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Abstract

In this article, we present a framework for the numerical solution of optimal control
problems, constrained by ordinary differential equations which can run in (finitely
many) different modes, where a change of modes leads to additional switch cost in the
cost function, and whenever the system changes its mode, jumps in the differential
states are possible. In addition, for each mode there are certain constraints which shall
only hold as long as the system stays in the respective mode. We present the problem
class and represent the problem as a mixed-integer optimal control problem. We re-
formulate and relax the problem and discretize the control functions in the resulting
problem. We present three different approaches for the treatment of switch costs and
compare them with each other, whereat only one of them is suitable for the treat-
ment of jumps in a general setting. We then take a direct approach (“first discretize,
then optimize”) to solve the resulting control-discretized problem numerically, where
a direct method based on hp–adaptive collocation is used for the discretization. The
resulting finite dimensional optimization problems are mathematical programs with
vanishing constraints, and we suggest a numerical approach to solve sequences of this
challenging problem class. In the end of the article, we present two examples: first an
academic one concerning switch costs only, and second an example from mechanics,
where also jumps occur. In the latter example, we generate a walking-like motion
and discuss the modeling as well as the problem-specific configuration of our solution
approach in detail.

Keywords: switched systems, switch costs, jumps in differential states, optimal control, mixed–
integer optimal control, direct transcription methods, mathematical programs with vanishing con-
straints, walking–like motion

1 Introduction

Switched dynamic systems, which are a particular class of hybrid dynamic systems, have been
extensively researched over the past decades and a lot of progress has been made in this field
of applied mathematics both theoretically and computationally, cf. [39, 2, 17, 11, 36]. Recently,
Meyer et al. [8] proposed a new approach for solving a class of switched dynamic systems in
a numerically efficient way, based on generalized disjunctive programming, a direct approach to
optimal control, and on solving the resulting Mathematical Programs with Vanishing Constraints
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(MPVCs). However, their framework does not include switch costs and jumps in the differential
states. In this article, we augment their approach in view of these aspects.
Hybrid systems are dynamic systems that involve continuous models as well as discrete event
models. Applications of hybrid systems arise, amongst others, in the fields of industrial process
control, power systems, and traffic control. Zhu and Antsaklis [39] provide a detailed survey on
the topic. We are in particular interested in a medical application, namely model–based treatment
planning of patients suffering from Cerebral Palsy (CP). These patients show a pathological gait,
with common symptoms being internal rotation and so-called pes equinus, meaning the heel never
touches the ground while walking. By applying orthopedic changes to the musculoskeletal system
of patients, medical doctors aim at ameliorating this situation. Despite the impressive progress
in this field [3], it is still challenging to predict the precise effects of interventions. Model-based
treatment planning strives to design a computational testing environment for ex ante evaluation
and assessment of potential surgery plans. In view of this application and phenomena like pes
equinus, it is important not to assume a predefined order of modes-stages, but allow for changes
which may result from a treatment.
In the context of this article, switched systems are Optimal Control Problems (OCPs) with possible
discontinuities in the differential equations right hand side as well as in the differential states. In
particular, all subsystems live in the same state space. Switched systems can be represented by an
indexed set of differential equations

ẋ(t) = Fw(t)(x(t),u(t)), x(t0) = x0

and jump conditions
x
(
t+
)

= ∆w(t−),w(t+)(x(t−))

which map the differential states before a switch x (t−) = limτ↗t x(τ) to the differential states
after a switch x (t+) = limτ↘t x(τ). At any point on the time horizon T = [t0, tf ], a function
w : T → {1, . . . , n} indicates the index of the applicable dynamic right hand side, and whenever
this index changes from j1 to j2, a jump function ∆j1,j2(·) specifically belonging to the (ordered)
pair (j1, j2) acts on the differential states. In addition, each change of indices causes a contribution
to the cost function.
Assuming that only a finite number of switching events occurs, the above switching function
w(·) may be identified with a finite vector of tuples s = [(t0, j0), (t1, j1), . . . , (tm, jm)], where
0 ≤ m <∞, ji ∈ {1, . . . , n} for all i = 0, . . . ,m and t0 ≤ t1 ≤ . . . ≤ tm ≤ tf . Thus, the switching
function is determined by the switching sequence σ = {ji}mi=0 and the associated switching times
S(w) = {ti}mi=1.
In generally one can distinguish two kinds of switches: Externally Forced Switches (EFSs) and
Internally Forced Switches (IFSs). EFSs are also known as controllable or explicit switches. For
problems involving EFSs the switchings are degrees of freedom. Conversely, switches in IFS prob-
lems depend on the states x(·) and the current mode j. IFS systems arise for instance from
ground contact of a robot leg or from a weir overflow of a distillation column. Implicit switch is
another well known term for IFS. Most of the literature does not address combined EFS and IFS
problems. However, Meyer et al. [8] handle EFS and IFS problems (without switch costs and
jumps) in a unified framework, by combining the ideas of complementarity based formulations for
EFS systems developed by Baumrucker and Biegler [4] with the idea of embedding transformation.
Embedding transformation, developed independently by Sager [34] and Bengea and DeCarlo [5]
for EFS systems, reformulates the switched dynamic system into the larger family of continuous
systems

ẋ(t) =

n∑
j=1

αj(t) Fj(x(t),u(t)), x(t0) = x0,

where αj(t) ∈ [0, 1] and
∑n
j=1αj(t) = 1. At the beginning of the optimization no assumptions

about the number of switches, the switching sequence σ and the switching times S(w) are necessary.
OCPs constrained by ordinary differential equations with implicitly defined, state-dependent dis-
continuities are notoriously difficult to solve. A common approach is to combine a modern simulta-
neous optimization method, e.g. Direct Multiple Shooting [9], with an appropriate switch detecting
differential equation solver, see e.g. [7, 10, 25]. The main challenges of switch detecting solvers are
the determination of the switching time and the sensitivity update process at discontinuities, cf.
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[10, 25, 33, 20, 28]. Models where both the number and the sequence of arising switching points are
known can be handled by multi-phase OCP, as in [35, 19]. In this case the implicit discontinuities
do not have to be treated explicitly. Anyway, in many applications this knowledge is not available.
Switch costs penalize switches by an additional term in the objective function. Kirches [26] and
Jung [24] present approaches how to treat switch costs in a discretized context, meaning that there
is a time grid G = {ti}Ni=0 ⊂ T and parameters qij ∈ [0, 1], such that

αj(t) = qij for t ∈ [ti, ti+1)

for i = 0, . . . , N − 2 and αj(t) = qN−1
j for t ∈ [tN−1, tN ] . Kirches [26] proposes to overestimate

the number of switches in a discretized and relaxed problem. However, the stated approach suffers
from the drawback, that it is only able to detect the modes j1 and j2 which are involved in a
switch, but not their ordering, namely if the system switches from mode j1 to j2 or the other way
around.

1.1 Contributions

In this article, we augment the method presented in [8] in view of switch costs and jumps in the
differential states, and thus present a novel approach for the solution of OCPs with switch costs
and jumps, where the number and order of model-stages is a priori unknown and is determined
dynamically. This methodology is a step towards model-based treatment planning of CP, where the
number and order of occurring model phased during the gait cycle may change after an intervention.
Furthermore, we present two novel approaches for the treatment of switch costs in the context of
OCPs, and compare them to an existing method.
We start with an Mixed-Integer Optimal Control Problem (MIOCP), to which we apply Partial
Outer Convexification (POC) [34]. We introduce additional binary indicator functions similar to
ideas reported [26] in the context of switch costs, and investigate and compare different tractable
formulations for the numerical treatment of switch costs. The introduced binary indicators to can
then be used to convexify the jump condition as well, leading to a new relaxation of the partially
convexified MIOCP.

1.2 Structure

In Section 2 we introduce the class of switched OCPs with switch costs and jumps and represent
a problem of this class as an MIOCP. In Section 3 we reformulate and relax the problem, and
finally discretize the control functions in the resulting problem. Section 4 is dedicated to different
approaches for the handling of switch costs in the context of OCPs and the comparison of those.
In Section 5, we use a direct transcription method to transfer the relaxed and control-discretized
OCP from Section 3 into an Nonlinear Programming Problem (NLP) belonging to the class of
MPVCs. Section 6 then deals with the numerical treatment of this special type of NLPs. We
demonstrate the merit of our approach in Section 7, where we generate a walking-like motion of
the so-called simplest walker stick-man model, for which we present the Multi-Body System (MBS),
the switched OCP and numerical results computed using a direct and all-at-once approach.

2 Problem formulation

In this section we describe the class of OCPs we are interested in and show, how a problem
belonging to this class can be reformulated as aMIOCP.

2.1 OCPs with Switches, Switch Costs and Jumps

We take interest in OCPs, where the underlying dynamics can run in a finite number of different
modes. Whenever the dynamic changes its mode, jumps in the differential states are possible. To
state the problem we consider in this article, we first introduce some notation.
We consider the time horizon T = [t0, tf ], where both t0 and tf are fixed without loss of generality.
The dynamical system x ∈W 1,∞(T ,Rnx) we deal with can run in the n different modes {1, . . . , n}.
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For every t ∈ T , the mode our system runs in is reflected by the value of a control function
w : T → {1, . . . , n} such that

System is in mode j at time t ⇐⇒ w(t) = j .

We assume that the following assumption holds:

Assumption 2.1 (Strictly Positive Dwell Time) The considered system has a strictly posi-
tive dwell time δ̄, i.e. the system does not change its mode in [t0, t0 + δ̄) and whenever the system
changes its mode at a time point ts, it stays in the respective mode for at least all t ∈ (ts, ts+δ̄) ⊆ T .

