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TOTAL VARIATION OF THE NORMAL VECTOR FIELD AS

SHAPE PRIOR WITH APPLICATIONS IN GEOMETRIC

INVERSE PROBLEMS

RONNY BERGMANN, MARC HERRMANN, ROLAND HERZOG, STEPHAN SCHMIDT,
AND JOSÉ VIDAL-NÚÑEZ

Abstract. An analogue of the total-variation prior for the normal vector �eld
along the boundary of smooth and non-smooth shapes in 3D is introduced. Its
analysis in the smooth case is based on a di�erential geometric setting in which
the unit normal vector is viewed as an element of the two-dimensional sphere
manifold. This novel functional is subsequently extended to piecewise �at,
triangulated surfaces as they occur for instance in �nite element computations.
The ensuing discrete functional agrees with the discrete total mean curvature
known in discrete di�erential geometry. A split Bregman iteration is proposed
for the solution of shape optimization problems in which the total variation of
the normal appears as a regularizer. Both the continuous and discrete settings
are detailed. Unlike most other priors such as surface area, the new functional
allows for piecewise �at shapes in the discrete setting. As an application, a
geometric inverse problem of inclusion detection type is considered. Numerical
experiments con�rm that polyhedral shapes can be identi�ed quite accurately.

1 Introduction

The total variation (TV) functional is popular as a regularizer in imaging and
inverse problems; see for instance Rudin, Osher, Fatemi, 1992; Chan, Golub, Mulet,
1999; Bachmayr, Burger, 2009; Langer, 2017 and Vogel, 2002, Chapter 8. For a
real-valued function u ∈ W 1,1(Ω) on a bounded domain Ω, the total variation
seminorm is de�ned as

|u|TV (Ω) :=

∫
Ω

|∇u|2 dx. (1.1)

Notice that we restrict the discussion to the isotropic case here, i.e., | · |2 denotes the
Euclidean norm. (1.1) extends to less regular functions whose distributional gradi-
ent exists only in the sense of measures. We refer the reader to Giusti, 1984; At-
touch, Buttazzo, Michaille, 2006 for an extensive discussion of functions of bounded
variation. The utility of (1.1) as a regularizer, or prior, lies in the fact that it favors
piecewise constant solutions.

In this paper we introduce a novel regularizer based on the total variation and
demonstrate its utility in geometric inverse problems. In the latter class, the un-
known which one seeks to recover is a shape Ω ⊂ R3, which might represent the
location of a source or inclusion inside a given, larger domain, or the geometry of
an inclusion or a scatterer. The boundary of Ω will be denoted by Γ.
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The novel functional, which we term the total variation of the normal �eld along
Γ, is de�ned by

|n|TV (Γ) :=

∫
Γ

(
|(DΓn) ξ1|2g + |(DΓn) ξ2|2g

)1/2
ds. (1.2)

In (1.2), n is the outer unit normal vector �eld along Γ, i.e., n belongs to the
manifold S2 = {v ∈ R3 : |v|2 = 1} pointwise. Moreover, DΓn denotes the de-
rivative (push-forward) of the normal vector �eld, and {ξ1(s), ξ2(s)} denotes an
orthonormal basis (w.r.t. the Euclidean inner product in the embedding Γ ⊂ R3)
of the tangent spaces TsΓ along Γ. Finally, | · |g denotes the norm induced by a
Riemannian metric on S2. We will consider the metric induced from embedding S2

in R3, i. e. the distance induced by this metric is the arc length distance and the
curvature is 1. We write | · |g for the norm induced by the Riemannian metric g on
the tangent spaces S2.

A thorough introduction to |n|TV (Γ) and its properties will be given in Section 2.
Nevertheless we wish to point out already at this point a number of properties of
(1.2) which set it apart from (1.1):

(1) The variable on which (1.2) depends is the domain Ω. Since the normal
vector �eld n in turn depends on Ω, both the integration domain Γ and the
integrand in (1.2) depend on Ω. By contrast, Ω is �xed in (1.1), where u is
the variable.

(2) The normal vector �eld, whose pointwise variation the total variation func-
tional (1.2) seeks to capture, is manifold-valued with values in S2. By
contrast, the function u in (1.1) is real-valued.

(3) It is well known that the TV functionals penalize jumps and non-zero gradi-
ents. Consequently, the minimization of (1.1) avoids unnecessary variations
of u and thus favors piecewise constant minimizers. The situation is slightly
di�erent for (1.2) since we are considering closed surfaces Γ, which yields
a periodicity constraint for the normal vector �eld n. In this setting, un-
necessary variations of n correspond to non-convex regions of the enclosed
body Ω. Consequently, the minimization of (1.2) favors convex shapes and,
more precisely, spheres; see Theorem 2.4.

Further properties of (1.2) and its discrete counterpart will be discussed in Sec-
tions 2 and 4, respectively.

In this paper we are interested in utilizing the total variation of the normal (1.2)
as a prior in geometric inverse problems involving a partial di�erential equation
(PDE). As an example, we discuss an inclusion detection problem motivated by
geophysical applications. The aforementioned and many other problems of interest
can be cast in the form

Minimize `(u(Ω),Ω) + β |n|TV (Γ)

w.r.t. Ω in a suitable class of domains.
(1.3)

Here u(Ω) denotes the solution of the problem speci�c PDE, which depends on the
unknown domain Ω. Moreover, ` represents a loss function, such as a least squares
function.

The coupling between Ω and its normal vector �eld n makes the minimization of
(1.3) algorithmically challenging. Moreover, since the integrand in (1.2) is zero on
�at regions (with constant normal) of Γ, (1.2) and thus (1.3) cannot be expected
to be shape di�erentiable, although the �rst (loss function) part pertaining to the
PDE often is. We therefore resort to a splitting approach in the spirit of Goldstein,
Osher, 2009, where d = ∇u was introduced as an independent variable in the
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context of the total variation functional (1.1). The variables u and d are coupled
through a constraint, which is then handled in an Alternating Direction Method of
Multipliers (ADMM) framework. We refer the reader to Glowinski, Marroco, 1975;
Goldstein, Bresson, Osher, 2010; Goldstein, O'Donoghue, et al., 2014 for more on
ADMM.

In our setting, the role of u in (1.1) is played by the normal vector �eld n depending
on the shape Ω, and thus ∇u is replaced by derivative DΓn, also known as the push-
forward of n. In our proposed splitting, we introduce a new variable d, independent
of Ω and its normal vector �eld n, and require the coupling condition d = DΓn to
hold across Γ. For piecewise �at surfaces, such as those represented by simplicial
meshes utilized in computations, the normal vector n is constant on facets. As will
become clear further below, in this case the push-forward DΓn needs to be replaced
by the manifold analogue of its jump, i.e., the logarithmic map in the appropriate
tangent space of S2. An outstanding feature of the proposed splitting is that the
two subproblems, the minimization w.r.t. Ω and w.r.t. d, are directly amenable to
numerical algorithms. The former is a smooth shape optimization problem, and the
latter turns out to be solvable explicitly as a shrinkage problem in the respective
tangent spaces.

Regularizing functionals involving the normal vector for shape and geometry opti-
mization problems have been considered elsewhere in the literature, mainly in the
context of mesh denoising and surface fairing. Since some background in di�erential
geometry will be required in order to allow a comparison with our novel functional
(1.2) we postpone the discussion of related work to Section 2.

Although many optimization algorithms have been recently generalized to Rie-
mannian manifolds, the split Bregman method for manifolds proposed in this pa-
per is new to the best of our knowledge. For a general overview of optimization
on manifolds, we refer the reader to Absil, Mahony, Sepulchre, 2008. Examples
of non-smooth methods for manifold-valued total variation problems have been in-
troduced for instance in Lellmann et al., 2013. A discrete graph-based setting has
been considered in Bergmann, Tenbrinck, 2018, which includes a discrete model
similar to (4.3). A splitting scheme, the so-called half-quadratic minimization, was
introduced by Bergmann, Chan, et al., 2016.

The structure of the paper is as follows. In the following section we provide an
analysis of (1.2) and its properties. We also compare (1.2) to geometric functionals
appearing elsewhere in the literature. Section 3 is devoted to the formulation of
an ADMM method which generalizes the split Bregman algorithm to the manifold-
valued problem (1.3). In Section 4 we address a discrete counterpart of (1.2) on
simplicial meshes, as they are frequently used in �nite element discretizations of
PDEs. The discussion of the corresponding discrete ADMM method is given in
Section 5. Section 6 is devoted to the description of implementation details for an
inclusion detection problem of type (1.3), motivated by geophysical application, in
the �nite element framework FEniCS. Corresponding numerical results are pre-
sented in Section 7.

2 Analysis of the Total Variation of the Normal

In this section we discuss (1.2) in detail and relate it to other geometric functionals
used previously in the literature. A minimal background in di�erential geometry of
surfaces is required, which we recall here and refer the reader to do Carmo, 1976;
Gray, Abbena, Salamon, 2006; Kühnel, 2013 for a thorough introduction.
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2.1. Preliminaries. Throughout this section we assume that the boundary Γ of
the unknown bounded domain Ω is a smooth, orientable manifold of dimension 2
without boundary, embedded in R3. Therefore we can think of tangent vectors at
s ∈ Γ to be elements of the appropriate two-dimensional subspace (the tangent
plane) of R3. This tangent plane at s is denoted by TsΓ. Each tangent plane is
endowed with the Riemannian metric furnished by the embedding via the pull-back
of the Euclidean metric in R3. In other words, the inner product of two vectors
ξ1, ξ2 ∈ TsΓ is simply given by g(ξ1, ξ2) = ξ>1 ξ2. In what follows, {ξ1(s), ξ2(s)}
denotes an orthonormal basis in TsΓ. As the following lemma shows, the choice of
this basis and how it varies with s will not matter.

