDE or system of PDEs with
random inputs. It is essential that S, as a mapping from z into some Bochner space,
fulfills sufficient continuity and differentiability properties in order to guarantee exis-
tence of solutions to (1.1). As in [32], we make the following assumptions:

AssUMPTION 4.1 (Properties of the solution map).
1. S(z) is unique for all z € Zaq.
2. S(2): Q — U is strongly F-measurable for all z € Z,4.
3. There exist a monnegative increasing function p : [0,00) — [0,00) and a
nonnegative random variable C' € L1(Q, F,P) with q € [1, 00] satisfying

ISG)lv < Cop(ll2llz) P-ace. Yz € Zaa.

4. If z, = z in Zaq, then S(z,) = S(z) in U P-a.e.
5. There exists an open set V. C Z with Z,q C V such that the solution map
Voz—S(2):V— LYUQ, F,P;U) is continuously differentiable.

For readability, we will denote this “stochastic” state space by
U:=LiQ,F,PU),

where ¢ is from Assumption 4.1.3. Moreover, we note that the first three conditions
ensure S(z) € U for any decision z € Z,4. In fact, Assumptions 4.1.1.-4. imply that
S is weakly continuous in sense that

PR N S(zn) “ S(z).

These conditions will generally be enough to prove existence of minimizers (As. 4.1.1.-
4.) for (1.1) and derive optimality conditions (As. 4.1.5.) as discussed in [32]. Fur-
thermore, they can be readily verified for a wide variety of random PDEs, e.g., linear
elliptic PDE with random coefficients. The situation is potentially more involved for
nonlinear PDE, see e.g., [33] for a recent study.

Turning now to the objective function, we will assume that 7 is generated by a
parametrized function J : U x €2 — R. Recall that for some mapping u : Q@ — U, J
generates a nonlinear superposition operator

[T (W)](w) := J(u(w),w),

In order to prove existence of a solution and derive optimality conditions, we will need
the following assumptions.

11
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ASSUMPTION 4.2 (Properties of J : U x Q — R).
1. J is a Carathéodory function, i.e., J(-,w) is continuous for P-a.a. w € Q and
J(u,-) is measurable for allu € U.
2. If 1 < p,q < oo, then there exists a € LP(Q, F,P) with a > 0 P-a.e. and
¢ > 0 such that

(4.1) T (u,w)| < a(w) + c|u|Y? YueU.

If 1 <p< o and q = oo, then the uniform boundedness condition holds: for
all ¢ > 0 there exists v = vy(c) € LP(Q, F,P) such that

(4.2) |J(u,w)| < y(w) forP-a.a. we Q YueU, |ully <ec.

3. J(-,w) is convex for P-a.a. w € Q.
Note that Assumptions 4.2.1.-2. guarantee by Krasnoselskii’s theorem that 7 : U — X
is continuous under appropriate assumptions on p, ¢, see e.g., [2]. Together with As-
sumption 4.2.3., we can prove that J : U — X is Gateaux directionally differentiable,
[32, Thm. 3.9]. For further smoothness, we require at least local Lipschitz continuity
of J :U — X and more structure.

4.2. Existence and Optimality Theory. In this subsection, we briefly state
the necessary general existence and optimality results.

THEOREM 4.3. Let Assumptions 4.1 and /.2 hold. Moreover, suppose that R :
X — R is generated as in Theorem 2.1 and o : Z — R be proper, closed, and convex.
Finally, suppose that either Z,q is bounded or z — R(J(S(2))) + p(z) is radially
unbounded on Z,q, i.e., zi, € Zaq such that ||zik||lz — +oo implies R(T(S(zx))) +
p(zr) — +oo.
1. If either R is finite-valued on all of X or intdom (R) # 0, then (1.1) has an
optimal solution z*.
2. If, in addition, J : U — X is locally Lipschitz and @ is Gateauz directionally
differentiable, then there exists ¥* € OR(J(S(z*))) such that following first-
order optimality condition holds:

(4.3)  E[J'(S(z*);S'(z")(z = 2") 0]+ ¢ (2552 —2") >0 Vz € Za.

where OR(T(S(2*))) C X* is the usual subdifferential of R at J(S(2)).
Proof. See [32, Prop. 3.12, Prop. 3.13]. 0
4.3. Analysis of the Log-Barrier Optimization Problems.

THEOREM 4.4. Let Assumptions 4.1 and 4.2 hold and set X = LY(Q, F,P). Fur-
thermore, suppose that p : Z — R is be proper, closed, and convex. Then for every
w > 0, the optimization problem

(4.4) min R, (J(5(2))) + o(2)

2€Zaa
admits a solution 2* € Z,q provided either Z,q is bounded or z — R, (T (S(2))) +p(z)
is radially unbounded on Z,q.
Proof. In light of Corollary 3.6, this is a direct consequence of Theorem 4.3. 0O

Similarly, we can also leverage the results of Section 3 to derive optimality con-
ditions.