For M⊆ Rk we define

PCδ̄(T ,M)
def
=

ω : T → Rk

∣∣∣∣∣∣∣∣
r∀t ∈ T \ {tf} ∃τ1, τ2 ∈ T : τ2 − τ1 ≥ δ̄, t ∈ [τ1, τ2)

and ω(t) = ω(τ1) ∀t ∈ [τ1, τ2)rω(tf ) = ω(tf − δ̄)rω(t) ∈M ∀t ∈ T

 ,

which are the right–continuous piecewise constant functions on T with values in M and dwell
time δ̄. Because of Assumption 2.1 we demand w ∈ PCδ̄(T , {1, ..., n}) in the following. Here, the
right–continuity is a choice we make without loss of generality.
For any right-continuous function g : T → Rk, for which also the left-hand side limits g(t−) =
limτ↗ ts g(τ) exist for all t ∈ T \ {t0}, we define

S(g) = {ts ∈ T \ {t0} | g(t−s ) 6= g(ts)
}
.

Due to Assumption 2.1, tf /∈ S(w) and the set S(w) is finite. We denote its cardinality by |S(w)|.
The elements of S(w) are called switching points since the system’s mode changes at these time
points, and a change of modes is called a switch. Instead of saying ’the system switches from mode
j1 to mode j2’ , we simply write ’j1 →w j2’, where the subscript emphasizes the dependency of the
system’s mode on the control function w(·) .
When the considered dynamical system is in mode j ∈ {1, . . . , n}, it is governed by the – without
loss of generality autonomous – Ordinary Differential Equation (ODE)

ẋ(t) = f j(x(t),u(t)) ,

where u ∈ L∞(T ,Rnu) is a control function. Whenever the system changes its mode – that means
w(·) changes its value – at a switching point ts, jumps in the differential states may occur. By

x(t−s ) = lim
τ↗ ts

x(τ) resp. x(t+s ) = lim
τ↘ ts

x(τ)

we denote the value of the differential states before the jump resp. after the jump. We suppose that
for every ordered pair (j1, j2) ∈ {1, . . . , n}2 with j1 6= j2 , there is a function ∆j1,j2 : Rnx → Rnx ,
mapping the differential states before the jump to the differential states after the jump:

x(t+s ) = ∆j1,j2

(
x(t−s )

)
if j1 →w j2 .

During the whole process, path constraints 0 ≥ d(x(t),u(t)) must be satisfied, where d : Rnx ×
Rnu → Rnd , 0 is the zero vector of appropriate size, and all inequalities shall hold component-wise.
Additionally, for each mode j there are path constraints 0 ≥ cj(x(t),u(t)) with cj : Rnx ×Rnu →
Rncj , which are only required to hold at time t if the system runs in the respective mode at time
t. In practice the latter constraints can be used e. g. to determine the mode of the system. In
addition, point constraints 0 ≥ r(x(t0),x(tf )) with r : Rnx × Rnx → Rnr shall hold.
We set up an OCP to find controls u(·) ∈ L∞(T ,Rnu) as well as w(·) ∈ PCδ̄(T , {1, ..., n}), which
result in a dynamical process x(·) ∈ W 1,∞(T ,Rnx), that satisfies all mentioned constraints and
minimizes the value of a cost function. This cost function is built up by two contributions: The
first contribution is without loss of generality given by a Mayer–term φ(x(tf )) with φ : Rnx →
R, x 7→ x(tf ) , and the second contribution is given by the (finite) number of switching points
|S(w)|, multiplied by a penalization parameter π ≥ 0. We denote the second contribution by the
term switch costs.
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The resulting OCP we consider takes the following form:

min
x(·),u(·),w(·)

φ(x(tf )) + π |S(w)|

s.t. (x,u, w) ∈W 1,∞(T ,Rnx)×L∞(T ,Rnu)× PCδ̄(T , {1, ..., n}) (1a)

ẋ(t) = f j(x(t),u(t)) if w(t) = j a.e. t ∈ T (1b)

x(t+s ) = ∆j1,j2

(
x(t−s )

)
if j1 →w j2 at ts ∈ S(w) (1c)

0 ≥ cj(x(t),u(t)) if w(t) = j a.e. t ∈ T (1d)

0 ≥ d(x(t),u(t)) a.e. t ∈ T (1e)

0 ≥ r(x(t0),x(tf )) (1f)

where we suppose, that the occurring functions are sufficiently smooth for our purposes. We make
some remarks regarding problem (1):

• For numerical computations, the demanding for a dwell time δ̄ > 0 is not restrictive, as we
can imagine δ̄ to be the maximum possible granularity of the time grid.

• Though in the presented problem formulation switches arise explicitly from a change of values
of the control function w(·), also systems with implicitly and explicitly forced switches can
be treated using the above problem formulation, cf. [8].

• Consequently, by setting π = 0 and ∆j1,j2(·) = Id(·) for all (j1, j2) ∈ {1, . . . , n}2 with
j1 6= j2, the presented problem formulation also covers switched systems (with explicit and
implicit switches) without switch costs and jumps as treated by Meyer et al. [8]. Hence the
current framework can be seen as an extension of the framework presented in this reference.

For the sake of a handy presentation, we omit writing the function spaces for x(·) and u(·) as well
as the constraints (1e) and (1f) in the following, though we keep them in mind.

2.2 A Mixed-Integer Optimal Control Problem

We state a MIOCP, which is equivalent to Problem (1). In order to do so, we define

SnF
def
=
{
ω : T → [0, 1]n

∣∣∣ ∑n
j=1ωj(t) = 1 ∀t ∈ T

}
and consider the mapping

ϕ : SnF ∩ PCδ̄(T , {0, 1}n) −→ PCδ̄(T , {1, ..., n}) , ω(·) 7−→ w(t)
def
=

n∑
j=1

ωj(t) · j .

Lemma 2.2 The mapping ϕ is a bijection.

Proof See Appendix A.1 �

For a ω ∈ SnF ∩ PCδ̄(T , {0, 1}n), we set

j1 →ω j2
def⇐⇒ j1 →ϕ(ω) j2 ,

and consider the following MIOCP:

min
x(·),u(·),ω(·)

φ(x(tf )) + π |S(ω)|

s.t. ω ∈ SnF ∩ PCδ̄(T , {0, 1}n) (2a)

ẋ(t) =
∑n
j=1ωj(t) · f j(x(t),u(t)) a.e. t ∈ T (2b)

x(t+s ) = ∆j1,j2

(
x(t−s )

)
if j1 →ω j2 at ts ∈ S(ω) (2c)

0 ≥ ωj(t) · cj(x(t),u(t)) a.e. t ∈ T ∀j (2d)

We have

Proposition 2.3 Problem (2) and Problem (1) are equivalent in the following sense: (x,u, w) is
feasible for Problem (1) if and only if (x,u, ϕ−1(w)) is feasible for Problem (2), and the values of
the according cost functions coincide.

Proof See Appendix A.2. �
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3 Problem Reformulation

In this section we reformulate and relax Problem (2) using convexification techniques. In the end
we discretize the controls in the resulting problem.

3.1 Reformulation and Relaxation

Let P ⊂ T \ {t0, tf} be an arbitrary finite subset. For a given ω ∈ SnF ∩PCδ̄(T , [0, 1]n) , we define

VS(ω)∪P(T ) = {g : T → [0, 1] | g(t) = 0 for t /∈ S(w) ∪ P} ,

which is the set of functions in S1
F which vanish outside S(w) ∪ P .

We consider the number of switching points for a given control function ω ∈ SnF ∩PCδ̄(T , {0, 1}n).
For every pair (j1, j2) ∈ {1, . . . , n}2 with j1 6= j2 we define a function θj1,j2 : T → {0, 1} by

θj1,j2(t) =

{
min (ωj1(t−),ωj2(t+)) if t0 < t < tf
0 else

.

Then

θj1,j2(t) =

{
1 if j1 →ω j2 at t
0 else

,

which is why we call these functions switching indicator functions. We have θj1,j2 ∈ VS(ω)∪P(T ),
and is easy to see that

|S(ω)| =
∑

t∈S(ω)∪P

n∑
j1,j2=1
j1 6=j2

θj1,j2(t) . (3)

We define the aggregated jump function ∆ : Rnx × [0, 1]n·(n−1) → Rnx by

∆
(
z, (aj1,j2)j1 6=j2

)
=

n∑
j1,j2=1
j1 6=j2

aj1,j2∆j1,j2 (z) +

1−
n∑

j1,j2=1
j1 6=j2

aj1,j2

 z , (4)

where the ∆j1,j2(·) are the functions acting on the differential states x(t−s ) in case j1 →ω j2 at the
switching points S(ω) .
We set up the following problem

min
x(·),u(·),ω(·),θj1,j2

(·)
φ(x(tf )) + π

∑
t∈S(ω)∪P

n∑
j1,j2=1
j1 6=j2

θj1,j2(t)

s.t. ω ∈ SnF ∩ PCδ̄(T , {0, 1}n) (5a)

ẋ(t) =
∑n
j=1ωj(t) · f j(x(t),u(t)) a.e. t ∈ T (5b)

θj1,j2 ∈ VS(ω)∪P(T ) (5c)

θj1,j2(t) = min
(
ωj1(t−),ωj2(t+)

)
if t ∈ S(ω) ∪ P (5d)

x(t+) = ∆
(
x(t−), (θj1,j2(t))j1,j2

)
if t ∈ S(ω) ∪ P (5e)

0 ≥ ωj(t) · cj(x(t),u(t)) a.e. t ∈ T ∀j (5f)

Then we have

Proposition 3.1 The Problems (2) and (5) are equivalent in the following sense: If (x(·),u(·),ω(·))
is feasible for Problem (2), then there exist θj1,j2(·) such that (x(·),u(·),ω(·), (θj1,j2(·))j1 6=j2) is
feasible for Problem (5) and the values of the corresponding cost functions coincide. Vice versa,
if (x(·),u(·),ω(·), (θj1,j2(·))j1 6=j2) is feasible for Problem (5), then (x(·),u(·),ω(·)) is feasible for
Problem (2) and the values of the cost functions coincide.
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Proof See Appendix A.3. �

We now relax Problem (5), among others by replacing the discrete-valued control function ω(·) by
a control function α(·), which allows for values in [0, 1]n. Let us consider the problem

min
x(·),u(·),α(·),

βj1,j2 (·),θj1,j2 (·)

φ(x(tf )) + π
∑

t∈S(α)∪P

n∑
j1,j2=1
j1 6=j2

θj1,j2(t)

s.t. α ∈ SnF ∩ PCδ̄(T , [0, 1]n) (6a)

ẋ(t) =
∑n
j=1αj(t) · f j(x(t),u(t)) a.e. t ∈ T (6b)

βj1,j2 ,θj1,j2 ∈ VS(α)∪P(T ) (6c)

θj1,j2(t) ≥ βj1,j2(t)αj1(t−) + (1− βj1,j2(t))αj2(t+) if t ∈ S(α) ∪ P (6d)

x(t+) = ∆
(
x(t−), (θj1,j2(t))j1,j2

)
if t ∈ S(α) ∪ P (6e)

0 ≥ ωj(t) · cj(x(t),u(t)) a.e. t ∈ T ∀j (6f)

Indeed, Problem (6) is a relaxation of Problem (2):

Proposition 3.2 Let (x(·),u(·),ω(·)) be feasible for Problem (2) and set α(·) = ω(·). Then there
exist functions βj1,j2(·) and θj1,j2(·), such that (x(·),u(·),α(·), (βj1,j2(·))j1 6=j2 , (θj1,j2(·))j1 6=j2) is
feasible for Problem (6) for every finite set P ⊂ T \ {t0, tf} and the values of the corresponding
cost functions coincide.