Outward pointing unit normal vectors n along Γ will be considered elements of
the two-dimensional smooth manifold S2. The derivative or push-forward of the
normal map n is denoted by DΓn. At a given s ∈ Γ, DΓn thus maps tangent
vectors ξ ∈ TsΓ into tangent vectors (DΓn) ξ ∈ Tn(s)S2. In what follows, we will
suppress the dependence on the point s ∈ Γ where possible.

Lemma 2.1. The total variation of the normal (1.2) is independent of the choice
of the orthonormal basis in the tangent spaces TsΓ.

Proof. Consider a point s ∈ Γ and suppose that {ξ1, ξ2} and {η1,η2} are two
orthogonal bases of TsΓ. Then there exists an orthogonal matrix Q ∈ R3×3 such
that ηi = Q ξi holds for i = 1, 2. De�ne J :=

[
(DΓn) ξ1 (DΓn) ξ2

]
. Then the

integrand in (1.2) can be written as

|(DΓn) ξ1|2g + |(DΓn) ξ2|2g = trace(J>J) = trace(J>J QQ>)

= trace(Q>J>J Q) = |(DΓn)Q ξ1|2g + |(DΓn)Q ξ2|2g = |(DΓn)η1|2g + |(DΓn)η2|2g.
This concludes the proof. �

Similarly as we do for Γ, we consider S2 embedded into R3 and therefore we can
conceive the tangent space Tn(s)S2 as a two-dimensional plane in R3 tangent to

the sphere S2. We endow Tn(s)S2 with the Riemannian metric furnished by the
pull-back of the Euclidean metric as well, which we denote by g(·, ·) to distinguish
it from the Riemannian metric on TsΓ. In fact, Tn(s)S2 is clearly parallel to TsΓ,
see Figure 2.1. We can therefore identify the two tangent spaces and we write
Tn(s)S2 ∼= TsΓ to indicate this.

Let us argue that (1.2) generalizes (1.1). Since the normal vector �eld n replaces
the scalar-valued function u in (1.1), assume for the moment that n maps into R
instead of S2. Then the tangent space TnR is equal to R, endowed with its usual
inner product. Finally, the manifold Γ in (1.2) takes the role of Ω ⊂ R2 in (1.1).
By Lemma 2.1, we can choose, without loss of generality, the basis ξ1 = (1, 0)>

and ξ2 = (0, 1)>. Consequently, (1.2) becomes∫
Γ

(
|(DΓn) ξ1|2g + |(DΓn) ξ2|2g

)1/2
ds =

∫
Ω

(∣∣ ∂u
∂x1

∣∣2 +
∣∣ ∂u
∂x2

∣∣2)1/2 dx =

∫
Ω

|∇u|2 dx.

2.2. Relation to Curvature. In order to relate (1.2) with regularizing geometric
functionals appearing elsewhere in the literature, we take a second look at the
integrand. To this end, we recall that the normal �eld operatorNΓ : Γ→ S2 is also
known as the Gauss map; see for instance Kühnel, 2013, Chapter 3. Its derivative
at s ∈ Γ maps tangent directions in TsΓ into tangent directions in Tn(s)S2 ∼= TsΓ.
With the latter identi�cation, the derivative of the Gauss map is known as the
shape operator

S : TsΓ→ TsΓ. (2.1)
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Figure 2.1. The �gure shows part of a smooth surface Γ (blue)
and a representation of its tangent spaces at three points s (light
blue). The normal vectors are shown in orange. The �gure also
illustrates that Tn(s)S2 is parallel to TsΓ.

Notice that S is self-adjoint, i.e., (Sξ1)>ξ2 = (Sξ2)>ξ1 holds for all s ∈ Γ and all
ξ1, ξ2 ∈ TsΓ; see for instance Gray, Abbena, Salamon, 2006, Lemma 13.14. The
two eigenvalues of S are the principal curvatures of the surface Γ at s, denoted by
k1 and k2. This insight allows us to interpret the integrand in (1.2) di�erently.

Theorem 2.2. The integrand in (1.2) satis�es(
|(DΓn) ξ1|2g + |(DΓn) ξ2|2g

)1/2
=
(
k2

1 + k2
2

)1/2
. (2.2)

Proof. Consider the square of the integrand,

|(DΓn) ξ1|2g + |(DΓn) ξ2|2g = (Sξ1)>(Sξ1) + (Sξ2)>(Sξ2).

Due to Lemma 2.1 we can choose ξ1, ξ2 to be normalized eigenvectors in TsΓ cor-
responding to the eigenvalues k1, k2, respectively. Therefore we get

|(DΓn) ξ1|2g + |(DΓn) ξ2|2g = k2
1|ξ1|2g + k2

2|ξ2|2g = k2
1 + k2

2.

�

2.3. Comparison with Preliminary Work. The representation of the inte-
grand from Theorem 2.2 allows us to rewrite (1.2) as the integral over the root
mean square curvature,

|n|TV (Ω) =

∫
Γ

(k2
1 + k2

2)1/2 ds, (2.3)

and compare it with related functionals appearing in the literature. The quantity∫
Γ

(k2
1 + k2

2) ds (2.4)

is known as the integral over the total curvature (although this term is also used
for other quantities in the literature). The functional (2.4) has a long tradition
in surface fairing applications and can be interpreted as a surface strain energy,
see for instance Lott, Pullin, 1988; Hagen, Schulze, 1987; Welch, Witkin, 1992;
Halstead, Kass, DeRose, 1993; Welch, Witkin, 1994; Greiner, 1994; Tasdizen et
al., 2003. Since (2.4) corresponds to

∫
Ω
|∇u|22 dx in imaging applications, which
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leads to a Laplacian in the associated optimality conditions (and thus also in the
corresponding L2-gradient �ow), (2.4) tends to smooth the surface and its features.

By contrast, the functional (2.3) seems to have made very few appearances in the
mathematical literature. We are aware of the PhD thesis Maekawa, 1993, Chapter 6
and the subsequent book publication Patrikalakis, Maekawa, 2001 where it was
used to guide mesh generation. In Ateshian, Rosenwasser, Mow, 1992; Marzke
et al., 2012 the pointwise root mean square curvature is used as a measure of
�atness in biomedical classi�cation problems, in Pulla, Razdan, Farin, 2001 for the
purpose of surface segmentation and in Wu, Ma, et al., 2010 it is used as an aid to
visualize vascular structures. We also mention that the logarithm of the root mean
square curvature is known as the curvedness and it plays a role in the classi�cation
of intermolecular interactions in crystals; see for instance McKinnon, Spackman,
Mitchell, 2004. We are however not aware of any use of (1.2) or its equivalent form
(2.3) as a prior in geometric inverse problems.

We regard (1.2) as a natural extension of the total-variation seminorm (1.1) to
measure surface �atness, but other extensions are certainly possible. Notably, the
authors in Elsey, Esedoglu, 2009 propose the total absolute Gaussian curvature∫

Γ

|k1 k2| ds (2.5)

for the same purpose. From the Gauss�Bonnet theorem (see for instance Gray,
Abbena, Salamon, 2006, Chapter 27 or Kühnel, 2013, Chapter 4F) it follows that
the boundaries Γ of convex domains Ω will be the global minimizers of (2.5), and
they yield a value of 4π. Thus (2.5) promotes domains which are �as convex as
possible�.

It should be noted that the classical total variation seminorm (1.1) is not invariant
with respect to scale. In fact, it is easy to see that when the domain Ω ⊂ Rd
is replaced by λΩ, and u(x) is replaced by uλ(x) := u(x/λ), then |uλ|TV (λΩ) =

λd−1|u|TV (Ω) holds. Similarly, one can show the following result for (1.2).

Lemma 2.3. Suppose that λ > 0. Then

|nλ|TV (λΓ) = λ |n|TV (Γ). (2.6)

Lemma 2.3 shows that the total variation of the normal (1.2) will go to zero when
the domain Ω degenerates to a point as λ→ 0. This is to be expected since the total
variation (1.1) behaves in the same way. In practice, this will not be an issue since
(1.2) will always be combined with appropriate data �delity terms. By contrast
(2.5) proposed in Elsey, Esedoglu, 2009 is invariant w.r.t. scaling and thus, in this
particular respect, does not generalize (1.1).

2.4. Elements of Shape Calculus. In this section we brie�y recall some ele-
ments of shape calculus, as necessary in order to study optimization problems in
which the domain Ω ⊂ R3 is an optimization variable. Here we follow common prac-
tice and de�ne transformations of Ω in terms of perturbations of identity. That is,
we consider families of perturbed domains Ωε whose material points are given by

xε = T ε(x) := x+ εV (x). (2.7)

Here V : D → R3 is some smooth vector �eld de�ned on a hold-all D ⊃ Ω. Suppose
that J is a functional depending on the domain. Then we are going to denote by
dJ(Ω)[V ] the directional shape derivative (also known as Eulerian derivative) of J
in the direction of V , i.e.,

dJ(Ω)[V ] = lim
ε↘0

J(Ωε)− J(Ω)

ε
. (2.8)
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Likewise, we write dj(Γ)[V ] for functionals j depending on the surface Γ of Ω. In
particular, for an integral of the type

J(Γε) =

∫
Γε

g(ε, sε) dsε, (2.9)

the directional shape derivative is given by Delfour, Zolésio, 2011, Equation (4.17)
or Schmidt, 2010, Lemma 3.3.13 as

dJ(Γ)[V ] =

∫
Γ

V >n
[
(Dg)n+ (k1 + k2) g

]
+ g′[V ] ds. (2.10)

Here g′[V ] := (∂/∂ε)|ε=0 g(ε, ·) is the local shape derivative. Moreover, we simply
write g instead of g(0, ·) in (2.10).

