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Nonsmooth Optimization

by Successive Abs-Linearisation

in Function Spaces

Andrea Walther1, Olga Ebel1,
Andreas Griewank2, and Stephan Schmidt3

February 8, 2019

Abstract

We present and analyse the solution of nonsmooth optimization prob-
lems by a quadratic overestimation method in the function space setting.
Under certain assumptions on a suitable local model, we show convergence
to first-order minimal points. Subsequently, we discuss an approach to
generate such a local model using the so-called abs-linearisation. Finally,
we discuss a class of PDE-constrained optimisation problems incorporat-
ing the L1-penalty term that fits into the considered class of non-smooth
optimization problems.

Keywords: Abs-Linearisation, quadratic overestimation method, first-order
minimality

1 Introduction and Motivation

In a finite dimensional setting with V “ Rn, the minimization of a piecewise
smooth function ϕ : V ÞÑ R, y “ ϕpxq, based on successive abs-linearisation has
been analysed already extensively in a series of papers, see, e.g., [11, 13, 15]. An
essential ingredient for the results obtained so far is the second order approxima-
tion property of the local abs-linear model, the proof of which relies essentially
on the Lipschitz continuity of all quantities involved. For that purpose, the
paper [13] studies a class of functions ϕ : Rn ÞÑ R that are piecewise smooth in
the sense of Scholtes [22], where the nonsmoothness is caused by the absolute
value function exclusively, hence also covering max- and min-functions as well
as complementary conditions formulated in an appropriate way. For a function
of this class, one can define and number all arguments of absolute value evalu-
ations successively as switching variables zi for i “ 1 . . . s, where it is assumed
throughout that zj can only influence zi if j ă i. Then, the paper [13] proposes
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a new approach to generate a local so-called abs-linear model ∆ϕpx; .q : Rn ÞÑ R
of ϕp.q using the technique of abs-linearisation. One major result of that paper
is the good approximation property of ∆ϕ in that

ϕpx`∆xq ´ ϕpxq “ ∆ϕpx; ∆xq `Op}∆x}2q (1)

for ∆x Ñ 0. We will show a similar good approximation property also for a
local model in the infinite dimensional setting using an appropriate extension
of the abs-linearisation.

Based on Eq. (1), the following iterative optimization algorithm was pro-
posed in [13]

xk`1 “ xk ` arg min
∆x

 

ϕlocpxk; ∆xq ` q}∆x}2
(

(2)

with ϕlocpxk; ∆xq ” ϕpxkq `∆ϕpxk; ∆xq. We call this approach SALMIN for
Successive Abs-Linear MINimization. The penalty factor q of the quadratic term
is an estimated bound on the discrepancy between ϕ and its abs-linearisation.
This method was shown in [13] to generate a sequence of iterates txkukPN Ă Rn
whose cluster points are first-order minimal. If the inner problem of minimizing
the regularized piecewise linear model is not solved exactly, but increments ∆x
that are merely Clarke stationary for ∆ϕ are accepted also, then the cluster
points are guaranteed to be also Clarke stationary as shown in [11]. However,
when extending the results from the finite dimensional case to a function space
setting, the Lipschitz continuity of the absolute value might be lost, see, e.g.,
[9]. Hence, it is not possible to transfer the results obtained for V “ Rn directly
to the infinite dimensional case. Nevertheless, it is interesting to analyze the
more general infinite dimensional case in a Banach space setting. For example,
this is needed, when appropriate discretizations of norms are required.

The SALMIN algorithm given by Eq. (2) can be interpreted as a quadratic
overestimation method, where the error between the model and the real function
is bounded by a power of the distance, see, e.g., [12, 14]. This approach is
also related to proximal point methods as analyzed for the infinite setting for
example in [10, 16, 20]. There the original function is still an additive component
of the local subproblem. In contrast to the results presented in these papers, in
Eq. (2) the local model of the function to be minimized at the current iterate xk
is used instead of the original function. Hence, it is not possible to transfer the
available results directly to the situation considered here. In infinite dimensions,
optimization methods using a local model can be based on a bundle approach.
Corresponding convergence results for convex target functions can be found in
[2, 8]. An alternative bundle method covering also nonconvex target functions
is presented in [17]. There, global convergence to approximate stationary points
is shown.

The purpose of this paper is twofold. Assuming that one has a local model
with similar approximation properties as in the finite dimensional case, we will
first show that the SALMIN algorithm generates iterates that converge to a first-
order minimal point also in the infinite dimensional case. To this end, we will
consider two reflexive Banach spaces V and V̂ , where V is compactly embedded
in V̂ . Then as a first result we will obtain a sequence that converges weakly
to a limit point in V . Using the compact embedding and epi-convergence,
subsequently we will show that the limit point is first-order minimal. Sec-
ond, we propose an approach to generate a local model that provably has the
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required approximation properties. Finally, we will discuss an example from
PDE-constrained optimization that fits into the considered setting.