Proof See Appendix A.4 �

In the context of optimal control, the technique of dropping the integrality constraint ω(t) ∈ {0, 1}n
∀t ∈ T by replacing the controls ω(·) with controls α(·), which take values in [0, 1]n, is also known
as POC, cf. [34]. Consider Problem (2) without switch costs. We relax the problem as follows:
On the one hand, we replace the ω(·) with α(·) ∈ L∞(T , [0, 1]n) and hence allow for continuous
values. On the other hand, we replace the 0 in the inequality constraints by δ · 1, where δ > 0
(and 1 is a vector of ones of appropriate size). One can show, that every feasible point α(·) of the
relaxed problem can be approximated by binary feasible controls ω(·) ∈ L∞(T , {0, 1}n) again, and
the smaller δ is, the better is the approximation. In particular, this holds for the optimal solution.
Hence POC is a reasonable approach to solve MIOCPs. For details see [27, 29, 31].
Let us note, that we are not aware of an extension of the theoretical result mentioned above
to MIOCPs in which the cost function depends on the integer controls, as for the switch costs.
Anyway, we pursue the described approach, as it works out well in numerical experiments.

3.2 Control Discretization

We intend to develop strategies for the numerical solution of Problem (6) using a direct approach
(’first discretize, then optimize’ ). Therefore we discretize the control functions first. To this aim,
we introduce a time grid

G = {t0 < t1 < · · · < tN = tf}

with mini=1,...,N |ti − ti−1| ≥ δ̄ , and set P = G \ {t0, tf} . In accordance with Assumption (2.1),
we restrict the control function α(·) to be locally constant on the grid intervals [ti, ti+1) resp.
[tN−1, tN ]. Hence we can parameterize α(·) using vectors q0, . . . ,qN−1 ∈ [0, 1]n:

α(t) = qi for all t ∈ [ti, ti+1) resp. [tN−1, tN ] .

Observe that due to this discretization, switches can only occur at the inner grid points, and
therefore

S(α) ⊆ G \ {t0, tf} = P .

The controls βj1,j2(·),θj1,j2(·) ∈ VP(T ) can be parameterized by βij1,j2 ,θ
i
j1,j2

∈ [0, 1], i = 0, ..., N−2
such that

βi−1
j1,j2

= βj1,j2(ti) and θi−1
j1,j2

= θj1,j2(ti) for all i = 1, . . . , N − 1 .
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The θij1,j2 are called switching indicators. Since α(t−i ) = qi−1 and α(t+i ) = qi for every inner grid
point, the constraints (6d) can now be expressed in the following way:

θij1,j2 ≥ β
i
j1,j2q

i
j1 +

(
1− βij1,j2

)
qi+1
j2

for j1 6= j2 and i = 0, . . . , N − 2 .

Accordingly, we replace the control function u(·) by some function U(·), which can be parame-
terized by a finite number of parameters. Let Sn = {v ∈ {0, 1}n |

∑n
j=1 vj = 1} and conv (Sn) =

{v ∈ [0, 1]n |
∑n
j=1 vj = 1} its convex hull. After the control discretization, the resulting problem

takes the following form:

min
x(·),U(·),α(·),
βi

j1,j2
,θi

j1,j2

φ(x(tf )) + π

N−2∑
i=0

n∑
j1,j2=1
j1 6=j2

θij1,j2

s.t. qi ∈ conv (Sn) i = 0, . . . , N − 1 (7a)

α(t) = qi for t ∈ [ti, ti+1) i = 0, . . . , N − 1 (7b)

ẋ(t) =
∑n
j=1αj(t) · f j(x(t),U(t)) a.e. t ∈ T (7c)

βij1,j2 ,θ
i
j1,j2 ∈ [0, 1] i = 0, . . . , N − 2 (7d)

θij1,j2 ≥ β
i
j1,j2q

i
j1 +

(
1− βij1,j2

)
qi+1
j2

i = 0, . . . , N − 2 (7e)

x(t+i+1) = ∆
(
x(t−i+1),

(
θij1,j2

)
j1,j2

)
i = 0, . . . , N − 2 (7f)

0 ≥ αj(t) · cj(x(t),U(t)) a.e. t ∈ T ∀j (7g)

Observe, that for binary valued α(·), i.e. qi ∈ Sn , we have

|S(α)| ≤
N−2∑
i=0

n∑
j1,j2=1
j1 6=j2

θij1,j2 , (8)

and if the switching indicators θij1,j2 take their smallest possible value, (8) even holds with equality.
The presented approach has its pros and cons. On the one hand, in Problem (1), switches can
happen at any time t ∈ (t0 + δ̄, tf − δ̄) and need to be detected in some way. In Problem (7)
however, switches can only occur in the inner grid point, which relieves us from classical switch
detection. On the other hand, the presented approach suffers from two drawbacks. The number of
variables goes quadratically with the number of modes, which can quickly result in a huge number
of variables. Another drawback is the situation, when the switching indicators θij1,j2 do not take

binary values in the solution of Problem (7). The relaxed switch costs π
∑
i

∑
j1 6=j2 θ

i
j1,j2

as well
as the aggregated jump function ∆ might have no physical meaning in this case. Hence, if we
find such solutions, one should think of additional strategies, e.g. penalty terms, to enforce binary
values and consequently also meaningful jump functions in the solution.

4 Switch Costs

In the previous section we reformulated the switch costs in Problem (2) in a numerically useful
manner. In this section, we give two alternatives and compare the expressions with each other.
Both approaches are generalizations of an idea by Kirches [26].
Let α ∈ SnF ∩ PCδ̄(T , [0, 1]n) and t ∈ T . In accordance with our previous notation, we say

System is in mode j at t ⇐⇒ αj(t) = 1 at t .

If there is an index j with αj(t) ∈ (0, 1), we speak of a fractional mode. Furthermore we expand
our notation by

j1 →α j2 at ts
def⇐⇒ αj1(t−s ) = αj2(t+s ) = 1 ,

which again means, the system switches its mode at ts.
Since for now we are only interested in switch costs, we assume ∆(·) = Id(·) for the remainder of
this section, and therefore consider systems without jumps in the differential states. However, we
comment on the suitability of the subsequent reformulations in presence of jumps.
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= αj2(ti+1)qi
j1

= αj1(ti)

Figure 1: Minimal possible value of the ’omnipotent’ switching indicator θij1,j2 due to inequality
(7e).

4.1 Reformulation ’Omnipotent’

This reformulation was already explained in Section 3.1. In the resulting control-discretized prob-
lem of Section 3.2, it reads as follows: Let α ∈ SnF ∩ PCδ̄(T , [0, 1]n). For every distinct pair of
modes (j1, j2), we consider parameters θij1,j2 ∈ [0, 1] with the property

θij1,j2 ≥ min(αj1(ti),αj1(ti+1)) for i = 0, . . . , N − 2 , (9)

(as a consequence of (7e)) and the term

π

N−2∑
i=0

n∑
j1,j2=1
j1 6=j2

θij1,j2 (10)

is added to the cost function of the considered OCP for some π > 0. Figure 1 displays the minimal
possible values of θij1,j2 for given α(·).
Let us assume that an optimal α∗(·) is binary-valued, i.e. α∗ ∈ SnF ∩ PCδ̄(T , {0, 1}n). Then

min(α∗j1(ti),α
∗
j1(ti+1)) =

{
1 if j1 →α∗ j2 at ti+1

0 else
,

the inequalities (9) are active due to minimization, and (10) indeed equals the penalized number of
switches π|S(α∗)|. Therefore the according set of optimal switching indicators is omnipotent in the
sense, that for every inner grid point ti+1 ∈ G , the family

(
θij1,j2

)
j1 6=j2

contains the information

whether a switch occurred and if so, which modes are involved in the switch as in which order, i.e.
if j1 →α∗ j2 or j2 →α∗ j1 at ti+1. The resulting (control-discretized) OCP finally takes the form

min
x(·),U(·),α(·),
βi

j1,j2
,θi

j1,j2

φ(x(tf )) + π

N−2∑
i=0

n∑
j1,j2=1
j1 6=j2

θij1,j2 (OCP-Omnipotent)

s.t. qi ∈ conv (Sn) i = 0, . . . , N − 1

α(t) = qi for t ∈ [ti, ti+1) i = 0, . . . , N − 1

ẋ(t) =
∑n
j=1αj(t) · f j(x(t),U(t)) a.e. t ∈ T

βij1,j2 ,θ
i
j1,j2 ∈ [0, 1] i = 0, . . . , N − 2

θij1,j2 ≥ β
i
j1,j2q

i
j1 +

(
1− βij1,j2

)
qi+1
j2

i = 0, . . . , N − 2

0 ≥ αj(t) · cj(x(t),U(t)) a.e. t ∈ T ∀j

The properties of the switching indicators make them suitable for the treatment of jumps, see
Problem (7). However, because of the jump condition (7f), for the solution of the problem it is not
true anymore, that binary valued α(·) imply binary valued switching indicators.
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4.2 Reformulation ’Involved’

Now we present the original idea by Kirches [26]. Let ω ∈ SnF ∩ PCδ̄(T , {0, 1}n) and ts ∈ S(ω).
Then

min
(
ωj(t

−
s ) + ωj(t

+
s ), 2− ωj(t−s )− ωj(t+s )

)
=

{
1 if j →ω j′ or j′ →ω j for some j′ 6= j
0 else

for all j. Furthermore, we have

|S(ω)| = 1

2

∑
ts∈S(ω)

min
(
ωj(t

−
s ) + ωj(t

+
s ), 2− ωj(t−s )− ωj(t+s )

)
.

