
Priority Programme 1962

Nonsmooth Optimization by Successive
Abs-Linearisation in Function Spaces

Andrea Walther, Olga Ebel, Andreas Griewank, Stephan Schmidt

Non-smooth and Complementarity-based
Distributed Parameter Systems:
Simulation and Hierarchical Optimization

Preprint Number SPP1962-103r

received on December 20, 2019



Edited by
SPP1962 at Weierstrass Institute for Applied Analysis and Stochastics (WIAS)

Leibniz Institute in the Forschungsverbund Berlin e.V.
Mohrenstraße 39, 10117 Berlin, Germany

E-Mail: spp1962@wias-berlin.de

World Wide Web: http://spp1962.wias-berlin.de/

http://spp1962.wias-berlin.de/
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by Successive Abs-Linearisation

in Function Spaces

Andrea Walther1, Olga Weiß2,
Andreas Griewank1, and Stephan Schmidt2

December 20, 2019

Abstract

We present and analyse the solution of nonsmooth optimization prob-
lems by a quadratic overestimation method in the function space setting.
Under certain assumptions on a suitable local model, we show convergence
to first-order minimal points. Subsequently, we discuss an approach to
generate such a local model using the so-called abs-linearisation. Finally,
we discuss a class of PDE-constrained optimisation problems incorporat-
ing the L1-penalty term that fits into the considered class of non-smooth
optimization problems.

Keywords: Abs-Linearisation, quadratic overestimation method, first-order
minimality

1 Introduction and Motivation

In a finite dimensional setting with V “ Rn, the minimization of a piecewise
smooth function ϕ : V Ñ R, y “ ϕpxq, based on successive abs-linearisation has
been analysed already extensively in a series of papers, see, e.g., [14, 16, 18]. An
essential ingredient for the results obtained so far is the second order approxima-
tion property of the local abs-linear model, the proof of which relies essentially
on the Lipschitz continuity of all quantities involved. For that purpose, the
paper [16] studies a class of functions ϕ : Rn Ñ R that are piecewise smooth in
the sense of Scholtes [25], where the nonsmoothness is caused by the absolute
value function exclusively, hence also covering max- and min-functions as well
as complementary conditions formulated in an appropriate way. For a function
of this class, one can define and number all arguments of absolute value evalu-
ations successively as switching variables zi for i “ 1 . . . s, where it is assumed
throughout that zj can only influence zi if j ă i. Then, the paper [16] proposes
a new approach to generate a local so-called abs-linear model ∆ϕpx; .q : Rn Ñ R
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of ϕp.q using the technique of abs-linearisation. One major result of that paper
is the good approximation property of ∆ϕ in that

ϕpx`∆xq ´ ϕpxq “ ∆ϕpx; ∆xq `Op}∆x}2q (1)

for ∆x Ñ 0. We will show a similarly good approximation property also for a
local model in the infinite dimensional setting using an appropriate extension
of the abs-linearisation.

Based on Eq. (1), the following iterative optimization algorithm was pro-
posed in [16]

xk`1 “ xk ` arg min
∆x

 

ϕlocpxk; ∆xq ` q}∆x}2
(

(2)

with ϕlocpxk; ∆xq ” ϕpxkq `∆ϕpxk; ∆xq. We call this approach SALMIN for
Successive Abs-Linear MINimization. The penalty factor q of the quadratic term
is an estimated bound on the discrepancy between ϕ and its abs-linearisation.
This method was shown in [16] to generate a sequence of iterates txkukPN Ă Rn
whose cluster points are first-order minimal. If the inner problem of minimizing
the regularized piecewise linear model is not solved exactly, but increments ∆x
that are merely Clarke stationary for ∆ϕ are accepted also, then the cluster
points are guaranteed to be also Clarke stationary as shown in [14]. However,
when extending the results from the finite dimensional case to a function space
setting, the Lipschitz continuity of the absolute value might be lost, see, e.g.,
[12]. Hence, it is not possible to transfer the results obtained for V “ Rn di-
rectly to the infinite dimensional case. Nevertheless, it is interesting to analyse
the more general infinite dimensional case in a Banach space setting. For ex-
ample, this is needed, when appropriate discretizations of norms are required.
In general, infinite dimensional optimization problems, where nonsmoothness
stems directly from the problem formulation, can arise in many applications.
To name just one class of optimization tasks, we consider optimal control prob-
lems subject to a partial differential equation (PDE) as constraint where the
objective functional contains the L1-norm of the control and is therefore non-
differentiable. Problems of this type are of great interest for applications, in
which one cannot put control devices all over the control domain. Since the
L1-term leads to sparsely supported optimal controls, the solution to such an
optimization problem then provides information about where it is most efficient
to put these control devices.

The SALMIN algorithm given by Eq. (2) can be interpreted as a quadratic
overestimation method, where the error between the model and the real function
is bounded by a power of the distance, see, e.g., [15, 17]. This approach is also
related to proximal point methods as analysed for the finite dimensional setting
for instance in [22, 23], and for the infinite setting for example in [13, 19, 24]
as well as in [27]. There the original function is still an additive component of
the local subproblem. In contrast to the results presented in these papers, in
Eq. (2) the local model of the function to be minimized at the current iterate xk
is used instead of the original function. Hence, it is not possible to transfer the
available results directly to the situation considered here. In infinite dimensions,
optimization methods using a local model can be based on a bundle approach.
Corresponding convergence results for convex target functions can be found in
[2, 11]. An alternative bundle method covering also nonconvex target functions
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is presented in [20]. There, global convergence to approximate stationary points
is shown.