12
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THEOREM 4.5. Let Assumptions 4.1 and /.2 hold, set X = L*(Q, F,P), and fir
> 0. Furthermore, suppose that ¢ : Z — R is proper, closed, and conver and
assume an optimal solution z* to (4.4) exists. If J : U — X s locally Lipschitz and
p is Gdteaur directionally differentiable, then there exists t* € R such that

(4.5a)
E[T'(S(2%); §'(2*)(z — 2%)) v, (T (S(2%)) = t")] + /(2552 = 2*) 20 Vz € Zuq,
(4.5b) B[, (7(S(=*)) — %)) = 1.

Proof. According to Theorem 4.3, there exists ¥* € OR(J(S(z*))) such that
E[J'(S(z%); S'(z*)(z — 2")) 0" + @' (%52 — 2") > 0, Vz € Z,a.
Moreover, by Proposition 3.8,
0" = v, (T(S(27)) = 8u(T(5(27))))

and
Su(J(8(2")) = argmin {t + E[v, (T (S(z")) — )]}

teR

The (unique) statistic S,(J(S(z*)) can be equivalently described by the first-order
necessary and sufficient conditions for this one-dimensional optimization problem,
which are given by (4.5b). The rest follows by substitution with t* = S, (J(S(z*)).0

The conditions (4.5) are rather abstract. In order to develop a viable, i.e., imple-
mentable, numerical optimization algorithm, we need to “unfold” these conditions
to obtain a more amenable optimality system. In the sequel, we assume, in addi-
tion to the hypotheses of Theorem 4.5, that J and p admit gradients V.7 and Vg,
respectively, and that Z is a real Hilbert space. Furthermore, we set

9(2) == (T 0 5)(2) and ¢'(2) = J'(5(2)) 0 §'(2).
Then by substitution into (4.5), we have

(B, (9(=*) — )9 ()] + ¢/ ("), 2 = ) 20 V2 € Zaa.

Since Z is assumed to be a Hilbert space and Z,4 is a nonempty, closed, and convex
set, the previous variational inequality can be rewritten as

(4.6) 2" =Projz (2" — c(Elvy,(g(z*) = t*)Vg(2")] + Ve(z"), ¢>0,

where Vg(z*) = S§'(2*)*VJ(S(z*)) and Vp(z*) are the Riesz representations of the
derivatives ¢'(z*) and p'(z*) in Z. Continuing, if Z,q = Z, then we obtain the usual
gradient equation (in Z*):

(4.7) Elvy,(9(z*) = t*)Vg(2")] + Vi(2") = 0.

Next, we recall that

(48)  Wyieoyr =+ (a1 +a2)(9(=") — 1) + V/{az —a)2(g(z") — )2 + 442)

is the (pointwise a.e. unique) solution to

1- ; =0,

2 _ 2
w—ai(g(z*)—t*) w—az(g(z*)—t*
13
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see (3.6). Thus, rather than using the explicit form for Wy(.«) .+ we replace it by
(re)introducing the variable W € X and adding the equatlon

(4.9) 1

123 _ % _ .
W*—al(g(z*)—t*) W*—ag(g(z*)—t*) - 0 ]P a.e.

to the optimality system. Note that one can derive the following pointwise inequality:
(4.10) W* —a;(g(z*) — %) > p.

We can now simplify the risk indicator formula. Indeed, given W*, we have

* * * * WL( (z*)—t*)—a w;, (g(z*)—t")—a
v(g(z") = 1) = Wl (9(z") = 1) = b e ) — W ()

/

= w(9(z") ~ ) (1 - =i — Wt

+l’l’ (W*—al(gl(z*)—t*) + W*—az(gz(z*)—t*)>

= i (e + )

This leads to the following result.

PROPOSITION 4.6. In addition to the hypotheses of Theorem 4.5, assume that Z
is a real Hilbert space and J and o admit gradients V.J and Vp, respectively. Then
there exist t* € R, W* € X such that

(4.11a) z*—Pronad(z*—c( [ Z W*_aav(g((;) = } + Vp(z ))) =0, ¢>0,

1 —
(411b) 12 Z W —1= O ]P’—a.e.,
i=1,2
(411C) ME[Z m} —1:O
1=1,2
Proof. This is a direct result of the preceeding discussion. 0

As an alternative to (4.11), we can also consider the equivalent primal dual optimality
system by introducing slack variables v; given by v; = W In light of
(4.10), we have v; € L>*(Q, F,P) and v; > 0 P-a.e. as would perhaps be expected
since U* € X* = L>(Q, F,P).

PROPOSITION 4.7. In addition to the hypotheses of Theorem 4.5, assume that Z
is a real Hilbert space and that J and @ admit gradients V.J and Vg, respectively.
Then there exist t* € R, W* € X, v} € X* (i =1,2) such that

(4.12a) 2" —Projz , (2" — c(E[(a1v] + azv3)Vg(2¥)] + V() =0, ¢>0,
(4.12b) (vy+v3)—1=0 P-ae.,
(4.12¢) E[(a1v7 4+ ag3)] — 1 =0,

(4.12d) vi(W* —a;(g(z*) —t7) = p  P-ae..