Using this idea and processing Problem (2) similarly as in the Sections 3.1 and 3.2, we receive the
control-discretized problem

min
x(·),U(·),α(·),

βi
j ,Θ

i
j

φ(x(tf )) + π

N−2∑
i=0

1

2

n∑
j=1

Θi
j (OCP-Involved)

s.t. qi ∈ conv (Sn) i = 0, . . . , N − 1

α(t) = qi for t ∈ [ti, ti+1) i = 0, . . . , N − 1

ẋ(t) =
∑n
j=1αj(t) · f j(x(t),U(t)) a.e. t ∈ T

βij ,Θ
i
j ∈ [0, 1] i = 0, . . . , N − 2

Θi
j ≥ βij

(
qij + qi+1

j

)
+
(
1− βij

) (
2− qij − qi+1

j

)
i = 0, . . . , N − 2 (11)

0 ≥ αj(t) · cj(x(t),U(t)) a.e. t ∈ T ∀j

The variables Θi
j are also called switching indicators, and Figure 2 displays the minimal possible

values of θij1,j2 for a feasible α ∈ SnF ∩ PCδ̄(T , [0, 1]n).
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1

qi+1
j = αj(ti+1)qi

j = αj(ti)

Figure 2: Minimal possible value of the ’involved’ switching indicator Θi
j if inequality (11) holds.

Let us again assume, that an optimal control α∗(·) takes binary values, and let Θi
j be the according

optimal variables. Then similarly to Section 4.1, because of the inequalities (11), we have

|S(α∗)| =
N−2∑
i=0

1

2

n∑
j=1

Θi
j .

For every inner grid point ti+1 ∈ G, the family
(
Θi
j

)
j

contains the information, whether a switch

occurred or not. In contrast to the ’omnipotent’ switching indicators, this time we only receive
the information, which modes are involved in a switch, but the order of modes remains hidden.
Therefore, using our approach the ’involved’ switching indicators are only suited for the treatment
of jumps in special cases, e.g. if all jump functions ∆j1,j2(·) coincide.
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4.3 Reformulation ’Subsequent’

Let again ω ∈ SnF ∩ PCδ̄(T , {0, 1}n) and ts ∈ S(ω). Then

min
(
ωj(t

+
s ), 1− ωj(t−s )

)
=

{
1 if j′ →ω j for some j′ 6= j
0 else

for all j and we have

|S(ω)| =
∑

ts∈S(ω)

min
(
ωj(t

+
s ), 1− ωj(t−s )

)
.

If we use this idea and again process Problem (2) as in the Sections 3.1 and 3.2, we get

min
x(·),U(·),α(·),

βi
j ,θ

i
j

φ(x(tf )) + π

N−2∑
i=0

1

2

n∑
j=1

θij (OCP-Subsequent)

s.t. qi ∈ conv (Sn) i = 0, . . . , N − 1

α(t) = qi for t ∈ [ti, ti+1) i = 0, . . . , N − 1

ẋ(t) =
∑n
j=1αj(t) · f j(x(t),U(t)) a.e. t ∈ T

βij ,θ
i
j ∈ [0, 1] i = 0, . . . , N − 2

θij ≥ βijqi+1
j +

(
1− βij

) (
1− qij

)
i = 0, . . . , N − 2 (12)

0 ≥ αj(t) · cj(x(t),U(t)) a.e. t ∈ T ∀j

The variables θij are again called switching indicators, and for a feasible α ∈ SnF ∩PCδ̄(T , [0, 1]n),
their minimal possible value is displayed in Figure 3.
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0.5

1
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0.5

1

qi+1
j = αj(ti+1)qi

j = αj(ti)

Figure 3: Minimal possible value of the ’subsequent’ switching indicator θij in presence of inequality
(12).

Let us again assume, that an optimal control α∗(·) is binary-valued, and let θij be the according

optimal variables. Then for every inner grid point ti+1 ∈ G, the switching indicators
(
θij
)
j

contain

the information, whether a switch occurred or not, and if so, what is the mode in the subsequent
interval [ti+1, ti+2). The mode in the interval [ti, ti+1) stays hidden.
In the presence of jumps, using our approach the ’subsequent’ switching indicators are therefore
only suitable in special cases, for instance if the jump functions ∆j1,j2(·) only depend on the mode
after a switch, i.e. ∆j1,j2(·) = ∆j′1,j2

(·) for all j1, j
′
1 6= j2.

4.4 Comparison of the Reformulations

In this section, we compare the three types of switching indicators Θi
j ,θ

i
j and θij1,j2 introduced in

the last sections, resp. their minimal possible values and review some of their properties. For this
purpose, we define

φinv, φsubs, φomni : conv (Sn)× conv (Sn) −→ R
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by

φinv(a,b) =
1

2

n∑
j=1

min(aj + bj , 2− aj − bj) ,

φsubs(a,b) =

n∑
j=1

min(bj , 1− aj) ,

φomni(a,b) =

n∑
j1,j2=1
j1 6=j2

min(aj1 ,bj2) .

The minimal contributions to the cost functions of the Problems (OCP-Involved), (OCP-Subsequent)
and (OCP-Omnipotent), which belong to the grid point ti+1, are then given by

φinv
(
qi,qi+1

)
resp. φsubs

(
qi,qi+1

)
resp. φomni

(
qi,qi+1

)
.

We first investigate upper bounds of the three functions.

Proposition 4.1 Let a,b ∈ conv (Sn). We have φinv(a,b), φsubs(a,b) ≤ 1. If aj + bj ≤ 1 for
every component j , we even get φinv(a,b) = φsubs(a,b) = 1 . For φomni we have

sup
a,b∈conv(Sn)

φomni(a,b) = n− 1 .

Proof See Appendix A.5 �

Second, we investigate lower bounds.

Proposition 4.2 We have φinv(a,b), φsubs(a,b), φomni(a,b) ≥ 0 for all a,b ∈ conv (Sn) and

φinv(a,b) = φinv(a,b) = φomni(a,b) = 0 ⇐⇒ a,b ∈ Sn and a = b .

Proof See Appendix A.6 �

Consider the Problems (OCP-Involved), (OCP-Subsequent) and (OCP-Omnipotent). The last
proposition states, that in view of the (relaxed) switch costs, it is optimal to avoid fractional
modes and to stay in the same mode for the whole time horizon. Nevertheless, due to constraints
or the Mayer–term contribution in the cost functions, switches are unavoidable or desirable.
Next, we investigate the incurring switch costs in two neighbored intervals.

Proposition 4.3 Let a,b, c ∈ conv (Sn) . For i ∈ {inv, subs}, the ’triangle inequality’

φi(a, c) ≤ φi(a,b) + φi(b, c) (13)

holds. For φomni this is in general not true. Nevertheless, if a, c ∈ Sn , then (13) also holds for
i = omni.

Proof See Appendix A.7 �

Consider the Problems (OCP-Involved), (OCP-Subsequent) and (OCP-Omnipotent) again. As-
sume, the system is in mode j1 at time ti and in mode j2 at time ti+2 . The last proposition states,
that – in view of the relaxed switch costs – it is at least not advantageous for the system to switch
into some fractional mode at time ti+1 . Unfortunately, there are relevant cases, in which is also
not disadvantageous, as the next proposition shows.

Proposition 4.4 Let a, c ∈ Sn, such that al = ck = 1 for some l 6= k, and b ∈ conv (Sn). Then
for i ∈ {inv, subs, omni}, we have

φi(a, c) = φi(a,b) + φi(b, c) ⇐⇒ bl + bk = 1 . (14)
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Proof See Appendix A.8. �

Summing up the results of Section 4.4 so far, in view of switch costs, it is advantageous for our
system to stay in one (non-fractional) mode j1 on the whole time horizon, see Proposition 4.2. If
the system switches to mode j2 for any reason, then there are fractional modes such that in view
of the switch costs it does not make a difference if the system switches to mode j2 directly or uses
the fractional mode as transition mode for one time interval, see Proposition 4.3 and Proposition
4.4.
As a last step, we consider the special case n = 2. Here the choice of switching indicators makes
no difference in view of the switch costs:

Proposition 4.5 Let n = 2 . Then for all a,b ∈ conv (Sn) we have

φinv(a,b) = φsubs(a,b) = φomni(a,b) .

Proof See Appendix A.9.

5 Discretization of the Infinite Dimensional OCP

We aim to solve Problem (7) numerically using a direct approach (’first discretize, then optimize’ ).
For the direct approach, methods like Direct Multiple Shooting [9] and Direct Collocation [6]
have been established as the methods of choice. Similarly to [8], in this paper we use the latter.
Collocation methods transcribe the OCP to an NLP by parameterizing the states and controls
using polynomials and collocating the differential equations using nodes obtained from a Gaussian
quadrature. Since we allow for jumps in the differential states, our framework differs from the one
presented by Meyer et al. [8], and therefore we give a detailed description of the discretization
again.
As we are dealing with switched systems including jumps, we choose piecewise defined polynomials
over the finite elements [ti, ti+1] to discretize differential states and controls. We have already
introduced the time grid G = {t0 < t1 < · · · < tN = tf} in Section 3.2. For each finite element we

choose Lagrange basis polynomials
{
L(i)
k

}Ki

k=0
and

{
L̄(i)
m

}K̄i

m=1
, given by

L(i)
k (t) =

Ki∏
l=0
l 6=k

t− t(i)l
t
(i)
k − t

(i)
l

, L̄(i)
m (t) =

K̄i∏
l=1
l 6=m

t− t̄(i)l
t̄
(i)
m − t̄(i)l

, i = 0, . . . , N − 1.

