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An Adaptive Edge Element Approximation of

a Quasilinear H(curl)-Elliptic Problem

Yifeng Xu∗ Irwin Yousept† Jun Zou‡

Abstract

An adaptive edge element method is designed to approximate a quasilinear H(curl)-elliptic
problem in magnetism, based on a residual-type a posteriori error estimator and general marking
strategies. The error estimator is shown to be both reliable and efficient, and its resulting se-
quence of adaptively generated solutions converges strongly to the exact solution of the original
quasilinear system. Numerical experiments are provided to verify the validity of the theoretical
results.

Keywords: quasilinear elliptic problem, Maxwell’s equations, edge element, adaptive finite ele-
ment method, convergence.

MSC(2010): 65N12, 65N30, 35J62, 35Q60, 78M10

1 Introduction

We are interested in developing an adaptive finite element method (AFEM) for the numerical
solution of the following nonlinear saddle point system, which arises from the applications of
ferromagnetic materials in electromagnetism [3, 4, 29, 43]:

∇× (ν(x, |∇× u|)∇× u) = f in Ω,
∇ · u = g in Ω,
u× n = 0 on ∂Ω .

(1.1)

In this setting, u denotes a three-dimensional magnetic vector potential field, Ω ⊂ R3 is a bounded
polyhedral domain with a connected boundary ∂Ω, n is the outward unit normal on ∂Ω. Further-
more, the given source terms are f ∈ L2(Ω) satisfying ∇ · f = 0 and g ∈ L2(Ω), which is often
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set to be zero in practical applications. The nonlinear reluctivity function ν : Ω× R+
0 → R is the

inverse of the magnetic permeability, where R+
0 denotes the set of all nonnegative numbers. We

would like to mention that ν represents the nonlinear relation between the magnetic induction B
and the magnetic field H. In particular, this nonlinearity plays an important role in modeling of
ferromagnetic materials [29]. The precise mathematical properties of ν are stated in section 2.

Edge elements [33] are widely used in numerical simulation of Maxwell’s equations thanks to
its H(curl)-conformity. There exist various numerical analyses in literature on the linearized
problem associated with (1.1) (see [11, 13, 14, 15]). More recently, a mathematical and numerical
analysis was given in [43] for the optimal control of the quasilinear system (1.1). We should
underline that, due to reentrant corners on ∂Ω and jumps of the nonlinear coefficient ν across
interfaces of different media, local singularities are expected in the solution of (1.1); see [16, 17].
Consequently, in terms of computing efficiency and accuracy, the classical uniform mesh refinement
strategy is not efficient for solving (1.1). To improve numerical resolutions, adaptive finite element
methods provide a promising effective tool. Based on an a posteriori error estimator, depending
on the discrete solution, the mesh size and the given data, AFEM aims at producing a sequence
of solutions with equidistributed error at minimum computational cost. Therefore, the interest of
this paper lies in adaptive finite element approximations of (1.1). Generally speaking, a standard
adaptive algorithm consists of the following successive loops:

SOLVE→ ESTIMATE→ MARK→ REFINE. (1.2)

Here, SOLVE yields a finite element approximation on the current mesh; ESTIMATE measures
the discretization error in some appropriate norm by a relevant a posteriori estimator; MARK
selects some elements of the mesh to be subdivided; REFINE generates a finer new mesh by local
refinement of all marked elements and their neighbours for conformity.

Since the seminal work by Babuška and Rheinboldt [2] in 1978, intensive developments have
been made in the theory of AFEM over the past four decades (see [1, 41] and the references
therein). For edge element discretization of Maxwell’s equations, we refer to [6, 11, 36, 46]. The
convergence of AFEM was first studied in the work [5] for a two-point boundary value problem,
then in [19] for multi-dimensional problems. Over the past two decades, the theory of AFEM in
terms of convergence and decay rate has been widely investigated, e.g., for standard second-order
elliptic problems [8, 32, 34, 38], and for Maxwell system [9, 10, 20, 26, 38, 47].

Although the theory of AFEM has reached a mature level for linear problems, the relevant
study for nonlinear problems is still at an early stage. Existing works closely related to our current
topic may be found in [7, 18, 23, 24, 40] for quasilinear elliptic problems of p-Laplacian and strongly
monotone type.

This paper is concerned with AFEM for the quasilinear saddle point magnetostatic Maxwell
system (1.1). We propose a residual-type a posteriori error estimator consisting of element and face
residuals associated with the discrete system of (1.1) on the basis of the lowest order edge elements
of Nédélec’s first family [33]. Compared with existing works for nonlinear elliptic problems, the
great difficulty in the current a posteriori error analysis lies in the saddle point structure and
the nonlinear curl-curl operator in (1.1). With several crucial and delicate analytical strategies,
we are still able to establish both the reliability and efficiency of the estimator (Theorems 3.1-
3.2) for this nonlinear Maxwell system. More specifically, our basic analysis makes a full use of
the nonlinear properties of the reluctivity function ν (cf. (2.2)-(2.5)), an equivalent norm on the
admissible space (Remark 2.1) and the Schöberl quasi-interpolation operator [36] (Lemma 3.1).
An adaptive algorithm of the form (1.2) is proposed and proved to ensure the H(curl)-strong
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convergence of the adaptive discrete solutions towards the solution of (1.1) (Theorem 5.2) and a
vanishing limit of the sequence of error estimators (Theorem 5.3). Our convergence analysis relies
on a limiting saddle point problem resulting from adaptively generated edge element spaces; see
(5.3). We show the H(curl)-strong convergence of the adaptive discrete solutions towards the
solution of the limiting problem (Theorem 5.1). Then, with the help of some existing techniques
we prove in Lemma 5.3 that the limiting solution satisfies (1.1), which in turn yields the desired
H(curl)-strong convergence of the adaptive discrete solutions (Theorem 5.2). The convergence
result for the sequence of error estimators (Theorem 5.3) is the consequence of Theorem 5.2 and
the efficiency of the estimator.

We would like to make a further remark now about our main analysis in this work. We follow
basically the general analytical strategy for elliptic problems, but there are several essential techni-
cal differences here due to the saddle point structure and the nonlinearity of ν. For linear/nonlinear
elliptic operators, the relevant limiting space required in the convergence of adaptive methods is
a proper subspace of the corresponding admissible space, e.g. H1(Ω), many properties for the
limiting variational system are inherited automatically from the standard variational theory, par-
ticularly, the unique solvability of the limiting problem. However, this is not trivial for the current
nonlinear saddle point Maxwell problem because the related continuous space X (see section 2)
does not contain the limiting space X∞ (see section 5) on which the coercivity is required. We
shall resort to a Poincaré-type inequality (5.2) over X∞ to overcome the difficulty. Further, a
general approach to establish a Cea-type lemma, which may directly lead to an auxiliary strong
convergence as stated in Theorem 5.1 in the case of elliptic problems, now fails due to the diver-
gence constraint in (1.1). This key component is now achieved by making use of some elegant
techniques from mixed element methods.