The symbol Dg in (2.10), which we will need occasionally, stands for the �full�
derivative (in all three spatial directions) of a function g de�ned in a neighborhood
of Γ. We recall that we are denoting the derivative in tangential directions of
functions de�ned on Γ by the symbol DΓ. Notice that Dg and DΓg are related by
Dg = DΓg − (Dg)nn>.

2.5. Minimizers of the Total Variation of the Normal. When Ω ⊂ R2 and
Γ is a one-dimensional manifold, (1.2) and thus (2.3) reduce to the total absolute
curvature

∫
Γ
|k| ds, where k is the single curvature. It is easy to see that this

integral has a minimal value of 2π, which is attained precisely for the boundaries Γ
of convex, smoothly bounded domains Ω ⊂ R2; see also Chen, 2000, Chapter 21.1
or Brook, Bruckstein, Kimmel, 2005.

The situation is di�erent for our setting Ω ⊂ R3.

Theorem 2.4. Spheres are stationary points for (1.2) among all surfaces Γ of
constant area.

Proof. We consider the minimization of (1.2) or equivalently, (2.3), subject to the
constraint that the surface area equals the constant A0. The Lagrangian associated
with this problem is given by∫

Γ

(
k2

1(s) + k2
2(s)

)1/2
ds+ λ

(∫
Γ

1 ds−A0

)
.

Here λ ∈ R is the Lagrange multiplier to be determined below. On the perturbed
domain with surface Γε with the perturbation according to (2.7), the Lagrangian
reads

L(ε, λ) :=

∫
Γε

(
k2

1,ε(sε) + k2
2,ε(sε)

)1/2
dsε + λ

(∫
Γε

1 dsε −A0

)
=

∫
Γε

[(
k2

1,ε(sε) + k2
2,ε(sε)

)1/2
+ λ
]
dsε − λA0.

Let us abbreviate g(ε, sε) :=
(
k2

1,ε(sε) + k2
2,ε(sε)

)1/2
where k1,ε, k2,ε are the princi-

pal curvatures on Γε. This integral is of type (2.9) and its shape derivative at the
unperturbed surface, according to (2.10), is given by

dL(0, λ)[V ] =

∫
Γ

V >n
[
(Dg)n+ (k1 + k2) (g + λ)

]
+ g′[V ] ds (2.11)

since λ is a constant.

When Ω is a sphere of radius r, we are going to show that dL(0, λ)[V ] = 0 holds

for all perturbation �elds V in normal direction and with λ = −1/(
√

2 r). In
this setting, the principal curvatures are k1(s) = k2(s) ≡ 1/r. Consequently,
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g(s) =
(
k2

1(s) + k2
2(s)

) 1
2 ≡
√

2/r is spatially constant and thus (Dg)n = 0 holds.
We thus obtain

dL(0, λ)[V ] =

∫
Γ

V >n
2

r

(√2

r
+ λ
)
ds+

∫
Γ

g′[V ] ds.

Our strategy now is to show that∫
Γ

g′[V ] ds = c0

∫
Γ

V >nds holds with the constant c0 = −
√

2

r2
. (2.12)

To this end, we utilize that the local shape derivative g′[V ] and the material de-
rivative dg[V ] are related by g′[V ] = dg[V ]− (Dg)V ; see for instance Sokoªowski,
Zolésio, 1992, Equation (2.163). We can assume, without loss of generality, that
g is extended constant in normal direction. Moreover, due to (2.11), we need to
consider only perturbation �elds V whose restriction to Γ point in the direction of
the normal. Consequently, 0 = (Dg)n = (Dg)V holds. From the chain rule, we
thus obtain

g′[V ] = dg[V ] =
1

g(s)

2∑
i=1

g
(
(DΓn) ξi, d[(DΓn) ξi][V ]

)
. (2.13)

From here, establishing the equality in (2.12) is tedious but straightforward, using
integration by parts on Γ. We postpone the details to Appendix C.

As a consequence of (2.12) we obtain the representation

dL(0, λ)[V ] =
[2

r

(√2

r
+ λ
)

+ c0

] ∫
Γ

V >nds =
[2

r

( 1√
2 r

+ λ
)] ∫

Γ

V >nds

for all perturbation �elds V parallel to n. Clearly, the term in brackets vanishes
identically when λ = −1/(

√
2 r) holds. This concludes the proof. �

Remark 2.5.

(1) A numerical study shows that among all ellipsoids of equal area, the sphere
is indeed the unique minimizer of (1.3).

(2) The proof utilizes the isotropic nature of (1.2). It continues to hold when
the surface area constraint is replaced by a volume constraint, albeit with
the di�erent value λ = −

√
2/r2.

3 Split Bregman Iteration

In this section we propose an ADMM iteration which generalizes the split Bregman
algorithm for total variation problems proposed in Goldstein, Osher, 2009. As is
well known, ADMM methods introduce a splitting of variables so that minimization
over individual variables becomes e�cient. In our setting, the main variable is the
unknown domain Ω. Notice that Ω also determines its boundary Γ as well as its
normal vector �eld n, and we will always consider Γ and n as a function of Ω.

The splitting is achieved through the introduction of a new variable d, which is
independent of Ω, Γ and n. At the solution, we require the coupling condition
d = DΓn to hold across Γ. We recall that DΓn denotes the derivative (push-
forward) of n. At the point s ∈ Γ, (DΓn)(s) maps TsΓ into Tn(s)S2.

Written in terms of Ω and d = (d1,d2) : Γ→ Tn(·)S2, problem (1.3) becomes

Minimize `(u(Ω),Ω) + β

∫
Γ

(
|d1|2g + |d2|2g

)1/2
ds

s.t. di = (DΓn) ξi on Γ for i = 1, 2.

(3.1)
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Notice that for convenience of notation, we represent DΓn in terms of its actions
on the two basis vectors ξi.

Note also that, at the point s ∈ Γ, the equality di = (DΓn) ξi is one in the tangent
space Tn(s)S2. We therefore introduce Lagrange multipliers λ = (λ1,λ2), belonging
to the same space, and de�ne the augmented Lagrangian associated with (1.3) as
follows,

L̂(Ω,d1,d2,λ1,λ2) := `(u(Ω),Ω) + β

∫
Γ

(
|d1|2g + |d2|2g

)1/2
ds

+

2∑
i=1

(∫
Γ

g
(
λi, di − (DΓn) ξi

)
ds+

γ

2

∫
Γ

g
(
di − (DΓn) ξi, di − (DΓn) ξi

)
ds

)
.

(3.2)

After the usual re-scaling bi := λi/γ, we can rewrite (3.2) as

L(Ω,d1,d2, b1, b2) := `(u(Ω),Ω) + β

∫
Γ

(
|d1|2g + |d2|2g

)1/2
ds

+
γ

2

2∑
i=1

∫
Γ

∣∣di − (DΓn) ξi − bi
∣∣2
g
ds. (3.3)

The main di�erence to an ADMM method in Euclidean or Hilbert spaces is that
the vector �elds di and bi have values in the tangent space Tn(·)S2. Hence they
must be updated whenever Ω and thus the normal vector �eld n are changing. We
now address the individual steps in our ADMM method for (3.3) in detail.

3.1. The Shape Optimization Step. We �rst address the minimization of (3.3)
w.r.t. the shape Ω. Following the standard approach of perturbation of identity,
we consider perturbed domains Ωε as in (2.7) where V : D → R3 is some smooth
vector �eld de�ned on a hold-all D ⊃ Ω. We are going to denote by d · [V ] the
directional derivatives of scalar quantities in the direction of V , or the material
derivatives of functions de�ned on Γ, respectively.

The derivative of the �rst term, d`(u(Ω),Ω)[V ], is not speci�ed here since it depends
on the particular PDE underlying the solution operator u(Ω) and the loss function `
considered. This derivative can be obtained by standard shape calculus techniques
and an example will be given in Section 6.

Next we consider the second term in (3.3). Due to the chosen splitting, the vector
�elds di are merely transported along under the perturbation (2.7) and thus we
de�ne their perturbed counterparts as

di,ε(sε) := di(T
−1
ε (sε)) = di(s). (3.4)

As a consequence, their material derivatives vanish and the directional derivative
of the term under consideration becomes

d

(∫
Γ

(
|d1|2g + |d2|2g

)1/2
ds

)
[V ] =

∫
Γ

(divΓ V )
(
|d1|2g + |d2|2g

)1/2
ds.

Here divΓ V denotes the (tangential) divergence of V along Γ. It is related to the
divergence in R3 via

divΓ V =

2∑
i=1

ξ>i (DV ) ξi = divV − n>(DV )n.

Finally we address the terms

∫
Γ

|di − (DΓn) ξi − bi|2g ds, i = 1, 2. The vector �elds

di are transported according to (3.4) and thus we need not consider their material
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derivatives. However, we do need to track the dependencies of (DΓn) ξi. Using the
product rule yields

d
(
(DΓn) ξi

)
[V ] = d

(
(Dn) ξi

)
[V ]

= d(Dn)[V ] ξi + (Dn) (dξi[V ])

= D(dn[V ]) ξi − (Dn)(DV ) ξi + (Dn) (dξi[V ]). (3.5)

In the last equality we utilized that for any di�erentiable �eld F , dF [V ] = F ′[V ]+
(DF )V holds and thus

D(dF [V ]) = D(F ′[V ]) +D((DF )V )

= (DF )′[V ] +D((DF )V )

= (DF )′[V ] + (D(DF )V ) + (DF )(DV )

= d(DF )[V ] + (DF )(DV ).