Depending of the concrete method the collocation points t
(i)
k , t̄

(i)
m ∈ R (k = 1, . . . ,Ki, m =

1, . . . , K̄i, i = 0, . . . , N −1) are obtained from the roots of an orthogonal polynomial and/or linear
combinations of the polynomial and its derivatives. Due to their good computational efficiency (see
e.g. [22, 16]) we choose flipped Legendre-Gauss-Radau (LGR) points in this contribution. If l is
the number of collocation points and Pl denotes the lth-degree Legendre polynomial, LGR points
are the roots of Pl−1(τ) +Pl(τ). LGR points lie on the half open interval t ∈ [−1, 1). One obtains
the flipped LGR points by flipping the LGR points about the origin. The affine transformations

t(i)(τ) =
ti+1 + ti

2
+ τ

ti+1 − ti
2

, i = 0, . . . , N − 1,

map flipped LGR points to the finite elements Ti = [ti, ti+1] and yield the collocation points

t
(i)
k , t̄

(i)
m . In addition we set t

(i)
0 = ti.

The differential states are approximated element-wise as

X(i)(t) =

Ki∑
k=0

x
(i)
k L

(i)
k (t), t ∈ Ti, i = 0, . . . , N − 1,
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where Ki is the number of collocation points and x
(i)
k ∈ Rnx are the nodal values. The derivative

with respect to time of the differential state approximations are given by

Ẋ(i) =

Ki∑
k=0

x
(i)
k L̇

(i)
k (t), t ∈ Ti, i = 0, . . . , N − 1.

Analogously to the state approximations, the controls U are given element-wise by

U(i)(t) =

K̄i∑
m=1

u(i)
m L̄(i)

m (t), t ∈ Ti, i = 0, . . . , N − 1.

Here we have the nodal values u
(i)
m ∈ Rnu . The controls α resp. their representation A are

piecewise constant functions

A(i)(t) = qi, t ∈ Ti, i = 0, . . . , N − 1.

To end up with an NLP we discretize the Mayer–type cost function as φ
(
x

(N−1)
KN−1

)
and the differ-

ential equations by means of element–wise collocation

0 = Ẋ(i)
(
t
(i)
k

)
−

n∑
j=1

A
(i)
j

(
t
(i)
k

)
f j
(
X(i)

(
t
(i)
k

)
,U(i)

(
t
(i)
k

))
, k = 1, . . . ,Ki, i = 0, . . . , N − 1,

⇐⇒ 0 =

Ki∑
l=0

x
(i)
l L̇

(i)
l

(
t
(i)
k

)
−

n∑
j=1

qij f j
(
x

(i)
k ,U(i)

(
t
(i)
k

))
, k = 1, . . . ,Ki, i = 0, . . . , N − 1.

The jump condition is encoded in the constraints

x
(i+1)
1 = ∆

(
x

(i)
Ki
, (θij1,j2)j1 6=j2

)
i = 0, . . . , N − 2

where the switching indicators θij1,j2 were introduced in Section 3.2, and for the definition of ∆(·)
see (4). Recall the boundary constraints (1f) and the path constraints (1e), that we omitted for
notational reason. The discretization of the boundary constraints leads to the NLP constraints

0 ≥ r
(
x

(0)
0 ,x

(N−1)
KN−1

)
.

Path constraints are enforced to hold at collocation points t
(i)
k and the constraints (7g) shall hold

at all grid points:

0 ≥ d
(
x

(i)
k ,U(i)

(
t
(i)
k

))
, k ∈ {1, . . . ,Ki}, i = 0, . . . , N − 1,

0 ≥ qij · cj
(
x

(i)
0 ,U(i)

(
t
(i)
0

))
, j = 1, . . . , n, i = 0, . . . , N − 1, (15a)

0 ≥ qN−1
j · cj

(
x

(N−1)
KN−1

,U(N−1)
(
t
(N−1)
KN−1

))
, j = 1, . . . , n. (15b)

Constraints of the form (15a) resp. (15b) are called vanishing constraints, and thus, the resulting
NLP is a MPVC. The numerical treatment of MPVCs is addressed in the next section.

6 Numerical Treatment of MPVCs

This section is concerned with a strategy for the numerical treatment of MPVCs, and in particular
with the treatment of the collocation NLP from the last last section. In general, an NLP of the
form

min
x∈Rn

f(x) (16a)

s.t. gi(x) ≤ 0 i = 1, . . . ,m (16b)

hj(x) = 0 j = 1, . . . , p (16c)

Hi(x) ≥ 0 i = 1, . . . , l (16d)

Hi(x)Gi(x) ≤ 0 i = 1, . . . , l (16e)
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with C1-functions f,gi,hj ,Hi,Gi : Rn → R is called an MPVC [1, 21]. MPVCs arise in many
applications, e.g. in truss topology [1], and in discretized MIOCPs like in this paper. In particular,
the collocation NLP from the last section is a MPVC.
Due to the structure of the constraints (16e), an MPVC is in general a non-convex problem.
Furthermore, constraint qualifications may be violated: Let x∗ be a feasible point for Problem
(16). If {i |Hi(x

∗) = 0} 6= ∅ , the Linear Independence Constraint Qualification is violated at x∗,
and if {i | Hi(x

∗) = 0 and Gi(x
∗) ≥ 0} 6= ∅, also the weaker Mangasarian Fromowitz Constraint

Qualification [30] is violated [21]. The latter results in an unbounded set of Lagrange multipliers
[37] and therefore numerical problems are to be expected. Anyway, it is reasonable to assume that
the Guignard Constraint Qualification [18] is satisfied [1]. Hence, stationary points are Karush-
Kuhn-Tucker points.

6.1 Relaxation Strategy

In view of the expected numerical difficulties, Izmailov and Solodov [23] propose to embed Prob-
lem (16) into a family of perturbed problems (which is also a known approach for Mathematical
Programs with Complementarity Constraints):

min
x∈Rn

f(x)

s.t. gi(x) ≤ 0 i = 1, . . . ,m

hj(x) = 0 j = 1, . . . , p

Hi(x) ≥ 0 i = 1, . . . , l

Hi(x)Gi(x) ≤ γ i = 1, . . . , l

(17)

for γ > 0. For γ → 0 , the feasible set of (17) approaches the one of (16), and under mild assump-
tions, the relaxed problem has advantageous properties in view of holding constraint qualifications.
More details and convergence results can also be found in [21].

6.2 Relaxation Homotopy, Backtracking, Adaptive Refinement

Now we specify, how the relaxation strategy from the last section is used to solve the collocation
NLP resulting from Problem (7). We choose an approach similar to the one used by Meyer et al.
[8]. As stated therein, it is important to couple the discretization accuracy with the value of the
homotopy parameter γ . We therefore propose to solve a sequence of NLPs, where γ is driven to
zero while the grid is adapted successively.
Let γ0 the chosen initial parameter and γk the relaxation parameter in the k-th iteration. The
relaxation parameter is driven to zero by

γk+1 = ρ γk for k ≥ 0 (18)

with some ρ ∈ (0, 1) . After each iteration k, we pursue the following strategy: If the k-th NLP
was infeasible, the grid is refined adaptively and we try to solve the resulting NLP again with the
same relaxation parameter. In the other case, in addition to the grid refinement we diminish the
relaxation parameter using (18).
Meyer [8] proposes a strategy how to refine the grid and how to use the NLP-solvers output from
the previous iteration to warm-start the solver in the next iteration. However, our numerical
experiments have shown that this strategy does not work properly for our augmented framework.
Therefore, the concrete strategy for refining the grid as well as for warm-starting the solver needs
to be assigned to each problem individually.
As mentioned in Section 3, we are in general interested in binary-valued variables θij1,j2 which
satisfy (9) with equality, in particular if jumps are involved. One way to enforce this is to augment
the cost function with an additional term

π2

n∑
j=1

∫ tf

t0

αj(t)(1−αj(t)) dt , (19)

cf. Sager [34]. Choosing π2 appropriately this yields binary-valued α(·), and due to the cost
function also binary-valued θij1,j2 satisfying (9) with equality in turn (if the penalty parameter π
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is chosen large enough). Hence, if fractional values of α(·) are detected in the solution of the k-th
NLP, we add a discretized version of the term (19) resp. raise the penalty parameter π2 in the
objective belonging to the next iteration’s NLP.
This procedure is repeated until the optimal solution of a feasible NLP with prescribed termination
tolerance γ ≤ γacc is found, α(·) are binary valued and the inequality constraints (9) resp. the
corresponding version for the used switching-indicators hold with equality. We denote this solution
by the optimal solution of MIOCP (5). Numerical problems are to be expected when γ gets too
small. A suitable value for γacc however strongly depends on the constraints (7g), which are
problem-specific, and hence needs to be assigned to each problem individually.

7 Numerical experiments

In this section, we present the results of two numerical experiments – an academic example con-
cerned with switch costs only, and an example from robotics, in which we generate a walking-like
motion. In the latter example, jumps in the differential states occur.