5. Newton System. Let Z,q = Z and set X = L>°(Q, F,P). Assume that both
g:Z — X and p: Z — R are twice continuously differentiable. (4.12) with ¢ =1

14
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530

560

(5.1a) F(z,t,W,v1,v9) := E[(a1vy + agve)Vg(2)] + Vp(2) =0 € Z,
(5.1b) F2(z,t, W,v1,10) := E[(a1v1 + agrn)] — 1 =0 € R,
(5.1c) F3(z,t, Wy, 1) = (11 +10) —1 =0 € X,
(5.1d) FYz,t, Wyv1, 1) := (W —ay(g(z) —=t)) —p=0€ X,
(5.1e) Fo(z,t, W,v1,v9) i= vo(W —ag(g(z) —t) —p=0€ X.

From the above considerations we have W* € X and W* — a;(g(z*) —t*) > p a.s. as
well as vf € X and 0 < \|W*—ai(gl(tz*)—t*)|\x <yr <1as. dueto (5.1d) and (5.1e)
for the solution (2*,t*, W*, v}, %) of this system. Therefore, it makes sense to keep
Vi =W —a;(g(z) — t) and v; uniformly positive during the solution process.

LEMMA 5.1. The function F: ZXR XX XX XX - ZXRXxX xX xX defined
in (5.1) is continuously differentiable. Leaving off (z,t, W, v1,v5), we have

Fls =E[(a1n + a2n)V2g(2)s] + VZp(2)s € Z,

Flé6, = Ela6,Vy(z)] € Z, Fl o, = Elax6:Vy(z)] € Z,
F3161 = E[aléﬂ € R, F3252 = E[a262] € R,
F5’151 = 4 € X, F52(52 = € X,
Fls = —a1(Vyg(z),8)zv1 € X, Fs = —ax(Vg(z),s)zvs € X,
Ft47 = aitr € X, FET = a9ty € X,
F!S = unSeaX, FPS = mnSeX,
F;‘lél = (W — a1(g(z) — t))51 e X, FIZ(SQ = (W — ag(g(z) — t))(SQ e X,

and the remaining derivatives are zero.

Proof. Note that the pointwise multiplication operator X x X 5 (V,W) — VIV ¢
X is continuously differentiable and its derivative w.r.t. V is represented by W and
vice versa. Applying the chain rule yields the desired result. 0
We now write V2h(z,v1,v2) = E [(a1v1 + a2r2)V3g(2)] + VZp(2). With the com-
puted derivatives, the Newton equation reads

V2h(z,v1,19) 0 0 Ea1Vyg(z)] ElaaVg(z)] s

0 0 0 Ela;-] Elas‘]

0 0 0 1 1 S|=-F
—a1v1(Vy(z), )z a1 Vi 0 51
—az15(Vg(2), )z asv2 1o 0 Va O

As long as v; is uniformly positive a.s., i.e., v, 1 X, we can multiply the fourth line
by —v; L pointwisely, the fifth line by =2 ! "and multiply the second and third one
by —1 to obtain the equivalent symmetric system

(5.2)
V2h(z,w1,v2) 0 0 Ela1Vg(2)] ElaaVg(z)] s —E[(a1v1+a202)Vg(2)]-V(z)
0 0 0 —Eai-] —E[as] b Elaivi+agva]—1
0 0 0 —I —I S — (v1+rv2)—1
a1(V9(2),)z —ar ~I —r 'V 0 3 (W—ax(9()=t) = vy *
a2(Vg(2), )z —az —1I 0 —vy 'V (W —az2(g(z)—t))—pvy "
15
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LEMMA 5.2. Letv; € X and V; = W —a;(g(z) —t) € X be uniformly positive for
1 € {1,2}. If the operator

V2h(z,v1,10) = E [(a1v1 + as1n)V?g(2)] + Vp(2) 1 Z — Z

is coercive, the Newton operator defined in (5.2) has a bounded inverse.

Proof. We apply the bounded inverse theorem. Since v, 1V, € &, the operator is
linear and bounded as a map from Z xR x X x X x X to itself. Therefore, it is sufficient
to show that it is bijective. Consider the Newton equation with general right-hand side
(Fay Tt "Wy Ty Ty) € ZXR XX x X x X. Since T := ViVi_l € X by assumption, the
last two lines can be uniquely solved for ¢; = —T;r,, + a;T;(Vg(2), )z — a;7T; — TS,
respectively, given (s, 7,.S). This yields the reduced, symmetric Newton system

* —]E[(a%Tl—i-ang)Vg(z)] —E[(a1Ti+a2T2)Vyg(z)-] s
<E[(aleJragTz)(Vg(z)v')Z] (aTE[T1]+a3E[T:]) E[(a1T1+a2T2) ] > (g.)
—(a1T14a2T2)(Vg(z),)z a1T1+axTs T1+4T>

5.3

( ) 'r‘er]E[(alTl’l‘Vl +G2T2TV2)V9(Z)] Tz

= re—E[a1Tir,, |-ElazTary,] = Pt
rw —Tiryy =Tary, w

with « = V2h(z,v1,10) +E[(a3T1 +a3T%)(Vg(2), ) zVg(2)]. T; are uniformly positive.
Hence, the third row can be solved for

S = (T + Tg)fl(rw —Tyr,, —Tory, + (a1 + ax12)(Vg(2),8)z — 17Ty — angQ).