Concerning the �rst term in (3.5), we notice that

dn[V ] = −(DΓV )>n (3.6)

holds for the material derivatives of the normal vector �eld n. This result can
be found, for instance, in Sokoªowski, Zolésio, 1992, Equation (3.168) or Schmidt,
2010, Lemma 3.3.6. Notice that dn[V ] is tangential since

− n>dn[V ] = n>(DΓV )>n = n>
[
(DV )> − nn>(DV )>

]
n = 0. (3.7)

Concerning the last term in (3.5), we can show that the material derivatives of ξi
satisfy

dξ1[V ] = (DV ) ξ1 − (ξ>1 (DV ) ξ1) ξ1

dξ2[V ] = (DV ) ξ2 − (ξ>2 (DV ) ξ2) ξ2 − (ξ>1 (DV +DV >) ξ2) ξ1.
(3.8)

The asymmetry of the formulas in (3.8) stems from the fact that we chose to
transport the �rst basis vector ξ1 along with (2.7) and then to orthogonalize the
second basis vector ξ2 w.r.t. the �rst. The details of this derivation are given in
Appendix B.

Altogether, we may write the directional derivative of the Augmented Lagrangin
(3.3) in the direction of V as

dL(Ω,d1,d2, b1, b2)[V ]

= d`(u(Ω),Ω)[V ] + β

∫
Γ

(divΓ V )
(
|d1|2g + |d2|2g

)1/2
ds

+
γ

2

2∑
i=1

∫
Γ

(divΓ V )
∣∣di − (DΓn) ξi − bi

∣∣2
g
ds

+ γ

2∑
i=1

∫
Γ

g
(
di − (DΓn) ξi − bi, −d

(
(DΓn) ξi

)
[V ]
)
ds (3.9)

with d
(
(DΓn) ξi

)
[V ] from (3.5).

This directional derivative is the basis of any shape optimization procedure. After
all, the minimization of (3.3) w.r.t. the domain Ω represents a fairly standard shape
optimization problem, except for the terms in (3.5). They can be handled, however,
conveniently by algorithmic di�erentiation techniques on the discrete level. In our
implementation, we subsequently convert the derivative into a shape gradient by
means of an appropriate inner product. The details are given in Section 6. Instead
of minimizing (3.3) w.r.t. Ω to a certain accuracy, in practice we only perform one
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gradient step per iteration. This is in line with Goldstein, Osher, 2009, where a
Gauss�Seidel sweep is proposed.

3.2. The Total Variation Minimization Step. Before addressing the mini-
mization of (3.3) w.r.t. d we must note that the data bi at any point s ∈ Γ has
to belong to the tangent space Tn(s)S2. Since the surface Γ and hence the �eld of
normal vectors is changing during the shape optimization step, we must �rst paral-
lely transport the data bi into the new tangent space. This is achieved via parallel
transport along geodesics on S2. Suppose for brevity of notation that n− denotes
the old normal vector �eld along the boundary Γ− of the previous iterate Ω−. Then
b−i ∈ Tn−(·)S2 needs to be transported into bi ∈ Tn(·)S2 along the geodesic from

n− to n. This step is inexpensive since geodesics and parallel transport on S2 are
available in terms of explicit formulas; see Appendix A.

We can now address the minimization of (3.3) w.r.t. d = (d1,d2). Since the �rst
term in (3.3) does not depend on d, we are left with the minimization of

β

∫
Γ

(
|d1|2g + |d2|2g

)1/2
ds+

γ

2

2∑
i=1

∫
Γ

∣∣di − (DΓn) ξi − bi
∣∣2
g
ds (3.10)

where d1,d2 are sought pointwise in the tangent spaces Tn(·)S2. We recall that the

latter are two-dimensional subspaces of R3. At this point it is important to note
that the data (DΓn) ξi + bi belongs to the same tangent spaces. Therefore, just
like in the Euclidean setting, the minimizer of (3.10) can be evaluated explicitly
and inexpensively via a pointwise, vectorial shrinkage operation, i.e.,

d =

(
d1

d2

)
:= max

{∣∣(DΓn) ξ + b
∣∣
g
− β

γ
, 0

}
(DΓn) ξ + b∣∣(DΓn) ξ + b

∣∣
g

∈
[
Tn(·)S2

]2
. (3.11)

Here we abbreviated

(DΓn) ξ :=

(
(DΓn) ξ1

(DΓn) ξ2

)
and

∣∣(DΓn) ξ+b
∣∣
g

=
(
|(DΓn) ξ1|2g + |(DΓn) ξ2|2g

)1/2

.

3.3. The Multiplier Update. An update of the Lagrange multipliers (b1, b2) is
achieved, parallel to the Euclidean setting, by replacing bi by

bi + (DΓn) ξi − di, i = 1, 2.

Notice again that all quantities belong to the subspace Tn(·)S2 of R3.

To summarize we outline the split Bregman method for (1.3) as Algorithm 3.1.

Algorithm 3.1. Split Bregman method for (1.3)

Input: Initial domain Ω(0)

Output: Approximate solution of (1.3)

1: Set b(0) := 0
2: Set n := 0
3: while not converged do

4: Perform a gradient step for Ω 7→ L(Ω,d(k), b(k)) at Ω(k) to obtain Ω(k+1)

5: Parallely transport the multiplier estimate b(k) from Tn(k)(·)S2 to Tn(k+1)(·)S2

along the geodesic from n(k) to n(k+1)

6: Parallely transport the basis vectors ξi of Tn(k)(·)S2 to Tn(k+1)(·)S2 along the

geodesic from n(k) to n(k+1) for i = 1, 2

7: Set d(k+1) := arg minL(Ω(k+1),d, b(k)), see (3.11)

8: Update the Lagrange multipliers, i.e., set b
(k+1)
i := b

(k)
i + (DΓn

(k+1)) ξi −
d

(k+1)
i for i = 1, 2
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Figure 4.1. Volume mesh of a cube domain Ω consisting of tetra-
hedra (left) and corresponding triangular mesh of the boundary Γ
(right).

9: Set k := k + 1
10: end while

4 Discrete Total Variation of the Normal

The split Bregman method proposed in Section 3 needs to be discretized before
it can be numerically realized. More precisely, we need to represent the unknown
domain Ω in some discrete fashion. Here we follow a standard approach and rep-
resent Ω in terms of a geometrically conforming, simplicial mesh, i.e., consisting of
tetrahedra. Consequently, the surface Γ will be given in terms of a geometrically
conforming, triangular mesh in R3 without boundary; see Figure 4.1.

Since the surface Γ is no longer smooth, we cannot directly apply our de�nition (1.2)
of the total variation of the normal to it. Indeed, the normal vector �eld n is now
piecewise constant, and its variation is concentrated in spontaneous changes across
edges between triangles, rather than gradual changes expressed by the derivative
DΓn.

To motivate an extension of (1.2) to the discrete setting, we consider a family of
smooth approximations Γε of a triangulated surface Γ. Some notation is required.
In the following, we denote by E an arbitrary edge in the surface mesh Γ. Its
Euclidean length is denoted by |E|. Each edge has an arbitrary but �xed orienta-
tion, so that its two neighboring triangles can be addressed as T+

E and T−E . The

corresponding normal vectors, constant on each triangle, are denoted by n+
E and

n−E . Moreover,

d(n+
E ,n

−
E) = arccos

(
(n+

E)>n−E
)

= ^
(
n+
E ,n

−
E

)
(4.1)

denotes the geodesic distance on S2, i.e., the angle between the two unit vectors
n+
E and n−E ; see also Figure 6.2.

The family of smooth approximations Γε is supposed to be of class C2 such that
the �at triangles are preserved up to a collar of order ε and smoothing occurs in
bands of width 2ε around the edges. Such an approximation can be constructed, for
instance, by a level-set representation of Γ by means of a signed distance function
Φ. Then a family of smooth approximations Γε can be obtained as zero level sets
of molli�cations Φ~ ϕε for su�ciently small ε. Here ϕε is the standard Friedrichs
molli�er in 3D and ~ denotes convolution. An alternative to this procedure is the
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Figure 4.2. Illustration of the approximation of a portion of a
triangulated surface Γ (left) by a family of smooth surfaces Γε
(right). Two vertex caps BV,ε and one transition region along an
edge IE,ε are highlighted, see the proof of Theorem 4.1.

so-called Steiner smoothing, where Γε is taken to be the boundary of the Minkowski
sum of Ω with the ball Bε(0) ⊂ R3.

Theorem 4.1. Let {Γε} denote a family of smooth approximations obtained by
molli�cation with normal vector �elds nε. Then

|nε|TV (Γε) →
∑
E

d(n+
E ,n

−
E)|E| as ε↘ 0. (4.2)

Proof. Let us denote the vertices in Γ by V and its edges by E. Since molli�cation
is local, the normal vector is constant in the interior of each triangle minus its
collar, which is of order ε. Consequently, changes in the normal vector are con�ned
to a neighborhood of the skeleton. We decompose this area into the disjoint union⋃̇
EIE,ε ∪̇

⋃̇
VBV,ε. Here IE,ε are the transition regions around edge E where the

normal vector is modi�ed due to molli�cation, and BV,ε are the regions around
vertex V . On IE,ε, we can arrange the basis ξ1,2 to be aligned and orthogonal to
E so that∫

IE,ε

(
|(DΓnε) ξ1|2g + |(DΓnε) ξ2|2g

)1/2
ds =

∫
IE,ε

|(DΓnε) ξ1|g ds

holds, which can be easily evaluated as an iterated integral. In each stripe in IE,ε
perpendicular to E, nε changes monotonically between n+

E and n−E , so that the

integral along this stripe yields the constant d(n+
E ,n

−
E). Since the length of IE,ε

parallel to E is |E| up to terms of order ε, we obtain∫
IE,ε

(
|(DΓnε) ξ1|2g + |(DΓnε) ξ2|2g

)1/2
ds = d(n+

E ,n
−
E)
[
|E|+O(ε)

]
.