7.1 An Academic Example Involving Switch Costs

The first numerical experiment addresses switch costs. We introduce a simple OCP which can run
in two different modes. In this problem, it is optimal to stay in a fractional mode for the whole
time horizon. We then extend the problem by switch costs. As shown in Proposition 4.5, the
choice of switching indicators does not matter in case of two possible modes. We therefore decide
for the ’omnipotent’ switching indicators from Section 4.1. Other numerical experiments regarding
switch costs in more complex applications can be found in works of Jung [24] and Kirches [26]. In
these references the ’involved’ switching indicators from Section 4.2 are used.
The (continuous) problem we consider looks as follows:

min
x(·),ω(·)

∫ 5

0

x(t)2 dt+ π|S(ω)|

s.t. ω ∈ S2
F ∩ PCδ̄(T , {0, 1}2)

ẋ(t) =

{
+1 if ω1(t) = 1
−1 if ω2(t) = 1

t ∈ T a.e.

x(0) = 0

(20)

where T = [0, 5] and π = 0, and the relaxed problem resulting from POC is given by

min
x(·),α(·)

x2(5) + π|S(α)|

s.t. α ∈ S2
F ∩ PCδ̄(T , [0, 1]2)(

ẋ1(t)
ẋ2(t)

)
=

(
α1(t)−α2(t)

x1(t)2

)
t ∈ T a.e.

x(0) = 0

(21)

where we replaced the Lagrange term in the cost function by a Mayer–term. Recall that α1(t) +
α2(t) = 1 for all α ∈ S2

F . Since π = 0 , the optimal control for this relaxed Problem (21) is
obviously given by αj(t) ≡ 1

2 for j = 1, 2 and yields the cost function value 0. For the original
Problem (20), the optimal solution depends on the dwell time δ̄ and includes a high-frequency
switching.
Now we consider π > 0. After executing the steps described in Section 3.1, we end up with a
relaxed and control-discretized problem with the cost function

x2(5) + π

N−2∑
i=0

2∑
j1,j2=1
j1 6=j2

θij1,j2 . (22)

Depending on the discretization, the choice of π, as well as on the choice of initial values, we find
different (local) solutions of the resulting collocation NLP (see Section 5). Among these, there
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Figure 4: Control profiles for the αj(·) as well as the θij1,j2 – displayed as locally constant functions
– in the initial NLP’s solution of Problem (21). We choose π = 0.1 and solve the NLP with IPOPT
[38]. The cost function assumes the value ≈ 0.8488.

are trajectories of the shape as displayed in Figure 4. In these cases, the variables θij1,j2 take the

value 0, except for pairs of neighbored intervals, in which we have θij1,j2 +θi+1
j1,j2

= 1. This reminds
of Proposition 4.4. Indeed, we are in the same situation here. Following the proposition, in view
of the switch costs it makes no difference, if the system changes its mode directly, or adopts an
intermediate value in between. The reason why the system chooses the latter way therefore is to
be found in the contribution x2(5) in the cost function.
As already mentioned by Kirches [26], unfortunately one cannot observe a direct connection be-
tween the parameter π and the number of switches in the found solution. Nevertheless this is not
a contradiction, since the used NLP solvers are only able to detect local minima.

7.2 A Walking-Like Motion

Assuming that, as a consequence of nature’s evolutionary process, natural gaits are optimal with
respect to a certain performance criterion depending on individual trait parameters, we follow
[13, 19, 32] and introduce an OCP, solutions of which are the desired optimal walking-like motions.
Different from the examples cited, we refrain from using a multi-stage formulation with a predefined
order of phases but use our free-phase approach, which is of interest for model-based treatment
planning in CP.
In this example we consider the simplest walker model as in [15], a rigid MBS that consists of three
point masses, connected by massless rods as displayed in Fig. 5. We refer to the bottom point
masses as feet, and to the top point mass as head, such that the MBS can be seen as a walker, a
stick-man with two legs. Individual trait parameters are normalized to 1kg for the head and both
feet, and 1m length for the rods, of which we neglect the masses.
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Figure 5: The “Simplest Walker” modeled by a rigid multi-body system. Illustration created using
MeshUp [13].

Simplest Walker Dynamics

We allow for movements in only two dimensions. The MBS has four degrees of freedom, comprising
the head’s position in 2D and the two legs’ rotations around the head pivot. The system can be
described by means of four generalized coordinates, summarized in q(t), cf. Table 1, and their time
derivatives, to which we refer as generalized velocities.

Table 1: Generalized coordinates of the “Simplest Walker” MBS.

q1(·) horizontal position of the head
q2(·) vertical position of the head
q3(·) angle between the left leg and its resting position
q4(·) angle between the right leg and its resting position

The resting position of a leg is reached if it hangs straight down. The walker is able to accelerate its
feet by controlling rotational torques τ1(·) and τ2(·) applied to the two legs, which we summarize
in u(·).
As we consider walking-like motions, we are interested in the equations of motion of the MBS for
varying external contacts, indexed with j. These contacts can be expressed in terms of q(t) by

gj(q(t)) = 0, (23)

where j indicates the holding contact at time t. The governing MBS dynamics can then be
expressed by a switched Differential Algebraic Equation (DAE) of index 3

H(q)q̈ + C(q, q̇) = τ + Gj(q)Tλ, (24a)

gj(q) = 0, (24b)

where H(q) is the generalized inertia matrix, C(q, q̇) the generalized bias force, τ the vector of
applied generalized forces, Gj(q) = ∂

∂qgj(q) the contact Jacobian and λ the contact force. After
reducing the index to 1, the resulting system reads as(

H(q) Gj(q)T

Gj(q) 0

)(
q̈
−λ

)
=

(
τ −C(q, q̇)

−Ġj(q)q̇

)
, (25)

and to ensure equivalence of (25) and (24), the constraints

gj(q) = 0, , (26a)

Gj(q)q̇ = 0, (26b)

need to be satisfied correspondingly.
Whenever the external contact changes, e.g. if the a foot hits the ground after swinging freely
before, a collision impact occurs and transfers the generalized velocities before the collision, q̇(t−),
to those after the collision, q̇(t+). In our model, the impact is assumed to be perfectly inelastic
and can be expressed by (

H(q) Gj(q)T

Gj(q) 0

)(
q̇(t+)
−Λ

)
=

(
H(q)q̇(t−)

0

)
, (27)
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where j corresponds to the external contact after the impact, and Λ is the contact impulse.
By activating equation (25) towards q̈ resp. λ and differentiating once more, the system can be
transferred to a switched ODE system ẋ = f j(x,u), and the jump condition (27) can be transferred
to x. In particular, for every switch from mode j1 to mode j2 with (j1, j2) ∈ {(1, 2), (2, 1)}, there is
a function ∆j1,j2 , mapping the differential states before the switch to the differential states after
the switch and thus reflecting the corresponding jump.
Hence our approach, which was designed for OCPs constrained by switched ODEs, is applicable.
Anyway, though the reformulation of the DAE as an ODE is needed for theoretical purposes, in
practice the index-1 formulation (25) can already be treated as an ODE, where for every evaluation
of the ODE’s right-hand side, the linear system needs to be solved. This enables us to work with
generalized coordinates and velocities instead of the differential states.
Details on rigid MBS dynamics and algorithms to compute related quantities can be found in [13]
and, more extensively, in [12]. The software library RBDL [14] is used in this study and provides
all computations required for the purpose of optimal control.

An Optimal Control Problem for a Walking-Like Motion

We first propose a set of constraints imposed to model the process of walking. Let pl,r,h
x (t) resp.

pl,r,h
y (t) denote the horizontal and vertical position of the left foot, the right foot, and the head,

respectively. The walking motion spans a time interval T = [0, tf ] where tf ≥ 0 is a free end time
subject to optimization. At time t = 0, the constraints

ph
x(0) = 0, pl

y(0) = pr
y(0) = 0, (28a)

0.2 ≤ pl
x(0)− prx(0) ≤ 0.8, 0 ≤ ph

y(0), (28b)

−π ≤ q3(0),q4(0) ≤ π, −5 · 1 ≤ q̇(0) ≤ 5 · 1 (28c)

force the walker to start in a fixed (28a), unambiguous (28c) position, and with some freedom left
for optimizing the initial posture (28c) and velocities (28b). At the end of the time horizon, the
constraints

1.8 ≤ ph
x(tf) , pl

y(tf), p
r
y(tf) ≤ 0.1, (29)

impose a posture with both feet at least close to the ground while the prescribed final position (29)
forces the walker to move at all. In order to generate a “realistic” walking-like motion, we demand
the head of the walker to stay above a certain level, and we would like the feet not to penetrate the
ground. Since a stick-man with stiff legs is however not able to walk in a reasonable way without
penetrating the ground, we set up a tolerance εtol = 0.1, and demand

−εtol ≤ ply(t), pry(t), 0.8 ≤ phy(t), (30)

for all times t, where for the initial time, this is already ensured by (28). Furthermore, we want
the resulting movement to be cyclic up to a certain accuracy, which means that the posture of the
walker in the beginning and the end of the observed interval should not differ too much, and the
same shall hold for the velocities of the segments. To achieve this, we demand

−εtol ≤ qj(0)− qj(tf ) ≤ εtol, (31)

for j = 3, 4, and
−εtol1 ≤ q̇(0)− q̇(tf ) ≤ εtol1. (32)

In a walking motion, either one of the two feet must be fixed to the ground to avoid jumping
motions. The movement can hence be realized by alternating between two possible contact config-
urations of the switched MBS, which we call modes:

• Mode 1: the left foot is fixed to the ground

• Mode 2: the right foot is fixed to the ground
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A third mode, in which both feet are fixed to the ground, arises only momentarily as an isolated
point of transition between modes 1 and 2. The two modes of interest are characterized by

0 = c1(x(t)) = (pl
y(t), vl

x(t))T , (33a)

0 = c2(x(t)) = (pr
y(t), vr

x(t))T , (33b)

meaning (33a) resp. (33b) holds, when the system is in mode 1 resp. 2 at time t.
It is reasonable to assume that the switched MBS has a strictly positive dwell-time δ̄, such that only
finitely many switches occur, but not in 0 or tf . The overall holding differential equation together
with the mode-characterizing constraints (33) can then be written in term of the differential states

ω ∈ S2
F ∩ PCδ̄(T , {0, 1}2) (34a)

ẋ(t) =
∑2
j=1ωj(t) · f j(x(t),u(t)) a.e. t ∈ T (34b)

0 ≥ ±ωj(t) · cj(x(t)) for j = 1, 2, a.e. t ∈ T ∀j (34c)

where ω(·) are the mode-indicator functions, meaning ωj(t) = 1 ⇐⇒ system is in mode j, and
u(·) are the controllable rotational torques accelerating the feet of the walker.
The cost function which shall be minimized is given by∫ tf

t0

u1(t)2 + u2(t)2dt+ tf + π |S(ω)| , (35)

and encodes a compromise between walking speed, energy consumption and the number of steps.
The MIOCP we propose to solve is finally given by

min
tf,x(·),u(·),
ω(·),θj1,j2

(·)

∫ tf

t0

u1(t)2 + u2(t)2dt+ tf + π |S(ω)| (36a)

s.t. ω ∈ S2
F ∩ PCδ̄(T , {0, 1}2) (36b)

ẋ(t) =
∑n
j=1ωj(t)f

j(x(t),u(t)), (36c)

θj1,j2(t) = min
(
ωj1(t−),ωj2(t+)

)
, (36d)

x(t+) = ∆
(
x(t−), (θj1,j2(t))j1,j2

)
∀t ∈ S(ω), (36e)

0 ≥ ±ωj(t)cj(x(t)) for j = 1, 2, (36f)

0 ≥ c(x(t)), (36g)

0 ≥ r(x(t0),x(tf)), (36h)

where θj1,j2 are the switching indicators introduced in Section 3.1, ∆ is the aggregated jump-
function, see (4), and (36g) and (36h) summarize the constraints (28a)-(32). The solution of
Problem (36) describes the optimal gait of the walker w.r.t. the objective function (35). To solve
the problem numerically we apply the methods described in the previous sections.

