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Abstract

The first order system least-squares for linear ealstic contact problems is examined.
The complementarity term is added to the functional, while the local inequality con-
straints are inserted in the definition of the convex set. A mixed formulation for both
displacement and stress, subject to the contact conditions, is consequently obtained.
This holds for both compressible and incompressible materials. The problem is then
discretized by continuous piecewise linear functions for the displacement and by the
lowest order Raviart-Thomas for the stress. As a solver, a multilevel method is ex-
ploited and in particular, due to the local constraints, a monotone multilevel method.
A linear convergence rate in the limit case is finally shown in numerical experiments.

1 Introduction

The least-squares system of first order equations (FOSLS) for linear elasticity has been de-
veloped in [12], by introducing a functional which is the sum of the squared L2 norms of the
residuals of the equilibrium and constitutive equations ([1], [10]). In this way, displacement
u ∈ H1(Ω) and stress σ ∈ H(div,Ω) are considered as independent, giving rise to a mixed
weak form. With respect to the standard primal displacement formulation, several are the
advantages of this approach. First, the stress can be directly accessed, which can make
the treatment of the elasto-plasticity (see [27]) and friction cases easier. Second, the Lamé
∗rovig@usi.ch
†bernhard.kober@uni-due.de
‡gerhard.starke@uni-due.de
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parameters are not restricted to a limited range of values: indeed, incompressible solids can
be treated with no additional effort. Third, the least-squares functional is a reliable and
efficient a posteriori error estimator. All these properties suggested the generalization of
[12] to contact, as shown in [23] for the Signorini’s problem. The respective discretization
is carried out by conforming finite element spaces: continuouse piecewise linear functions
for the displacement and Raviart-Thomas elements of the lowest order for the stress.
Different tecniques for solving the constrained optimisation problem, which describes the
Signorini problem in the displacement formulation, have been proposed. A typical one is
the projected Gauß-Seidel, whose behaviour unfortunately deteriorates by increasing the
size of the problem. Therefore multilevel approaches are preferred. Here we want to extend
to the least-squares setting the monotone multilevel exposed in [21], [22], [24], while for
the other methods we refer the reader to the citations therein (for example [8], [15], [25]).
Peculiarly, the monotone multilevel aims to compute the solution of the discrete problem
by adding to the current iterate fine and coarse corrections that actually minimize the en-
ergy functional. Effectively the framework of the least-squares linear elasticity for contact
problem perfectly adapts to this case. Investigating this strategy is actually the main goal
of the present paper. Nevertheless the primal and the dual variables belong to different
spaces, i.e u ∈ H1(Ω) and σ ∈ H(div,Ω). And since H1 ⊂ H(div,Ω), schemes applied to
the primal case cannot be transferred straightforwardly to the mixed one.
The most important difference between H(div,Ω) and H1(Ω) consists in the kernels of the
divergence, which contains all divergence-free functions, and of the gradient, which consists
only of constants. Between the two, the kernel of the gradient operator is smaller and its
elements can be well represented on coarse meshes. On the other hand, the kernel of the di-
vergence is very large and its functions can have large gradients, so that their representation
on coarse meshes can be very poor. In order to circumvent this drawback, some variants of
multilevel methods for H(div,Ω) have been studied, at least for the linear case. A general
overview can be found in [28]. In [16] a geometric multigrid has been proposed. Then in
[17] and [19] a more general framework for dealing algebraic and geometric multigrid has
been developed. All these approaches are based on the Helmoltz decomposition, which is
a tool used not only in theory but also in the implementation. In particular, the different
components in the Helmoltz decomposition can be expressed as functions of certain poten-
tials, which are tackled separately. To this aim, various projections into the potential spaces
are needed. However in this paper we take advantage of the work proposed in [2], [3], [4].
In this way, no potential space has to be considered, although a proper patch smoother
is required. Moreover this smoother can be extended to the least-squares formulation as
proposed in [26]. In this way, we tackle all together not only the different components of
the Helmoltz decomposition for the stress, but also the displacement. The price to pay is
the solution of local problems which can be larger with respect to the standard ones.
So far, to the authors’ knowledge, only multilevel methods for linear FOSLS problems have
been discussed. Nevertheless the Signorini’s problem is non-linear. Of course by exploiting
the active set method, for each arising linear problem, a linear multilevel method could be
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used. However in this way the non-linearities would not appear into the multilevel cycles,
but only in the external active set. The main advantage of a monotone multilevel method
is that it is able to deal with constraints inside the multilevel cycle itself. In the primal
case, it has been shown in [20] that, when the number of iterations k → ∞, all the active
degrees of freedom are detected, the inequality constraints become equalities and the overall
problem is reduced to a linear one. In such a situation, a linear convergence rate can be
shown. Altough this formula is independent of the meshwidth, it depends on the number
of levels J of the multilevel method. Some years later (see [5], [6], [7]) the same kind of
behaviour has been prooved for all the iterations, and not only in the limit case.
In this paper the primal case is generalized to the FOSLS for contact problems and some
numerical experiments will be carried out to show that the linear rate is meaningful also
in this situation. The article is organized in the following way. In the second section,
we introduce the problem. In the third one, existence and uniqueness of the solution are
shown. In the fourth section a monotone multilevel strategy is proposed, while in the fifth
one some non-linear projection operators for the constraints are introduced. In the sixth
section, proper truncated multilevel basis are discussed. Finally in the last section some
numerical experiments are presented.

2 Definition of the problem

In this section the strong formulations of linear elasticity and linear elastic contact for
dimension d = 2, 3 are introduced . Different weak formulations are discussed, with their
advantages and disadvantages. The main focus of this paper regards the FOSLS formulation
for contact. Therefore the LS functional for linear elasticity and the augmented variant for
contact problems are defined.
Let a body be reprented by Ω, an open, bounded, connected subset of Rd, where d = 2, 3
is the dimension of the problem. The boundary ∂Ω, Lipschitz and continuous, is the union
of two open disjoint subsets ∂Ω = ΓD ∪ ΓN , with ΓD 6= ∅ and ΓD ∩ ΓN = ∅. Then let
f = (f1, ..., fd)