This yields the further reduced, symmetric system
(5.4)

k11 *k12) (S _ (szE[(alTl+a2Tz)(T1+T2)—1(rwmel szruz)Vg(z)]) (T
%91 %99 T Pe—E[(a1Th+a2T2)(Th+T2) " (rw —Tiry, —T2ry,)] ’ Tt
with

x11 = V2h(z,v1,10) + E[(a2Ty + a3T3)(Vg(2), ) zVg(2)]
—El(a1Th + asT2)*(Th + T2) "' (Vg(2), ) zVg(2)]
= V2h(z,v1,12) + (a2 — a1)’E[U(Vg(2),-) zVg(2)],
12 = —E[(aiTi + a3T2)Vg(2)] + E[(a1T1 + a2To)*(Ty + To) "' Vg(2)]
= —(az — a1)’E[UVg(2)],
*91 = —(ag — a1)’E[U(Vy(2),")z]
%90 = (aTE[T1] + a3E[T3]) — E[(a1T1 + a2T2)*(Th + T2) '] = (a2 — a1)*E[U],

where U := Ty To(Ty + To) ™' = (T '+ T571) =2 = (v Vi + 15 'V5) ' This function
is uniformly positive by assumption and therefore x99 > 0 so that the system can be
solved for

7= (ag — a1) *E[U] ! (F¢ + (az — a1)’E[U(Vy(z), s)z])-

This gives the equation

V2h(z,v1,12)s + (ag — a1)*E[U(Vg(2),5) 2V g(2)]

(5.5) — (az — a1)’E[U] " E[U(Vy(2), 5) 2] E[UVg(2)]
=7, + E[U]'E[UVg(2)] (7 + (a2 — a1)*E[U(Vg(2),5)z])
16

This manuscript is for review purposes only.



592 for the control step s. Let now Ey[X] := E[U]7'E[U X] be the expectation w.r.t. the
593 probability measure induced by the random variable E[U]~'U. With this definition,
594  the left-hand side operator applied to s is

505 V2h(z,01,10)8 + (as — ay)2E[U] (]EU[(Vg(z), $)2Vg(2)] — Ev[(Va(2), $) 7] EU[Vg(z)])
506 = V2h(z,v1,12)s + (az — a1)*E[U] Covy[(Vg(2), 8) 2, Vg(2)]. |
598 Taking the Z inner product of this quantity and s yields

500 (V2h(z,v1, )8, 8) z-+(az—ar ) *E[U] Vary [(Vg(2), ) 7] = (V2h(z,v1,10)5,8) 7 = 7|15l

600 for some v > 0 by assumption. Hence, (5.5) has a unique solution s, from which we
601 can compute the unique solution (s, T, S, d1,0d2) of the full Newton system from the
602 above considerations. ]

603 REMARK 5.3. If v1 and vy solve (5.1d) and (5.1e), respectively, we have T; =
604 (W — a;(g(z) — 2))"2. Inserting this into the reduced Newton system (5.3) yields
5 exactly the barrier-Newton system for the reduced version of (5.1), i.e., the one where
606 (5.1d) are (5.1e) solved for v; and the result is inserted into the remaining equations.
607 Analogously, we can additionally solve (5.1¢) for W using (4.8) and reduce the system
608 further. The Newton equation for this system is then of the form (5.4).

609 REMARK 5.4. The assumptions in Lemma 5.2 are very natural, at least for convex
610 optimal control problems: The uniform positivity of the variables is ensured during the
611 algorithm. If V2g(2) is positive (semidefinite) a.s. (e.g., if g is the convex reduced

- &

612 tracking term) and V2p(z) is coercive (e.g., if p(z) = $1z(|% ), the operator is coercive.

613 6. I'-Convergence of R, to R. In order to argue that solutions of the approx-
614 imating optimization problems converge to a solution of the original risk-averse opti-
615 mization problem, we make use of several techniques from the theory of I'-convergence,
616 see, e.g., [15]. We recall that a sequence of functionals {¢x} on a topological space

617 X T-converges to a functional ¢ : X — R, denoted by ¢y, 5 ¢ provided the following
618 two conditions hold:

619 1. Vz € X,V {zx} C X such that zx — 2 we have liminfy @ (zr) > ¢(z).

620 2. Vx € X, 3{x}} such that z;, — = and lim sup,, pr(zr) < o(z).

621  Note the theory is sufficiently general so that we may use rather coarse topologies
622 on the spaces of random variables if necessary. We make the standing assumptions
623 throughout that X is a topological vector space with the property that

624 X c LY(Q, F,P).

625 In order to prove that R, Ly R we use a result that combines several statements and
626 remarks from [15]. For convenience, we state this here:

627 PROPOSITION 6.1. Let X be a topological space and suppose that {Fy} with Fy, :
628 X — R is a sequence of lower-semicontinuous functionals. If {Fy} is an increasing
629  sequence of functionals that converges pointwise to F', then F' is lower-semicontinuous

630 and F}, Lr
631 Proof. This follows from [15, Prop. 5.4] as pointed out in [15, Remark 5.5]. 0O

632 We will need the following technical lemma concerning the smoothed scalar regret
633 functions. As argued above, we use the shifted smoothed scalar regret function v, to
634 generate R,.
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LEMMA 6.2. Let 4 >0 and v, : R — R be defined as in (3.12), (3.5) by U,(s) :=

vu(s+d(p)) — d(p) with d(p) = %u. Then the following properties hold:

1. U,(s) < w(s) for all s € R.

2. lim, o+ Uu(s) = v(s) for all s € R.