The purpose of this paper is twofold. Assuming that one has a local model
with similar approximation properties as in the finite dimensional case, we will
first show that the SALMIN algorithm generates iterates that converge to a
first-order minimal point also in the infinite dimensional case. To this end,
we will consider two reflexive Banach spaces V and V̂ , where V is compactly
embedded in V̂ . Then as a first result we will obtain a sequence that converges
weakly to a limit point in V . Using the compact embedding, subsequently we
will show that the limit point is Clarke stationary and under certain conditions
even first-order minimal.
Second, we propose an approach to generate a local model that provably has
the required approximation properties. Finally, we will discuss an example from
PDE-constrained optimization that fits into the considered setting.

This paper has the following structure. We define the function class that we
want to consider in Sec. 2. This includes also the local model and its analysis.
Here, it is important to note that the concepts of piecewise smoothness and
piecewise linearity do not transfer directly to the infinite dimensional setting.
However, extensions of these concepts are considered in [10]. In Sec. 3 we
extend the proposed quadratic overestimation method given by Eq. (2) to the
infinite dimensional case and analyse its convergence behavior. Subsequently,
we propose the generation of a local model in Sec. 4, where an approximation
property similar to Eq. (1) will be shown. In this section, we will also give an
example for an optimization problem in function spaces that fits to our setting.
Finally, we draw conclusions and provide an outlook in the final Sec. 5.

2 The Considered Function Class and a Suitable
Local Model

From now on, we consider the function space V “ LppΩq with 1 ă p ă 8

for a given bounded domain Ω Ă Rn. Note, that due to our choice of p, the
resulting function space V is a reflexive Banach space. Furthermore, we consider
a second reflexive Banach space V̂ such that V is compactly embedded into V̂ .
An example for this situation would be V “ L2pΩq and V̂ “ H´1pΩq as dual
space of H1

0 pΩq.
To cover the kind of nonsmoothness studied in this paper we define

abs : V Ñ V,

rabspvqspxq “ |vpxq| for every v P V and for almost all x P Ω .
(3)

as the Nemytskii operator induced by the absolute value function. Such opera-
tors are also called superposition operators, see [28]. For better readability we
will sometimes omit the local argument x and thus consider absp.q directly as
an operator on the function space. The absp.q operator can enforce sparsity if
included appropriately in the target function, see, e.g., [4, 26]. Furthermore, it
can be used to describe a class of partial differential equations involving non-
smooth but Lipschitz continuous and directionally differentiable nonlinearities
such as those appearing in the two-phase Stefan problem [5].
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In general Banach spaces, it is not clear whether the absolute value operator
is Lipschitz continuous, see, e.g., [12]. Therefore, we state the following result
for the function spaces considered here:

Proposition 2.1 (Lipschitz continuity of absp.q). The absolute value operator
abs : V Ñ V, abspvq :“ |v|, is Lipschitz continuous.

Proof. One has for almost every x P Ω and v, u P V that

||vpxq| ´ |upxq|| ď |vpxq ´ upxq|

such that

}abspvq ´ abspuq}pV “

ż

Ω

||vpxq| ´ |upxq||pdx

ď

ż

Ω

|vpxq ´ upxq|pdx “ }v ´ u}pV .

It is worth mentioning that since the Lipschitz constant is 1, one obtains also
that the absolute value operator is nonexpansive. Furthermore, one can con-
clude that from the kind of admissible nonsmoothness, the directional derivative
defined by

ϕ1pv, hq ” lim
tÑ0`

1
t pϕpv ` thq ´ ϕpvqq , (4)

exists for all v P V and all directions h P V .
Now, we define the class of operators considered here formally. In analogy

to the class CdabspRnq in finite dimensions as defined in [18], we denote this class
by C1

abspV q.

Definition 2.2 (Operator Class C1
abspV q). For a reflexive Banach space V , the

class C1
abspV q contains all operators ϕ : V Ñ R such that ϕ can be represented

as a composition of continuously Fréchet differentiable operators ψi : Vi Ñ Ṽi
between some reflexive Banach spaces Vi and Ṽi and the Nemitzkii operator
induced by the absolute value operator abs as defined in Eq. (3).

Depending on the specific situation, the Lipschitz-continuously Fréchet dif-
ferentiable operators ψi are mappings between various Banach spaces, which
preserve the Lipschitz continuity shown in Prop. 2.1. However, for our pur-
pose, only the overall mapping from V to R is important. Using the well-known
reformulations

min pv, uq “ pv ` u´ abspv ´ uqq{2 and
maxpv, uq “ pv ` u` abspv ´ uqq{2 ,

(5)

a large class of nonsmooth operators and functions is contained in C1
abspV q.

Example 2.3. For a bounded domain Ω Ă R3 and a given desired state yd P
H1

0 pΩq, consider the optimization problem

min
py,uqPH1

0 pΩqˆL
2pΩq

1
2}y ´ yd}

2
L2 `

α
2 }u}

2
L2 ` β}u}L1

s.t. Ay ` lpyq “ u` f in Ω ,
(6)
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where y and u represent the state and the control, respectively, f P L2pΩq some
given function and α ą 0, β ą 0 are parameters. Furthermore, A : H1

0 pΩq Ñ
H´1pΩq is a linear elliptic differential operator of second order, e.g. the Laplace
operator. Suppose, that the continuously differentiable operator l : H1

0 pΩq Ñ
L2pΩq is such that there exists a Lipschitz-continuously Fréchet differentiable
solution operator S : L2pΩq Ñ H1

0 pΩq, which gives the solution Spuq “ y of
the PDE in Eq. (6) for any fixed control u P L2pΩq. As a very simple example
one may consider lpyq ” 0 as in [26]. Then, the reduced problem formulation is
given by the optimization problem

min
uPL2pΩq

ϕpuq with ϕpuq “ 1
2}Spuq ´ yd}

2
L2 `

α
2 }u}

2
L2 ` β}u}L1 . (7)

As shown in Sec. 4, the assumed structure of the C1
abspV q class allows the

construction of a suitable local model for the quadratic overestimation method
discussed in the next section.