The rest of this paper is organized as follows. In section 2, we briefly describe the variational
formulation of (1.1) and its discretization based on the lowest order edge elements of Nédélec’s first
family [33]. Section 3 is devoted to reliability and efficiency of a residual-based a posteriori error
estimator, with the help of which, we propose an adaptive algorithm in section 4. The convergence
analysis is conducted in section 5. Finally, we present numerical results as an illustration of our
theoretical findings in Section 6.

Throughout the paper, we adopt the standard notation for the Lebesgue space L∞(G) and
Sobolev spaces Wm,p(G) for real number m on an open bounded set G ⊂ R3. Related norms and
semi-norms of Hm(G) (p = 2) as well as the norm of L∞(G) are denoted by ‖ · ‖m,G, | · |m,G and
‖ · ‖L∞(G) respectively. We use (·, ·)G to denote the L2(G) scalar product, and the subscript is
omitted when G = Ω. Moreover, we shall use C, with or without subscript, for a generic constant
independent of the mesh size, and it may take a different value at each occurrence.

2 Variational formulation

We first introduce some Hilbert spaces, operators and assumptions, which are required in the
subsequent analysis:

H(curl) = {v ∈ L2(Ω) | ∇× v ∈ L2(Ω)},
H0(curl) = {v ∈H(curl) | γt(v) = 0},
X = {v ∈H0(curl) | (v,∇q) = 0 ∀ q ∈ H1

0 (Ω)},

where the curl-operator is understood in the distributional sense and γt : H(curl) → H−
1
2 (∂Ω)

denotes the tangential trace (see [25]). We focus on the standard mixed variational formulation
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for (1.1): Find (u, p) ∈H0(curl)×H1
0 (Ω) such that{

(ν(x, |∇× u|)∇× u,∇× v) + (v,∇p) = (f ,v) ∀ v ∈H0(curl),

(u,∇q) = −(g, q) ∀ q ∈ H1
0 (Ω).

(2.1)

Our numerical analysis relies on the following regularity assumptions for the nonlinear reluctivity
function ν : Ω × R+

0 → R. We should underline that these assumptions are physically reasonable
and typically considered for the mathematical model of ferromagnetic materials (cf. [3, 4, 29]).

Assumption 2.1 (Regularity assumption for ν : Ω× R+
0 → R).

(i) For every s ∈ R+
0 , the function ν(·, s) : Ω→ R is measurable.

(ii) For almost all x ∈ Ω, the function ν(x, ·) : R+
0 → R is continuous. For every piecewise

constant y ∈ L1(Ω), the function ν(·, |y(·)|) : Ω→ R is piecewise W 1,∞.

(iii) There exist positive constants ν1 and ν2 such that

lim
s→∞

ν(x, s) = ν2 for almost all x ∈ Ω, (2.2)

ν1 ≤ ν(x, s) ≤ ν2 for almost all x ∈ Ω and all s ≥ 0, (2.3)

(ν(x, s)s− ν(x, t)t)(s− t) ≥ ν1|s− t|2 ∀ s, t ≥ 0 and almost all x ∈ Ω. (2.4)

(iv) There exists a constant ν̄ ∈ [ν2,∞) such that

|ν(x, s)s− ν(x, t)t| ≤ ν̄|s− t| ∀ s, t ≥ 0 and almost all x ∈ Ω. (2.5)

We shall often need an operator A : H0(curl)→H0(curl)∗ defined by

〈Av, v̂〉 := (ν(x, |∇× v|)∇× v,∇× v̂) ∀v, v̂ ∈H0(curl).

As shown in [43, Lemma 2.2], (2.4) and (2.5) imply that

〈Av −Av̂,v − v̂〉 ≥ ν1‖∇× (v − v̂)‖20 ∀ v, v̂ ∈H0(curl), (2.6)

|〈Av −Av̂,w〉| ≤ L‖∇× (v − v̂)‖0‖∇×w‖0 ∀ v, v̂,w ∈H0(curl), (2.7)

with L = 2ν1 + ν̄. Thus, by virtue of the Poincaré-type inequality [28]

‖v‖0 ≤ C‖∇× v‖0 ∀ v ∈X, (2.8)

(2.6) implies that A : H0(curl)→H0(curl)∗ is strongly monotone on X; i.e.,

〈Av −Av̂,v − v̂〉 ≥ CM‖v − v̂‖2H(curl) ∀ v, v̂ ∈X, (2.9)

with a constant CM > 0 depending only on ν1 and Ω. Moreover, it is well-known that the inf-sup
condition

sup
06=v∈H0(curl)

(v,∇q)

‖v‖H(curl)
≥ C‖q‖1 ∀ q ∈ H1

0 (Ω) (2.10)

is satisfied with a constant C > 0 depending only on Ω. As a consequence of (2.7), (2.9) and
(2.10), the problem (2.1) admits a unique solution ([35, Proposition 2.3], also cf. [43]), and there
exists a positive constant C, independent of u, f and g, such that

‖u‖H(curl) ≤ C(‖f‖0 + ‖g‖0).

We note that, since ∇ · f = 0, inserting v = ∇φ into the first equation of (2.1) implies that the
Lagrangian multiplier vanishes, i.e., p ≡ 0.
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Remark 2.1. A direct consequence of (2.8) is that ‖∇× ·‖0 is equivalent to the graph norm on X.
Noting that X and ∇H1

0 (Ω) are L2-orthogonal and H0(curl) = X⊕∇H1
0 (Ω) [28], we may define

an alternative norm equivalent to the graph one on H0(curl), namely, (‖∇ × v‖20 + ‖v0‖20)1/2,
where v0 is the L2-projection of v on ∇H1

0 (Ω).

Let us now consider the discrete approximation of the problem (2.1). Let T0 be a shape regular
conforming triangulation of Ω into closed tetrahedra such that for every piecewise constant function
y over T0, the function ν(·, |y(·)|) : Ω → R+

0 is piecewise W 1,∞ over T0, and T be the set of all
possible conforming triangulations obtained from T0 by successive bisections [30, 34]. One key
property of the refinement process ensures that all constants depending on the shape regularity of
any T ∈ T are uniformly bounded by a constant only depending on the initial mesh T0 [34, 39].
Then, for any T ∈ T, we introduce the lowest order edge elements of Nédélec’s first family [33]:

V T = {v ∈H0(curl) | v|T = aT + bT × x aT , bT ∈ R3, ∀ T ∈ T }.