T be the body force, u = (u1, ..., ud)
T the displacement field, σ = (σij)d×d

the stress tensor. By bold symbols we denote vectors or tensors. We use bold letters for
The strong formulation of linear elasticity is the following: find u, σ such that :

divσ + f = 0 Ω momentum balance equation
Aσ − ε(u) = 0 Ω constitutive law
u = uD ΓD Dirichlet BC
σn = tN ΓN Neumann BC

where the linearized strain tensor ε(u) = sym(∇u) is the symmetric part of the displace-

ment gradient, A =
1

2µ

(
σ − λ

dλ+ 2µ
trσI

)
is the compliance tensor with tr, d, λ and

µ denoting respectively the trace operator, the dimension of the problem and the Lamé
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parameters.
Now let ΓC be the contact boundary such that ∂Ω = ΓC ∪ ΓD ∪ ΓN , Γi ∩ Γj = ∅ for
i, j = D,N,C, i 6= j, and ΓD 6= ∅. Then, by adding the following constraints:

u · no − g ≤ 0 ΓC impenetrability
(σn) · no ≤ 0 ΓC direction of the surface pressure
(u · no − g) ((σn) · no) = 0 ΓC complementarity condition
(σn) · to = 0 ΓC frictionless condition

the strong formulation of contact for linear elasticity is finally obtained. Here n represents
the outward normal of the body, while no and to respectively represent the normal and the
tangent vectors of the obstacle. The gap function g is instead the distance in the normal
direction between the obstacle and the body. Here the first condition means that no pen-
etration can occur between the body and the obstacle. The second condition implies that,
whenever contact forces arise, they have to be of compression and no adhesion is permitted.
The third condition is a classic complementarity condition of the first two. The last one
states that only normal stresses can arise. Finally, by confusing the normal and the tangent
vectors of the obstacle with the ones of the body, i.e. n ≈ no and t ≈ to, the linearized
contact formulation for linear elasticity is recovered (see [18]).
In general, from the strong formulation of the contact linear elasticity, different variants
of weak forms can be derived. In the following, a list of motivations that retraces the one
in [12] is presented. By substituing the constitutive equation (σ = Cε(u), with C = A−1

the elasticity tensor) into the momentum balance one, the displacement formulation is
consequently obtained. The displacement u, belonging to H1(Ω), is the only unknown
and the stress σ, belonging only to L2(Ω), is derived a posteriori and cannot be carefully
approximated. Furthermore locking phenomena can arise for incompressible or nearly in-
compressible solids (λ� 1 or λ→∞).
To achieve a better approximation of the stress, the mixed formulation by Hellinger-
Reissner can be used ([11]). Given the energy-functional J (u,σ) = 1

2 (Aσ,σ)L2(Ω) +

(∇ · σ + f,u)L2(Ω), both displacement and stress (u,σ) are unknowns of the problem, re-
spectively belonging to L2(Ω)d ×Hdiv,S(Ω)d , where Hdiv,S(Ω)d is the space of symmetric
tensors in Hdiv(Ω). In this case, in order to satisfy the inf-sup condition in the discrete
setting, a stable combination of finite element spaces is needed. Although such spaces have
been built ([12]), the number of degrees of freedom they require is very large. Furthermore
the corresponding linear system is a saddle point problem, that in general is difficult to
solve.
The approach that is here presented is based on the LS principle ([9], [10], [29]). The main
idea behind it is to build a fictitious functional as the weighted sum of the squared L2-norms
of the residual equations. Unlike the previous cases, now it is required more regularity on
both variables: u ∈ H1(Ω), σ ∈ H(div,Ω). With respect to the Hellinger-Reissner formu-
lation, the symmetry of the stress tensor is not demanded. Indeed, as it is shown in [12],∥∥σ − σT∥∥

L2(Ω)
≤ C ‖Aσ − ε(u)‖L2(Ω). Thus, by reducing the residual of the constitutive

law, the asymmetry is reduced as well. Principally, spaces that would be useful for the
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analysis are the following:

H1
D(Ω) =

{
v ∈

[
H1(Ω)

]d
, v|ΓD

= uD on ΓD

}
H1
D,0(Ω) =

{
v ∈

[
H1(Ω)

]d
, v|ΓD

= 0 on ΓD

}
HN (div,Ω) =

{
τ ∈ [H(,div,Ω)]

d
, τn|ΓN

= tN on ΓN

}
HN,0(div,Ω) =

{
τ ∈ [H(,div,Ω)]

d
, τn|ΓN

= 0 on ΓN

}
Then, relying on the formulation given in [23], we define the linear elasticity LS functional
F and the corresponding augmented LS functional J for contact:

F(u,σ; f) = Ceq ‖divσ + f‖2L2(Ω)d + Cconst ‖Aσ − ε(u)‖2L2(Ω)d (1)

J (u,σ; f, g) = F(u,σ; f) + Ccompl〈u · n− g, (σn) · n〉ΓC
(2)

So that the problem can be formulated in this way: find (u,σ) such that

(u,σ) = arg min
(u,σ)∈K

J (u,σ; f, g)

K =
{

(u,σ) ∈ H1
D(Ω)×HN (div,Ω) : u · n− g ≤ 0, (σn) · n ≤ 0, (σn) · t = 0 on ΓC

}
(3)

The complementarity condition on ΓC is a non-linear term. Defining the convex set K
by adding also this requirement would be cumbersome, at least from a computational
perspective. On the other hand, augmenting the functional with this term seems a more
natural choice. Of course in the discrete setting, due to the fact that we do not enforce it
strongly and we just add it as a penalty addendum, the complementarity condition will be
not fulfilled exactly and so will be only approximated.
The augmented functional J (u,σ; f, g) is Gateaux-differentiable and strongly convex, as
we will show. Therefore the problem (3) can be reformulated in the following way: find
(u,σ) ∈ K such that ∀(v, τ ) ∈ K:

〈
∂J (u,σ; f, g)

∂u
,v− u

〉
= −2 (σ − ε(u), ε(v− u)) + 〈n · (σn) ,n · (v− u)〉ΓC

≥ 0

〈
∂J (u,σ; f, g)

∂σ
, τ − σ

〉
= 2 (div σ + f,div(τ − σ)) + 2 (σ − ε(u), τ − σ) + 〈n · u− g,n · (τ − σ) n〉ΓC

≥ 0

(4)

Here and in the following, whenever the dot product or the norm is not explicitly defined,
it is assumed to be L2 on the domain Ω, i.e (·, ·) = (·, ·)L2(Ω) and ‖·‖ = ‖·‖L2(Ω) .

3 Existence and uniqueness of the solution

Standard FOSLS functionals are simply positive definite quadratic forms. Thus they are
also strongly convex and differentiable, so that the existence and uniqueness of the mini-
mizer immediately follows. In (2) the inconvenience is represented by the complementarity
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term, which is not convex in general. Therefore it is not clear whether the whole functional
is still convex or not and if such convexity can depend on the weights in front of each term.
Actually, by showing some intermediate results, we can prove the strong convexity of the
functional for non homogeneous boundary conditions, which together with the continuity of
the functional implies the existence and uniqueness of the solution (u,σ). From the proof
we can see that the choice of the constants Cconst, Ceq, Ccompl plays an important role.
Let us define the following squared norm M(s,w) : H1

D(Ω)×HN (div,Ω)→ R by:

M(s,w) = ‖ε(w)‖2L2 + ‖s‖2Hdiv
= ‖ε(w)‖2L2 + ‖s‖2L2 + ‖div s‖2L2

Then we can prove:

Lemma 3.1. Given u, v ∈ H1
D(Ω) and σ, τ ∈ HN (div,Ω), let w = u − v and s = σ − τ .

Then there exist two positive constants, C1 > 0 and C2 > 0, such that:

M(s,w)C1 ≤ J (w, s; 0, 0) ≤ C2M(s,w). (5)

Proof. The proof is similar to the Theorem 3.1 in [12]. The upper bound can be easily

shown by using ‖Aτ‖ ≤ 1

2µ
‖τ‖, the triangle, Young and trace inequalities.