Since we want to minimize the objective functional ϕ, we restate first order
necessary conditions and introduce here Clarke’s concept of generalized deriva-
tives, see, e.g. [9, Sec 1.2].

Definition 2.4 (Clarke Generalized Gradient). Suppose, ϕ P C1
abspV q, i.e., ϕ is

also locally Lipschitz continuous. Let v̄, h P V be given. Then the limit superior

lim sup
vÑv̄
λÑ0`

1
λ pϕpv ` λhq ´ ϕpvqq ” ϕCpv̄, hq

exists and is called Clarke derivative of ϕ at v̄ in direction h. Since this limit
superior exists for all h P V , the function ϕ is called Clarke differentiable at v̄.
The set

BCϕpv̄q ” tξ P V
˚ : ϕCpv̄, hq ě ξphq @h P V u Ă V ˚

denotes the Clarke generalized gradient or subdifferential of ϕ at v̄, where V ˚

refers to the dual space of V .

Since one has for a function ϕ : V Ñ R that is Fréchet differentiable at v̄ the
inclusion ϕCpv̄, .q P BCϕpv̄q [9, Prop. 2.2.2], the concept of Clarke derivatives fits
well for the nonsmooth case analyzed in this paper. As a necessary optimality
condition, one has for ϕ being an element of the considered nonsmooth function
class the following result: If v˚ is a minimal point of ϕ then the functional 0V ˚
is an element of BCϕpv

˚q, see e.g. [7, Prop. 6] and [21, Theo. 3.46].
However, in contrast to many other approaches, we aim at first-order mini-

mality that is defined as follows

Definition 2.5 (First-order Minimality). Suppose, ϕ P C1
abspV q. The operator

ϕ is called first-order minimal at v˚ P V if one has

0 ď ϕ1pv˚, hq for all h P V . (8)

Then, v˚ is called first-order minimal point.

In the general non-convex case this property is stronger than the frequently
used concept of Clarke stationarity. However, both concepts coincide in the
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convex case, which will play an important role in the following chapter. Often,
first-order minimality is also called criticality as defined in [1] and [3], where
0 P Rn must be a Fréchet subgradient.

To prove convergence of the quadratic overestimation method proposed in
the next section, we use the following properties.

Assumption 2.6 (Approximation Properties). Suppose, ϕ P C1
abspV q and

W Ă V is a closed convex subset. For all v̄ P W , there exists a Lipschitz
continuous local model ϕlocpv̄; .q : V Ñ R with ϕlocpv̄; .q P C1

abspV q, given by
a finite composition of linear functions and the absolute value operator. There
exists a constant q ą 0 such that for all pairs v̄, v PW one has

ϕpv̄q “ ϕlocpv̄; 0q, |ϕpvq ´ ϕlocpv̄; v ´ v̄q| ď q}v ´ v̄}2V . (9)

Moreover, for any v̄ PW the local model is such that the quadratic model

ϕQpv̄; .q ” ϕlocpv̄; .q ` q}.}2V (10)

attains a minimizer

w “ arg min
vPV

ϕlocpv̄; vq ` 1
2 p1` τqq}v}

2
V . (11)

We also want to emphasize that the existence of a minimizer follows directly
from the required assumption on the local model, since the local model consists
just of linear operators and abspq. Together with the quadratic penalty term
included in ϕQ this guarantees the existence of a minimizer.

For a local model satisfying Assump. 2.6, we can show the following result
with respect to elements of the Clarke generalized gradients of ϕ at v̄ P V and
the local model ϕlocpv̄; .q at 0V :

Lemma 2.7. Let ϕ P C1
abspV q. Furthermore, suppose that Assump. 2.6 holds.

Then, one has for v̄ P V that

BCϕlocpv̄; 0q Ă BCϕpv̄q (12)

Proof. Let ξ P BCϕlocpv̄; 0q be arbitrary but fixed. We have to show that
ξ P BCϕpv̄q holds. Since ξ is an element of the Clarke generalized gradient
of ϕlocpv̄; .q at 0V , the inequality

ϕloc
Cpv̄; 0, hq ě ξphq @ h P V

is valid. Now assume that ξ R BCϕpv̄q. Then, there exists a h̄ P V such that

ϕ1pv̄; h̄q ă ξph̄q ,

where we can assume without loss of generality that }h̄}V “ 1 due to the
properties of the Clarke derivative. One obtains from the definition of the
Clarke derivative and the properties of the local model that

ξph̄q ą ϕCpv̄, hq “ lim sup
vÑv̄
λÑ0`

1
λ

`

ϕpv ` λh̄q ´ ϕpvq
˘

“ lim sup
vÑv̄
λÑ0`

1
λ

`

ϕlocpv;λh̄q ´ ϕlocpv; 0q ` o
`

}λh̄}V
˘˘

“ lim sup
vÑv̄
λÑ0`

1
λ

`

ϕlocpv;λh̄q ´ ϕlocpv; 0q ` opλq
˘

“ lim sup
vÑv̄
λÑ0`

1
λ

`

ϕlocpv;λh̄q ´ ϕlocpv; 0q
˘

“ ϕloc
Cpv̄; 0, hq ě ξph̄q

6



and therefore a contradiction. Hence, ξ P BCϕpv̄q must hold proving the asser-
tion.