For the numerical treatment of the Lagrange multiplier, we also need the standard piecewise linear
finite element space ST ⊂ H1

0 (Ω) [12], for which we know the following inclusion relation [28]

∇ST ⊂ V T . (2.11)

The discrete problem of (2.1) is now formulated: Find (uT , pT ) ∈ V T × ST such that{
(ν(x, |∇× uT |)∇× uT ,∇× vT ) + (vT ,∇pT ) = (f ,vT ) ∀ vT ∈ V T ,

(uT ,∇qT ) = −(g, qT ) ∀ qT ∈ ST .
(2.12)

As in the continuous case, the unique solvability of the discrete problem (2.12) is also true by
virtue of [35, Proposition 2.3], (2.6), (2.7), the discrete Poincaré-type inequality and the discrete
inf-sup condition [9, 28]:

‖vT ‖0 ≤ C‖∇× vT ‖0 ∀ vT ∈XT , (2.13)

sup
0 6=vT ∈V T

(vT ,∇qT )

‖vT ‖H(curl)
≥ ‖∇qT ‖0 ∀ qT ∈ ST , (2.14)

where the constant only depends on Ω and the shape-regularity of T , and

XT := {vT ∈ V T | (vT ,∇qT ) = 0, ∀ qT ∈ ST }.

Moreover, there also holds the following stability result

‖uT ‖H(curl) ≤ C(‖f‖0 + ‖g‖0).

The inclusion (2.11) allows vT = ∇φT in the first equation of (2.12). Then as in the continuous
case, thanks to ∇ · f = 0 the Lagrangian multiplier pT also vanishes.

3 A posteriori error estimate

This section deals with reliability and efficiency of a residual-type error estimator for the
problem (2.12). For this purpose, some more notation and definitions are needed. The diameter
of T ∈ T is denoted by hT := |T |1/3. The collection of all faces (resp. all interior faces) in T is
denoted by FT (resp. FT (Ω)). The scalar hF := |F |1/2 stands for the diameter of F ∈ FT , which
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is associated with a fixed normal unit vector nF in Ω with nF = n on the boundary ∂Ω. We use
DT (resp.DF ) for the union of all elements in T with non-empty intersection with element T ∈ T
(resp.F ∈ FT ). Furthermore, for any T ∈ T (resp. F ∈ FT ) we denote by ωT (resp. ωF ) the
union of elements in T sharing a common face with T (resp. with F as a face).

For the solution uT to the problem (2.12), we define an element residual on any T ∈ T by

RT := f −∇× (ν(·, |∇× uT |)∇× uT ),

and two jumps across F ∈ FT (Ω)

JF,1 := [(ν(·, |∇× uT |)∇× uT )× nF ], JF,2 := [uT · nF ].

For any M⊆ T , we introduce the estimator

η2
T (uT ,f , g,M) := η2

T ,1(uT ,f ,M) + η2
T ,2(uT , g,M) (3.1)

η2
T ,1(uT ,f ,M) :=

∑
T∈M

η2
T ,1(uT ,f , T ) =

∑
T∈M

(
h2
T ‖RT ‖20,T +

∑
F∈∂T∩Ω

hF ‖JF,1‖20,F
)
, (3.2)

η2
T ,2(uT , g,M) :=

∑
T∈M

η2
T ,2(uT , g, T ) =

∑
T∈M

(
h2
T ‖g‖20,T +

∑
F∈∂T∩Ω

hF ‖JF,2‖20,F
)
, (3.3)

and the oscillation term osc2
T (uT , f, g,M) :=

∑
T∈M osc2

T (u, f, g, T ) with

osc2
T (u, f, g, T ) := h2

T ‖RT −RT ‖20,T + h2
T ‖g − gT ‖20,T +

∑
F∈∂T∩Ω

hF ‖JF,1 − JF,1‖20,F ,

where RT , gT and JF,1 are the averages of RT , g and JF,1 over T and F , respectively, namely
RT =

∫
T RTdx/|T |, gT =

∫
T gdx/|T | and JF,1 =

∫
F JF,1ds/|F |. For simplicity, if M = T we

often write
ηT (uT ,f , g) = ηT (uT ,f , g, T ).

To relate functions in H0(curl) and H1
0 (Ω) to discrete spaces V T and ST respectively, we need

a quasi-interpolation operator IszT : H1
0 (Ω)→ ST [37]

‖q − IszT q‖0,T ≤ ChT |q|1,DT
, ‖q − IszT q‖0,F ≤ Ch

1/2
F |q|1,DF

∀ q ∈ H1
0 (Ω). (3.4)

and the following local regular decomposition [36, Theorem 1].

Lemma 3.1. There exists a quasi-interpolation operator Πs
T : H0(curl) → V T such that for

every v ∈H0(curl) there exist z ∈H1
0(Ω) and ϕ ∈ H1

0 (Ω) satisfying

v −Πs
T v = z + ∇ϕ , (3.5)

with the stability estimates

h−1
T ‖z‖0,T + |z|1,T ≤ C‖∇× v‖

0,D̃T
, h−1

T ‖ϕ‖0,T + |ϕ|1,T ≤ C‖v‖0,D̃T
, (3.6)

where constant C depends only on the shape of the elements in the enlarged element patch D̃T :=
∪{T ′ ∈ T | T ′ ∩DT 6= ∅}, not on the global shape of domain Ω or the size of D̃T .

We are now in a position to establish the reliability of the estimator in (3.1) for the error u−uT
in H(curl)-norm.
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Theorem 3.1. Let u and uT be solutions of problems (2.1) and (2.12) respectively. Then there
exists a constant C > 0, depending on ν1, Ω and the shape-regularity of T , such that

‖u− uT ‖2H(curl) ≤ Cη
2
T (uT ,f , g). (3.7)

Proof. By virtue of (2.6) and p = pT = 0, we take v = u−uT in the first equation of (2.1), apply
Lemma 3.1 with v−Πs

T v = z +∇ϕ, use the first equation of (2.12), and perform an elementwise
integration by parts to deduce that

ν1‖∇× (u− uT )‖20 ≤ 〈Au−AuT ,u− uT 〉
= (f ,u− uT )− (ν(·, |∇× uT |)∇× uT ,∇× (u− uT ))

= (f ,v −Πs
T v)− (ν(·, |∇× uT |)∇× uT ,∇× (v −Πs

T v))

= (f , z + ∇ϕ)− (ν(·, |∇× uT |)∇× uT ,∇× z)

=︸︷︷︸
∇·f=0

(f , z)− (ν(·, |∇× uT |)∇× uT ,∇× z)

=
∑
T∈T

(RT , z)T −
∑

F∈FT (Ω)

(JF,1, z)F

≤
∑
T∈T

hT ‖RT ‖0,Th−1
T ‖z‖0,T +

∑
F∈FT (Ω)

h
1/2
T ‖JF,1‖0,Th

−1/2
F ‖z‖0,F

≤ C
∑
T∈T

ηT ,1(uT ,f , T )(h−1
T ‖z‖0,T + |z|1,T ) (by the trace theorem [41])

≤︸︷︷︸
(3.6)

C
∑
T∈T

ηT ,1(uT ,f , T )‖∇× (u− uT )‖
0,D̃T

.