The contributions to |nε|TV (Γε) from integration over BV,ε are of order ε since(
|(DΓnε) ξ1|2g + |(DΓnε) ξ2|2g

)1/2
is of order ε−1 and the area of BV,ε is of order ε

2.
This yields the claim. �

Consequently, we will use

|n|TV (Γ) :=
∑
E

d(n+
E ,n

−
E)|E| (4.3)

as an extension of the total variation of the normal functional (1.2) in case of
discrete surfaces Γ. We refer to it as the discrete total variation of the normal.
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4.1. Comparison with Preliminary Work for Discrete Surfaces. The func-
tional (4.3) has been used previously in the literature. First of all, we mention that
it �ts into the framework of total variation of manifold-valued functions de�ned in
Giaquinta, Mucci, 2007; Lellmann et al., 2013. Speci�cally in the context of discrete
surfaces, we mention Sullivan, 2005 where HE := |E|ΘE appears as the total mean
curvature of the edge E and ΘE is the exterior dihedral angle, which agrees with
d(n+

E ,n
−
E), see (4.1). Consequently, (4.3) can be written as

∑
E HE . Moreover,

(4.3) appears as a regularizer in Wu, Zheng, et al., 2015 within a variational model
for mesh denoising but the geodesic distances are approximated for the purpose of
numerical solution.

In addition, we are aware of Zhang et al., 2015; Zhong et al., 2018, where∑
E

|n+
E − n

−
E |2|E|, (4.4)

was proposed in the context of variational mesh denoising. Notice that in contrast
to (4.3), (4.4) utilizes the Euclidean as opposed to the geodesic distance between
neighboring normals and is therefore an underestimator for (4.3).

Once again, we are not aware of any work in which (4.3) or its continuous counter-
part (1.2) were used as a prior in shape optimization or geometric inverse problems.

4.2. Minimizers of the Discrete Total Variation of the Normal. In this
section we investigate some properties of the discrete total variation of the normal.
As can be seen directly from (4.3), Lemma 2.3 continues to hold in the discrete
setting, i.e.,

|nλ|TV (λΓ) = λ |n|TV (Γ)

for all λ > 0. Consequently, when studying minimizers of (4.3), we need to impose
a constraint which avoids that Γ degenerates to a point. As in Theorem 2.4, we
choose a constraint on the surface area for this purpose and consider the following
problem. Given a triangulated surface mesh consisting of vertices V , edges E and
facets F , �nd the mesh with the same connectivity which

minimizes
∑
E

d(n+
E ,n

−
E)|E| subject to

∑
F

|F | = A0. (4.5)

To the best of our knowledge, a precise characterization of the minimizers of (4.5) is
an open problem. We conjecture that they depend on the connectivity of the mesh.
That is, di�erent triangulations of the same (initial) mesh, e.g., a cube, may yield
di�erent minimizers. See also Alexa, Wardetzky, 2011 for a related observation in
discrete mean curvature �ow.

We do have, however, the following partial result. For the proof, we exploit that
(4.3) coincides with the discrete total mean curvature and utilize results from dis-
crete di�erential geometry. The reader may with to consult Meyer et al., 2003;
Polthier, 2005; Wardetzky, 2006; Bobenko, Springborn, 2007; Crane et al., 2013.

Theorem 4.2. The icosahedron and the cube with crossed diagonals are stationary
for (4.5) among all discrete surfaces Γ of constant area.

Proof. Let us consider the Lagrangian associated with (4.5),

L(x1, . . . ,xNV
, λ) :=

∑
E

d(n+
E ,n

−
E)|E|+ λ

(∑
F

|F | −A0

)
. (4.6)

Here xi ∈ R3 denote the coordinates of vertex #i and NV is the total number of
vertices of the surface mesh. Notice that the normal vector n±E , edge lengths |E|
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and facet areas |F | depend on these coordinates. The gradient of (4.6) w.r.t. xi
can be represented as

∇xi
L(x1, . . . ,xNV

, λ) =
∑

j∈N (i)

[d(n+
Eij
,n−Eij

)

|Eij |
+
λ

2

(
cotαij + cotβij

)]
(xi − xj),

(4.7)

see for instance Crane et al., 2013. Here N (i) denotes the index set of vertices
adjacent to vertex #i. For any j ∈ N (i), Eij denotes the edge between vertices #i
and #j. Moreover, αij and βij are the angles as illustrated in Figure 4.3.

For the icosahedron with surface area A0, all edges have lengths |Eij | =
(
A0

5
√

3

)1/2
.

Moreover, since all facets are unilaterial triangles, αij = βij = π/3 holds. Fi-

nally, the exterior dihedral angles d(n+
Eij
,n−Eij

) are all equal to arccos(
√

5/3) ≈
41.81◦. Consequently, the Lagrangian is stationary for the Lagrange multiplier

λ = −
√

3 arccos(
√

5/3)
(

5
√

3
A0

)1/2
.

We remark that (4.3) and thus (4.7) is not di�erentiable when one or more of the
angles d(n+

Eij
,n−Eij

) are zero. This is the case for the cube with crossed diagonals,

see Figure 4.3. However, the right hand side in (4.7) still provides a generalized
derivative of L in the sense of Clarke.
In contrast to the icosahedron, the cube has two types of vertices. When xi is
the center vertex of one of the lateral surfaces, then d(n+

Eij
,n−Eij

) = 0 and αij =

βij = π/4 for all j ∈ N (i). Moreover, since
∑
j∈N (i)(xi − xj) = 0 holds, 0 is

an element of the generalized (partial) di�erential of L at (x1, . . . ,xNV
, λ) w.r.t.

xi, independently of the value of the Lagrange multiplier λ. Now when xi is a
vertex of �corner type�, we need to distinguish two types of edges. Along the three
edges leading to neighbors of the same type, we have a exterior dihedral angle of
d(n+

Eij
,n−Eij

) = π/2, length |Eij | = (A0/6)1/2 and αij = βij = π/2. Along the

three remaining edges leading to surface centers, we have d(n+
Eij
,n−Eij

) = π/2 and

αij = βij = π/4. Thus for vertices of �corner type�, it is straightforward to verify
that 0 belongs to the generalized (partial) di�erential of L at (x1, . . . ,xNV

, λ) w.r.t.
xi if ( π

√
2/2

(A0/6)1/2
+ 2λ

)1
1
1

 = 0

holds, which is true for the obvious choice of λ. �

Numerical experiments show that the icosahedron as well as the cube are not only
stationary points, but also local minimizers of (4.5). We can thus conclude that the
discrete objective (4.3) exhibits di�erent minimizers than its continuous counterpart
(1.2). In particular, (4.3) admits piecewise �at minimizers such as the cube. This
property sets our functional apart from other functionals previously used as priors
in shape optimization and geometric inverse problems. For instance, the popular
surface area functional is well known to produce smooth shapes.

We close this section by comparing the values of (1.2) and (4.3) for the unit cube as
well as the for a single regular tetrahedron, for the icosahedron and for (discretized)
spheres of the same surface area as the cube. We created triangular meshes of this
sphere with various resolutions using Gmsh and evaluated (4.3) numerically.

The results are shown in Tables 4.1 and 4.2. They reveal a factor of approximately√
2 between the discrete and continuous functionals for the sphere. To explain this

discrepancy, notice that the principal curvatures of the sphere are k1 = k2 = 1/r.
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αij

βij

Eij

Figure 4.3. The icosahedron and the cube with crossed diagonals,
two stationary surfaces for (4.5). The highlighted regions as well
as the �gure on the right illustrate the proof of Theorem 4.2.

unit cube tetrahedron icosahedron (discretized) sphere

continuous (1.2) � � � 4
√

3π ≈ 12.2799

edge length |E| 1 ≈ 1.8612 ≈ 0.8324
number of edges 12 6 30
exterior dihedral angle π/2 ≈ 1.9106 ≈ 0.7297

discrete (4.3) 6π ≈ 18.8496 ≈ 21.3365 ≈ 18.2218 ≈ 17.37, see Table 4.2

Table 4.1. Comparison between the continuous and the discrete
total variation of the normal functionals (1.2) and (4.3) for the
cube with edge length 1, as well as the regular tetrahedron, the
icosahedron and the (discretized) sphere with the same surface
area as the cube.

This implies that the derivative map DΓn has rank two everywhere. Discretized
surfaces behave fundamentally di�erent in the following respect. Their curvature
is concentrated on the edges, and one of the principal curvatures (in the direction
along the edge) is always zero. So even for successively re�ned meshes, e.g., of the
sphere, one is still measuring only one principal curvature at a time. We are thus
led to the conjecture that the limit of (4.3) for sucessively re�ned meshes is the
�anisotropic�, yet still intrinsic measure

∫
Γ
|k1|+ |k2| ds, whose value for the sphere

in Table 4.1 is 4
√

6π ≈ 17.3664 and which will be investigated elsewhere. The
factor

√
2 can thus be attributed to the ratio between the `1- and `2-norms of the

vector (1, 1)>. Also, one could consider an �isotropic� version of (4.3) in which the
dihedral angles across all edges meeting at any given vertex are measured jointly.
These alternatives will be considered elsewhere.

5 Discrete Split Bregman Iteration

In this section we address the discrete realization of the split Bregman iteration
presented in Section 3. We continue to write Ω for the unknown domain, but
understand that it stands for a tetrahedral mesh whose connectivity is �xed, but
whose vertex coordinates will be altered throughout the optimization. The bound-
ary mesh of Ω is a triangulated surface representing the boundary Γ of Ω. We
continue to denote the edges of the boundary mesh Γ by E.