This paper has the following structure. We define the function class that we
want to consider in Sec. 2. This includes also the local model and its analysis.
Here, it is important to note that the concepts of piecewise smoothness and
piecewise linearity do not transfer directly to the infinite dimensional setting.
However, extensions of these concepts are considered in [7]. In Sec. 3 we extend
the proposed quadratic overestimation method given by Eq. (2) to the infinite
dimensional case and analyze its convergence behavior. Subsequently, we pro-
pose the generation of a local model in Sec. 4, where an approximation property
similar to Eq. (1) will be shown. In this section, we will also give an example
for an optimization problem in function spaces that fits to our setting. Finally,
we draw conclusions and provide an outlook in the final Sec. 5.

2 The Considered Function Class and a Suitable
Local Model

From now on, we consider the function space V “ LppΩq with 1 ă p ă 8

for a given bounded domain Ω Ă Rn. Note, that due to our choice of p, the
resulting function space V is a reflexive Banach space. Furthermore, we consider
a second reflexive Banach space V̂ such that V is compactly embedded into V̂ .
An example for this situation would be V “ L2pΩq and V̂ “ H´1pΩq as dual
space of H1

0 pΩq.
To cover the kind of nonsmoothness studied in this paper we define

abs : V ÞÑ V,

rabspvqspxq “ |vpxq| for every v P V and for almost all x P Ω .
(3)

as the Nemytskii operator induced by the absolute value function. Such opera-
tors are also called superposition operators, see [24]. For better readability we
will sometimes omit the local argument x and thus consider absp.q directly as
an operator on the function space. The absp.q operator can enforce sparsity if
included appropriately in the target function, see, e.g., [5, 23]. Furthermore, it
can be used to describe a class of partial differential equations involving non-
smooth but Lipschitz continuous and directionally differentiable nonlinearities
such as those appearing in the two-phase Stefan problem [6].

In general Banach spaces, it is not clear whether the absolute value operator
is Lipschitz continuous, see, e.g., [9]. Therefore, we state the following result for
the function spaces considered here:

Corollary 2.1 (Lipschitz continuity of absp.q). The absolute value operator
abs : V ÞÑ V, abspvq :“ |v|, is Lipschitz continuous and nonexpansive.

Proof. One has for almost every x P Ω and v, u P V that

||vpxq| ´ |upxq|| ď |vpxq ´ upxq|
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such that

}abspvq ´ abspuq}pV “

ż

Ω

||vpxq| ´ |upxq||pdx

ď

ż

Ω

|vpxq ´ upxq|pdx “ }v ´ u}pV .

Since the Lipschitz constant is 1, one obtains also that the absolute value oper-
ator is nonexpansive.

Following the idea in the finite dimensional setting, we assume that the non-
smooth function ϕ : V ÞÑ R can be described as a composition of elemental
operators that are either continuously Fréchet differentiable or the absolute
value operator. Subsequently, consecutive continuously Fréchet differentiable
elemental operators can be conceptually combined to obtain a representation,
where all evaluations of the absolute value function can be clearly identified and
exploited, see Tab. 1. Under suitable conditions some of the elemental functions
ψi, i “ 1, . . . , s, may be linear differential operators, integral operators, and
solution operators. This is also illustrated by the example given below. As
shown in the next sections, the proposed type of reformulation proves to be
extremely useful for creating a suitable algorithm for the considered class of
nonsmooth problems.

v0 “ v
for i “ 1, . . . , s do

zi “ ψippvjqjăiq
σi “ signpziq
vi “ σizi “ abspziq

end for
w “ ψs`1pvjqjăs`1 “ ϕpvq

Table 1: Structured Evaluation of ϕpvq

In the finite dimensional case V “ Rn, one has zi P R and therefore σi P
t´1, 0, 1u. For the function space scenario considered here, it follows that zi P V
and the functions σi are also Nemytskii operators defined by

σi : V ÞÑ V, σipxq ¨ vpxq “ signpzipxqq ¨ vpxq for almost all x P Ω

as a function of zi. This choice ensures that vi “ σizi “ abspziq P V holds. Fur-
thermore, it follows from the representation in Tab. 1 that ϕ is locally Lipschitz
continuous. Hence, ϕ is also continuous due to the assumed smoothness of ψi,
i “ 1, . . . , s, [19, Theo. 3.15] and [25, Cha. 1]. For the convergence result pre-
sented later, we also require that ϕ is continuous in V̂ . It follows from the kind
of admissible nonsmoothness that the directional derivative defined by

ϕ1pv, hq ” lim
tÑ0`

1
t pϕpv ` thq ´ ϕpvqq ,

exists for all v P V and all directions h P V .
Now, we define the class of operators considered here formally. In analogy

to the class CdabspRnq in finite dimensions as defined in [15], we denote this class
by C1

abspV q.
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Definition 2.2 (Operator Class C1
abspV q). For a reflexive Banach space V , the

class C1
abspV q contains all operators ϕ : V ÞÑ R such that ϕ can be represented by

a structured evaluation as given in Tab. 1 with Fréchet differentiable mappings
ψi, i “ 1, . . . , s. That is, C1

abspV q is the set of all the operators ϕ : V ÞÑ R,
for which there exist a natural number s, reflexive Banach spaces V1, . . . , Vs`1,
V1 “ V , Vs`1 “ R, and Fréchet differentiable mappings ψi : Vi ÞÑ Vi`1, 1 ď
i ď s` 1, with pvjqjăi P Vi, such that the evaluation of ϕpvq can be described as
a composition of continuously Fréchet differentiable operators and the absolute
value operator.