Hence, it follows from the finite overlapping property of the patches D̃T that

‖∇× (u− uT )‖0 ≤ CηT ,1(uT ,f). (3.8)

On the other hand, we make use of the error estimate (3.4) for the quasi-interpolation operator
IszT and the fact that ∇ · uT = 0 on each T ∈ T to deduce from the second equation of (2.1) and
(2.12) that

(u− uT ,∇q) = −(g, q)− (uT ,∇q) = −(g, q − IszT q)− (uT ,∇(q − IszT q))

=
∑
T∈T

(−g, q − IszT q)T −
∑

F∈FT (Ω)

(JF,2, q − IszT q)F

≤ CηT ,2(uT , g)|q|1 ∀ q ∈ H1
0 (Ω) ,

which implies
(u− uT , (u− uT )0) ≤ CηT ,2(uT , g)‖(u− uT )0‖0,

where (u− uT )0 is the L2-projection of u− uT on ∇H1
0 (Ω). This clearly shows

‖(u− uT )0‖0 ≤ CηT ,2(uT , g). (3.9)

A collection of (3.8), (3.9) and the norm equivalence in Remark 2.1 leads to the desired estimate.
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We end this section by showing that the estimator in (3.1) is also efficient for the error u−uT
in H(curl)-norm.

Theorem 3.2. Let u and uT be solutions of problems (2.1) and (2.12) respectively. Then there
exists a constant C > 0, depending on L, the Lipschitz constant in (2.7), and the shape-regularity
of T , such that

η2
T (uT ,f , g, T ) ≤ C

(
‖u− uT ‖2H(curl;ωT ) + osc2

T (f , g, ωT )
)
∀ T ∈ T . (3.10)

Proof. For any given T ∈ T , let bT be the usual tetrahedral bubble function on T [41]. With
v = vT = RT bT ∈H1

0(T ) and p ≡ 0 in the first equation of (2.1), the standard scaling argument,
the definition of RT and integration by parts imply

C‖RT ‖20,T ≤ (RT ,vT )T = (RT −RT ,vT )T + (RT ,vT )T

= (f −∇× (ν(·, |∇× uT |)∇× uT ),vT )T + (RT −RT ,vT )T

= (ν(·, |∇× u|)∇× u− ν(·, |∇× uT |)∇× uT ,∇× vT )T + (RT −RT ,vT )T

≤ L‖u− uT ‖H(curl;T )‖vT ‖H(curl;T ) + ‖RT −RT ‖0,T ‖vT ‖0,T ,
which, together with the inverse estimate, the scaling argument and the triangle inequality, yields

Ch2
T ‖RT ‖20,T ≤ ‖u− uT ‖2H(curl),T + h2

T ‖RT −RT ‖20,T . (3.11)

For F ∈ FT (Ω), we make use of the face bubble function bF [41], which vanishes on ∂ωF , to
construct vF := JF,1bF ∈H1

0(ωF ). By similar arguments, we derive

C‖JF,1‖20,F ≤ (JF,1,vF )F = (JF,1,vF )F + (JF,1 − JF,1,vF )F

= (RT ,vF )ωF − (ν(·, |∇× u|)∇× u− ν(·, |∇× uT |)∇× uT ,∇× vF )ωF

+ (JF,1 − JF,1,vF )F .

Then estimates ‖∇×vF ‖0,ωF ≤ Ch
−1
F ‖vF ‖0,ωF ≤ Ch

−1/2
F ‖JF ‖0,F , (3.11) and the triangle inequal-

ity imply that

ChF ‖JF,1‖20,F ≤
∑
T∈ωF

(
‖u− uT ‖2H(curl;T ) + h2

T ‖RT −RT ‖20,T
)

+ hF ‖JF,1 − JF,1‖20,F . (3.12)

For the error indicator hT ‖g‖0,T , taking q = qT = gT bT ∈ H1
0 (T ) in the second equation of (2.1)

and arguing as above, we obtain

Ch2
T ‖g‖20,T ≤ ‖u− uT ‖20,T + h2

T ‖g − gT ‖20,T . (3.13)

Let EF (JF,2) be a constant extension of JF,2 along the normal nF or −nF to F . Then using
the second equation of (2.1) with q = qF = EF (JF,2)bF ∈ H1

0 (ωF ), the estimates ‖∇qF ‖0,ωF ≤
Ch−1

F ‖qF ‖0,ωF ≤ Ch
−1/2
F ‖JF,2‖0,F , (3.13) and similar arguments, we obtain

C‖JF,2‖20,F ≤ (JF,2, qF )F = (JF,2, qF )F + (JF,2 − JF,2, qF )F

= (uT − u,∇qF )ωF − (g, qF )ωF + (JF,2 − JF,2, qF )F

≤ C(h
−1/2
F

∑
T∈ωF

‖u− uT ‖0,T + h
1/2
F

∑
T∈ωF

‖g‖0,T + ‖JF,2 − JF,2‖0,F )‖JF,2‖0,F .

Hence,

ChF ‖JF,2‖20,F ≤
∑
T∈ωF

( ‖u− uT ‖20,T + h2
T ‖g − gT ‖20,T ) + hF ‖JF,2 − JF,2‖20,F . (3.14)

Now we can see that the desired estimate (3.10) follows from (3.11)-(3.14).
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4 Adaptive algorithm

On the basis of the reliable and efficient a posteriori error estimator (3.1)-(3.3), we now propose
an adaptive algorithm for solving the quasilinear saddle point magnetostatic Maxwell system (1.1).
In what follows, all dependences on triangulations are indicated by the number of refinements k.

Algorithm 4.1.

1. (INITIALIZATION) Set k := 0 and choose an initial conforming mesh Tk such that ν is
piecewise W 1,∞ in its first variable.

2. (SOLVE) Solve the discrete problem (2.12) on Tk for uk ∈ V k.

3. (ESTIMATE) Compute the error estimator ηk(uk,f , g) defined in (3.1)-(3.3).