3. |0u(s) —Uu(s")] < ag|s —&| forall s,s" € R.

4. For all p,v > 0 such that p < v we have U,(s) < v,(s) for all s € R.

Proof. See Appendix A. ]
This immediately gives us the following corollary.

COROLLARY 6.3. Under the standing assumptions, {Ru}u>0 18 an increasing se-
quence of functionals as p | 0, i.e., for every X € X we have R,(X) < R,(X)
provided 0 < p < 1.

Proof. According to Lemma 6.2.4, for any random variable X € X, every t € R,
and P-a.a. w € Q) we have

t+ 0, (X (w) —t) <t +70,(X(w) —1)
provided 0 < p < 7. Consequently, we obtain

(6.1) Ry(X) = inf ¢ +E[5, (X — )] < inf t + E[5,(X — )] = Ru(X) (0 < <)

Hence, {R,} is an increasing sequence of functionals. 0

Continuing, for any X € X and p > 0, we define the function hff :R—= R by

WX () = t + E[B,(X —t)].

LEMMA 6.4. In addition to the standing assumptions, we consider {hff}

for some fized C > 0 independent of X. Then hff 5onX given by

r€(0,C]

X (t) =t + E[v(X —1t)).

and {hf}ye(o ) s equi-coercive, i.e., for all r € R there exists a compact subset
K, CR such that {t e R: hX(t) <r} C K, for all p € (0,C].

REMARK 6.5. By [15, Proposition 7.7], it suffices to prove the existence of some

coercive lower semicontinuous function ¥ : R — R such that hff > U for every
we (0,C].

Proof. As seen in the proof of Corollary 6.3, {hff }HG 0,C] is an increasing class
of functionals as p J 0. To see that hff converges pointwise to hX, we note that by
Lemma 6.2.2 we have v, (X (w)—t) — v(X(w)—t) as p | 0. Furthermore, Lemma 6.2.3,
we have

[0u(X (@) = 1) = 0u(0)] = [0u(X (w) = )] < ag X (w) — 1|
Therefore, applying Lebesgue’s dominated convergence theorem, we see that h/}f con-

verges to hX pointwise in t. Since v is Lipschitz with constant as, we can readily
show that h¥X is Lipschitz with constant 1 + as and therefore, lower semicontinuous.

Then by Proposition 6.1, hff 51X as wd0.
18
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Finally, we prove equi-coercivity by demonstrating the existence of a coercive mi-
norant as mentioned in Remark 6.5 above. In the argument below, let € € (0, min{as —
1,1—a1}). Asnoted in the proof of Proposition 3.5 and used in the proof of Lemma 6.2,
U is strictly monotonically increasing and for s > 0, we have U, (s) € (1, az). There-
fore, by continuity of ¥, and (3.10), there exists some so > 0 such that U (s2) =
az — € > 1. Similarly, we can find some s; < 0, such that T (s1) = a1 +€ < 1. By
convexity, differentiability, and montonicity in p of v, we have for any p € (0,CJ:

Uu(s) > ve(s) > ve(s1) + (a1 +€)(s—s1) VseR,
Uu(s) > ve(s) > Ve(s2) + (a2 —€)(s —s2) VseR.

Therefore, it holds that

t+0,(X(w) —t) >
t +max{(a; + €)((X(w) — t) — s1) + Vc(s1), (a2 — €)((X(w) — t) — $2) + D (s2) },

independently of w. Consequently, we have

hff(t) > max{(1 — (a1 + €))t + Vc(s1) + (a1 + €)(E[X] — s1),
(1+€e—az)t+0c(s2) + (a2 — €)(E[X] — s2)}.

Hence, for |t| — oo we have hff (t) — +o0. The assertion follows. |

Finally, we may combine the results above to prove the main variational conver-
gence result.

THEOREM 6.6. Under the assumptions of Lemma 6.4, we have R, LR

Proof. By Corollary 6.3, {R,} is increasing as p J 0. Moreover, by [15, Thm.
7.8], the I'-convergence of hff to hX, the equi-coercivity of {hff }, and the definition
of the risk measures R, R, yields the following relation

. . _ X — Yim b'e 1
R(X) 7%2kat+E[v(X t)] %Ielngh (t) Bﬁ%%&h“ (t) B%Ru(X).

Hence, R,, —+ R pointwise. The assertion then follows from Proposition 6.1. ]

In light of Theorem 6.6, we can now prove the convergence of approximating
minimizers.

THEOREM 6.7. Let Assumptions 4.1 and 4.2 hold and set X = LY(Q, F,P). Fur-
thermore, suppose that o : Z — R 1is proper, closed, and convex and S is com-
pletely continuous. For any sequence py | 0, suppose that z, minimizes f,, (z) :=
Ry (T (S(2))) + p(z) over Z,q. Then any weak accumlation point of {zx} minimizes
f(2) :=R(T(S(2))) + p(z) over Zaq.