In order to prove the lower estimate, it is sufficient to bound all the terms in M with the

functional. Knowing that ‖Aτ‖ ≤ 1

2µ
‖τ‖ and (As, s) ≥ 1

2µ
‖s‖2, we get:

‖s‖2 + ‖div s‖2 + ‖ε(w)‖2 ≤‖s‖2 + ‖div s‖2 + 2‖ε(w)−As‖2 + 2‖As‖2 (6)

≤
(

2µ2 + 1

2µ2

)
‖s‖2 + ‖div s‖2 + 2‖ε(w)−As‖2 (7)

≤
(

2µ2 + 1

µ

)
(As, s) + ‖div s‖2 + 2‖ε(w)−As‖2 (8)

Thus it is now sufficient to bound
2µ2 + 1

2µ2
(As, s). By exploiting the Green’s formula,∥∥s− sT

∥∥ ≤ 4µ‖As− ε(w)‖ and Poincaré’s and Korn’s inequalities, respectively with con-
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stants Cp and K, we get:

(As, s) = (As− ε(w), s) + (ε(w), s) = (As− ε(w), s) + (s− 1

2

(
s− sT

)
,∇w)

= (As− ε(w), s)− (divs,w)− 1

2

(
s− sT ,∇w

)
+

∫
∂Ω

sn ·w

≤ ‖As− ε(w)‖‖s‖+ ‖divs‖‖w‖+
1

2

∥∥s− sT
∥∥ ‖∇w‖+

∫
∂Ω

sn ·w

≤ ‖As− ε(w)‖‖s‖+ max{1, Cp} ‖w‖
(
‖divs‖+

1

2

∥∥s− sT
∥∥)+

∫
∂Ω

sn ·w

≤ ‖As− ε(w)‖‖s‖+ max{1, Cp}K‖ε(w)‖ (‖divs‖+ 2µ ‖As− ε(w)‖) +

∫
∂Ω

sn ·w

≤ ‖As− ε(w)‖‖s‖+ K̃‖ε(w)‖divs‖+ 2µK̃ ‖ε(w)‖ ‖As− ε(w)‖+

∫
∂Ω

sn ·w

Where we have defined K̃ = max{1, Cp}K. Applying Young’s inequalities three times, with
parameters α, β, γ > 0, we obtain:

(As, s) ≤ 1

4α
‖As− ε(w)‖2 + α‖s‖2 + K̃β ‖ε(w)‖2 +

K̃

4β
‖divs‖2 + ...

2µK̃γ ‖ε(w)‖2 +
µK̃

2γ
‖As− ε(w)‖2 +

∫
∂Ω

sn ·w

=

(
1

4α
+
µK̃

2γ

)
‖As− ε(w)‖2 +

(
K̃β + 2µK̃γ

)
‖ε(w)‖2 + ...

+ α‖s‖2 +
K̃

4β
‖divs‖2 +

∫
∂Ω

sn ·w.

Thus we reuse the same argument of (6) and collect the common terms:

(As, s) ≤

(
1

4α
+
µK̃

2γ

)
‖As− ε(w)‖2 +

(
K̃β + 2µK̃γ

)(
2 ‖As− ε(w)‖2 + 2 ‖As‖2

)
+ ...

+ α‖s‖2 +
K̃

4β
‖divs‖2 +

∫
∂Ω

sn ·w

=

(
1

4α
+
µK̃

2γ
+ 2K̃β + 4µK̃γ

)
‖As− ε(w)‖2 +

(
2K̃β + 4µK̃γ

)
‖As‖2 + ...

+ α‖s‖2 +
K̃

4β
‖divs‖2 +

∫
∂Ω

sn ·w.
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Finally by exploiting ‖As‖2 ≤ 1

4µ2
‖s‖2 ≤ 1

2µ
(As, s), we get:

(As, s) ≤

(
1

4α
+
µK̃

2γ
+ 2K̃β + 4µK̃γ

)
‖As− ε(w)‖2 +

(
2K̃β + 4µK̃γ

) 1

2µ
(As, s) + ...

+ 2µα(As, s) +
K̃

4β
‖divs‖2 +

∫
∂Ω

sn ·w

=

(
1

4α
+
µK̃

2γ
+ 2K̃β + 4µK̃γ

)
‖As− ε(w)‖2 +

[(
2K̃β + 4µK̃γ

) 1

2µ
+ 2µα

]
(As, s) + ...

+
K̃

4β
‖divs‖2 +

∫
∂Ω

sn ·w.

Now by letting α =
1

8µ
, β =

µ

8K̃
, γ =

1

16K̃
, it follows that:

[(
2K̃β + 4µK̃γ

) 1

2µ
+ 2µα

]
=

1

2(
1

4α
+
µK̃

2γ
+ 2K̃β + 4µK̃γ

)
=

5

2
µ+ 8µK̃2.

Therefore by enforcing the boundary conditions w|ΓD
= 0, sn|ΓN

= 0, (sn) · t|ΓC
= 0, we

get:

(As, s) ≤
(

5µ+ 16µK̃2
)
‖As− ε(w)‖2 +

4K̃2

µ
‖divs‖2 + 2〈sn · n,w · n〉ΓC

. (9)

Combining (8) and (9):

‖s‖2 + ‖div s‖2 + ‖ε(w)‖2 ≤
(

2µ2 + 1

µ

)
(As, s) + ‖div s‖2L2 + 2‖ε(w)−As‖2

≤

(
1 +

(
2µ2 + 1

µ

)
4K̃2

µ

)
‖div s‖2 + ...(

2 +

(
2µ2 + 1

µ

)(
5µ+ 16µK̃2

))
‖ε(w)−As‖2 + ...

2

(
2µ2 + 1

µ

)
〈sn · n,w · n〉ΓC
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Therefore the inequality from below is fulfilled with constants:

C1 =
1

2

(
2µ2 + 1

µ

) Ccompl = 1

Ceq ≥

(
1 +

(
2µ2 + 1

µ

)
4K̃2

µ

)

2

(
2µ2 + 1

µ

) Cconst ≥

(
2 +

(
2µ2 + 1

µ

)(
5µ+ 16µK̃2

))
2

(
2µ2 + 1

µ

)
(10)

Remark:
In contrast to the proof of Theorem 3.1 in [12], we define the functional J only with the
L2 norms of the residuals, not considering the case of the H−1 norm. �

Lemma 3.2. For constants satisfying (10), the augmented LS functional is strongly convex.

Proof. The functional F(u,σ; f) is convex, but the complementarity term is not. However
the whole functional G(u,σ, f, g) is strongly convex. Due to (5) and to the fact that, for
0 ≤ t ≤ 1, t(t− 1) < 0:

J (tu + (1− t)v, tσ + (1− t)τ ; f, g) = tJ (u,σ; f, g) + (1− t)J (v, τ ; f, g) + t(t− 1)J (u− v,σ − τ ; 0, 0)

≤ tJ (u,σ; f, g) + (1− t)J (v, τ ; f, g) + t(t− 1)C1M(u− v,σ − τ )

≤ tJ (u,σ; f, g) + (1− t)J (v, τ ; f, g)

where the last inequality holds due to the previous result. �

Corollary 3.2.1. For constants satisfying (10), the augmented LS functional is coercive.