4. (MARK) Mark a subset Mk ⊆ Tk containing at least one element T̃ ∈ Tk with the largest
local error indicator, i.e.,

ηk(uk,f , g, T̃ ) = max
T∈Tk

ηk(uk,f , g, T ). (4.1)

5. (REFINE) Refine each T ∈Mk by bisection to get Tk+1.

6. Set k := k + 1 and go to Step 2.

It should be pointed out that several practical marking strategies, including the maximum
strategy [2], the equidistribution strategy [21], the modified equidistribution strategy and Dörfler’s
strategy [19], satisfy the requirement (4.1). Let us close this section by proving the following
stability result for the error estimator:

Lemma 4.1. Let {uk}∞k=0 be the sequence of discrete solutions by Algorithm 4.1. Then there holds

ηk(uk,f , g, T ) ≤ C(‖∇× uk‖0,ωT + ‖uk‖0,ωT + hT ‖f‖0,T + hT ‖g‖0,T ) ∀ T ∈ Tk. (4.2)

Proof. An elementary calculation, together with ∇×∇× uk = 0 on each T ∈ Tk, shows that

f −∇× (ν(x, |∇× uk|)∇× uk) = f −∇ν(x, |∇× uk|)× (∇× uk).

As ν(·, |∇ × uk|) is piecewise W 1,∞ over T0, we have

hT ‖RT ‖0,T ≤ hT ‖f‖0,T + ChT ‖∇× uk‖0,T . (4.3)

For two jump terms across F ∈ Fk(Ω) shared by T , T ′ ∈ Tk, the scaled trace theorem, the inverse
estimate and the assumption (2.3) tell that

h
1/2
F ‖JF,1‖0,F ≤ h

1/2
F (‖(ν∇× uk)|T ‖0,F + ‖(ν∇× uk)|T ′‖0,F ) ≤ C‖∇× uk‖0,ωF , (4.4)

h
1/2
F ‖JF,2‖0,F ≤ C‖uk‖0,ωF . (4.5)

Then collecting (4.3)-(4.5) gives the desired estimate.
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5 Convergence

This section is devoted to the convergence analysis of the adaptive Algorithm 4.1. Our goal is
to prove the strong H(curl)-convergence of the sequence of discrete solutions {uk}∞k=0 generated
by Algorithm 4.1 towards the exact solution of the problem (2.1). Due to the special saddle-point
nature of the current nonlinear Maxwell system, we need to develop a very different argument
from those for the nonlinear elliptic problems [23, 40] in order to establish our desired strong
H(curl)-convergence. We start with a key limiting problem posed over the following spaces:

V ∞ :=
⋃
k≥0

V k (in H(curl)-norm), S∞ :=
⋃
k≥0

Sk (in H1-norm),

X∞ := {v ∈ V ∞ | (v,∇q) = 0 ∀ q ∈ S∞},

where {V k}∞k=0 and {Sk}∞k=0 are generated by Algorithm 4.1. The general idea of using limiting
spaces was used to analyze the convergence of an adaptive FEM in [5] for an one-dimensional
boundary value problem, and was then generalized in [32] for linear elliptic problems. This general
principle has been widely used in the analysis of adaptive FEMs, but its realization is often very
different with a different problem. We can easily see from (2.11) and the definitions of V ∞ and
S∞ that

∇S∞ ⊂ V ∞, sup
0 6=v∈V∞

(v,∇q)

‖v‖H(curl)
≥ ‖∇q‖0 ∀ q ∈ S∞. (5.1)

In addition, though we know X∞ is generally not a subspace X, we demonstrated that an impor-
tant Poincaré-type inequality is still true on X∞ [42, Lemma 5.1]:

‖v‖0 ≤ C‖∇× v‖0 ∀ v ∈X∞ (5.2)

with the constant C only depending on Ω and the shape-regularity of T0.
We can now study the following key limiting problem: Find (u∞, p∞) ∈ V ∞ × S∞ such that{

(ν(x, |∇× u∞|)∇× u∞,∇× v∞) + (v∞,∇p∞) = (f ,v∞) ∀ v∞ ∈ V ∞,

(u∞,∇q∞) = −(g, q∞) ∀ q∞ ∈ S∞.
(5.3)

The same as for the system (2.1), we know the problem (5.3) admits a unique solution thanks to
(2.7), (2.6), (5.2) and (5.1), and p∞ ≡ 0. We first show the following optimal estimate.

Theorem 5.1. Let u∞ be the solution of (5.3) and {uk}∞k=0 be the sequence of discrete solutions
generated by Algorithm 4.1. Then

‖u∞ − uk‖H(curl) ≤ C inf
vk∈V k

‖u∞ − vk‖H(curl) → 0 as k →∞. (5.4)

Proof. Let k ∈ N ∪ {0}, and we introduce the set

Xk(g) := {vk ∈ V k | (vk,∇qk) = −(g,∇qk) ∀ qk ∈ Sk}

and Xk := Xk(0). We point out that Xk(g) 6= ∅ since uk ∈Xk(g).
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Since uk −wk ∈ Xk for every wk ∈ Xk(g), we deduce from (2.6), (2.7), (2.12), (2.13), (5.3),
and p∞ = pk = 0 that there exists a constant ĈM > 0, depending only on ν1, Ω and the shape-
regularity of T0, such that

ĈM‖uk −wk‖2H(curl) ≤ 〈Auk −Awk,uk −wk〉

= 〈Auk −Au∞,uk −wk〉+ 〈Au∞ −Awk,uk −wk〉
= 〈Au∞ −Awk,uk −wk〉
≤ L‖u∞ −wk‖H(curl)‖uk −wk‖H(curl) ∀ wk ∈Xk(g),

which, together with the triangle inequality, gives

‖u∞ − uk‖H(curl) ≤ (1 +
L

ĈM
) inf
wk∈Xk(g)

‖u∞ −wk‖H(curl). (5.5)

For every vk ∈ V k, there exists a unique φk ∈ Sk such that

(∇φk,∇qk) = (u∞ − vk,∇qk) ∀ qk ∈ Sk.

This solution satisfies
‖∇φk‖0 ≤ ‖u∞ − vk‖H(curl). (5.6)

Now, since (∇φk + vk,∇qk) = (u∞,∇qk) = −(g, qk) holds for all qk ∈ Sk, it follows that

∇φk + vk ∈Xk(g),

therefore we may set wk = ∇φk + vk in the right-hand side of (5.5) and use (5.6) to obtain that

‖u∞ − uk‖H(curl) ≤ (1 +
L

ĈM
)(‖u∞ − vk‖H(curl) + ‖∇φ‖H(curl))

≤ 2(1 +
L

ĈM
)‖u∞ − vk‖H(curl) ∀ vk ∈ V k.