Note that Eq. (12) may be a proper subset. The approximation quality
stated in Assump. 2.6 also suffices to prove the following properties:

Lemma 2.8. Suppose for ϕ P C1
abspV q and v˚ P V that Assump. 2.6 holds for

the local model ϕlocpv˚, .q in a neighbourhood of v˚. Then one has:

1. If the quadratic model ϕQpv˚; .q is Clarke stationary at ∆v “ 0 for one
q ě 0, then ϕ is Clarke stationary at v˚.

2. If ϕ is first-order minimal at v˚, then the quadratic model ϕQpv˚; .q is
first-order minimal at the argument ∆v “ 0 for all q P R, q ě 0.

3. If the quadratic model is first-order minimal at ∆v “ 0 for one q ě 0,
then ϕ is first-order minimal at v˚.

Proof. To prove the first assertion, we define ψ : V Ñ R as ψpvq :“ q
2}v}

2
V

which is a twice Fréchet differentiable function with the unique minimizer at
v “ 0 and BCψp0q “ t0u P V

˚. Then, the quadratic model in Eq. (10) is given
by ϕlocpv

˚; ∆vq ` ψp∆vq.
1.: If ϕQpv

˚; .q is Clarke stationary in ∆v “ 0, it implies that

0 P BCϕQpv
˚; 0q “ BCpϕlocpv

˚; 0q ` ψp0qq Ď BCϕlocpv
˚; 0q ` BCψp0q

“ BCϕlocpv
˚; 0q Ď BCϕpv

˚; 0q

using the inclusion of the Clarke generalized gradients shown in Lem. 2.7. Hence,
ϕ is Clarke stationary in v˚.
To prove the first-order minimality statements 2. and 3. we consider the direc-
tional derivative defined in Eq.(4). One has for all h P V and q ě 0 that

ϕ1pv˚, hq “ lim
tÑ0`

1
t pϕpv˚ ` thq ´ ϕpv˚qq

“ lim
tÑ0`

1
t pϕlocpv˚; thq ´ ϕlocpv˚; 0q ` o p}th}V qq

“ lim
tÑ0`

1
t

`

ϕlocpv˚; thq ` q}th}2V ´ ϕlocpv˚; 0q ` optq
˘

“ lim
tÑ0`

1
t pϕQpv˚; 0` thq ´ ϕQpv˚; 0qq “ ϕ1Qpv˚; 0, hq

yielding immediately the assertions 3. and 4. Here, ϕ1Qpv˚; 0, hq denotes the
directional derivative of ϕQpv˚; .q at 0 in direction h.

So far, we do not restrict the local model any further. However, the second
order approximation given by Eq. (9) justifies the term quadratic model in the
last lemma.
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3 The Quadratic Overestimation Method

Assume for a given v0 P V and a bounded subset W Ă V that a local model is
available for all v P W . To update the factor in front of the quadratic penalty
term appropriately we define the following function:

q̂pv,∆vq ”
|ϕpv `∆vq ´ ϕlocpv; ∆vq|

}∆v}2V
(13)

for all v,∆v P V . Before we devote ourselves to the quadratic overestimation
method and the corresponding algorithm, we specify further necessary assump-
tions for the considered setting.

Assumption 3.1 (Considered Setting). Suppose ϕ P C1
abspV q has for a given

v0 P V a bounded level set

N0 ” tv P V : ϕpvq ď ϕpv0qu .

and that ϕp.q is bounded from below on N0.
Furthermore, let ϕlocpv, .q be a local model such that Assump. 2.6 holds. Assume
that there exists a monotonic mapping q̄ : r0,8q Ñ r0,8q such that for all
v P N0 and ∆v P V with v `∆v P N0

q̂pv,∆vq ď q̄p}∆v}V q (14)

is valid.

The proposed SALMIN approach is stated in Algo. 1. It builds substantially
on the local model ϕlocpv; .q. No stopping criterion is given such that an infinite
sequence of iterates tvkukPN is generated.

Algorithm 1 SALMIN

Require: Let v0 P V be such that ϕp.q is bounded on the bounded level set
N0, q0 ą 0, τ ą 0.
for k “ 0, 1, 2, . . . do

Compute

∆vk “ arg min
∆vPV

ϕlocpvk; ∆vq ` 1
2 p1` τqq

k}∆v}2V

if ϕpvk `∆vkq ă ϕpvkq or ∆vk “ 0 then
vk`1 “ vk `∆vk
Compute qk`1 “ maxtqk, q̂pvk,∆vkqu

else
vk`1 “ vk
Compute qk`1 “ maxtp1` τqqk, q̂pvk,∆vkqu

end if
end for

To prepare the convergence analysis of the generated sequence, we discuss
some intermediate results. If the local model is such that Assump. 2.6 and 3.1
hold then the arg min computation step of the algorithm for the quadratic model
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is well defined and Lemma 2.8 yields the relationship between the minimizer of
ϕQpvk, .q and ϕ. Whenever the step is not successful in that ϕpvk`∆vkq ě ϕpvkq
and vk`1 “ vk, the new penalty factor qk`1 must be bigger than the current
value qk yielding a descent direction in finitely many steps. Hence, for the
convergence analysis below, we can consider a subsequence of iterates, where
we always have descent in the function value. All remaining iterates can be
grouped together such that they form one update of the penalty factor in front
of the quadratic term. For simplicity, we will denote the subsequence of iterates
with strictly decreasing function values again with tvkukPN.