Depending on the specific situation, the continuously Fréchet differentiable
operators ψi are mappings between various Banach spaces, which preserve the
Lipschitz continuity shown in Cor. 2.1. However, for our purpose, only the
overall mapping from V to R is important. Using the well-known reformulations

min pv, uq “ pv ` u´ abspv ´ uqq{2 and
maxpv, uq “ pv ` u` abspv ´ uqq{2 ,

(4)

a large class of nonsmooth operators and functions is contained in C1
abspV q.

Example 2.3. For a bounded domain Ω Ă R3 and a given desired state yd P
H1

0 pΩq, consider the optimization problem

min
py,uqPH1

0 pΩqˆL
2pΩq

1
2}y ´ yd}

2
L2 `

α
2 }u}

2
L2 ` β}u}L1

s.t. Ay ` lpyq “ u` f in Ω ,
(5)

where y and u represent the state and the control, respectively, and α ą 0,
β ą 0 are parameters. Furthermore, A : H1

0 pΩq ÞÑ H´1pΩq is a linear elliptic
differential operator of second order. Suppose, that the operator l is such that
there exists a continuously Fréchet differentiable solution operator S : L2pΩq ÞÑ
H1

0 pΩq. As a very simple example one may consider lpyq ” 0 as in [23]. Then,
the reduced problem formulation is given by the optimization problem

min
uPL2pΩq

ϕpuq with ϕpuq “ 1
2}Spuq ´ yd}

2
L2 `

α
2 }u}

2
L2 ` β}u}L1 . (6)

The target function ϕpuq can be written as structured evaluation with s “ 2
using

v0 “ u

z1 “ ψ1pv0q ” v0, σ1 “ signpz1q, v1 “ signpz1qz1

w “ ψ2pv0, v1q ”
1
2}Spv0q ´ yd}

2
L2 `

α

2
}v0}

2
L2 ` β

ż

Ω

v1dx .

In this case, ψ1 is a Lipschitz continuous operator mapping the Banach space
V “ L2pΩq into L2pΩq and ψ2 is a Lipschitz continuous operator from the
Banach space L2pΩq ˆ L2pΩq into R.

As shown in Sec. 4, the assumed structure of the C1
abspV q class allows the

construction of a suitable local model for the quadratic overestimation method
discussed in the next section. In contrast to many other approaches, we aim at
first-order minimality that is defined as follows
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Definition 2.4 (First-order Minimality). Suppose, ϕ P C1
abspV q. The operator

ϕ is called first-order minimal at v˚ P V if one has

0 ď ϕ1pv˚, hq for all h P V . (7)

Then, v˚ is called first-order minimal point.

It is important to note that this property is stronger than the frequently
used concept of Clarke stationary. Often, first-order minimality is also called
criticality as defined in [1] and [4], where 0 P Rn must be a Fréchet subgradient.

To prove convergence of the quadratic overestimation method proposed in
the next section, we use the following properties.

Assumption 2.5 (Approximation Properties). Suppose, ϕ P C1
abspV q and W Ă

V is a closed convex subset. For all v̄ P W , there exists a Lipschitz continuous
local model ϕlocpv̄; .q : V ÞÑ R with ϕlocpv̄; .q P C1

abspV q and constant q ą 0 such
that for all v PW one has

ϕpv̄q “ ϕlocpv̄; 0q, |ϕpv̄q ´ ϕlocpv̄; v ´ v̄q| ď q}v ´ v̄}2V . (8)

Moreover, for any pair v̄, v P W and w P V there exists a constant γ ą 0 such
that

|ϕlocpv̄;wq ´ ϕlocpv;wq|

1` }w}V
ď γ}v̄ ´ v}V . (9)

For such a local model, we can show the following properties:

Lemma 2.6. Suppose for ϕ P C1
abspV q and v˚ P V that Assump. 2.5 holds for

the local model ϕlocpv˚, .q in a neigbourhood of v˚. Then one has:

1. If ϕ is first-order minimal at v˚, then the quadratic model

ϕQpv˚; .q ” ϕlocpv˚; .q ` q}.}2V (10)

is first-order minimal at the argument ∆v “ 0 for all q P R, q ě 0.

2. If the quadratic model given by Eq. (10) is first-order minimal at ∆v “ 0
for one q ě 0, then ϕ is first-order minimal at v˚.