TV OF THE NORMAL AS SHAPE PRIOR 17

NV NE NT (4.3) (4.3) / (1.2)

54 156 104 17.01045 1.38522
270 804 536 17.47614 1.42315
871 2,607 1,738 17.34861 1.41276

1,812 5,430 3,620 17.35852 1.41357
3,314 9,936 6,624 17.36350 1.41398

9,530 28,584 19,056 17.36855 1.41439
82,665 247,989 165,326 17.37524 1.41493
101,935 305,799 203,866 17.37341 1.41478
335,216 1,005,642 670,428 17.37389 1.41482
958,022 2,874,060 1,916,040 17.37410 1.41484

Table 4.2. Various triangulations of a sphere with radius 1
2

√
6
π ,

their values of (4.3) and the ration between (4.3) and (1.2).

The discrete analogue of problem (1.3) then reads

Minimize `(u(Ω),Ω) + β
∑
E

d(n+
E ,n

−
E)|E|

w.r.t. the vertex positions of Ω.

(5.1)

As before, u(Ω) denotes the solution of some (discretized) partial di�erential equa-
tion, which depends on the unknown domain Ω. Moreover, ` represents a loss
function. We will consider a concrete example in Section 7.

Notice that the second term in the objective in (5.1) is non-di�erentiable whenever
n+
E = n−E occurs on at least one edge. Therefore, similar to Section 3, we introduce

a splitting in which the variation of the normal vector becomes an independent
variable. Since this variation is con�ned to edges, where the normal vector jumps
(without loss of generality) from n+

E to n−E , this new variable becomes

dE = logn+
E
n−E ∈ Tn+

E
S2.

Here logn+
E
n−E denotes the logarithmic map, which speci�es the unique tangent

vector at the point n+
E such that the geodesic departing from n+

E in that direction

will reach n−E at unit time. The logarithmic map is well-de�ned whenever n+
E 6=

−n−E . Moreover, |logn+
E
n−E |g = d(n+

E ,n
−
E) holds.

Together with the set of Lagrange multipliers bE ∈ Tn+
E
S2, we de�ne the Aug-

mented Lagrangian pertaining to (5.1), similarly as in (3.3):

L(Ω,d, b) := `(u(Ω),Ω) + β
∑
E

|dE |g|E|+
γ

2

∑
E

|E|
∣∣dE − logn+

E
n−E − bE

∣∣2
g
. (5.2)

The vectors d and b are simply the collections of their entries dE , bE ∈ Tn+
E
S2, one

per edge E.

The split Bregman iteration in the discrete setting is very similar to the continuous
setting, see Algorithm 3.1. In particular, the TV minimization step can be solved
explicitly by one vectorial shrinkage operation per edge E. Speci�cally, the mini-
mizer of (5.2) with given data Ω(k+1) and associated normal �eld n(k+1), as well
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as multiplier data b
(k)
E transported into T

n
+,(k+1)
E

S2, is given by

d
(k+1)
E := max

{∣∣log
n

+,(k+1)
E

n
−,(k+1)
E + b(k)

∣∣
g
− β

γ
, 0

} log
n

+,(k+1)
E

n
−,(k+1)
E + b(k)∣∣log

n
+,(k+1)
E

n
−,(k+1)
E + b(k)

∣∣
g

(5.3)
for each edge E.

For the sake of completeness, we state the split Bregman iteration for the discrete
setting in Algorithm 5.1.

Algorithm 5.1. Split Bregman method for (5.1)

Input: Initial domain Ω(0)

Output: Approximate solution of (5.1)

1: Set b(0) := 0
2: Set n := 0
3: while not converged do

4: Perform a gradient step for Ω 7→ L(Ω,d(k), b(k)) at Ω(k) to obtain Ω(k+1)

5: Parallely transport the multiplier estimate b
(k)
E on each edge E from T

n
+,(k)
E

S2

to T
n

+,(k+1)
E

S2 along the geodesic from n
+,(k)
E to n

+,(k+1)
E

6: Set d(k+1) := arg minL(Ω(k+1),d, b(k)), see (5.3)

7: Update the Lagrange multipliers, i.e., set b
(k+1)
E := b

(k)
E +log

n
+,(k)
E

n−E−d
(k+1)
E

for all edges E
8: Set k := k + 1
9: end while

6 Implementation of a Model Problem in FEniCS

In this section we address some details concerning the implementation of Algo-
rithm 5.1 in the �nite element framework FEniCS (version 2018.2.dev0), Logg,
Mardal, Wells, et al., 2012; Alnæs, Blechta, et al., 2015. For concreteness, we
elaborate on a particular loss function `(u(Ω),Ω) arising from geological electrical
impedance tomography problems with Robin-type far-�eld boundary conditions.
We introduce the problem under consideration �rst and discuss implementation
details and derivative computations later on.

6.1. EIT Model Problem. Electrical impedance tomography (EIT) problems
are a prototypical class of inverse problems. Common to these problems is the task
of reconstructing the internal conductivity inside a volume from boundary mea-
surements of electric potentials or currents. These problems are both nonlinear
and severely ill-posed and require appropriate regularization; see for instance San-
tosa, Vogelius, 1990; Cheney, Isaacson, Newell, 1999; Chung, Chan, Tai, 2005.

Traditionally, EIT problems are modeled with Neumann (current) boundary con-
ditions and the internal conductivity is an unknown function across the entire do-
main. In order to focus on the demonstration of the utility of (1.2) as a regularizer
in geometric inverse problems, we consider a simpli�ed situation in which we seek to
reconstruct a perfect conductor inside a domain of otherwise homogeneous electrical
properties.

Consequently, the unknown is the interface of the inclusion. As a perfect conductor
shields its interior from the electric �eld, there is no necessity to mesh and simulate
the interior of the inclusion. However, we mention that our methodology can be
extended also to non-perfect conductors and other geometric inverse problems.
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Figure 6.1. The left plot shows the domain Ω considered in the
numerical example. Each color on the outer boundary represents
the support of one out of r = 48 electric sources fi. The right
�gure shows a wireframe plot revealing the true inclusion Γ1, i.e.,
the boundary of the cube.

The perfect conductor is modeled via a homogenous Neumann condition on the un-
known interior boundary Γ1 of the domain Ω. To overcome the non-uniqueness of
the electric potential, we employ Robin boundary conditions on the exterior bound-
ary Γ2. The use of homogeneous Robin boundary conditions to model the far �eld
is well-established for geological EIT problems, see, e.g., Helfrich-Schkarbanenko,
2011. We use them here also for current injection.

The geometry of our model is shown in Figure 6.1, where Γ1 is the unknown bound-
ary of the perfect conductor and Γ2 is a �xed boundary where currents are injected
and measurements are taken. We assume that i = 1, . . . , r ∈ N experiments are
conducted, each resulting in a measured electric potential zi ∈ L2(Γ2) on the outer
boundary Γ2. Experiment #i is conducted by applying the right hand side source
fi ∈ L2(Γ), which is the characteristic function of one of the colored regions shown
in Figure 6.1. We then seek to reconstruct the interface of the inclusion Γ1 by
solving the following regularized least-squares problem of type (1.3),

Minimize
1

2

r∑
i=1

∫
Γ2

|ui − zi|2 ds+ β |n|TV (Γ1)

s.t.


−∆ui = 0 in Ω,

∂ui
∂n

= 0 on Γ1,

∂ui
∂n

+ αui = fi on Γ2.

(6.1)

Here ui ∈ H1(Ω) is the computed electric �eld for source fi. Hence, the problem
features r PDE constraints with identical operator but di�erent right hand sides.

As detailed in Section 6.2, we compute the derivative of the least-squares objective
and the PDE constraint separately from the derivative of the regularization term.
We now focus on the derivative d`(u(Ω),Ω) of the data �t term as required for (3.9)
in the shape optimization step inside the split Bregman iteration, Algorithm 3.1.
The approach is described in the continuous setting but applies similarly to the
discrete problem. To evaluate this derivative, we utilize a classical adjoint approach.
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To this end, we consider the Lagrangian

F (u1, . . . , ur, p1, . . . , prΩ) :=
r∑
i=1

[∫
Γ2

1

2
|ui − zi|2 ds+

∫
Ω

∇pi · ∇ui dx+

∫
Γ2

pi(αui − fi) ds
]
. (6.2)

The di�erentiation w.r.t. ui leads to the following adjoint problem for pi:
−∆pi = 0 in Ω,

∂pi
∂n

= 0 on Γ1,

∂pi
∂n

+ αpi = −(ui − zi) on Γ2.

(6.3)

All states ui and adjoint states pi are discretized in the �nite element space CG1(Ω)
consisting of piecewise linear, globally continuous functions on a tetrahedral mesh
covering Ω. Since all forward and adjoint problems are governed by the same
di�erential operator, we assemble the associated sti�ness matrix once and solve the
state and adjoint equations via an ILU-preconditioned conjugate gradient method.

Provided that ui and pi solve the respective state and adjoint equations, the di-
rectional derivative of `(u(Ω),Ω) coincides with the partial directional derivative
∂ΩF (u1, . . . , ur, p1, . . . , pr,Ω)[V ]. In practice, we evaluate the latter using the coor-
dinate derivative functionality of FEniCS as described in the following subsection.

6.2. Discrete Shape Derivative. Our split Bregman scheme requires the shape
derivative of (5.2), which is given by

dL(Ω,d, b)[V ] = d`(u(Ω),Ω)[V ] + dm(Γ1)[V ] (6.4)

for the problem at hand, where

m(Γ1) := β
∑
E

|dE |g|E|+
γ

2

∑
E

|E|
∣∣dE − logn+

E
n−E − bE

∣∣2
g

(6.5)

originates from the splitting approach. The term d`(u(Ω),Ω)[V ] is computed via
the adjoint approach as explained above,

d`(u(Ω),Ω)[V ] = ∂ΩF (u1, . . . , ur, p1, . . . , pr,Ω)[V ].