Proof. Consider the inequality from the previous lemma. It is known that, ∀σ, τ ,u,v in
the adimissible set, J (tu + (1− t)v, tσ + (1− t)τ ; f, g) ≥ 0. Therefore it holds:

0 ≤ tJ (u,σ; f, g) + (1− t)J (v, τ ; f, g) + t(t− 1)C1M(u− v,σ − τ )

Then fix t ∈ (0, 1), choose v, τ as the minimizer of the problem, so that J (v, τ , f, g) = 0.
We get:

1

C1(1− t)
J (u,σ, f, g) ≥M(u− v,σ − τ )

=‖ε(u)‖2L2 + ‖ε(v)‖2L2 − 2‖ε(u)‖L2‖ε(v)‖L2 + ‖τ‖2Hdiv
+ ‖σ‖2Hdiv

− 2‖τ‖Hdiv
‖σ‖Hdiv

=M(v, τ ) +M(u,σ)− 2‖ε(u)‖L2‖ε(v)‖L2 − 2‖τ‖Hdiv
‖σ‖Hdiv

→∞

HereM(u,σ), ‖ε(u)‖L2 , ‖σ‖Hdiv
are constants because (u,σ) is fixed. Now let (v, τ ) be a sequence

such that M(v, τ ) → ∞. Then the norm terms inside M(v, τ ) are a quadratic form which grows
faster than all the other addenda. Therefore coercivity follows. �
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Lemma 3.3. For constants satisfying (10), it exists a unique minimizer (u,σ) ∈ K of the
augmented LS functional J (u,σ; f, g).

Proof. The proof follows from strong convexity, which implies strict convexity and coerciv-
ity, and from continuity of the functional, which implies the lower semicontinuity (see [14],
chapter II, proposition 1.2) . �

4 Monotone Multilevel

Using a direct solver for a large sparse system can be very demanding. Therefore iterative
solvers are necessary. Nevertheless the rate of convergence of standard projected Gauß-
Seidel deteriorates by reducing the meshwidth. Furthermore the behaviour gets worse with
increasing the condition number. The FOSLS system gives rise to normal equations, i.e. a
symmetric positive linear system, whose condition number can, unfortunately, be the square
of the one of the original problem. All these reasons suggest to adopt a multilevel method.
In particular, due to the local non-linearities and the convexity of the LS functional, we opt
for a monotone multilevel. In this section we introduce a hierarchy of nested subspaces for
displacements and stresses, together with the corresponding interpolation operators. Indeed
these ones are main ingredients for a multilevel method. Moreover, decoupling normal and
tangential components for the degrees of freedom on ΓC , a proper basis transformation from
the canonical coordinate system to the normal tangential coordinate system is thereafter
exploited. All the relative quantities will be then represented in this new setting.

4.1 Discretization

Let T1 be a partition of Ω into finite elements τ (triangles in 2D or tetrahedra in 3D),
with meshwidth parameter h1 = maxτ∈T1 diam(τ) and ΓC,1 = T1|ΓC

. Then recursively, for
j = 2, ..., J , define Tj , with the corresponding hj and ΓC,j , as the uniform refinement of
Tj−1. We also denote by Nj , Ej , Fj the sets of vertices, edges and faces of the mesh Tj ,
and we set Nj = |Nj |, Ej = |Ej |, Fj = |Fj |.
For the sake of simplicity, we also identify each entity, such as vertices, edges, faces and
elements, with the corresponding points and subsets of points of R1, Rd−1 and Rd. This
implies that we can also state if an entity belongs or not to another one. For example,
whenever we say that a vertex ν belongs to a face φ, we mean that the point related to the
vertex belongs to the set of points contained by the face itself, i.e. ν ∈ φ. Likewise an edge
ε belongs to a face φ if all the points corresponding to it are contained in the set of points
identified by the face, i.e. ε ∈ φ.
For k, j = 1, ...J,, we also define the following sets:

Fk(νj) = {φ ∈ Fk | ν ∈ φ, ν ∈ Nj }
= set of all faces on level k to which the vertex ν on level j belongs

(11)

Ek(νj) = {φ ∈ Fk | ν ∈ φ, ν ∈ Nj }
= set of all edges on level k to which the vertex ν on level j belongs

(12)
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Moreover we can set the relationship, due to uniform refinement, from a father face to its
sons, for k = 1, ..., J − 1

Sons(φk) = {ψ ∈ Fk+1 | ψ ∈ φ, φ ∈ Fk}
= set of all faces on level k+1 belonging to the face φ on level k

(13)

and from the son to the father, for k = 1, ..., J − 1:

Father(φk+1) = {ψ ∈ Fk | φ ∈ ψ, φ ∈ Fk+1}
= face on level k containing the face φ on level k+1

(14)

Now let P 1(Tj) be the space of continuous piecewise linear functions on Tj with basis
functions λj,νp such that:

λj,νp(νq) = δp,q ∀νq, νp ∈ Nj

and RT0(Tj) be the lowest order Raviart-Thomas space defined on Tj whose standard basis
functions λj,φp must satisfy∫

φq

λj,φp · nφq = δp,q ∀φq, φp ∈ Fj

where nφq is the normal related to the face φq. The interpolation operators for nested
meshes from level j to level j + 1 are defined as follows:

P j+1
j : P 1(Tj)→ P 1(Tj+1) (P j+1

j u− u)|νj+1 = 0 ∀νj+1 ∈ Nj+1, ∀u ∈ P 1(Tj)

Πj+1
j : RT0(Tj)→ RT0(Tj+1)

∫
φj+1

(Πj+1
j t− t)nj+1ds = 0 ∀φj+1 ∈ Fj+1, ∀t ∈ RT0(Tj)

(15)

Let Ek ∈ Rd, for k = 1, .., d, be the Cartesian unit vectors. For j = 1, ..., J we also define
the following finite element spaces:

Uj =
[
P 1(Tj)

]d with basis functions λ̃Uj ,ν , ν ∈ Nj , whose k-th component is
[
λUj ,ν

]
k

= λj,νEk

Σj = [RT0(Tj)]d with basis functions λ̃Σj ,φ, φ ∈ Fj , whose k-th component is
[
λΣj ,φ

]
k

= λj,φEk

Xj = Uj × Σj with basis functions
(
λ̃Uj ,ν ,0

)
, for ν ∈ Nj , and

(
0, λ̃Σj ,φ

)
, for φ ∈ Fj

We will denote the set of basis functions of Uj , Σj , Xj respectively by ΛUj , ΛΣj , ΛXj .
Furthermore we define the corresponding interpolation operators componentwise using (15):

Pj+1
j =

[
P j+1
j

]d
:
[
P 1(Tj)

]d → [
P 1(Tj+1)