Homotopy, Adaptive Refinement, Warm-start and Problem Adaption

In Section 6.2 we stated, that strategies for homotopy, adaptive refinement and warm-start should
be set up for each problem individually. In the present example, we proceed as follows: The factor
for diminishing the homotopy parameter according to (18) is set to ρ = 0.7. For the adaptive
refinement, we set up three rules 1–3. For each interval [ti, ti+1] we proceed according to the
following logic:

• Shall the interval be refined according to rule 1? If yes, do so. If not, check

• Shall the interval be refined according to rule 2? If yes, do so. If not, check

• Shall the interval be refined according to rule 3? If yes, do so. If not, do not refine.

The rules are given as follows:

Rule 2 : Set up a reasonable tolerance εtol . If either
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(b) Exemplary trajectories of α1(·) in the k-th
NLP solution as well as after the warm-start
for iteration k + 1. Since in the left foot en-
tered the regularized ground (37) already at
time tnew in the k-th NLP solution, we warm-
start the NLP with values of α1(·), which re-
flect this behavior.

Figure 6: Exemplary visualization: warm-start of the control α1(t) in the problem, which is
described in Section 7.2. According to rule 1, the new grid point is the first collocation point
belonging to the discretization of differential states x(·), at which the respective foot is located in
the regularized ground.

• minj αj(ti) > εtol (i.e. the system is in a fractional mode) or

• θi1,2 > εtol or θi2,1 > εtol (i.e. a jump occurs after the according interval)

the interval shall be bisected.
Rule 3 : Treating index-reduced DAEs numerically can result in a drift due to numerical errors (if
the chosen grid is not fine enough), meaning that the constraints (23) get violated (too strong)
after some time. In our example, according to (36f) and its relaxation, for every interval we want
one foot to be at least inside the regularized ground, meaning one of the conditions

−γ ≤ pyl (t) ≤ γ or − γ ≤ pyr(t) ≤ γ (37)

should hold at every collocation point inside [ti, ti+1] belonging to the discretization of the dif-
ferential states. Since after relaxing and discretizing the problem, we only demand (36f) to hold
at the grid points for our optimization problem, in general (37) needs not to be true, even if the
controls αj(·) take binary values. Nevertheless, if it is not true, we refine the interval as well as its
precursor in order to achieve a higher accuracy. Both intervals shall be subdivided in the middle
again.
Rule 1 : Whenever the system changes its mode at ti+1, according to our model we would expect
either foot to enter the regularized ground in the interval [ti, ti+1]. If so, we detect the first col-
location point in this interval belonging to discretization of the differential states, at which this
is the case. We refine this interval and choose the described collocation point as the point for
subdivision, unless it coincides with ti+1 . In the latter case, we bisect the interval again. For an
illustration of rule 1, see Figure 6.

The warm-start then works as follows:

• The differential states x(·) and the controls u1(·) and u2(·) are interpolated.

• If an interval is bisected, α1(·) and α2(·) are interpolated as well.

• If an interval is subdivided at another point (which can only happen if rule 1 is applied),
we use the information about the differential states at the collocation points in order to
initialize α1(·) and α2(·) reasonably.

• The control parameters βij1,j2 and θij1,j2 are initialized in a way, that

θij1,j2 = min (αj1(ti),αj2(ti+1))

holds.
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In addition, we adapt our problem whenever non-binary values of α(·) occur upon the accuracy
of the regularization term γ. In this case we either add the term (19) to the objective function if
it was not already present, or raise π2 (see (19)) by the factor 10. With this, we aim to achieve
binary-valued αj(·), which together with the penalization of the switching indicators finally yield
binary-valued switching indicators (if the penalization parameter π for the switch costs is big
enough).

Results

We use IPOPT [38] with standard settings except for the accuracy, which is set to 10−6, in order
to solve the arising NLPs. All generalized coordinates are approximated by polynomials of degree
3 and both controls uj(t) by piecewise linear functions. We choose π = 5 and γ0 = 10−3. In this
problem, we find γacc = 2 · 10−4 to be a suitable value. For the chosen initial values we receive the
optimal solution depicted in Fig. 7 and Fig. 8 after k = 6 iterations. The solver determines the
end time to be tf ≈ 5.334. A visualization of the postures of the walker is seen in Fig. 9.
Observe, that one cannot assume the chosen switching structure to be optimal. Depending on the
initial values, the chosen NLP solver finds a feasible switching structure by means of the αj(·) and
determines optimal controls uj(·) for this specific structure.

time t
0

1.8

q
1
(t

)

time t

0.97

1
q
2
(t

)

time t

-0.6

0

0.4

q
3
(t

)

time t

-0.4

0

0.4

q
4
(t

)

time t

0

2

q̇
1
(t

)

time t

-0.4

0

0.3

q̇
2
(t

)

time t

-2

0

2

q̇
3
(t

)

time t

-1.5

0

1.5

q̇
4
(t

)

Figure 7: Generalized coordinates and velocities in the optimal solution, cf. Tab. 1 for their mean-
ing. Jumps occur in the generalized velocities q̇ whenever one foot hits the ground. An accumula-
tion of grid points in the vicinity of collision impact time points is produced by the grid adaption
strategy to precisely locate the impact times in the collocation system.
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Figure 8: Trajectories of controls uj(·) = τj(·), mode-indicators α(·) and mode-change-indicators
θ(·) in the optimal solution.

8 Conclusion and Outlook

In this article, we have presented a novel approach for solving OCPs constrained by ODEs with
discontinuities in the differential equations right hand side as well as in the differential states, and
switch costs, which permits the dynamical identification of number and order of model-stages. Our
approach is based on binary indicator functions, on the one hand to mark the mode of the system,
and on the other hand to mark a change of modes. To solve the problem numerically, we use
a direct and simultaneous adaptive collocation approach to optimal control, which results in an
MPVC. We have applied our approach in a mechanical example to generate a walking-like motion
and have shown, that it indeed leads to physically reasonable results.
In future research, the following questions need to be addressed: can the used approach be extended
in order to treat jumps and switch costs in case of inconsistent switching and Filippov solutions?
Can one develop a generalized strategy for adaptive refinement and warm-start orchestrated with
the vanishing constraint homotopy? It would also be appealing to derive convergence results in
order to justify our approach theoretically. Furthermore, the approach calls for application in a
more complex setting in order to test its suitability for model–based treatment planning of CP in
praxis, as this was one of the key motivations for this project.
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(a) t = t0: walker in initial position. (b) t ≈ 0.437: walker in mode 1. The left foot is
fixed to the ground.

(c) t ≈ 1.038. (d) t ≈ 1.662: walker in mode 2 after a collision
impact took place. Now, the right foot is fixed
to the ground.

(e) t ≈ 2.301: again, a change of modes occurred. (f) t ≈ 3.004

(g) t ≈ 3.733 (h) t ≈ 4.206

(i) t ≈ 4.868 (j) t = tf : walker in terminal position.

Figure 9: Postures of the walker at various time points. Visualization created with MeshUp [13].
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Appendix A Proofs of Lemmata and Propositions

A.1 Proof of Lemma 2.2

Let w ∈ PCδ̄(T , {1, ..., n}) . We set ω(t) =
(
δj w(t)

)
j

using the Kronecker delta. Then obviously

we have ω(·) ∈ PCδ̄(T , {0, 1}n). Let t ∈ T and w(t) = j′. Then
∑n
j=1 ωj(t) = ωj′(t) = 1, ergo

ω(·) ∈ SnF , and
∑n
j=1 ωj(t) · j = ωj′(t) · j′ = j′ = w(t). Hence ϕ is surjective.

To show the injectivity, let ω1(·),ω2(·) ∈ SnF ∩ PCδ̄(T , {0, 1}n) with ω1(·) 6= ω2(·). Then there is
a t ∈ T and distinct indices j1, j2 ∈ {1, ..., n} such that ω1

j1
(t) = 1 = ω2

j2
(t), and all other entries

are zero respectively. Hence

ϕ(ω1)(t) =

n∑
j=1

ω1
j (t) · j = j1 6= j2 = ϕ(ω2)(t) ,

which finishes the proof.

A.2 Proof of Proposition 2.3

For the first direction, let (x,u, w) be feasible for Problem (1). We set ω(t) =
(
δj w(t)

)
j
. By the

proof of Lemma 2.2 we know ω = ϕ−1(w), and by construction we have S(w) = S(ω). Thus the
values of both cost functions coincide. Since ωj(t) = δj w(t) for all t ∈ T we have

f j(x(t),u(t)) =

n∑
j=1

ωj(t) · f j(x(t),u(t)) if w(t) = j ,

and the differential right sides of both problems coincide almost everywhere. Since the omitted
constraints (1e) and (1f) are not affected by the reformulation, it remains to show that (2d) holds.
Let t ∈ T such that w(t) = j′ and 0 ≥ cj

′
(x(t),u(t)) . Then ωj′(t) = 1 and ωj(t) = 0 for all

j 6= j′ . Therefore
0 ≥ ωj(t) · cj(x(t),u(t))

indeed holds for all j ∈ {1, . . . , n}. The proof for reverse direction works similarly.