In view of the density of
⋃
k≥0 V k in V ∞, this inequality leads to the desired result.

By virtue of Theorem 5.1, it suffices to prove that u∞ is exactly the solution of (2.1) so that the
convergence of {uk}∞k=0 given by Algorithm 4.1 follows. In doing so, we split each Tk by Algorithm
4.1 as follows

T +
k :=

⋂
l≥k
Tl, T 0

k := Tk \ T +
k , Ω+

k :=
⋃

T∈T +
k

DT , Ω0
k :=

⋃
T∈T 0

k

DT .

That is, T +
k consists of all elements not refined after the k-th iteration while all elements in T 0

k are
refined at least once after the k-th iteration. It is easy to see T +

l ⊂ T
+
k for l < k and Mk ⊂ T 0

k .
We also define a mesh-size function hk : Ω → R+ almost everywhere by hk(x) = hT for x in
the interior of an element T ∈ Tk and hk(x) = hF for x in the relative interior of a face F ∈ Fk.
Letting χ0

k be the characteristic function of Ω0
k, then the mesh-size function hk(x) has the property

[32] [38]:
lim
k→∞

‖hkχ0
k‖L∞(Ω) = 0 . (5.7)

With the above preparations, we are now able to establish that the maximal error indicator among
all the marked elements at each adaptive loop converges to zero.
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Lemma 5.1. Let {Tk,V k,uk}∞k=0 be the sequence of meshes, finite element spaces and discrete
solutions generated by Algorithm 4.1 and Mk be the set of marked elements over Tk. Then

lim
k→∞

max
T∈Mk

ηk(uk,f , g, T ) = 0. (5.8)

Proof. We denote by T̃k the element with the largest error indicator among Mk. As T̃k ∈ T 0
k , the

local quasi-uniformity and (5.7) imply that

|ω
T̃k
| ≤ C|T̃k| ≤ C‖hkχ0

k‖3L∞(Ω) → 0. (5.9)

By the stability estimate (4.2) and the triangle inequality,

ηk(uk,f , g, T̃k) ≤ C(‖∇× uk‖0,ωT̃k
+ ‖uk‖0,ωT̃k

+ ‖f‖
0,T̃k

+ ‖g‖
0,T̃k

)

≤ C(‖∇× u∞‖0,ω
T̃k

+ ‖∇× (uk − u∞)‖0 + ‖u∞‖0,ω
T̃k

+ ‖uk − u∞‖0.

+ ‖f‖
0,T̃k

+ ‖g‖
0,T̃k

)

Now the second and the fourth terms in the right-hand side go to zero by Theorem 5.1. The rest
also go to zero due to (5.9) and the absolute continuity of ‖ · ‖0 with respect to the Lebesgue
measure.

For every k ∈ N ∪ {0}, we introduce two linear bounded functionals R1(uk) : H0(curl) → R
and R2(uk) : H1

0 (Ω)→ R by

〈R1(uk),v〉 := (ν(x, |∇× uk|)∇× uk,∇× v)− (f ,v) ∀ v ∈H0(curl), (5.10)

〈R2(uk), q〉 := (uk,∇q) + (g, q) ∀ q ∈ H1
0 (Ω). (5.11)

Thanks to Theorem 5.1 and (2.3), the sequences {‖R1(uk)‖H0(curl)∗}∞k=0 and {‖R2(uk)‖H−1(Ω)}∞k=0

are bounded. Furthermore, since pk = 0 holds for every k ∈ N ∪ {0}, it follows from (2.12) that

〈R1(uk),v〉 = 0 ∀ v ∈ V k, 〈R2(uk), q〉 = 0 ∀ q ∈ Sk (5.12)

for every k ∈ N ∪ {0}.

Lemma 5.2. The sequence of discrete solutions {uk}∞k=0 generated by Algorithm 4.1 satisfies

lim
k→∞
〈R1(uk),v〉 = 0 ∀ v ∈H0(curl), (5.13a)

lim
k→∞
〈R2(uk), q〉 = 0 ∀ q ∈ H1

0 (Ω). (5.13b)

Proof. We first prove (5.13b). To this aim, for every k ∈ N ∪ {0}, we denote respectively by Ik
and Iszk the standard nodal interpolation operator [12] and the Scott-Zhang quasi-interpolation
operator [37] associated with Sk. Let q ∈ C∞0 (Ω), l ∈ N ∪ {0}, and k ∈ N with k > l. By virtue of
(5.12), we deduce that

|〈R2(uk), q〉| = |(uk,∇(q − Ikq)) + (g, q − Ikq)|
= |(uk,∇(q − Ikq − Iszk (q − Ikq))) + (g, q − Ikq − Iszk (q − Ikq))|

≤ C
∑
T∈Tk

ηk,2(uk, g, T )‖q − Ikq‖1,DT

≤ C
(
ηk,2(uk, g, Tk \ T +

l )‖q − Ikq‖1,Ω0
l

+ ηk,2(uk, g, T +
l )‖q − Ikq‖1,Ω+

l

)
,
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with a constant C > 0, independent of q, l, and k. We note that the first inequality above follows
from the error estimates of Iszk (cf. (3.4)) and the elementwise integration by parts. Using the
stability estimate (4.2), Theorem 5.1 and the error estimate for Ik [12], we further derive

|〈R2(uk), q〉| ≤ C1‖hl‖L∞(Ω0
l )‖q‖2 + C2ηk,2(uk, g, T +

l )‖q‖2, (5.14)

with two positive constants C1 and C2independent of q, l, and k. Now, let ε > 0. In view of (5.7),
there exists an index lε ∈ N such that

C1‖hl‖L∞(Ω0
l )‖q‖2 < ε/2 ∀ l ≥ lε. (5.15)

On the other hand, since T +
l ⊂ T

+
k ⊂ Tk for all k > l, the marking property (4.1) implies that

ηk,2(uk, g, T +
l ) ≤

√
|T +
l | max

T∈T +
l

ηk,2(uk, g, T ) ≤
√
|T +
l | max

T∈Mk

ηk(uk,f , g, T ).

Therefore, by virtue of Lemma 5.1, if necessary, we may increase the index lε ∈ N such that

C2ηk,2(uk, g, T +
l )‖q‖2 < ε/2. (5.16)

holds for all k > l ≥ lε. Concluding from (5.14)-(5.16) we have verified that for every positive real
number ε > 0 there exists an index lε ∈ N such that

|〈R2(uk), q〉| < ε ∀ q ∈ C∞0 (Ω), ∀ k > lε.