]d
Πj+1
j =

[
Πj+1
j

]d
: [RT0(Tj)]d → [RT0(Tj+1)]d

(16)
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Moreover, for the approximation of the trace spaces
[
H1/2(ΓC)

]d and
[
H−1/2(ΓC)

]d (for a
precise definition of these spaces, we refer the reader to [18]), we use the trace spaces of the
above finite element spaces:

Uj,n = span
{
λUj ,ν,n = λUj ,ν · nν |ΓC

| ν ∈ Nj ∩ ΓC , λUj ,ν ∈ ΛUj

}
Σj,n = span

{
λΣj ,φ,n = λΣj ,φ · nφ|ΓC

| φ ∈ Fj ∩ ΓC , λΣj ,φ ∈ ΛΣj

}
The corresponding sets of basis functions will be denoted by ΛUj ,nt and ΛΣj ,nt. Also for
these spaces, we can define interpolation operators between nested meshes:

P j+1
j,n : Uj,n → Uj+1,n Πj+1

j,n : Σj,n → Σj+1,n (17)

Furthermore we denote the convex set of admissible displacements and stresses as:

KJ =
{
xJ = (uJ ,σJ) ∈ XJ : uJ |ΓD

= uDJ , σJ |ΓN
= tNJ , uJ · nJ |ΓC

≤ gJ , nT (σJn) ≤ 0, tTJ (σnJ) = 0
}

where uDJ , t
N
J , nJ , gJ , fJ are elements of the respective finite element spaces. The discrete

minimization problem is then: find (uJ ,σJ) ∈ KJ such that:

JJ(uJ ,σJ ; fJ , gJ) ≤ JJ(vJ , τ J ; fJ , gJ) ∀ (vJ , τ J) ∈ KJ (18)

We note that, in general KJ * K. Nevertheless for shape regular tessellations TJ , the
approximate solution of the discretized problem converges to the solution of the continuum
problem, as the meshwidth hJ tends to zero. For details we refer to [13, 18].
Whenever it will be no cause of misunderstanding, the subscript J will be omitted from the
functional and the unknowns and, with an abuse of notation, we will write J (xJ) instead
of J (uJ ,σJ ; fJ , gJ).

4.2 Monotone multilevel method

The standard projected Gauß-Seidel or coordinate descent method successively minimizes
the functional J in the directions λJ ∈ ΛXJ

. However, for the ill-conditioned problems
considered here, the rate of convergence of this method deteriorates for hJ → 0. Such
an inconvenience promoted the analysis of multilevel methods that involve coarse grid
corrections as well. Specifically, the monotone multilevel idea is to extend the minimization
process also to low frequency components of the spectrum. Therefore J is minimized with
respect to all λj ∈ ΛXj , for j = 1, ..., J .
A prerequisite of multilevel methods is that eigenfunctions associated to small eigenvalues
can be well represented on coarse meshes. This is well known for standard finite element
discretizations, since the kernel of the gradient are the costant functions. However the kernel
of the divergence operator is considerably larger. All divergence-free functions, also the ones
with a large gradient, are contained in the kernel. This makes their representation on coarse
meshes difficult or even impossible. To circumvent this drawback, different strategies have
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been proposed [2, 3, 4, 16, 17]. Here we will focus on the one described in [2, 3, 4], but since
(4) is a mixed formulation, an extension to primal and dual variables as in [26] is carried
out.
Now let us fix the two levels j and k to be the same, i.e. j = k. For fixed vertex ν ∈ Nj and
abitrary faces φ ∈ Fj , we then define the patch associated to ν as the union of the vertex ν
and the set Fj(νj)(compare with (11)), containing all the faces of the mesh Tj which share
the fixed vertex ν ∈ Nj . We denote by Λj,ν the collection of basis functions in ΛUj , related
to the vertex ν, and in ΛΣj , related to faces of Fj(νj). Therefore we can write:

Λj,ν =
{
λUj ,ν

}
∪
{
λΣj ,φ ∈ ΛΣj : φ ∈ Fj(νj), φ ∈ Fj

}
j = 2, ..., J,

Λ1 = {λU1,ν ∈ ΛU1 , λΣ1,φ ∈ ΛΣ1 : ν ∈ N1, φ ∈ F1} j = 1

where the minimization problem is solved exactly on the coarse level j = 1.
Consequently J has to be minimized with respect to Λj,ν , for j = J, ..., 2, ν = 1, ..., Nj , and
Λ1. Since the functional is strongly convex and differentiable, the discrete minimization
problem (18) can be reformulated as the variational inequality (4). For simplicity, we
consider only one pre-smoothing step, i.e. Nj sub-steps on each level. Given an admissible
starting iterate x0

J , let xkJ ∈ KJ be the k-th iterate, for k ∈ N. Then we define xJ,0 = xkJ
and xj,0 = xj+1,Nj+1 , for j = J − 1, ..., 1. We compute a sequence of intermediate iterates
xj,ν = xj,ν−1 + cj,ν by solving:

find cj,ν ∈ K∗j,ν : J (xj,ν−1 + cj,ν) ≤ J (xj,ν + y) ∀y ∈ K∗j,ν j = J, ..., 2, ν = 1, ..., Nj

(19)

find c1 ∈ K∗1 : J (x2,N2 + c1) ≤ J (x2,N2 + y) ∀y ∈ K∗1 j = 1 (20)

where the local closed convex sets Kj,ν and K∗1 are defined as follows:

K∗j,ν(xj,ν−1) = {y ∈ span{Λj,ν} : y + xj,ν−1 ∈ KJ}
K∗1 (x2,N2) = {y ∈ span{Λ1} : y + x2,N2 ∈ KJ}

(21)

In order to compute the solution of these local problems, a comparison with the constraints
on the fine level is needed. However evaluating quantities which live on the finer meshes
can lead to algorithms with suboptimal complexity. To recover an optimal complexity,
only an approximate solution, instead of the exact one, can be taken into consideration for
coarser levels. To this aim, we define approximate convex sets Kj and, thus, proper coarse
constraints which will depend on the current iterate and on the corrections on the higher
levels. Two specific non-linear projections, one for the normal displacement and the other
for the pressure, will be later investigated [20, 21, 25].

Remark. In minimizing the functional J along the directions Λj,ν , the order has been
chosen in this way: j = J, ..., 1 and, for a fixed level j, from ν = 1 to ν = Nj. This scheme
corresponds only to a pre-smoothing plus an active set method on the coarsest level. Anyhow,
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after this pre-smoothing, the order can be inverted again, i.e. j = 2, ..., J , ν = Nj , ..., 1, so
that a post-smoothing with an overall symmetric cycle is recovered. Similarly more than one
smoothing step can be performed. However, for simplicity of notation, only a pre-smoothing
is presented in the analysis.