Both terms in (6.4) are evaluated using the coordinate derivative capability Ham et
al., 2018 in the latest FEniCS release 2018.2.dev0. Being a variation of automatic
di�erentiation (AD), the coordinate derivative provides directional derivatives w.r.t.
the vertex position of the mesh over which the respective expression is de�ned. In
case of F , this amounts to the availability of ∂ΩF (u1, . . . , ur, p1, . . . , pr,Ω)[V Ω] for
�elds V Ω ∈ CG1(Ω)3. However since m(Γ1) is de�ned over a boundary mesh of Ω,
dm(Γ1)[V Γ1

] is available in directions V Γ1
∈ CG1(Γ1)3.

In order to employ this AD functionality, (6.5) needs to be given as a UFL form, a
domain speci�c language based on Python, which forms the native language of the
FEniCS framework, see Alnæs, Logg, et al., 2014. Such a UFL representation is
easy to achieve if all mathematical expressions are �nite element functions. Notice
that d and b in (6.5) are constant functions on the edges of the boundary mesh
representing Γ1. We can thus represent them in the so called HDivTrace space of
lowest order in FEniCS.

From the directional derivatives (6.4), we pass to a shape gradient on the surface
w.r.t. a scaled H1(Γ1) scalar product by solving a variational problem. This prob-
lem involves the weak form of a Laplace�Beltrami operator with potential term and
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it �nds W Γ1
∈ CG1(Γ1)3 such that∫

Γ1

10−4(∇W Γ1
,∇V Γ1

)2 + (W Γ1
,V Γ1

)2 ds

= d`(u(Ω),Ω)[PΩ(V Γ1)] + dm(Γ1)[V Γ1 ] (6.6)

holds for all test functions V Γ1
∈ CG1(Γ1)3. Here PΩ(V Γ1

) is the extension of V Γ1

to the volume Ω by padding with zeros.

The previous procedure provides us with a shape gradient W Γ1
on the surface

Γ1 alone. In order to propagate this information into the volume Ω, we solve the
following mesh deformation equation: �nd WΩ ∈ CG1(Ω)3 such that∫

Ω

10−1(∇WΩ,∇V Ω)2 + (WΩ,V Ω)2 ds = 0 (6.7)

for all test functions V Ω ∈ CG1(Ω)3 with zero Dirichlet boundary conditions, where
WΩ is subject to the Dirichlet boundary condition WΩ = W Γ1

and WΩ = 0 on
Γ2. Subsequently, the vertices of the mesh are moved in the direction of WΩ.

6.3. Intrinsic Formulation Using Co-Normal Vectors. We recall that our
functional of interest (4.3) is formulated in terms of the unit outer normal n of the
oriented surface Γ1. This leads to the term (6.5) inside the augmented Lagrangian
(5.2). In order to utilize the di�erentiation capability of FEniCS w.r.t. vertex
coordinates, we need to represent (6.5) in terms of an integral. Since the edges are
the interior facets of the surface mesh for Γ1, and d and b can be represented as
constant on edges as explained above, (6.5) can indeed be written as an integral
w.r.t. the interior facet measure dS on Γ1. Then, however, the outer normal vectors
appearing in the term logn+

E
n−E is not available. We remedy the situation by

observing that the geodesic distance between two normal vectors n+
E and n−E on

the two triangles T1 and T2 sharing the edge E can also be expressed via the co-
normal (or in-plane normal) vectors µ+

E , µ
−
E , as is shown in Figure 6.2. Indeed, one

has ∣∣logn+
E
n−E
∣∣
2

=
∣∣logµ+

E
(−µ−E)

∣∣
2
.

Since the co-normal vectors are intrinsic to the surface Γ1, they are available on Γ1

while n+
E and n−E are not.

7 Numerical Results

In this section we present numerical results obtained with Algorithm 5.1 for the
geological impedance tomography model problem described in the previous section.
The data of the problem are given in Table 7.1. The state u and adjoint state p
were discretized using piecewise linear, globally continuous �nite elements on a
tetrahedral grid of Ω minus the volume enclosed by Γ1. The mesh has 4429 vertices
and 41 272 tetrahedra.

We show in Figure 7.1 the results obtained in the noise-free setting and with noise.
In the latter case, we added normally distributed random noise with zero mean
and standard deviation σ = 10−2 per degree of freedom on Γ2 for each of the
r = 48 simulations of the forward model (6.1). The amount of noise has to be
interpreted in relation to the range of values for the simulated state, which is

max
s∈Γ2

ui(s)− min
s∈Γ2

ui(s) ≈ 0.3, i = 1, . . . , r.

In each case, the initial guess for Γ1 was the surface of the ball B0.5(0) while the
true solution is cube.
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T+
E

T−E

n+
E

n−E

µ−E

−µ−E

µ+
E

E

Figure 6.2. The geodesic distance between normals n+
E and n−E

(shown in black) of two triangles T+
E , T

−
E which share the edge E

agrees with the geodesic distance between the co-normals µ+
E and

−µ−E (shown in orange).

domain Ω unit sphere B1(0) ⊂ R3

measurement boundary Γ2 boundary of Ω
true inclusion Γ1 boundary of [−0.4, 0.4]3

initial guess for Γ1 boundary of B0.5(0) ⊂ R3

number of measurements r = 48
Robin coe�cient α = 10−5

standard deviation of noise σ ∈ {0, 10−2}
regularization parameter . . .
for (4.3) β = 10−6

for perimeter regularization β = 10−4

Table 7.1. Setting of the numerical experiments.

The results obtained by Algorithm 5.1 applied to the regularized problem (6.1) are
shown in Figure 7.1. For comparison, we provide in Figure 7.2 results obtained for
a related problem with the same data but with the popular perimeter or surface
area regularization, where β |n|TV (Γ1) is replaced by β

∫
Γ1
ds = β

∑
F |F |. Since in

this case the problem is smooth, we applied a shape gradient scheme directly rather
than a split Bregman scheme. The regularization parameter β was selected by hand
in each case. Automatic parameter selection strategies can clearly be applied here
as well but this is out of the scope of the present paper.

As is expected and well known, the use of perimeter regularization leads to results
in which the identi�ed inclusion Γ1 has been smoothed out. This can be explained
by the observation that the gradient based minimization of the surface area yields
a mean curvature �ow. By contrast, our novel prior (4.3) allows for piecewise �at
shapes and thus the interface Γ1 is closely reconstructed in the noise-free situation.
Even in the presence of noise the reconstruction is remarkably good. In particular,
the �at lateral surfaces and sharp edges can be identi�ed quite well.
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Figure 7.1. Numerical reconstruction of the true (cube shaped)
inclusion using Algorithm 5.1 for the solution of (6.1) after 500 it-
erations in the noise-free situation (left) and after 463 iterations
with noise added (right). For the data see Table 7.1.

Figure 7.2. Numerical reconstruction of the true (cube shaped)
inclusion using a shape gradient descent scheme for the solution of
(6.1) with perimeter regularization, i.e., with β |n|TV (Γ1) replaced

by β
∫

Γ1
ds = β

∑
F |F |. For the data see Table 7.1. The results

shown have been obtained after 600 iterations in the noise-free
situation (left) and after 600 iterations with noise added (right).

8 Conclusions

In this paper we introduced an analogue of the total-variation prior for the normal
vector �eld. In the continuous setting, this functional is also known as the total
root mean square curvature and it admits spheres as minimizers under an area
constraint. We also considered a discrete version, which is known as the total mean
curvature. While we are currently unable to characterize all of its minimizers, we
showed that the icosahedron and a cube with crossed diagonals are stationary under
an area constraint. We conjecture that the full set of minimizers is much richer than
this.
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We proposed, described and implemented a split Bregman (ADMM) scheme for
the numerical solution of shape optimization problems involving the total variation
of the normal, or its discrete counterpart. In contrast to a Euclidean ADMM as
proposed for instance in Goldstein, Osher, 2009, the normal vector data belongs to
the sphere S2. Therefore, the formulation of the ADMM method requires concepts
from di�erential geometry. In particular, the discrete setting utilizes logarithmic
maps and parallel transport of tangent vectors. An analysis of the ADMM scheme
is beyond the scope of this paper and will be presented elsewhere.

We demonstrate the utility of the discrete total variation of the normal as a shape
prior in a geometric inverse problem, in which we aim to detect a polyhedral in-
clusion. Unlike the popular perimeter regularization, our prior allows for piecewise
�at shapes.

A The Sphere as a Riemannian Manifold

In this section we provide some useful formulas for the sphere

S2 = {n ∈ R3 : |n|2 = 1}

equipped with the Riemannian metric obtained from the pull back of the Euclidean
metric from the ambient space R3. We are going to represent points n ∈ S2

by vectors in R3. Moreover, we identify the tangent space at n with the two-
dimensional subspace

TnS2 = {ξ ∈ R3 : ξ>n = 0}.
We utilize the Riemanian metric g(a, b) = a>b in TnS2 and the norm |a|g =

(a>a)1/2.