Proof. One has for all h P V and q ě 0 that

ϕ1pv˚, hq “ lim
tÑ0`

1
t pϕpv˚ ` thq ´ ϕpv˚qq

“ lim
tÑ0`

1
t pϕlocpv˚; thq ´ ϕlocpv˚; 0q ` o p}th}V qq

“ lim
tÑ0`

1
t

`

ϕlocpv˚; thq ` q}th}2V ´ ϕlocpv˚; 0q ` optq
˘

“ lim
tÑ0`

1
t pϕQpv˚; 0` thq ´ ϕQpv˚; 0qq “ ϕ1Qpv˚; 0, hq

yielding immediately the assertions 1. and 2. Here, ϕ1Qpv˚; 0, hq denotes the
directional derivative of ϕQpv˚; .q at 0 in direction h.

So far, we do not restrict the local model any further. However, the second
order approximation given by Eq. (8) justifies the term quadratic model in the
last lemma. For the convergence proof of the overestimation method, we will
exploit the second result of this lemma. For this purpose, we need in addition
the following properties:
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Lemma 2.7 (Convergence of Minimizers). Let ϕ P C1
abspV q, v˚ P V and a

sequence vk Ñ v˚ in V be given. Assume that Assump. 2.5 holds for the local
models ϕlocpv, .q at v in W “ Bλcpv˚q “ tv P V | }v ´ v˚} ď λcu for c ą 0 and
λ ą 1. Then,

1. ϕlocpvk, .q epi-converges to ϕlocpv˚, .q in Bcp0V q “ tv P V | }v} ă cu.

2. For any k ě 1, let wk denote a minimizer of ϕlocpvk, .q if it exists. If the
sequence pwkqkPN admits a subsequence converging to some w̄ P Bcp0V q,
then w̄ belongs to arg minϕlocpv˚; .q such that

lim sup
kÑ8

p arg min
wPBcp0V q

ϕlocpvk;wqq Ď arg min
wPBcp0V q

ϕlocpv˚;wq .

Proof. To prove the epi-convergence we need to show that for any w̄ P Bcp0V q
there exists a sequence w̃k Ñ w̄ such that

lim sup
kÑ8

ϕlocpvk, w̃kq ď ϕlocpv˚, w̄q,

and for every sequence wk Ñ w̄ the inequality

lim inf
kÑ8

ϕlocpvk, wkq ě ϕlocpv˚, w̄q

holds, see for instance [3, 18] and [21]. For the given sequence vk Ñ v˚ in V
consider an arbitrary sequence w̃k Ñ w̄ in Bcp0V q. For k large enough one has
that vk ` wk P Bλcpv˚q. With the triangle inequality and the approximation
property Eq. (9) it follows that

|ϕlocpvk;wkq ´ ϕlocpv˚; w̄q|

ď γp}vk ´ v˚}V qp1` }wk}q ` |ϕlocpv˚;wkq ´ ϕlocpv˚; w̄q| .

Since the last term on the right hand side converges to zero due to the continuity
of ϕlocpv; .q, one obtains

lim
kÑ8

|ϕlocpvk;wkq ´ ϕlocpv˚; w̄q| “ 0

yielding the two inequalities required for the epi-convergence of the function
sequence ϕlocpvk; .q to the function ϕlocpv˚; .q and therefore the first assertion.
The second assertion follows immediately from [21, Theorem 3.33].

Note that in the context of epi-convergence also the set of α´approximate
minimizers [18] is considered, which is always nonempty for α ą 0, in contrast
to the set of exact minimizers which is obtained for α “ 0. In the present case
however, the set of exact minimizers is usually also nonempty.

3 The Quadratic Overestimation Method

Assume for a given v0 P V that the level set N0 ” tv P V : ϕpvq ď ϕpv0qu is
bounded and that a local model is available for all v P N0. To update the factor
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Algorithm 1 SALMIN

Require: Let v0 P V be such that ϕp.q is bounded on the bounded level set
N0, q0 ą 0, τ ą 0.
for k “ 0, 1, 2, . . . do

Compute

∆vk “ arg min
∆vPV

ϕlocpvk; ∆vq ` 1
2 p1` τqq

k}∆v}2V

if ϕpvk `∆vkq ă ϕpvkq then
vk`1 “ vk `∆vk
Compute qk`1 “ maxtqk, q̂pvk,∆vkqu
k “ k ` 1

else
Compute qk “ maxtp1` τqqk, q̂pvk,∆vkqu

end if
end for

in front of the quadratic penalty term appropriately we define the following
function:

q̂pv,∆vq ”
|ϕpv `∆vq ´ ϕlocpv; ∆vq|

}∆v}2V
(11)

for all v,∆v P V . The proposed SALMIN approach is stated in Algo. 1. It
builds substantially on the local model ϕlocpv, .q. No stopping criterion is given
such that an infinite sequence of iterates tvkukPN is generated.