4.3 Change of coordinates

In order to properly describe contact conditions also on coarser levels, it is wise to locally
change the coordinate system of the contact boundary ΓC . In this way, the scalar constraints
have to be checked directly on the normal components and not on some linear combinations
of the unknown. Let ν ∈ Nj ∩ ΓC,j and nν be the obstacle normal in ν. Then consider the
vector Uν ∈ Rd that contains the degrees of freedom of the displacement associated to ν.
Define the Householder transformation Hν relative to the ouward normal nν and the local
displacement in the normal tangential coordinate system Uν,nt (the first coordinate is the
normal one) respectively as:

Hν = I− 2 nTν nν Uν,nt = HνUν

A similar argument has to be applied to the stress components. For each face φ ∈ ΓC,j ,
consider the normal to the face nφ and the stress σ. We can express the vector unknown
Σφ, associated to the face φ, in terms of the normal and tangent forces Σφ,nt. It is not
convenient to use direclty the HouseHolder transformation Hφ relative to the face normal
nφ, because we have no control on the sign of

(
λΣj ,φ · nφ

)
. In its place, it is preferrable the

transformation Qφ:

σnφ =
(
λΣj ,φ · nφ

)
Σφ = HφΣφ,nt ⇐⇒ Σφ =

1(
λΣj ,φ · nφ

)HφΣφ,nt = QφΣφ,nt

In this way the first component of Uν,nt/Σφ,nt is actually positive in the direction of the
normal nν/nφ. Furthermore the constraints can be direclty compared with the coefficients
of the functions in the new basis. Computationally speaking, this is a simplification that
does not have to be underestimated.
All the degrees of freedom on the contact boundary will be treated as normal or tangent.
The relative change of coordinates is equivalent to a change of basis, so that all the previous
definitions of ΛUj ,ν , ΛΣj ,ν , Λj,ν have to be consequently adapted to ΛUj ,nt and ΛΣj ,nt:

ΛUj ,nt =
{
λUj ,ν,nt, ν ∈ Nj

}
λUj ,ν,nt =

{
λUj ,νHν ν ∈ ΓC,j

λUj ,ν ν /∈ ΓC,j
j = 1, ..., J, ν ∈ Nj

ΛΣj ,nt =
{
λΣj ,φ,nt, φ ∈ Fj

}
λΣj ,φ,nt =

{
λΣj ,φQφ φ ∈ ΓC,j

λΣj ,φ φ /∈ ΓC,j
j = 1, ..., J, ν ∈ Nj
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It is important to notice that the change of basis has a direct impact on the system and
on the interpolation operators. Let H be the global Householder matrix, which collects all
the local matrices Hν and Qφ, while it is the identity on interior degrees of freedom. This
operator can be used to redefine, once and for all, all the quantities in the normal-tangential
coordinate system. However, for the sake of simplicity of notation, from now on we will
omit the relative subscript nt and we will denote the normal or tangent components by the
notation: [·]i, for i = n, t.

5 Non-linear projection operators and coarse constraints

To obtain optimal complexity, all the quantities of a given level j should have a size that
is proportional to the level itself. This means that no comparison with entities belonging
to finer levels should be considered. In particular, instead of the constraints on level J ,
new coarse constraints and, consequently, proper convex sets Kj should be introduced. We
define the convex sets on the fine level KJ and on the coarser level Kj , for j = J − 1, ..., 1,
in the following way:

KJ =
{
xJ = (uJ ,σJ) ∈ XJ : uJ |ΓD

= uDJ , σJ |ΓN
= tNJ , uJ · nJ |ΓC

≤ gJ , nT (σJn) ≤ 0, tTJ (σnJ) = 0
}

(22)

Kj =
{
xj = (uj ,σj) ∈ Xj : uj |ΓD

= 0, σj |ΓN
= 0, uJ · nj |ΓC

≤ gj,un
, nT (σjn) ≤ gj,σn

, tTJ (σnJ) = 0
}

(23)

Given an initial guess x0
J belonging to the admissible set, let cj,ν = (uj,ν ,σj,ν) be the

correction at level j on the patch identified by ν. Furthermore let cJ,0 = xkJ , cj,0 = 0 for
j = J−1, ..., 1 and wj,ν =

∑ν
µ=0 cj,µ be respectively the current iterate, the first corrections

on level j and the sum of all the corrections on the same level j until the vertex ν. Unlike
(19), we solve the following approximate local problem: successively find cj,ν ∈ Kj,ν(wj,ν−1)
and c1 ∈ K1 such that:

• j = J, ..., 2, ν = 1, ..., Nj :

J (wj,ν−1 + cj,ν) ≤ J (wj,ν−1 + y) ∀ y ∈ Kj,ν(wj,ν−1) = {y ∈ span{Λj,ν} : y + wj,ν−1 ∈ Kj}
• j = 1 :

J (c1) ≤ J (y) ∀ y ∈ K1

(24)

where, as opposed to (21), in Kj,ν(wj,ν−1) we consider Kj instead of KJ . It is evident
that, if Kj ⊂ Kj+1 for j = 1, ..., J − 1, then Kj,ν ⊂ K∗j,ν , which also implies that all
the intermediate approximations of the solution belong to KJ . Thus we must choose the
coarse constraints function gj,un and gj,σn so that Kj ⊂ Kj+1. Of course gj,un and gj,σn will
respectively depend on gj+1,un and gj+1,σn and, to this aim, specific projection operators
need to be examined.
We set H = j, h = j + 1. Then TH = Tj is a mesh at level j and Th = Tj+1 is its uniform
refinement. Let ε ∈ EH ∩ΓC,H be a coarse edge which contains the two coarse vertices νε,1,
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νε,2 ∈ NH , on its ends, and a fine midpoint νh ∈ Nh. Let vh ∈ Uh,n be a linear function
defined on ΓC,h. Its non-linear projection vH = IHh (vh) ∈ UH,n must fulfill vH ≤ vh and,
consequently, P hH,nvH ≤ vh, where P hH,n is defined in (17) (remind that now everything is
expressed in the new coordinate system). This is equivalent to require the following:

vH(νε,1) ≤ vh(νε,1)

vH(νε,2) ≤ vh(νε,2)

1

2
(vH(νε,1) + vH(νε,2)) ≤ vh(νh)

∀ε ∈ EH ∩ ΓC,H (25)

It is easy to see that, on a given ε, the following values satisfy the three conditions above:

a)

{
ṽH(νε,1, ε) = min(vh(νε,1),max(vh(νh), 2vh(νh)− vh(νε,2)))

ṽH(νε,2, ε) = min(vh(νε,2),max(vh(νh), 2vh(νh)− vh(νε,1)))
(26)

b)

{
ṽH(νε,1, ε) = min(vh(νε,1), vh(νh))

ṽH(νε,2, ε) = min(vh(νε,2), vh(νh))
(27)

c)

{
ṽH(νε,1, ε) = min(vh(νε,1), vh(νh), vh(νε,2))

ṽH(νε,2, ε) = min(vh(νε,1), vh(νh), vh(νε,2))
(28)

Anyhow, all the edges to which a coarse vertex belongs need to be considered. Therefore
the effect of the non linear interpolation IHh can be summarized in this way:

vH = IHh,unvh =
∑

νH∈NH∩ΓC,H

[λUH ,νH ]n vH(νH) with vH(νH) = min
ε∈EH(νH)

ṽH(νH , ε)