For the sequence tqkukPN, one obtains the following result:

Proposition 3.2. Suppose ϕ P C1
abspV q satisfies Assump. 3.1. Let ϕlocpv, .q be

a local model such that Assump. 2.6 holds. Then, the values tqkukPN generated
by Algo. 1 converge to a positive value q˚ P p0,8q.

Proof. Algo. 1 ensures that all iterates vk stay in the bounded level set N0.
Hence, it follows from Eq. (14) that there exists an upper bound q̌ with

q̂pvk,∆vkq “
|ϕpvk `∆vkq ´ ϕlocpvk; ∆vkq|

}∆vk}2V
ď q̄p}∆vk}V q ď q̌.

Therefore, the sequence tqkukPN is increasing and bounded. Combining this
with the fact that q0 ą 0 yields the assertion with q˚ ď q̌.

In finite dimensions, the existence of the monotone function q̄p.q follows
directly from the boundedness of the level set and the approximation property
Assump. 2.6. However, this is not the case in the infinite dimensional case.
Therefore, the existence of this function q̄p.q has to be assumed. Obviously,
the function q̄p.q is usually not known. The quantities qk in Algo. 1 yield an
approximation of q̄p.q for the specific level set N0.

Now, everything is prepared to prove the main results of this paper:

Theorem 3.3. Suppose ϕ P C1
abspV q satisfies Assump. 3.1. Let ϕlocpv, .q be a

local model such that Assump. 2.6 holds. Then a subsequence of the sequence
tvkukPN generated by Algo. 1 converges weakly to an element v˚ P V and the
sequence t∆vkukPN converges strongly to 0V in V.

Proof. Algo. 1 ensures that all iterates stay in the bounded level set N0. Fur-
thermore, V is a reflexive Banach space. This ensures that a subsequence of
tvkukPN converges weakly to a v˚ P V proving the first assertion.

Second, we have to show that ∆vk converges strongly to 0 in V . For a given
iterate vk, the step ∆vk is generated by solving the overestimated quadratic
problem

∆vk “ arg min
∆v

 

ϕlocpvk; ∆vq ` 1
2 p1` τqq

k}∆v}2V
(

. (15)

First assume that ∆vκ “ 0 holds for one κ P N. Then, Algo. 1 generates the
subsequent iterates vk “ vκ, k ě κ P N, such that ∆vk “ 0 for all k ě κ and
the assertion is proven. Now assume that ∆vk ‰ 0 for all k P N. Since ∆vk is
defined by Eq. (15), one has

ϕlocpvk; ∆vkq`
1
2 p1` τqq

k}∆vk}
2 ă ϕlocpvk; 0q “ ϕpvkq . (16)
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Algo. 1 ensures that ∆vk is indeed a descent direction for ϕp.q at the current
iterate vk. Due to the definition of q̂pvk; ∆vkq, one has

ϕpvk `∆vkq ´ ϕlocpvk,∆vkq ď
1
2 q̂pvk; ∆vkq}∆vk}

2
V .

Combining this with Eq. (16) yields for the descent directions ∆vk that

ϕpvk `∆vkq ´ ϕpvkq

“ ϕpvk `∆vkq ´ ϕlocpvk,∆vkq ` ϕlocpvk,∆vkq ´ ϕlocpvkq (17)

ď 1
2

“

qk`1 ´ p1` τqqk
‰

}∆vk}
2
V

holds for all k P N. Here, we used q̂pv; ∆vkq ď qk`1 which holds due to the
update rule for qk`1 given in Algo. 1. The fact that the sequence tqkukPN
converges from below to q˚ as shown in Prop. 3.2 implies

ϕpvk `∆vkq ´ ϕpvkq ď
1
2

“

q˚ ´ p1` τqqk
‰

}∆vk}
2
V .

Exploiting once more that tqkukPN converges from below to q˚, it follows that
for each τ ą ε ą 0 there exists k̄ P N such that for all k ě k̄ the inequality
0 ď q˚ ´ qk ă ε and therefore also q˚ ´ p1` τqqk ď c ă 0 holds for a constant
c ă 0. Since the objective function ϕ is bounded below on N0, infinitely many
significant descent steps cannot be performed and thus ϕpvk`∆vkq´ϕpvkq has
to converge to 0 as k goes towards infinity. As a consequence, the right hand
side of the inequality (17) has to converge to 0 as well. This implies that the
sequence t∆vkukPN converges strongly to 0.

The following theorem shows that Algo. 1 generates a weakly convergent
and bounded sequence in V with a strongly convergent subsequence in V̂ . Fur-
thermore, strong convergence to a first-oder minimal point in V can be proven,
if ∆vk “ 0 holds for some k ą 0.

Theorem 3.4. Suppose ϕ P C1
abspV q satisfies Assump. 3.1. Whenever there

exists a Banach space V̂ such that V is compactly embedded in V̂ , then a sub-
sequence of the sequence tvkukPN generated by Algo. 1 converges strongly to an
element v˚ in V̂ .
Furthermore, if ∆vk “ 0 holds for some k ą 0, the cluster point v˚ in V̂ is
first-order minimal, i.e.,

0 ď ϕ1pv˚, hq for all h P V̂ .

.

Proof. Thm. 3.3 ensures that a subsequence of tvkukPN converges weakly to an
element v˚ P V . Taking into account that V is compactly embedded in V̂ , the
weaker norm on V̂ yields strong convergence of this subsequence to v˚ in V̂ .