To prepare the convergence analysis of the generated sequence, we discuss
some intermediate results. If the local model is such that Assump. 2.5 holds
then Lemma 2.6 yields the existence of a minimizer ∆vk such that this step
of the algorithm is well defined. Whenever the step is not successful in that
ϕpvk`∆vkq ě ϕpvkq and vk`1 “ vk the new penalty factor qk`1 must be bigger
than the current value qk yielding a descent direction in finally many steps.
Hence, for the convergence analysis below, we can consider a subsequence of
iterates, where we have descent in the function value. All remaining iterates
can be grouped together such that they form one update of the penalty factor
in front of the quadratic term. For simplicity, we will denote the subsequence
of iterates with strictly decreasing function values again with tvkukPN.

For the sequence tqkukPN, one obtains the following result:

Corollary 3.1. Suppose ϕ P C1
abspV q has for a given v0 P V a bounded level set

N0 ” tv P V : ϕpvq ď ϕpv0qu .

Let ϕlocpv, .q be a local model such that Assump. 2.5 holds. Assume that there
exists a monotonic mapping q̄ : r0,8q ÞÑ r0,8q such that for all v P N0 and
∆v P V with v `∆v P N0

q̂pv,∆vq ď q̄p}∆v}V q (12)

is valid. Then, the values tqkukPN generated by Algo. 1 converge to a positive
value q˚ P p0,8q.
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Proof. Algo. 1 ensures that all iterates vk stay in the bounded level set N0.
Hence, it follows from Eq. (12) that there exists an upper bound q̌ with

q̂pvk,∆vkq “
|ϕpvk `∆vkq ´ ϕlocpvk; ∆vkq|

}∆vk}2V
ď q̄p}∆vk}V q ď q̌.

Therefore, the sequence tqkukPN is increasing and bounded. Combining this
with the fact that q0 ą 0 yields the assertion with q˚ ď q̌.

In finite dimensions, the existence of the monotone function q̄p.q follows
directly from the boundedness of the level set and the approximation property
Assump. 2.5. However, this is not the case in the infinite dimensional case.
Therefore, the existence of this function q̄p.q has to be assumed. Obviously,
the function q̄p.q is usually not known. The quantities qk in Algo. 1 yield an
approximation of q̄p.q for the specific level set N0.

Now, everything is prepared to prove the main results of this paper:

Theorem 3.2. Suppose ϕ P C1
abspV q has for a given v0 P V a bounded level

set N0 and that ϕp.q is bounded from below on N0. Suppose that there is a
local model ϕlocpv, .q for all v P N0 fulfilling Assump. 2.5 and that there exists
a monotonic mapping q̄ : r0,8q ÞÑ r0,8q such that for all v P N0 and ∆v P V
with v `∆v P N0

q̂pv,∆vq ď q̄p}∆v}V q

is valid. Then a subsequence of the sequence tvkukPN generated by Algo. 1
converges weakly to an element v˚ P V and the sequence t∆vkukPN converges
strongly to 0V in V .

Proof. Algo. 1 ensures that all iterates stay in the bounded level set N0. Fur-
thermore, V is a reflexive Banach space. This ensures that a subsequence of
tvkukPN converges weakly to a v˚ P V proving the first assertion.

Second, we have to show that ∆vk converges strongly to 0 in V . For a given
iterate vk, the step ∆vk is generated by solving the overestimated quadratic
problem

∆vk “ arg min
∆v

 

ϕlocpvk; ∆vq ` 1
2 p1` τqq

k}∆v}2V
(

. (13)

First assume that ∆vκ “ 0 holds for one κ P N. Then, Algo. 1 generates the
subsequent iterates vk “ vκ, k ě κ P N, such that ∆vk “ 0 for all k ě κ and
the assertion is proven. Now assume that ∆vk ‰ 0 for all k P N. Since ∆vk is
defined by Eq. (13), one has

ϕlocpvk; ∆vkq`
1
2 p1` τqq

k}∆vk}
2 ă ϕlocpvk; 0q “ ϕpvkq . (14)

Algo. 1 ensures that ∆vk is indeed a descent direction for ϕp.q at the current
iterate vk. Due to the definition of q̂pvk; ∆vkq, one has

ϕpvk `∆vkq ´ ϕlocpvk,∆vkq ď
1
2 q̂pvk; ∆vkq}∆vk}

2
V .

Combining this with Eq. (14) yields for the descent directions ∆vk that

ϕpvk `∆vkq ´ ϕpvkq

“ ϕpvk `∆vkq ´ ϕlocpvk,∆vkq ` ϕlocpvk,∆vkq ´ ϕlocpvkq (15)

ď 1
2

“

qk`1 ´ p1` τqqk
‰

}∆vk}
2
V

9



holds for all k P N. Here, we used q̂pv; ∆vkq ď qk`1 which holds due to the
update rule for qk`1 given in Algo. 1. The fact that the sequence tqkukPN
converges from below to q˚ as shown in Cor. 3.1 implies

ϕpvk `∆vkq ´ ϕpvkq ď
1
2

“

q˚ ´ p1` τqqk
‰

}∆vk}
2
V .