In conclusion, (5.13b) follows from this result along with the density of C∞0 (Ω) in H1
0 (Ω) and the

boundedness of {‖R2,k(uk)‖H−1(Ω)}∞k=0.
We now prove (5.13a). To this aim, for a given v ∈ C∞0 (Ω), we set w := v−Πkv ∈H0(curl; Ω),

where Πk is the curl-conforming Nédélec interpolant [28] associated with V k. Then, by virtue of
(3.5), there exist z ∈H1

0(Ω) and ϕ ∈ H1
0 (Ω) such that w −Πs

kw = z + ∇ϕ. Invoking (5.12), we
deduce that

〈R1(uk),v〉 = 〈R1(uk),v −Πkv〉 = 〈R1(uk),w −Πs
kw〉 = 〈R1(uk), z + ∇ϕ〉. (5.17)

As ∇ · f = 0, we can easily find that

〈R1(uk),∇ϕ〉 = 0. (5.18)

Applying (5.18) to (5.17) and using an elementwise integration by parts, the trace theorem as well
as the estimate (3.6), and recalling w = v −Πkv, we further derive that

〈R1(uk),v〉 = 〈R1(uk), z〉

= −(
∑
T∈Tk

(RT , z)T −
∑

F∈Fk(Ω)

(JF,1, z)F )

≤
∑
T∈Tk

hT ‖RT ‖0,Th−1
T ‖z‖0,T +

∑
F∈Fk(Ω)

h
1/2
F ‖JF,1‖0,Fh

−1/2
F ‖z‖0,F

≤ C
∑
T∈Tk

(
h2
T ‖RT ‖20,T +

∑
F⊂∂T∩Ω

hF ‖JF,1‖20,F
)1/2(

h−1
T ‖z‖0,T + |z|1,T

)
≤ C

∑
T∈Tk

(
h2
T ‖RT ‖20,T +

∑
F⊂∂T∩Ω

hF ‖JF,1‖20,F
)1/2‖∇× (v −Πkv)‖

0,D̃T
,
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with a constant C > 0, independent of k and v. We now define a buffer layer of elements between
Tl and Tk for k, l ∈ N with k > l:

T bk,l := {T ∈ Tk \ T +
l | T ∩ T

′ 6= ∅, ∀ T ′ ∈ T +
l }.

We know from T +
l ⊂ T

+
k ⊂ Tk and the uniform shape-regularity of {Tk} that

|T bk,l| ≤ C|T +
l | (5.19)

with constant C depending only on the initial mesh T0, and D̃T ⊂ Ω0
l for any T ∈ Tk \ (T +

l ∪T
b
k,l).

Splitting Tk into T +
l ∪T

b
k,l and Tk \ (T +

l ∪T
b
k,l) for k > l, and noting that

⋃
T∈Tk\(T +

l ∪T
b
k,l)

D̃T ⊆ Ω0
l ,

we can further proceed to derive

|〈R1(uk),v〉| ≤ C
∑
T∈Tk

ηk,1(uk,f , T )‖∇× (v −Πkv)‖
0,D̃T

≤ C
(
ηk,1(uk,f , Tk \ (T +

l ∪ T
b
k,l))‖∇× (v −Πkv)‖0,Ω0

l

+ ηk,1(uk,f , T +
l ∪ T

b
k,l)‖∇× (v −Πkv)‖0

)
,

which, along with the stability estimate (4.2) in Lemma 4.1, Theorem 5.1 and the interpolation
error estimate for Πk [15], implies

|〈R1(uk),v〉| ≤ C3‖hl‖L∞(Ω0
l )‖v‖2 + C4ηk,1(uk,f , T +

l ∪ T
b
k,l)‖v‖2. (5.20)

As before, the property (5.7) allows the first term to be small enough for sufficiently large l. Using
(4.1) and (5.19), we have

ηk,1(uk,f , T +
l ∪ T

k,l
b ) ≤

√
|T +
l |+ |T

k,l
b | max

T∈T +
l ∪T

k,l
b

ηk,1(uk,f , T ) ≤ C
√
|T +
l | max

T∈Mk

ηk,1(uk,f , T ).

This and (5.8) indicate that the second term in the right-hand side of (5.20) is also small for
all k > l after fixing a sufficiently large l. It follows from (5.20) and these two facts that
limk→∞〈R1(uk),v〉 = 0 for any v ∈ C∞0 (Ω). Then the density argument gives the first con-
vergence.

Remark 5.1. In the above proof, the key idea is a split of Ω into two parts: Ω0
l and Ω+

l . Over the
former we use local approximation properties of Ik, Πk and (5.7) while the marking property (4.1)
applies to the latter for k > l:

ηk(uk,f , g, T +
l ) ≤ C

√
|T +
l | max

T∈Mk

ηk(uk,f , g, T ).

From this and (5.8), we find that there holds for a fixed iteration l:

lim
k→∞

ηk(uk,f , g, T +
l ) = 0.

Recalling that the Lagrange multiplier p associated with (2.1) vanishes since the right-hand f
is divergence-free, we can now conclude a crucial auxiliary result using the two lemmas above.
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Lemma 5.3. The solution u∞ ∈H0(curl) of (5.3) solves the original quasilinear Maxwell system{
(ν(x, |∇× u∞|)∇× u∞,∇× v) = (f ,v) ∀ v ∈H0(curl),

(u∞,∇q) = −(g, q) ∀ q ∈ H1
0 (Ω).

(5.21)

Proof. We first prove the second variational equality in (5.21). For any q ∈ H1
0 (Ω), it follows from

(5.11) that for every k ∈ N,

(u∞,∇q) + (g, q) = (u∞ − uk,∇q) + 〈R2(uk), q〉.

Then, taking the limit k →∞, we get from Theorem 5.1 and (5.13b) that

(u∞,∇q) + (g, q) = lim
k→∞

((u∞ − uk,∇q) + 〈R2(uk), q〉) = 0,

so the second variational equality of (5.21) is valid.
Next, let v ∈ H0(curl). In view of (5.10) and (5.3) along with p∞ ≡ 0, it holds for every

k ∈ N that

|(ν(x, |∇× u∞|)∇× u∞,∇× v)− (f ,v)| = |〈Au∞ −Auk,v〉+ 〈R1(uk),v〉|
≤︸︷︷︸

(2.7)

L‖uk − u∞‖H(curl)‖v‖H(curl) + |〈R1(uk),v〉|.

Then, taking the limit k →∞, it follows from Theorem 5.1 and (5.13a) that

(ν(x, |∇× u∞|)∇× u∞,∇× v) = (f ,v),

which completes the proof.

Now the following strong convergence is a consequence of Lemma 5.3 and Theorem 5.1.