One obtains from Lem. 2.8 that an iterate vκ is first-order minimal if ∆vκ “ 0
holds. Then, Algo. 1 generates the subsequent iterates vk “ vκ, k ě κ P N, that
are all first-order minimal and the assertion is proven. In this case one has
immediately also strong convergence and uniqueness of the cluster point in V .
Due to the compact embedding the same holds in V̂ .
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In Algo. 1 and in the corresponding proof of convergence only the update
formula

qk`1 “ maxtqk, q̂pvk,∆vkqu

and therefore a monotone increasing qk`1 is considered. Similar to the finite
dimensional situation analysed in [14, Theo. 4], one could also use the more
general updating strategy

qk`1 “ maxtq̂k`1, µ qk ` p1´ µq q̂k`1, qlbu

with µ P r0, 1s and some fixed lower bound qlb ě 0. However, this approach
complicates the convergence analysis considerably and is the subject of further
research.

Additionally to the previous convergence results we will prove now that
Algo. 1 generates under certain conditions Clarke stationary and even first order
minimal solutions in the considered function space V . To this end, we first state
and prove some useful results concerning the Clarke subdifferential defined in
Def. 2.4.

Lemma 3.5. Suppose ϕ P C1
abspV q and v˚ P V . If ϕ is convex and Clarke

stationary at v˚, then v˚ is already a first order minimal point for ϕ.

Proof. If ϕ is convex and Clarke stationary at v˚, then the Clarke derivative
and the directional derivative of ϕ at v˚ coincide, see e.g. [21, Thm. 3.42]. The
Clarke subdifferential of ϕ at v˚ is then given by

Bϕpv˚q “ tξ P V
˚|ϕ1pv˚;hq ě ξphq @h P V u .

The first order minimality follows directly from the requirement that 0V ˚ has
to be an element of the Clarke subdifferential.

Proposition 3.6. Suppose ϕ P C1
abspV q. Assume, there exists a sequence

twkukPN Ă V with wk Ñ w˚ P V as well as a sequence of functionals tξkukPN Ă
V ˚ with a weak*-cluster point ξ˚ P V

˚. In addition, assume that ξk P BCϕpwkq
@k P N. Then the limit ξ˚ is an element of the Clarke subdifferetial BCϕpw˚q of
ϕ at the limit point w˚.

Proof. For all elements h P V one has

ξ˚phq ď lim sup
kÑ8

ξkphq

ď lim sup
kÑ8

ϕCpwk, hq

ď ϕCpw˚, hq ,

where the last inequality follows from the fact that the Clarke derivative ϕCp., .q
is upper semicontinuous, see e.g. [8]. Thus, one obtains: ξ˚ P BCϕpw˚q.

It is worth mentioning that in the setting considered throughout this paper,
weak and weak* convergence coincide since the underlying function spaces are
reflexive Banach spaces. The above introduced property of the Clarke gradient
and corresponding subdifferential, allows us to formulate the following theorem.
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Theorem 3.7. Let ϕ P C1
abspV q. Suppose ϕ P C1

abspV q satisfies Assump. 3.1.
Let tvkukPN be the sequence of iterates generated by Algo. 1 and v˚ be a weak
cluster point of this sequence (which exists by Thm. 3.3). Further, assume that
ϕlocpv; .q is convex for all v P N0. Then ϕ is first order minimal at v˚.

Proof. Algo. 1 requires the computation of the minimizer ∆vk of the quadratic
model. For this purpose we will make use of the fact that the subdifferential in
the sense of convex analysis of some Lipschitz-continuous, proper and convex
operator and the Clarke generalized gradient coincide, see e.g. [6]. This applies
in particular to ϕQpvk; ¨q for a given vk P N0, which is convex due to the assumed
convexity of ϕlocpvk; ¨q. Therefore, as a necessary optimality condition 0V ˚ is
an element of the subdifferential BCϕQpvk; ∆vkq for all k P N because each
increment ∆vk in Algo. 1 is a minimizer of the quadratic model. In this case in
particular

0V ˚ P BCϕQpv˚; ∆vq

applies. Due to requirement of ϕ satisfying Assump. 3.1, Assump. 2.6 also ap-
plies and thus Thm. 3.3 provides that the sequence t∆vkukPN converges strongly
to 0V . Consequently, Prop. 3.6 applied to ϕQpv˚; .q and wk “ ∆vk, ξk ” 0 to-
gether with the definition of the local and quadratic model yields

0V ˚ P BCϕQpv˚; 0q “ BCϕlocpv˚; 0q ` t0V u “ BCϕlocpv˚; 0q.

Thus, ϕlocpv˚; .q is Clarke stationary at 0V ˚ . By Lem. 3.5 the local model
ϕlocpv˚; .q is already first order minimal at 0V due to the assumed convexity.
With Lem. 2.8 we can conclude that in the considered case ϕ is first order
minimal at v˚.

Let us emphasize that the convexity assumption is by no means an exces-
sive requirement since there is a large class of model problems for which this
requirement is met, as discussed later.
It is also important to note that in proving the main convergence results and
the quality of the minimizer in the previous theorems we essentially and only
use the approximation properties of the local model. Thus, these results are
independent of the way the local model is generated and characterized in detail.

4 Generating a Suitable Local Model

After the convergence analysis for the quadratic overestimation method in the
last section, we now present one possible approach to generate a suitable local
model that fulfills the approximation requirements of Assump. 2.6.