Exploiting once more that tqkukPN converges from below to q˚, it follows that
for each τ ą ε ą 0 there exists k̄ P N such that for all k ě k̄ the inequality
0 ď q˚ ´ qk ă ε and therefore also q˚ ´ p1` τqqk ď c ă 0 holds for a constant
c ă 0. Since the objective function ϕ is bounded below on N0, infinitely many
significant descent steps can not be performed and thus ϕpvk`∆vkq´ϕpvkq has
to converge to 0 as k goes towards infinity. As a consequence, the right hand
side of the inequality (15) has to converge to 0 as well. This implies that the
sequence t∆vkukPN converges strongly to 0.

Using the epi-convergence of the local models ϕlocpvk; .q, we will now show
that the cluster point v˚ is first-order minimal.

Theorem 3.3. Suppose ϕ P C1
abspV q has for a given v0 P V a bounded level

set N0 and that ϕp.q is bounded from below on N0. Suppose that there is a
local model ϕlocpv, .q for all v P N0 fulfilling Assump. 2.5 and that there exists
a monotonic mapping q̄ : r0,8q ÞÑ r0,8q such that for all v P N0 and ∆v P V
with v `∆v P N0

q̂pv,∆vq ď q̄p}∆v}V q

is valid. Whenever there exists a Banach space V̂ such that V is compactly
embedded in V̂ and ϕ is Lipschitz continuous in V̂ , then a subsequence of the
sequence tvkukPN generated by Algo. 1 converges strongly to an element v˚ in V̂
that is first-order minimal, i.e.,

0 ď ϕ1pv˚, hq for all h P V̂ .

Furthermore, also all other cluster points of the sequence tvkukPN are first-order
minimal.

Proof. Thm. 3.2 ensures that a subsequence of tvkukPN converges weakly to an
element v˚ P V . Taking into account that V is compactly embedded in V̂ , the
weaker norm on V̂ yields strong convergence of this subsequence to v˚ in V̂ .

One obtains from Prop. 2.6 that an iterate vκ is first-order minimal if ∆vκ “
0 holds. Then, Algo. 1 generates the subsequent iterates vk “ vκ, k ě κ P N,
that are all first-order minimal and the assertion is proven. In this case one has
immediately also strong convergence and uniqueness of the cluster point in V .
Due to the compact embedding the same holds in V̂ .

Now assume that ∆vk ‰ 0 for all k P N and consider the cluster point v˚.
For notational simplicity, we denote the strongly converging subsequence also by
tvkukPN. From Lemma 2.7 we know that ϕlocpvk; .q epi-converges to ϕlocpv˚; .q
in Bcp0V q. Due to the assumed continuity of ϕp.q in V̂ , the epi-convergence

ϕkQp.q :“ ϕlocpvk; .q ` 1
2 p1` τqq

k}.}2V
e
ÝÑ ϕ˚Qp.q :“ ϕlocpv˚; .q ` q˚}.}2V

in Bcp0V̂ q can be shown using similar arguments as in the proof of Lemma 2.7.
Therefore, we can apply the second assertion of Lemma 2.7 to ϕkQp.q. That is,
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since 0 “ ∆v˚ is a limit point of minimizers of ϕkQp.q, then it is also a minimizer
of ϕ˚Qp.q yielding

∆v˚ “ 0 P lim sup
kÑ8

ˆ

arg min
∆v

 

ϕlocpvk; ∆vq ` 1
2 p1` τqq

k}∆v}2V
(

˙

Ď arg min
∆v

`

ϕlocpv˚; ∆vq ´ ϕpv˚q ` q
˚}∆v}2V

˘

.

It follows from the necessary first-order conditions that ∆v˚ “ 0 is first-order
minimal for ϕ˚Qp.q in V̂ . Then, Lemma 2.6 ensures that v˚ is first-order minimal

for ϕp.q in V̂ .
The same argument can be used for any other cluster point of tvkukPN yield-

ing the assertion.

In Algo. 1 and in the corresponding proof of convergence only the update
formula

qk`1 “ maxtqk, q̂pvk,∆vkqu

and therefore a monotone increasing qk`1 is considered. Similar to the finite
dimensional situation analyzed in [11, Theo. 4], one could also use the more
general updating strategy

qk`1 “ maxtq̂k`1, µ qk ` p1´ µq q̂k`1, qlbu

with µ P r0, 1s. However, this approach complicates the convergence analysis
considerably and is the subject of further research.

4 Generating a Suitable Local Model

After the convergence analysis for the quadratic overestimation method in the
last section, we now present one possible approach to generate a suitable local
model that fulfills the approximation requirements of Assump. 2.5.