(29)

Now consider a coarse face φ ∈ FH ∩ ΓC,H and its sons fine faces, i.e. Sons(φ) (compare
with (13)). Then consider sh ∈ Σh,n, a piecewise constant function on ΓC,h. We want to
define its non-linear projection sH = IHh,σnsh ∈ ΣH,n so that sH ≤ sh and Πh

H,nsH ≤ sh,
where Πh

H,n is defined in (17). It suffices that:

sH(φ) ≤ sh(φh) ∀φh ∈ Sons(φ)

Thus:

sH = IHh,σnsh =
∑

φ∈FH∩ΓC,H

[λΣH ,H ]n sH(φ) with sH(φ) = min
φh∈Sons(φ)

sh(φh) (30)

Once the non-linear projections for both spaces have been introduced, let gJ ∈ UJ,n and
0 ∈ ΣJ,n be the fine constraints of the problem. Then, for each level j = 1, ..., J , we define
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coarse constraints gj,un ∈ Uj,n, for the normal displacement corrections (recall that uj+1,ν

and σj+1,ν are corrections):{
gJ,un = g j = J

gj,un = Ijj+1,un

(
gj+1,un −

∑Nj+1

ν=1 [uj+1,ν |ΓC
]n

)
j = J − 1, ..., 1

(31)

and gj,σn ∈ Σj,n, for the pressure corrections:{
gJ,σn = 0 j = J

gj,σn = Ijj+1,σn

(
gj+1,σn −

∑Nj+1

ν=1 [σj+1,ν |ΓC
]n

)
j = J − 1, ..., 1

(32)

By exploiting (29), (30), (31), (32) and the definitions of the interpolation operators (16),
it follows Kj ⊂ Kj+1 for j = 1, ..., J − 1:

Nj∑
ν=1

[uj,ν |ΓC
]n ≤ gj,un ⇒ P j+1

j,n

 Nj∑
ν=1

[uj,ν |ΓC
]n

 ≤ gj+1,un −
Nj+1∑
ν=1

[uj+1,ν |ΓC
]n

Nj∑
ν=1

[σj,ν |ΓC
]n ≤ gj,σn ⇒ Πj+1

j,n

 Nj∑
ν=1

[σj,ν |ΓC
]n

 ≤ gj+1,σn −
Nj+1∑
ν=1

[σj+1,ν |ΓC
]n

Furthermore, by iterating the same argument for each level, it is clear that adding to the
current iterate xk all the corrections

∑J
j=1

∑Nj
ν cj,ν ∈ KJ , the resulting vector is still in

the admissible set:

J−1∑
j=1

J−1∏
k=j

P k+1
k,n

(
Nk∑
ν=1

[uk,ν |ΓC
]n

)
+

(
NJ∑
ν=1

[uJ,ν |ΓC
]n

)
≤ g,

J−1∑
j=1

J−1∏
k=j

Πk+1
k,n

(
Nk∑
ν=1

[σk,ν |ΓC
]n

)
+

(
NJ∑
ν=1

[σJ,ν |ΓC
]n

)
≤ 0

6 Truncated Basis

We can define the set of active nodes and faces on the level j in the following way:

N •j =

ν ∈ Nj ∩ ΓC,j : gj,un
∣∣
ν

=

Nj∑
ν=1

[
uj,ν

∣∣
ΓC

]
n


F•j =

φ ∈ Fj ∩ ΓC,j : gj,σn
∣∣
φ

=

Nj∑
ν=1

[
σj,ν

∣∣
ΓC

]
n


(33)
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By definition gj,un , gj,σn ≥ 0. So it is clear that if at some level exists a νj+1 ∈ N •j+1 or a
φj+1 ∈ F•j+1, the corresponding constraints on the successive coarser level j will be zero on
all the nodes νj ∈ εj+1 such that νj+1 ∈ εj+1 or on the face Father(φj+1). Consequently
no positive coarse correction in the direction of the obstacle can be expected there. If also
the correction on level j is zero on νj or φj , then νj ∈ N •j or a φj ∈ F•j and the previous
argument can be repeated. By following this path of reasoning, it turns out that less and
less coarse corrections which are positive in the normal direction can be picked. Since we
are not able to properly improve the solution in the obstacle direction, a slow down in the
convergence speed has to be expected. The truncated basis strategy, already proposed in
[20], is the solution to this problem. The idea is to consider the sets of basis functions
as dependent on the current intermediate iterate, by switching off the degrees of freedom
νj ∈ N •j or a φj ∈ F•j for each level j = J, ..., 1. In this way, the correction coming from
the lower level will be large enough to not slow down the convergence.
The truncated basis of level j = J, ..., 1, for ν ∈ Nj , φ ∈ Fj , is:

[
λ̃Uj ,ν

]
i

=


[
λUj ,ν

]
i

ν ∈ Nj \ N •j , i = n, t

0 ν ∈ N •j , i = n[
λUj ,ν

]
i

ν ∈ N •j , i = t

[
λ̃Σj ,φ

]
i

=


[
λΣj ,φ

]
i

φ ∈ Fj \ F•j , i = n, t

0 φ ∈ F•j i = n[
λΣj ,φ

]
i

φ ∈ F•j , i = t

(34)

The truncated basis of the corresponding coarse subspace of level j− 1 can be expressed as
a linear combination of the truncated basis of level j. Then the corrections on level j − 1
can be computed and new active degrees of freedom can be determined. Therefore the basis
on a level j will strictly depend on the one of the immediately higher level. Since all λ̃Uj ,ν

and λ̃Σj ,φ depend on the N •j and F•j , which in turn depend on the current intermediate
iterate on level j, i.e. xk +

∑J
j=1

∑Nj
ν cj,ν , the truncated basis will depend on it as well.

The truncation, that is simply a change of basis, affects all the quantities and all the transfer
operators of each level. Particular care must be taken for the assembling of the interpolation
operators, coarse matrices and vectors. Specifically the constraints gj,un , gj,σn can be defined
in the usual way, except for the degrees of freedom νj+1 ∈ N •j+1 or φj+1 ∈ F•j+1. To this
aim, before projecting onto the coarser level, we redefine:

gj+1,un

∣∣
νj+1
−
Nj+1∑
ν=1

[
uj+1,ν

∣∣
ΓC

]
n

= +∞, νj+1 ∈ N •j+1 (35)

gj+1,σn

∣∣
φj+1
−
Nj+1∑
ν=1

[
σj+1,νj+1

∣∣
ΓC

]
n

= +∞ φj+1 ∈ F•j+1 (36)

so that all vertices and faces that fulfill equality constraints have no influence on coarser
corrections.
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7 Numerical Experiments

The definition of the augmented functional J in (1) is not unique and depends on the
weights that are chosen for each term. One of these constants is arbitrary and can be fixed
as the reference value, e.g. Cconst = 1, while all the others must depend on this one. Exper-
imentally a higher value for Ceq is necessary for capturing the stress. Anyhow, no matter
which values are used for Cconst and Ceq, the resulting linear system will be symmetric
and positive definite. On the other hand the complementarity contribution is non negative
if and only if it is evaluated on the convex set. Nevertheless, in the discrete form, such
term does not correspond to a positive definite matrix. As a consequence, the matrix of
the overall problem is for sure symmetric, but it can be positive or indefinite according to
the weights Ceq, Cconst, Ccompl. In order to avoid indefinite problems, a Ccompl which is
not too large has to be considered (see 10). At the same time, it must not be too small,
otherwise we would not be able to describe contact conditions. For FOSLS problems, a
compromise is always required. A typical decision for the following tests can be Ceq =1e2,
1e3, Cconst =1, Ccompl =1e1, 1e2. For all the experiments here presented, the initial guess
is computed as the solution of the problem on the coarsest mesh, then interpolated until
the finest tassellation. This approach guarantees that for simulations with more levels, the
initial guess is actually the same. For two levels, it also coincides with the nested iteration
strategy.