Following the idea in the finite dimensional setting, we assume that the
non-smooth function ϕ : V Ñ R is an element of the considered function class
C1

abs and can be described as a composition of elemental operators that are
either continuously Fréchet differentiable or the absolute value operator. Subse-
quently, consecutive continuously Fréchet differentiable elemental operators can
be conceptually combined to obtain a representation, where all evaluations of
the absolute value function can be clearly identified and exploited, see Tab. 1.
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v0 “ v
for i “ 1, . . . , s do

zi “ ψippvjqjăiq
σi “ signpziq
vi “ σizi “ abspziq

end for
w “ ψs`1pvjqjăs`1 “ ϕpvq

Table 1: Structured Evaluation of ϕpvq

Under suitable conditions some of the elemental functions ψi, i “ 1, . . . , s,
may be linear differential operators, integral operators, and solution operators.
This is also illustrated by the example given below. As hereinafter shown, the
proposed type of reformulation proves to be extremely useful for creating a
suitable algorithm for the considered class of nonsmooth problems.
In the finite dimensional case V “ Rn, one has zi P R and therefore σi P
t´1, 0, 1u. For the function space scenario considered here, it follows that zi P V
and the functions σi are also Nemytskii operators defined by

σi : V Ñ V, σipziqpxq ¨ zipxq “ signpzipxqq ¨ zipxq for almost all x P Ω

as a function of zi. This choice ensures that vi “ σizi “ abspziq P V holds. Fur-
thermore, it follows from the representation in Tab. 1 that ϕ is locally Lipschitz
continuous. Hence, ϕ is also continuous due to the assumed smoothness of ψi,
i “ 1, . . . , s, [21, Theo. 3.15] and [29, Cha. 1].

Example 4.1. To exemplify the structured evaluation we will again consider
the optimization problem as introduced in Ex. 2.3. The target function ϕ in
Eq. (7) can be written as structured evaluation with s “ 2 using

v0 “ u

z1 “ ψ1pv0q ” v0, σ1 “ signpz1q, v1 “ signpz1qz1

w “ ψ2pv0, v1q ”
1
2}Spv0q ´ yd}

2
L2 `

α

2
}v0}

2
L2 ` β

ż

Ω

v1 dx .

In this case, ψ1 is a Lipschitz continuous operator mapping the Banach space
V “ L2pΩq into L2pΩq and ψ2 is a Lipschitz continuous operator from the
Banach space L2pΩq ˆ L2pΩq into R.

For the class of nonsmooth operators considered here, we can extend the
propagation of derivative information in a suitable way to cover also the absolute
value function. For given elements v, u,∆v,∆u P V and a continuously Fréchet
differentiable ψ, we may use the linearisations

∆w “ ∆v ˘∆u for w “ v ˘ u , (18)

∆w “ ψ1pvqp∆vq for w “ ψpvq ‰ abspvq , (19)

where ψ1pvq denotes the Fréchet derivative of ψ. Here, we face one difference to
the finite dimensional case since we do not have to introduce a linearisation for
a multiplication as this operation is not defined for two elements of the Banach
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space V . In the case of Banach algebras such a multiplication is defined but we
will not consider this case here. For linear operators A, the linearisations are
simply given by

∆w “ A∆v for w “ Av . (20)

If no absolute value evaluation occurs, the operator w “ ϕpvq is indeed Fréchet
differentiable and we obtain the relation

∆w “ ϕ1pvqp∆vq P R

where ϕ1pvq : V Ñ R is the Fréchet derivative of ϕ. Thus we observe the fact that
Fréchet differentiation is equivalent to linearizing all elemental operators. Now
the question arises which linearisation to take for the absolute value operator.
Our method of choice is the so-called abs-linearisation given by

∆w “ abspv `∆vq ´ w for w “ abspvq . (21)

As can be seen, the linearized values ∆w depend on both the argument v itself
and the direction ∆v. If required, we will denote this dependency by ∆wpv; ∆vq.
However, most of the time we will drop these arguments v and ∆v for notational
simplicity. Similarly, the dependence of the intermediates vi occurring during
the evaluation of ϕ as described in Tab. 1 on the argument v is denoted by vipvq.
The local model is constructed in the following way:

Definition 4.2 (Abs-Linearisation). Suppose ϕ : V Ñ R is an element of the
operator class C1

abspV q as defined in Def. 2.2. For a fixed argument v P V and
w “ ϕpvq the abs-linearisation ∆wpv; .q : V Ñ R based on the linearisations
Eqs. (18)–(21) is constructed in the following way:

v0 “ v, ∆v0 “ ∆v
for i “ 1, . . . , s do

zi “ ψippvjqjăiq
∆zi “ ∆ψippvjqjăiqpp∆vjqjăiq
σi “ signpziq
vi “ σizi “ abspziq
∆vi “ abspzi `∆ziq ´ abspziq

end for
w “ ψs`1pvjqjăs`1 “ ϕpvq, ∆w “ ∆ψs`1ppvjqjăs`1qpp∆vjqjăs`1q.

Once more, the σi are Nemytskii operators as defined already in Sec. 2.