For the class of nonsmooth operators considered here, we can extend the
propagation of derivative information in a suitable way to cover also the absolute
value function. For given elements v, u,∆v,∆u P V and a continuously Fréchet
differentiable ψ, we may use the linearisations

∆w “ ∆v ˘∆u for w “ v ˘ u , (16)

∆w “ ψ1pvqp∆vq for w “ ψpvq ‰ abspvq , (17)

where ψ1pvq denotes the Fréchet derivative of ψ. Here, we face one difference to
the finite dimensional case since we do not have to introduce a linearisation for
a multiplication as this operation is not defined for two elements of the Banach
space V . In the case of Banach algebras such a multiplication is defined but we
will not consider this case here. For linear operators A, the linearisations are
simply given by

∆w “ A∆v for w “ Av . (18)

11



If no absolute value evaluation occurs, the operator w “ ϕpvq is indeed Fréchet
differentiable and we obtain the relation

∆w “ ϕ1pvqp∆vq P R

where ϕ1pvq : V ÞÑ R is the Fréchet derivative of ϕ. Thus we observe the fact that
Fréchet differentiation is equivalent to linearizing all elemental operators. Now
the question arises which linearisation to take for the absolute value operator.
Our method of choice is the so-called abs-linearisation given by

∆w “ abspv `∆vq ´ w for w “ abspvq . (19)

As can be seen, the linearized values ∆w depend on both the argument v itself
and the direction ∆v. If required, we will denote this dependency by ∆wpv; ∆vq.
However, most of the time we will drop these arguments v and ∆v for notational
simplicity. Similarly, the dependence of the intermediates vi occurring during
the evaluation of ϕ as described in Tab. 1 on the argument v is denoted by vipvq.
The local model is constructed in the following way:

Definition 4.1 (Abs-Linearisation). Suppose ϕ : V ÞÑ R is an element of the
operator class C1

abspV q as defined in Def. 2.2. For a fixed argument v P V and
w “ ϕpvq the abs-linearisation ∆wpv; .q : V ÞÑ R based on the linearisations
Eqs. (16)–(19) is constructed in the following way:

v0 “ v, ∆v0 “ ∆v
for i “ 1, . . . , s do

zi “ ψippvjqjăiq
∆zi “ ∆ψippvjqjăiqpp∆vjqjăiq
σi “ signpzi `∆ziq
vi “ σizi “ abspziq
∆vi “ abspzi `∆ziq ´ abspziq

end for
w “ ψs`1pvjqjăs`1 “ ϕpvq, ∆w “ ∆ψs`1ppvjqjăs`1qpp∆vjqjăs`1q

Once more, the σi are Nemytskii operators as defined already in Sec. 2.

Next, we will show below that the abs-linearisation provides a local model
that has the required approximation properties:

Proposition 4.2 (Approximation Properties of the Abs-linearisation). Suppose
ϕ P C1

abspV q. Then there exists a constant q ą 0, such that for all pairs v̄, v P
W Ă V with W some closed convex subset, one has for the local model defined
by

ϕlocpv̄; .q : V ÞÑ R, ϕlocpv̄; ∆vq “ ϕpv̄q `∆ϕpv̄; ∆vq (20)

that

ϕpv̄q “ ϕlocpv̄; 0q and |ϕpv̄q ´ ϕlocpv̄; v̄ ´ vq| ď q̄}v̄ ´ v}2V .

Moreover, there exists a constant γ ą 0 such that for any pair v̄, v P W and
w P V one has

|ϕlocpv̄;wq ´ ϕlocpv;wq|

1` }w}V
ď γ}v̄ ´ v}V .
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Proof. The first equality follows directly from the definition of the local model.
The second equality is proven by induction on i. That is, we show that for all
intermediates

vipv `∆vq ´ vipvq “ ∆vipv; ∆vq `Op}∆v}2V q

for ∆v “ v̊ ´ v in a neigbourhood of v. For the first intermediate, i.e., v0,
this holds trivially since we set ∆v0 “ ∆v. For the arithmetic operations `
and ´ as well as the continuously Fréchet differentiable elemental operators,
the Taylor series theory in Banach spaces, see, e.g., [25, Sec. 4.5], ensures that
the linearisations Eqs. (16) and (17) yield for the resulting ∆vi the asserted
approximation property. For linear, continuous operators the approximation
property holds trivially. Therefore, we only have to consider the case w “

abspuq. Eq. (19) yields

wpvq`∆wpv; ∆vq ´ wpv `∆vq

“ abspupvqq ` rabspupvq `∆upv; ∆vqq ´ abspupvqqs ´ abspupv `∆vqq

“ abspupvq `∆upv; ∆vqq ´ abspupv `∆vqq “ Op}∆v}2V q ,

where the last relation follows from the induction hypothesis and the Lipschitz
continuity of all quantities involved. This yields for wpvq “ ϕpvq P R and
wpv `∆vq “ ϕpv `∆vq P R that

wpv `∆vq ´ wpvq ´∆wpv; ∆vq “ Op}∆v}2V q

proving the assertion.
To show the second assertion we first note that one obtains from the Lipschitz

continuity again by induction for all i

vipv̄q ´ vipvq “ Op}v̄ ´ v}V q and }∆vipv̄; ∆vq} ď li}∆v}V (21)

hold for a suitable constants li, 1 ď i ď s` 1. The actual assertion can now be
derived by showing that

}∆vipv̄;wq ´∆vipv;wq}Vi

1` }w}V
“ Op}v̄ ´ v}V q

holds for all i “ 1, . . . , s`1 This is true for the first intermediate v0 whose incre-
ment ∆v0 “ ∆v is chosen independently of v. Similar to the partial derivatives
in finite dimension, one can consider cijpvq :“ Bjψippvjqjăiq, i.e., the Fréchet
derivative with respect to the intermediate value vj obtained for the argument
v. Then it follows for the Lipschitz continuously Fréchet differentiable elemental
operators vi “ ψipvjqjăi, i “ 1, . . . , s` 1 that

}cijpv̄q ´ cijpvq}Vi
“ Op}v̄ ´ v}V q .