The geodesic distance between any two n,n′ ∈ S2 is given by

d(n,n′) = arccos(n>n′). (A.1)

The geodesic curve γ( · ;n, ξ) : R → S2 departing from n ∈ S2 in the direction of
ξ ∈ TnS2 is given by

γ(t;n, ξ) = cos
(
t |ξ|g

)
n+ sin

(
t |ξ|g

) ξ
|ξ|g

. (A.2)

The exponential map is thus given by

expn ξ = γ(1;n, ξ) = cos
(
|ξ|g
)
n+ sin

(
|ξ|g
) ξ
|ξ|g

. (A.3)

The logarithmic map is the inverse of the exponential map w.r.t. to the tangent
direction ξ. In other words, ξ = logn n

′ holds if any only if ξ is the unique element
in TnS2 such that expn ξ = n′ holds. The logarithmic map is well-de�ned whenever
n 6= −n′ holds. In this case, we have

logn n
′ = d(n,n′)

n′ − (n>n′)n

|n′ − (n>n′)n|g
. (A.4)

Finally we require the concept of parallel transport of a tangent vector from one
tangent space to another, along the unique shortest geodesic connecting the base
points. Speci�cally, the parallel transport Pn→n′ : TnS2 → Tn′S2 along the unique
shortest geodesic γ( · ;n, logn n

′) connecting n and n′ 6= −n is given by

Pn→n′(ξ) = ξ − ξ
>(logn n

′)

d2(n,n′)
(logn n

′ + logn′ n)

= ξ +
(
cos(|v|g)u− u− sin(|v|g)n

)
u>ξ,

(A.5)
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see for instance Hosseini, Uschmajew, 2017 and Persch, 2018, Section 2.3.1, repec-
tively. Here we used the abbreviations v = logn n

′, |v|g = d(n,n′) and u = v
|v|g .

To see that both expressions in (A.5) coincide �after plugging in the de�nition of
the geodesic distance (A.1)� it remains to show that

−n
>n′ logn n

′

|logn n
′|g

+
√

1− (n>n′)2 n =
logn′ n

|logn′ n|g
.

which holds true since the norm of the logarithmic map is

|logn n
′|g = |n′ − n>n′n|g =

√
(n′>n′)− (n>n′) =

√
1− (n>n′) = |logn′ n|g.

Hence multiplying with the denominator of the �rst term in (A.5) yields the equality
with the second term, since using the de�nition of the logarithmic map we obtain

(n>n′)n− (n>n′)2n− (1− (n>n′)2)n = n− (n>n′)n′.

B Material Derivative of the Tangent Basis

In this section we derive (3.8) by a constructive approach. Beginning from a
parametrization h of the surface, we give an explicit formula for the tangent ba-
sis. The perturbed surface Γε is then expressed via a perturbed parameterization
hε := T ε ◦ h, where T ε is given by (2.7). We derive a formula for the perturbed
tangent basis via the Gram�Schmidt process. The desired material derivatives are
then given by the total derivative w.r.t. ε = 0.

Let h : R2 → R3 be an orthogonal parametrization of Γ, i.e. the derivative Dh is a
matrix with orthonormal columns, such that s ∈ Γ is locally given by s = h(x) for
some x ∈ R2. Hence, we de�ne the orthonormal tangent vectors ξ1, ξ2 via

ξi(s) :=
Dh(x) ei
|Dh(x) ei|2

, i = 1, 2, (B.1)

where ei is the i-th canonical basis vector of R3. With respect to ξ1, we arrive at
the normalized tangent vector of the perturbed surface as

ξ1,ε(sε) :=
DxT ε(h(x)) e1

|DxT ε(h(x)) e1|2
=

DsT ε(s)Dh(x) e1

|DsT ε(s)Dh(x) e1|2

=
DsT ε(s) ξ1(s)

|DsT ε(s) ξ1(s)|2
=

(id +εDV (s)) ξ1(s)

|(id +εDV (s)) ξ1(s)|2
.

(B.2)

Regarding ξ2, we do it in a similar way, but have to apply the Gram�Schmidt
process to obtain orthonormal perturbed tangent vectors. Hence, ξ2,ε is given by

ξ2,ε(sε) :=
DsT ε(s) ξ2 − (ξ>1,εDsT ε(s) ξ2) ξ1,ε

|DsT ε(s) ξ2 − (ξ>1,εDsT ε(s) ξ2) ξ1,ε|2
. (B.3)

A straightforward di�erentiation with respect to ε = 0 results in the material
derivatives given in (3.8).

C Details in the Proof of Theorem 2.4

In order to complete the proof of Theorem 2.4, we need to show that∫
Γ

1

g(s)

2∑
i=1

g
(
(DΓn) ξi, d[(DΓn) ξi][V ]

)
ds = c0

∫
Γ

V >nds (C.1)

holds with c0 = −
√

2
r2 . To this end, we need a tangential Stokes formula as given in

the following lemma.
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Lemma C.1. Suppose that a, b are C1-vector �elds on Γ with values in R3, and
that V is a C1-vector �eld which is normal, i.e., V = (V >n)n holds on Γ. Then
we have∫

Γ

a>(DΓV ) b ds

=

∫
Γ

V >n
[
−divΓ((a>n) b) + (a>n)(b>n) (k1 + k2) + a>(DΓn) b

]
ds. (C.2)

Proof. The general tangential Stokes formula Delfour, Zolésio, 2011, Equation
(5.27) states ∫

Γ

cdivΓ V ds =

∫
Γ

V >n c (k1 + k2) ds−
∫

Γ

(DΓc)V ds (C.3)

for all C1-vector �elds V . We split V in normal and tangential components ac-
cording to V = (V >n)n+

∑2
i=1(V >ξi) ξi, we arrive at∫

Γ

a>(DΓV ) b ds =

∫
Γ

a>DΓ((V >n)n) b+

2∑
i=1

a>DΓ((V >ξi) ξi) b ds

=

∫
Γ

DΓ(V >n)(a>n) b+ (V >n)a>(DΓn) b

+

2∑
i=1

DΓ(V >ξi)(a
>ξi) b+ (V >ξi)a

>(DΓξi) b ds by the product rule

=

∫
Γ

V >n
[
(a>n)(n>b) (k1 + k2)− divΓ((a>n) b) + a>(DΓn) b

]
+

2∑
i=1

V >ξi
[
a>(DΓξi) b− divΓ((a>ξi) b)

]
ds by (C.3)

=

∫
Γ

V >n
[
(a>n)(n>b) (k1 + k2)− divΓ((a>n) b) + a>(DΓn) b

]
.

In the last step we used that V is normal and thus V >ξi = 0 holds. �

We shall also utilize that g(s) =
√

2/r is a constant on the sphere of radius r.
Finally, we utilize

(Dn)(s) ≡ id

r
and (DΓn)(s) =

id

r

(
id−nn>

)
(C.4)

and thus (DΓn) ξ = ξ/r holds for i = 1, 2.

The three terms contributing to the material derivative d[(DΓn) ξi][V ] in (C.1) are
given in (3.5) and we consider them individually. We utilize that the Riemannian
metric on S2 is the Euclidean inner product of the ambient R3, i.e., g(a, b) = a>b.

First Term. The insertion of the �rst term in (3.5) into the left hand side of (C.1)
leads to the expression

r√
2

∫
Γ

2∑
i=1

[
(DΓn) ξi

]>
DΓ(dn[V ]) ξi ds

=
r√
2

1

r

∫
Γ

2∑
i=1

ξ>i DΓ(dn[V ]) ξi ds by (C.4)

=
1√
2

∫
Γ

divΓ dn[V ] ds = 0. (C.5)
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The last step follows from (C.3) with c = 1. Recall from (3.7) that dn[V ] is
tangential.

Second Term. Inserting the second term in (3.5) into the left hand side of (C.1)
leads to the expression

−
∫

Γ

1

g(s)

2∑
i=1

[
(DΓn) ξi

]>
(Dn)(DV ) ξi ds

= − r√
2

1

r2

∫
Γ

2∑
i=1

ξ>i (DV ) ξi ds by (C.4)

= − 1√
2 r

∫
Γ

2∑
i=1

V >n
[
ξ>i (DΓn) ξi

]
ds by (C.2)

= −
√

2

r2

∫
Γ

V >nds by (C.4). (C.6)

Third Term. Finally, inserting the third term in (3.5) into the left hand side of
(C.1) yields ∫

Γ

1

g(s)

2∑
i=1

[
(Dn) ξi

]>
(Dn) (dξi[V ])ds. (C.7)

We consider the �rst summand (i = 1) �rst, which leads to∫
Γ

1

g(s)

[
(DΓn) ξ1

]>
(Dn) (dξ1[V ])ds

=
r√
2

∫
Γ

[
(DΓn) ξ1

]>
(Dn)

[
(DV ) ξ1 − (ξ>1 (DV ) ξ1) ξ1

]
ds by (3.8)

=
r√
2

1

r2

∫
Γ

ξ>1

[
(DV ) ξ1 − (ξ>1 (DV ) ξ1) ξ1

]
ds

= 0.

For the second summand (i = 2), we get one additional term:∫
Γ

1

g(s)

[
(DΓn) ξ2

]>
(Dn) (dξ2[V ])ds

=
r√
2

∫
Γ

[
(DΓn) ξ2

]>
(Dn)

[
(DV ) ξ2 − (ξ>2 (DV ) ξ2) ξ2

]
ds

− r√
2

∫
Γ

[
(DΓn) ξ2

]>
(Dn) (ξ>1 (DV +DV >) ξ2) ξ1 by (3.8)

= 0− r√
2

1

r2

∫
Γ

ξ>2
[
ξ>1 (DV +DV >) ξ2

]
ξ1 ds

= 0.

Hence expression (C.7) is zero.

Collecting terms (C.5)�(C.7), we have shown that the left hand side in (C.1)
amounts to∫

Γ

1

g(s)

2∑
i=1

g
(
(DΓn) ξi, d[(DΓn) ξi][V ]

)
ds = −

√
2

r2

∫
Γ

V >n ds.

Hence, (C.1) is ful�lled with

c0 = −
√

2

r2
.
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