Proof. As argued in the proof of Theorem 6.6, R, converges pointwise to K.
Moreover, by assumption F(z) := J(S(z)) is completely continuous. Fixing an arbi-
trary k € N, we have

Ry (F(2)) + 9(2) = Ry (F(21)) + 9(2)

for all 2 € Z,q. In light of the complete continuity of F, if 2z, — 2* in Z, then
F(zg;) — F(2*) in X. Therefore, it follows from the pointwise and I'-convergence of
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R, to R along with the weak lower-semicontinuity of p that:
R(F(2)) + p(2) = Tm Ry, (F(2)) + p(z) > liminf Ry, [F(a1,)] + pl21,)
> RIF(Z")] + p(z7)

for any z € Z,q, as was to be shown. 0

REMARK 6.8. The complete continuity of S is often guaranteed by the fact that
Z is a more regqular function space that embeds compactly into the image space of
the differential operator. For instance, Z = L*(D) embeds compactly into H=1(D).
Moreover, the existence of weak accumulation points of sequences of solutions can
typically be obtained by either the coercivity of g or the boundedness of the set Z,q.
Since these are often the situations encountered in PDE-constrained optimization, the
additional data assumptions in Theorem 6.7 are arguably mild. In the event that S is
not completely continuous, one can still obtain the above result when more structure
of J is available, e.g., when J is convex with respect to the partial order on X.

REMARK 6.9. Theorem 6.7 makes no assumptions about the convexity of the op-
timization problems. However, it is clear that in the mon-convex case, the previous
results guarantees a certain consistency of the approximation in terms of global so-
lutions only, which may be computationally very difficult to obtain. For convergence
of stationary points in the context of a variational smoothing technique for reqular
measures of risk, we refer the reader to [31].

7. Implementation and Numerical Results. We consider the optimal con-
trol of an elliptic PDE with uncertain coefficients. For this purpose, let D C R™ be a
bounded Lipschitz domain. Let k € L>°(D x ) be an uncertain coefficient function,
which fulfils £ < k(z,w) < K for a.a. (z,w) € Dx Q with 0 < k <K < co. We
consider the PDE

(7.1) A(w)u(w) = Bz,

where u(w) € Hi(D) is the state, z € L?(D) = Z is the control, and
A(w) : HY(D) - H (D), (A(w)u, v) g-1(py, a1 (D) = / k(z,w)Vu - Vodz
D
B: L*(D) = H (D), (Bz,v) y-1(p),ui(p) ::/ zv da.
D

Under the assumption on &, A(w) is uniformly elliptic and (7.1) has a unique solution
S(2)(w) = A(w) !Bz for a.a. w € Q. In particular, we have S(z) € L>(Q; Hi (D)).
Inserting it into a tracking functional, we have

9(2)(w) = 3[168(2) (W) = dllZ2(p);

with the embedding ¢ : H}(D) < L?(D) and the desired state § € L*(D). We
conclude that g(z) € L>(2) so that the theory from section 5 is applicable. We let
v > 0 and set p(z) = 3||z[|%. Therefore, since g is convex, Lemma 5.2 can be applied,
see Remark 5.4.

We compute the derivatives of g by the adjoint approach and discretize the prob-
lem by linear finite elements (for D) and Monte Carlo (for Q). To speed up the
evaluation of the samples of ¢ and Vg, we use a rather exact surrogate model in

20

This manuscript is for review purposes only.



(<) N2 BTSNV

ot ot ot Ut Ot

J

ot
oo

IS IS TS BEE JRPS IR |

ot
©

(=2}

which the state and adjoint equation are solved by a polynomial chaos discretization
in tensor product form with a suitable low-rank tensor solver for the discretized sys-
tem, see [24]. The objective function and its gradient are computed using efficient
low-rank tensor calculus. The required quantities are then sampled from the tensors
in parallel. The remaining computations are done with the sampled quantities. We
approximate the Hessian by the reference operator: V2g(z)(w) ~ V2¢(z)(@), where
@ = [wdP(w).

We initialize the algorithm with the risk-neutral control 2°, i.e., the solution of
(1.1) using R = E, which is computed by a Newton-CG method using low-rank tensor
computations as in [24]. Additonally, we choose to = E[g(2")], o > p > 0 (o = 10
in our tests), and compute Wy, 1, 1§ from (5.1c), (5.1d), (5.1e). In each iteration
the Newton step that solves (5.2) is computed approximately. In our experiments, we
found that solving the reduced version (5.4) by CG yields the best computing time and
most accurate results. We stopped the CG iteration whenever the relative residual
fell below 10~2; using 10~® yielded only slight decreases in the overall iteration counts
but actually required more CPU time. The variables z and t are updated using the
Newton steps, and the updated auxiliary variables W, vy, and v are computed so that
they solve (5.1¢), (5.1d), (5.1e), which ensures uniform positivity. Additionally, this
procedure is equivalent to applying Newton’s method to a reduced problem, namely

amin 0+ Blu (602) 0] + 9(2),
see Remark 5.3. We update pg+1 = max{piac ik, o}, with pigac € (0,1) (tifac = 0.5 in
our tests). The algorithm is stopped if pp = p and the norm of the optimality system
residual is below 1074,