A.3 Proof of Proposition 3.1

We take a look at the first statement. Let (x(·),u(·),ω(·)) be feasible for Problem (2) and define
the θj1,j2(·) by (5c) and (5d). For each ts ∈ S(ω) , we have

∆
(
x(t−s ), (θj1,j2(ts))j1,j2

)
= ∆j1,j2

(
x(t−s )

)
if j1 →ω j2 at ts . (38)

Indeed, if j1 →ω j2 , we have ωj1(t−s ) = ωj2(t+s ) = 1 , ωj′(t
−
s ) = 0 for all j′ 6= j1 and ωj′(t

+
s ) = 0

for all j′ 6= j2. Due to (5d), we therefore have

θj′1,j′2(ts) =

{
1 if j′1 = j1 and j′2 = j2
0 else

,

and (38) holds as one can easily verify. For t ∈ P \ S(ω) on the other hand, we have θj1,j2(t) = 0
for all j1 6= j2 according to (5d). This yields

∆
(
x(t−), (θj1,j2(t))j1,j2

)
= x(t−) ,

and no jump in the differential states occurs, as desired. Therefore (x(·),u(·),ω(·), (θj1,j2(·))j1 6=j2)
is feasible for Problem (5), and the cost function values coincide because of (3).
The second statement can be proven in a similar fashion.

A.4 Proof of Proposition 3.2

For every α1, α2 ∈ R , there exists a β ∈ [0, 1] such that

min(α1, α2) = βα1 + (1− β)α2 .

Using this and Proposition 3.1, the statement follows.
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A.5 Proof of Proposition 4.1

Take a look at φsubs . Then
n∑
j=1

min(bj , 1− aj) ≤
n∑
j=1

bj = 1 ,

since b ∈ conv (Sn) . Now define

J1 := {j ∈ {1, . . . , n} | aj + bj ≤ 1} and J2 := {1, . . . , n} \ J1 .

Then we find

φsubs(a,b) =

n∑
j=1

min(bj , 1− aj) =
∑
j∈J1

bj +
∑
j∈J2

(1− aj) .

We see: if aj + bj ≤ 1 for all j , i.e. J1 = {1, . . . , n} and J2 = ∅, then φsubs(a,b) = 1 . For φinv ,
the proof works similar.
For φomni we have

φomni(a,b) =

n∑
j1,j2=1
j1 6=j2

min(aj1 ,bj2) ≤
n∑

j1,j2=1
j1 6=j2

aj1 = (n− 1)

n∑
j1=1

aj1 = n− 1 (39)

and if we set aj = bj = 1
n for all j , the inequality in (39) becomes an equality, which closes the

proof.

A.6 Proof of Proposition 4.2

The first statement is obviously true. For the proof of the second statement, we first take a look
at ’⇐’: If a,b ∈ Sn and a = b, for every j we have either aj = bj = 1 or aj = bj = 0 . Therefore
φinv(a,b) = φsubs(a,b) = 0 . Also for every pair (j1, j2) with j1 6= j2 either aj1 = 0 or bj2 = 0 ,
which is why φomni(a,b) = 0 .
’⇒’: We first take a look at φinv . If φinv(a,b) = 0 , then min(aj + bj , 2− aj − bj) = 0 for all j.
Since aj ,bj ∈ [0, 1] , this is only possible if aj = bj ∈ {0, 1} for all j . Therefore a = b , and since
a,b ∈ conv (Sn) , the statement is true for φinv .
Next we consider φsubs . Similar as before, if φsubs(a,b) = 0 then min(bj , 1 − aj) = 0 for all j.
Thus for every j either bj = 0 or aj = 1 . Since b ∈ conv (Sn) , there must be a j with bj > 0,
and hence aj = 1 . Since a ∈ conv (Sn) , it follows aj′ = 0 for all j′ 6= j . In particular, aj′ 6= 1 for
all j′ 6= j , and therefore bj′ = 0 for all j′ 6= j , ergo bj = 1 , which shows the result for φsubs .
If φomni(a,b) = 0, one has min(aj1 ,bj2) = 0 for all (j1, j2) with j1 6= j2 . Since a ∈ conv (Sn) ,
there is a j with aj > 0 . This yields bj′ = 0 for all j′ 6= j and therefore bj = 1 . Now using the
same arguments again, we can conclude aj = 1 and aj′ = 0 for all j′ 6= j , in particular a = b ∈ Sn .

A.7 Proof of Proposition 4.3

To proof the statement, we take a look at several distinct cases. Lets first consider i = inv. It is
sufficient to show

min(aj + cj , 2− aj − cj) ≤ min(aj + bj , 2− aj − bj) + min(bj + cj , 2− bj − cj)

for all j .
Case i) Let min(aj + cj , 2− aj − cj) = aj + cj , i.e. aj + cj ≤ 2− aj − cj . Then

aj + cj ≤ (aj + bj) + (bj + cj) ,

aj + cj ≤ aj + 2− cj = (aj + bj) + (2− bj − cj) ,

aj + cj ≤ 2− aj + cj = (2− aj − bj) + (bj + cj) ,

aj + cj ≤ 2− aj − cj ≤ 2− aj − cj + 2− 2bj = (2− aj − bj) + (2− bj − cj) .
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Case ii) Let min(aj + cj , 2− aj − cj) = 2− aj − cj . We get

2− aj − cj ≤ aj + cj ≤ (aj + bj) + (bj + cj) ,

2− aj − cj ≤ aj + 2− cj = (aj + bj) + (2− bj − cj) ,

2− aj − cj ≤ 2− aj + cj = (2− aj − bj) + (bj + cj) ,

2− aj − cj ≤ 2− aj − cj + 2− 2bj = (2− aj − bj) + (2− bj − cj) .

Altogether, we see

min(aj + cj , 2− aj − cj) ≤ min(aj + bj , 2− aj − bj) + min(bj + cj , 2− bj − cj) ,

which proves the first statement for i = inv .
Now consider i = subs . It is sufficient to show

min(cj , 1− aj) ≤ min(bj , 1− aj) + min(cj , 1− bj)

for all j .
Case i) Let min(cj , 1− aj) = cj . Then

cj ≤ bj + cj ,

cj ≤ 1 = bj + (1− bj) ,

cj ≤ (1− aj) + cj ,

cj ≤ 1− aj ≤ (1− aj) + (1− bj) .

Case ii) Now let min(cj , 1− aj) = 1− aj . We find

1− aj ≤ cj ≤ bj + cj ,

1− aj ≤ 1 = bj + (1− bj) ,

1− aj ≤ (1− aj) + cj ,

1− aj ≤ (1− aj) + (1− bj) .

Altogether
min(cj , 1− aj) ≤ min(bj , 1− aj) + min(cj , 1− bj) ,

which shows (13) for i = subs .

For i = omni , the triangle inequality does not hold in general. As a counterexample, consider

a =

 1
3
2
3
0

 , b =

0
1
0

 , c =

 2
5
2
5
1
5

 .

We get

φomni(a, c) =

3∑
j1,j2=1
j1 6=j2

min(aj1 , cj2) =

(
1

3
+

1

5

)
+

(
2

5
+

1

5

)
+ 0 >

1

3
+

3

5
,

φomni(a,b) =

3∑
j1,j2=1
j1 6=j2

min(aj1 ,bj2) =
1

3
+ 0 + 0 =

1

3
,

φomni(b, c) =

3∑
j1,j2=1
j1 6=j2

min(bj1 , cj2) = 0 +

(
2

5
+

1

5

)
+ 0 =

3

5
,

and the triangle inequality does not hold.
To prove the last statement, let a, c ∈ Sn with al = ck = 1 and b ∈ conv (Sn) . Then

φomni(a,b) =
∑
j1 6=j2

min(aj1 ,bj2) =
∑
j2 6=l

min(1,bj2) = 1− bl (40)
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and similar φomni(b, c) = 1 − bk . For a = c, we have φomni(a, c) = 0 according to Proposition
4.2, and for a 6= c obviously φomni(a, c) = 1. This yields

φomni(a, c) ≤ 1 ≤ 2− (bl + bk) = (1− bl) + (1− bk)
(40)
= φomni(a,b) + φomni(b, c) (41)

which finally closes the proof.

A.8 Proof of Proposition 4.4

For i ∈ {inv, subs} we have φi(a, c) = 1 by Proposition 4.1 , and for i = omni, this is also true, as
one directly verifies.
Let us consider i = omni first. Due to (41), statement (14) is equivalent to the statement

1 = 2− (bl + bk) ⇐⇒ bl + bk = 1 , (42)

which is obviously true.
Next we take a look at i = inv . We find

2φinv(a,b) =

n∑
j=1

min(aj + bj , 2− aj − bj)

= min(1 + bl, 1− bl) +
∑
j 6=l

min(bj , 2− bj) = 1− bl +
∑
j 6=l

bj

= 1− 2bl +

n∑
j=1

bj = 2− 2bl ,

hence φinv(a,b) = 1−bl, and similarly φinv(b, c) = 1−bk . Again, statement (14) reduces to the
valid statement (42).
For i = subs , the proof works similar.

A.9 Proof of Proposition 4.5

Since n = 2 , we have a1 + a2 = 1 = b1 + b2 . Therefore

φsubs(a,b) = min(b1, 1− a1) + min(b2, 1− a2) = min(b1,a2) + min(b2,a1) = φomni(a,b) .

Since a2 + b2 = 2− a1 − b1 and 2− a2 − b2 = a1 + b1 , we furthermore have

φinv(a,b) =
1

2
[min(a1 + b1, 2− a1 − b1) + min(a2 + b2, 2− a2 − b2)]

= min(a1 + b1, 2− a1 − b1) =

{
a1 + b1 if a1 + b1 ≤ 1
2− a1 − b1 if a1 + b1 > 1

.

On the other hand, we also find

φomni(a,b) = min(a1,b2) + min(a2,b1) = min(a1, 1− b1) + min(1− a1,b1)

= min(a1 + b1, 1)− b1 + min(1,b1 + a1)− a1

= 2 min(a1 + b1, 1)− (a1 + b1) =

{
a1 + b1 if a1 + b1 ≤ 1
2− a1 − b1 if a1 + b1 > 1

,

and hence φinv(a,b) = φomni(a,b) , which completes the proof.
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