Hence, one obtains for all Lipschitz continuously Fréchet differentiable elemental
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operators

}∆vipv̄;wq ´∆vipv;wq}Vi

1` }w}V

ď

›

›

›

ř

jăipcijpv̄q ´ cijpvqq∆vjpv̄;wq `
ř

jăi cijpvqp∆vjpv̄;wq ´∆vjpv;wqq
›

›

›

Vi

1` }w}V

ď

ř

jăiOp}v̄ ´ v}V qlj}w}V `
ř

jăi }cijpv̄q}Vi
¨ }∆vjpv̄;wq ´∆vjpv;wq}Vj

1` }w}V

ďOp}v̄ ´ v}V q `
ÿ

jăi

}cijpv̄q}ViOp}v̄ ´ v}V q “ Op}v̄ ´ v}V q

using the Lipschitz constants lj , whose existence has been asserted in Eq. (21).
Hence, once again, we only have to prove the assertion for the absolute value
where

}∆vipv̄;wq ´∆vipv;wq}Vi

“}abspvjpv̄q `∆vjpv̄;wqq´abspvjpv̄qq´rabspvjpvq `∆vjpv;wqq´abspvjpvqqs}Vi

ď}vjpv̄q `∆vjpv̄;wq ´ rvjpvq `∆vjpv;wqs}Vj ` }vjpv̄q ´ vjpvq}Vj

ď}vjpv̄q ´ vjpvq}Vj ` }∆vjpv̄;wq ´∆vjpv;wq}Vj ` }vjpv̄q ´ vjpvq}Vj

“p1` }w}V qOp}v̄ ´ v}V q ` 2Op}v̄ ´ v}V q “ p1` }w}V qOp}v̄ ´ v}V q

yielding

|∆ϕpv̄;wq ´∆ϕpv;wq|

1` }w}V
“ Op}v̄ ´ v}V q .

Combining this with the definition Eq. (20) of the local model and the Lipschitz
continuity this property follows also for the local model ϕloc, which completes
the proof of the second assertion.

The next example illustrates that there is a whole class of PDE-constrained
optimization problems that fulfill the requirements of the local model required
in the previous section.

Example 4.3. Consider once more the optimization problem as introduced in
Ex. 2.3

min
py,uqPH1

0 pΩqˆL
2pΩq

1
2}y ´ yd}

2
L2 `

α
2 }u}

2
L2 ` β}u}L1

s.t. Ay ` lpyq “ u` f in Ω .

Defining the Fréchet differentiable operator

ϕ1puq “
1
2}Spuq ´ yd}

2
L2 `

α
2 }u}

2
L2 ,

and consequently the target function by

ϕpuq “ ϕ1puq ` β}u}L1
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and substituting the known quantities, the local model according to Def. 4.1 is
given by

ϕlocpu; ∆uq “ ϕ1puq ` ϕ
1
1puqp∆uq ` β

ż

Ω

abspu`∆uq ´ abspuqdx

“ ϕpuq ` ϕ11puqp∆uq ` β}u`∆u}L1 .

Note that the last relation follows from the definition of ϕ and ϕ1 eliminating
the term β}u}L1 in the last line.

As can be seen, the first term is constant with respect to ∆u, the second term
is linear in ∆u and the third term convex in ∆u. Therefore, the local model is
even weakly lower semi-continuous in ∆u. Once more a simple example for
this scenario is given by lpyq ” 0 as in [23]. Then the operator ϕlocp.; .q is
quasiconvex in both arguments.

5 Conclusion and Outlook

We presented a new quadratic overestimation approach based on a local model
with appropriate properties for the solution of nonsmooth optimization problems
in function spaces. We proved convergence to first-order minimal points and
hence a stronger stationarity concept than Clarke stationarity. Subsequently,
we used the technique of abs-linearisation to construct a local model that has
the required approximation properties of second order. Finally, we discussed
PDE-constrained problems that fit into the considered setting. This includes
for example an L1 penalty term. Throughout the paper we assume V “ LppΩq
with 1 ă p ă 8. The presented theory can be extended easily to more general
reflexive Banach spaces V where the absolute value function is Lipschitz con-
tinuous. It should be noted that the finite dimensional case represents a special
case of the here presented setting, implied by V “ V̂ “ Rn.

Future work will dedicated to an extension of the theory for more general
solution operators such that for example also nonsmooth PDE constraints can
be handled.
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