We set Q = (—1,1)%, d € N, equipped with the uniform distribution, D =
(-1,1)? ¢ R?, and k(z,w) = 1 + ijl winilp,(x) with n; € (0,1) and the sub-
domains D; C D covering the domain D. More concretely, the D; are vertical strips
of the same size and 7; = Ny + %(nmax — Nmin), 1-€., the deviation in the coefficient
increases from left to right. In our tests, we have d = 4, Nuin = 0.4, and Npax = 0.7.
Our implementation could be easily adapted for larger d, which would only result
in longer runtimes for the tensor computations and sampling. The desired state is
4(x) =1, and we have 16641 FE nodes and 20000 Monte Carlo samples.

We perform different tests, in which we vary one of the parameters p (log-barrier
parameter), 5 (quantile parameter), and A (convex combination paramter). We start
with ¢ € {0.1,0.01,0.001}, 8 = 0.95, and A = 1.0 to investigate the influence of the
log-barrier parameter in this setting. Since the difference in the resulting cumulative
distribution functions (CDFs) of the random variable objective g(z*)+@(z*) obtained
with g = 0.01 and g = 0.001 is hardly recognizable, we proceed with p = 0.001 in the
following tests and do not decrease the log-barrier parameter further.

Figure 1 shows the CDFs of g(z*)(-) for different values of 8 with A = 1.0 and
1 =0.001, i.e., we minimize a smoothed version of CVaRg. In this plot, the expected
value is marked by “%”, CVaRg 5 and CVaRg g by “+”, and CVaRg g and CVaRg 95
by “x”. As expected, the cheaper deterministic and risk-neutral controls yield better
a-quantiles for a < 0.75. However, the risk-averse controls clearly dominate for higher
values of « relating to the tail. Thus, g(z*)(-) in the risk-averse cases is expected to
be markedly smaller than the risk-neutral/deterministic for tail events.

Finally, Table 1 shows the number of iterations, computing time, and time spent
for solving PDEs with a low-rank tensor method, sampling from tensors in parallel,
and solution of the Newton system as well as the required CG iterations. Since we
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5 =095\ =100, p = 0.001)|

)
6= 080, A = 1.00, i = 0.001)
verse control (6 = 0.50, A = 1.00, i = 0.001)

0.55 0.6 0.65 0.7 0.75

Fig. 1: Cumulative distribution function of the random variable objective function
for different optimal controls with 8 € {0.95,0.9,0.8,0.5}.

B (CVaR quantile parameter): 0.5 0.8 0.9 0.95
number of iterations (updates of the initial control): 17 18 18 31
computing time (total, in minutes): 8.9 9.4 9.3 16.1
time spent for low-rank tensor computations: 46.5% 45.9% 46.2% 47.2%
time spent for sampling from low-rank tensors: 47.0% 48.6% 47.7% 46.7%
time spent for solution of Newton system: 54%  4.4% 5.0% 5.0%
average number of CG iterations (Newton system): 2.9 1.7 1.9 2.0

Table 1: Computing times and statistics for different values of S.

are always solving similar PDEs, similar tensor ranks are sufficient for the desired
accuracy and the amount of time spent for the low-rank tensor computations and
sampling is rather the same for all tested values of 5. Furthermore, the CG method
for solving the Newton system performs always comparably well. The total number of
iterations is only increased in the case § = 0.95. Here, the constant approximation of
the Hessian V2g(z) in V2h(z, vy, v2) (see Lemma 5.2) seems to yield worse directions
so that reaching the region of fast convergence is harder.
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Appendix A. Proof of Lemma 6.2.

Proof. Statement 3. follows immediately from (3.7).

For 1., we start by noting that v(0) = 0 = v,(0) and v,,(0) = 1, see (3.13).

Moreover, for s > 0, we have v/,(s) € (1,a2), see the derivation of (3.11). Therefore,

m

Uu(s) = /0 0, (1)dT < ags = v(s).
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This follows analogously for the case when s < 0, using in part the fact that v),(s) €
(CLl, 1)
In order to prove 2., we need several arguments. We recall that

w(s) = p+ g(ar + az)s + 3/ (ag — ar)2s® + 4
and observe that

lim w,(s) = (a1 + a2)s + |as — a1 |s| = max{a; s, ass}.
pu—0t

follows from a; < ag and considering s < 0 and s > 0 separately. Furthermore, we
consider the limit lim,,_,o+ p - In(w,(s) — a1s). We use

lim w,(s) — a1s = 3(az — a1)s + 3|az — a1] |s| = (a2 — a1) max{0, s}.

n—0+
For s > 0 it follows that lim, o+ i - In(w,(s) —a1s) = 0. In the case s = 0, we have
lim, o+ g - In(wy(s) —ars) = lim, o+ g - In(2p) = 0. For s < 0 we get

#lggg o In(wy(s) — as)

: as—a 2
= lim o dn(p o S5t + 3las = anllsl + Loy + o(w?) =
— i u2 2 _
= Him, In(p+ o +o(w?) =0

Summarizing, we have lim,_,o+ g - In(w,(s) —ays) = 0 for all s. Analogously, it
follows that lim,, o+ g - In(w,(s) — azs) = 0.