Next, we will show below that the abs-linearisation provides a local model
that has the required approximation properties:

Proposition 4.3 (Approximation Properties of the Abs-linearisation). Suppose
ϕ P C1

abspV q. Then there exists a constant q ą 0, such that for all pairs v̄, v P
W Ă V with W some closed convex subset, one has for the local model defined
by

ϕlocpv̄; .q : V Ñ R, ϕlocpv̄; ∆vq “ ϕpv̄q `∆ϕpv̄; ∆vq

that

ϕpv̄q “ ϕlocpv̄; 0q and |ϕpvq ´ ϕlocpv̄; v̄ ´ vq| ď q̄}v̄ ´ v}2V .
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Moreover, for any v̄ P W the local model is such that the quadratic model
ϕQpv̄; .q attains a minimizer

w “ arg min
vPV

ϕlocpv̄; vq ` 1
2 p1` τqq}v}

2
V .

Proof. The first equality follows directly from the definition of the local model.
The second equality is proven by induction on i. That is, we show that for all
intermediates

vipv `∆vq ´ vipvq “ ∆vipv; ∆vq `Op}∆v}2V q

for ∆v “ v̊ ´ v in a neigbourhood of v. For the first intermediate, i.e., v0,
this holds trivially since we set ∆v0 “ ∆v. For the arithmetic operations `
and ´ as well as the continuously Fréchet differentiable elemental operators,
the Taylor series theory in Banach spaces, see, e.g., [29, Sec. 4.5], ensures that
the linearisations Eqs. (18) and (19) yield for the resulting ∆vi the asserted
approximation property. For linear, continuous operators the approximation
property holds trivially. Therefore, we only have to consider the case w “

abspuq. Eq. (21) yields

wpvq`∆wpv; ∆vq ´ wpv `∆vq

“ abspupvqq ` rabspupvq `∆upv; ∆vqq ´ abspupvqqs ´ abspupv `∆vqq

“ abspupvq `∆upv; ∆vqq ´ abspupv `∆vqq “ Op}∆v}2V q ,

where the last relation follows from the induction hypothesis and the Lipschitz
continuity of all quantities involved. This yields for wpvq “ ϕpvq P R and
wpv `∆vq “ ϕpv `∆vq P R that

wpv `∆vq ´ wpvq ´∆wpv; ∆vq “ Op}∆v}2V q

proving the assertion.
To prove the second assertion we remember that the local model generated by

the Abs-Linearisation defined in Def. 4.2 consist just of linear operators and the
Nemytzkii operator induced by the absolute value operator defined in Eq. (3).
Hence, the quadratic model ϕQpv; ∆vq “ ϕlocpv; ∆vq ` q}∆v}2V is a sum of a
composition of linear operators and abspq and a nonnegative convex term. For
a suitable large parameter q this guarantees the existence of a minimizer.

The next example illustrates that there is a whole class of PDE-constrained
optimization problems that fulfill the requirements of the local model required
in the previous section.

Example 4.4. Consider once more the optimization problem as introduced in
Ex. 2.3

min
py,uqPH1

0 pΩqˆL
2pΩq

1
2}y ´ yd}

2
L2 `

α
2 }u}

2
L2 ` β}u}L1

s.t. Ay ` lpyq “ u` f in Ω ,

with the operator A : H1
0 pΩq Ñ H´1pΩq representing a linear elliptic differential

operator of second order. The operator l : H1
0 pΩq Ñ L2pΩq is such that there ex-

ists a continuously Fréchet differentiable solution operator S : L2pΩq Ñ H1
0 pΩq.

Defining the Fréchet differentiable operator

ϕ1puq “
1
2}Spuq ´ yd}

2
L2 `

α
2 }u}

2
L2 ,
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and consequently the target function by

ϕpuq “ ϕ1puq ` β}u}L1

and substituting the known quantities, the local model according to Def. 4.2 is
given by

ϕlocpu; ∆uq “ ϕpuq `∆ϕpu; ∆uq

“ ϕpuq ` ϕ11puqp∆uq ` β

ż

Ω

abspu`∆uq ´ abspuqdx

“ ϕ1puq ` ϕ
1
1puqp∆uq ` β}u`∆u}L1 .

Note that the last relation follows from the definition of ϕ and ϕ1 eliminating
the term β}u}L1 in the last line.

As can be seen, the first term is constant with respect to ∆u, the second term
is linear in ∆u and the third term convex in ∆u. Therefore, the local model is
even weakly lower semi-continuous in ∆u. Once more a simple example for this
scenario is given by lpyq ” 0 as in [26]. Then the operator ϕlocp.; .q is even
quasiconvex in both arguments.
Due to the structure of the resulting reduced formulation for this optimization
problem, Assump. 2.6 and 3.1 are satisfied for the target function ϕ and the
local model ϕloc. The local model consists just of linear operators and the abso-
lute value operator. Comprehensibly, the quadratic model which adds a quadratic
penalty term to the local model attains a minimizer. Hence, by Thm. 3.3, Algo. 1
applied to this optimization problem generates a weakly convergent subsequence
vk á v˚ P L

2 (which converges even strongly in H´1 by Thm.3.4) and a strongly
convergent sequence ∆vk Ñ 0L2 . In the case of S being a continuously Fréchet
differentiable operator, ϕlocpvk; .q is convex and hence, v˚ is a first-order mini-
mal point by Thm. 3.7.

5 Conclusion and Outlook

We presented a new quadratic overestimation approach based on a local model
with appropriate properties for the solution of nonsmooth optimization problems
in function spaces. We proved convergence to first-order minimal points and
hence a stronger stationarity concept than Clarke stationarity. Subsequently,
we used the technique of abs-linearisation to construct a local model that has the
required approximation properties of second order. Finally, we illustrated the
results on a class of model problems that fits into the considered setting, a PDE
constrained problem with an L1 penalty term. Throughout the paper we assume
V “ LppΩq with 1 ă p ă 8. The presented theory can be extended easily
to more general reflexive Banach spaces V where the absolute value function
is Lipschitz continuous. It should be noted that the finite dimensional case
represents a special case of the here presented setting, implied by V “ V̂ “ Rn.

Future work will be dedicated to an extension of the theory for more general
solution operators such that for example also nonsmooth PDE constraints can
be handled.
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