Let Ω = [0, 1]× [0, 1] be a square domain, with sides left, bottom, right, top. We enforce a
displacement u|top = (0,−0.01) and zero stresses on the left and right sides, σn|left,right = 0.
The bottom line is actually ΓC . The domain lies on the straight rigid foundation, described
by the gap function g(x, y) = 0 and by the obstacle normal n(x, y) = (0, 1). Thus, after
the application of a uniform displacement on the top, the square will deform so that no
penetration with the rigid obstacle occur.
The coarse mesh consists of only two elements. Then we uniformly refine this mesh until
the level J = 9. We solve the problem by means of the monotone multilevel method. We
use, for each level j > 1, 3 pre-smoothing and 3 post-smoothing, while, on the coarse level,
we exploit the active set method. We study the convergence for the compressible and in-
compressible cases, i.e. (µ, λ) = (1, 1) and (µ, λ) = (1,∞). As non-linear projection, we use
the c) in (28). But, since the square is already in contact and the initial guess is computed
as previously mentioned, after one smoothing step all the active degrees of freedom are
detected. Therefore the problem reduces to a linear one.
We can see that the convergence, for more than six levels, is reached around 20 iterations for
the compressible material and around 30 for the incompressible one, with a constant limit
convergence rate which is respectively about 0.7 and 0.6. In the first situation, we can also
see that the behaviour is non-linear at the beginning and only after a while the convergence
rate becomes constant. For the incompressible material, on the other hand, the convergence
rate is practically constant. Furthermore, in the limit case, it is smaller than the one for
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λ = 1. This suggests that for incompressible materials, this method can be very attractive.
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Figure 1: Square mesh. Compressible material.
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Figure 2: Square mesh. Incompressible material.

Now we consider the Hertz’s problem for a semicircle of radius r = 0.5 and center c = (0, 1)
which is pushed towards a rigid plane f(x, y) = 0 by a uniform displacement u = (0,−0.01)
applied at the top. In this situation we just use a two level method. Indeed, for a circular
mesh, non-nested semi-circular refinements would be optimal, but it is not an assumption
of our framework. Therefore, given a semicircle coarse mesh, we just refine it one time.
Altough the refinement is not optimal and the complementarity condition is just a penalty
term, a two-level method still gives good results for the Signorini’s problem. See picture
3).
We study the convergence for the compressible and incompressible cases, i.e. (µ, λ) = (1, 1)
and (µ, λ) = (1,∞). For each of these, we exploit the three kinds of projection oper-
ators a), b), c) in (26), (27), (28). In addition, we consider the case d) in which the
coarse constraints are enforced equal to infinity. The number of smoothing-steps is 5,
Ceq =1e2 and Ccompl =1e1. In pictures 4), 5) and 6) we study the behaviour of a two level
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Figure 3: On the left, contact displacement components. On the right: the contact pressure.
First three rows: (µ, λ) = (1, 1) for meshes with hmax/hmin = 3.1688, 7.0567, 29.7936. Last
three rows: (µ, λ) = (1,∞) for meshes with hmax/hmin = 3.1688, 7.0567, 29.7936.
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method for three different meshes, whose ratio hmax/hmin = 3.1688, 7.0567, 29.7936, where
hmax = maxτ∈T1 diam(τ) and hmin = minτ∈T1 diam(τ). The less uniform the mesh and the
more the contact boundary is refined.
The history of the sequence of iterations can be subdivided into three general main phases:

I a non linear phase in which the high frequencies components of the error are damped,
with a non linearly increasing convergence rate; here the active set of the current iter-
ate can (square example) or cannot (half-circle) coincide with the one of the solution;

II a non linear phase in which the active set of the current iterate does not coincide with
the one of the solution, although the convergence rate is linear;

III a linear phase in which the active set of the current iterate coincides with the one of
the solution (this condition is attained for sure for k →∞ , as established in [20]);

In principle I), II) and III) should occur sequentially in this order. Anyhow the only
necesssary phase is indeed the first one. In fact if in the square example the true active set
is known from the beginning, for the half-circle is discovered after a while. So for the square
case, III) follows I), while for the semicircle, we can appreciate two different situations: I)
followed by II) and I) followed by III).
Regarding Hertzian contact, in all cases the rate of convergence has a non linear behaviour
at the beginning and at the end becomes constant. Since there is only one phase in which
the rate is constant, after I) we have either II) or III), but not both. Essentially the third
phase concerns a), b) for λ = 1,∞ and for all meshes and c), d) only for λ = 1 in the
uniform case. Nevertheless generally the convergence for c) and d) is slow. For c), this
happens because the coarse constraints are so strict that we have I) and II), while III)
is never approached; in the d) case, on the other hand, we have no control of the coarse
constraints and therefore the convergence is not even ensured. If a good convergence rate
is achieved in the uniform case, λ = 1, it is probably due to the small number of degrees on
the contact boundary and the compressibility of the material: we need very few iterations
to detect the active degrees of freedom.
Thus it is evident that it is desirable to avoid c) and d), since III) is difficult to reach and
therefore the convergence rates tend to be very large. The c) and d) cases behave similarly.
The c) case needs the implementation of the non-linear projection, but ensures reduction
of the energy. In a complementary way, the d) approach does not need any non-linear
projection, but does not guarantee energy reduction.
As opposed to c) and d), a) and b) facilitate the access to the linear setting with a very
similar speed of convergence. Anyhow for a) it is necessary to know the coarse edges of the
patch and also which is the corresponding fine midpoint. For b), instead, only the external
nodes on the fine nodes patch are needed. This suggests to prefer b) and avoid the use
of a). Indeed, among all, the b) case is the one which actually minimizes the functional,
requires less effort of programming, and is sufficiently fast.
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Figure 4: Mesh with hmax/hmin = 3.1688. Where:
a) projection (25), b)projection (27), c)projection (28), d)coarse constraints=∞.
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Figure 5: Mesh with hmax/hmin = 7.0567. Where:
a)projection (25), b)projection (27), c)projection (28), d)coarse constraints=∞.
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Figure 6: Mesh with hmax/hmin = 29.7936. Where:
a)projection (25), b)projection (27), c)projection (28), d)coarse constraints=∞.
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