Next, we see that

Jim ¢(u) = T p(In(E=3p) +In(F50m) —2) =0

holds. Finally, we have lim,,_,+ v,(s) = v(s) for all s € R and hence lim,,_,+ U, (s) =
v(s) as well due to d(u) — 0 as p — 0.

In order to prove 4., we investigate the sign properties of the derivatives of v, as
a function of p > 0 for fixed s € R. We start by observing that

Opwy(s) dpw,

8#’1)#(8) = 8#11)# (s)—ln(wﬂ (S)_als)_‘u m—ln(w#(s)—aﬁ)—u W_(‘ZZS"‘CI(N),

where 9w, (s) = 1+ ———2mrms and ¢'(u) = (=3 0) + In($554). Next,
writing 8 = az —ay > 0,7 = /B22 + 4% > 0 and ay = 252 o = =57 we
have

wy(s) —a1s = p+ oy,

u(

wy(s) —ags = p+ o,

(1(5) — a15) (1w (5) — 328) = (s + ) (1 a-) = o211+ ),
Opwy(s) = 2"%

By substitution, the derivative of v,, becomes

_ 2pt +2 +2 2 2
Ouvu(s) = 25 — psgt2s — et — In(p(2p+ ) + (=)

_ 1@’ —p(r+20) Cuta_tay) | ln(( 524 )

- y(ptoy)(pta-) 1—a1)(a2—1)(2p+y)

—In( (az—a1)*s )
(1—a1)(az—1) <2u+\ / (az—a1)232+4u2)
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Now consider v,(s) = v,(s + d(p)) — d(p). Then,
Oy0u(s) = v (s + d(p))d' (1) + Ouvp(s + d(p)) — d'(p),

w;t( )—a ' (s)—a
where v}, (s) = w},(s) —p w“(ss)ialls — 5:(5)7@25

B g
/ _ ai+tas B%s 272y T 27 2y
Uu(s) =2 T Pty Hto—

_ ait B B(_ 1 B 1 1
- a12a2 + TS s (§(H+a+ - H+a )+ S(M+a+ + Hto— ))

— ai1taz + 22 __ B a——ay + ﬁ s 2pta_foay — a1+a2 + B s
2 2'y 2 p(2p+7) 2y u(2pt+) 4p+2y

with wy,(s) = C“"’T“Z—i—g—:s We simplify

Now, writing § = s +d(u), ¥ = /5282 +4p?, pr=1—a; >0,and po =as —1>0

so that d(p) = ppllp’fu =: Ky, we get

~ _ [ aita 62
0uu(s) = (252 + s — 1)+ ()

2
— Kk + ) + hl(%)
2 <p2 P1 2u+7 012 (2M+’3’)

We compute

b 000 =31+ ) )

(A1) Nﬁnfooa”v”() 2\ p1+2+ B2K2+4 o prpz(2++/B?K2+4)
=5 (2= ;1 + Z522) 4 1n(1) =0,

We have used that 8 = p; + p2 and thus

24 VBRE +4 =2+ \/(p1+p2)2(p12—§2)2+4pfp3 —g pites _ 82

PIP3 p1p2 p1p2”

The second derivative is

82 T,(s) = & (2u+7)B°r=B5(24+7") | p1p2(2u+7) p1p2(21+7)B°—B1p1p2 (247)

2 (2u+79)? B2 p1r3(2p+7)?
= CuNBR B34 )k | (2ut7)—p(2+7)
2(2p+79)? pr(2p+7)
1(2u4+7) 82 K> —pB25(2+5") k4+2(2u+7)* =21 (2u47) (2+7)
2p(2p+7)2
2~ 2~
with 5/ = —28addn _ BTRSHAL  The pumerator is

\/52§2+4H2 et
242 B2K% + uB*R*y — 2% K3 — pRsY
+ 84 + 8uy 4 27% — 8 — 4pPY — Ap — 257

2 =~ 2
= 22 B%k% + p(B2K? + )7 — 2u%ks — p L 4 9(5252 4 4p2) — 2B k5 + 4p)

2 .= 2
— 22822 4 (B2 + A)7 — AuBh(s + rp) — I 925 4 )2
=28%5" + L (u(B%R® + 4)(625% + 4p®) — u(B°K3 + 4p)?)
=23%s2 4 L (ﬁ4/<52§2 + 402 8%k 4+ 48252 + 1642 — k252 — 8uB?ks — 16u2)

N
,'?
= 28%s% + % (4M262fi2 +45%52 — 8u62/€§) =23%s% + 47“ (uBr — 65)2 >0

Therefore, having 2(2u + 7)* > 0, 9% ,0,(s) > 0 holds for all s € R and p > 0 so
that 0,0,(s) is increasing w.r.t. p. Hence together with (A.1), 0,0,(s) < 0 follows

for all s € R, p > 0. This completes the proof.
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