Theorem 5.2. The sequence of discrete solutions {uk}∞k=0 generated by Algorithm 4.1 converges
strongly with respect to the H(curl)-topology towards the solution u ∈H0(curl) of (2.1).

We end this section with the desired vanishing property of the estimators generated by our
adaptive algorithm.

Theorem 5.3. The sequence {ηk(uk,f , g)}∞k=0 of the estimators generated by Algorithm 4.1 con-
verges to zero.

Proof. We split the estimator as

η2
k(uk,f , g) = η2

k(uk,f , g, T +
l ) + η2

k(uk,f , g, Tk \ T +
l ) (5.22)

for k > l. The local lower bound (3.10) allows

η2
k(uk,f , g, Tk \ T +

l ) ≤ C(‖u− uk‖2H(curl) + osc2
k(f , g, Tk \ T +

l )).

Since RT is the best L2-projection of RT onto the constant space over T , ∇ ×∇ × uk = 0 and
ν(·, |∇× uk|) is W 1,∞ in the first variable,

hT ‖RT −RT ‖0,T ≤ hT ‖f −∇ν(x, |∇× uk|)× (∇× uk)‖0,T
≤ hT ‖f‖0,T + ‖∇ν‖L∞(T )hT ‖∇× uk‖0,T ≤ ChT (‖f‖0,T + ‖∇× uk‖0,T ).
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Likewise,
hT ‖g − gT ‖0,T ≤ hT ‖g‖0,T .

We denote by [·] the average of [·] over F , by νT (·, |∇ × uk|) the average of ν(·, |∇ × uk|) over
T ∈ ωF . Then we apply the scaled trace theorem and the Poincaré inequality and using the fact
that |∇× uk| is a piecewise constant over Tk to deduce that

h
1/2
F ‖JF,1 − JF,1‖0,F ≤ h1/2

F

∑
T∈ωF

‖(ν − νT )(∇× uk|T )× nF ‖0,F

≤ C
∑
T∈ωF

(‖ν − νT ‖L∞(T ) + hF ‖∇ν‖L∞(T ))‖∇× uk‖0,T

≤ C
∑
T∈ωF

hT ‖∇× uk‖0,T .

Noting the uniform boundedness of ‖∇ × uk‖0 in terms of k from Theorem 5.2 and using the
relation (5.22), we can arrive at

η2
k(uk,f , g) ≤ C(η2

k(uk,f , g, T +
l ) + ‖u− uk‖2H(curl) + ‖hl‖2L∞(Ω0

l )).

Now by (5.7) the third term in the right-hand side tends to zero as l→∞. Thanks to Remark 5.1
and Theorem 5.2 we may fix a large l and choose a suitable k > l such that the first term and the
second term in the right-hand side are also sufficiently small. This leads to the conclusion.

6 Numerical experiments

Based on the underlying regularity assumption (Assumption 2.1), we construct an example for
the nonlinear reluctivity function. Let us note that this example is merely academic and it is used
to demonstrate the numerical performance of our adaptive algorithm more accurately as we know
the exact solution analytically. We introduce the function

ν : R→ R+, ν(s) = 1− 1

2(s2 + 1)
. (6.1)

Obviously, this function satisfies

lim
s→∞

ν(s) = 1 and
1

2
≤ ν(s) ≤ 1, ∀s ∈ R.

Furthermore, it is easy to verify that the function ξ : R → R, ξ(s) := ν(s)s, is continuously

differentiable with ξ′(s) =
2s4 + 5s2 + 1

2 (s2 + 1)2 . Then, straightforward computations yield that

1

2
≤ ξ′(s) ≤ 34

32
, ∀s ∈ R,

and consequently the mean value theorem implies for all s, t ∈ R that

(ξ(s)− ξ(t))(s− t) ≥ 1

2
(s− t)2 and |ξ(s)− ξ(t)| ≤ 34

32
|s− t|.
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Therefore, the reluctivity function (6.1) satisfies Assumption 2.1. We specify the computational
domain Ω to be an L-shaped domain, defined by

Ω := (−1, 1)× (−1, 1)× (0, 1) \ [0, 1]× [0, 1]× [0, 1]. (6.2)

In view of (6.2), the function

ϑ : Ω→ R, ϑ(x) = sin(πx1) sin(πx2) sin(πx3) (6.3)

is of class H1
0 (Ω) such that ∇ϑ ∈H0(curl). For this reason, setting

f ≡ 0 and g := ∆ϑ = −3π2ϑ,

the solution of (1.1) is then obtained by the gradient field u = ∇ϑ. With this analytical solution, we
shall test the numerical performance of our adaptive Algorithm 4.1. To this aim, we implemented
Algorithm 4.1 in a Python script using the open source software FEniCS [31]. Here, the step
SOLVE of Algorithm 4.1 was carried out using the Kačanov iteration:

1. Set n = 1 and choose u
(0)
Tk ∈ V Tk .

2. Solve the linear system for u
(n)
Tk ∈ V Tk :{

(ν(|∇× u
(n−1)
Tk |)∇× u

(n)
Tk ,∇× vTk) + (vTk ,∇p

(n)
Tk ) = (f ,vTk) ∀ vTk ∈ V Tk ,

(u
(n)
Tk ,∇qTk) = −(g, qTk) ∀ qTk ∈ STk .

(6.4)

3. If ‖u(n)
Tk − u

(n−1)
Tk ‖H(curl) < 10−8, STOP; otherwise set n = n+ 1 and go to Step 2.

For our numerical experiments, we used zero initial data, and the linear system (6.4) was solved
by the build-in preconditioned MinRes solver of FEniCS.

In the step MARK of Algorithm 4.1, elements of the simplicial triangulation Tk are marked
for refinement based on the information provided by the proposed a posteriori error estimator
ηk(uk,f , g) = ηTk(uk,f , g, Tk) (cf. (3.1)-(3.3) for its definition). Here, we employ Dörfler’s strategy
[19] with the associated bulk criterion θ = 0.6. Thereafter, all marked elements are subdivided by
the build-in bisection algorithm of FEniCS. Finally, we stop Algorithm 4.1 if the number of the
degrees of freedom (DoF) in the finite element space V Tk exceeds a given maximum number DoF∗,
which is set to DoF∗ = 4 · 106 for the first example and DoF∗ = 6 · 104 for the second one.

In Figure 1, we present the exact error ‖u − uk‖H(curl) resulting from the uniform mesh
refinement compared with the one based on the adaptive mesh refinement using the proposed
error estimator ηk(uk,f , g). Observing Figure 1, we may infer a better numerical performance of
the adaptive method over the standard uniform mesh refinement. This can be more quantitatively
clarified by evaluating the experimental rate of convergence (ERC) using two consecutive discrete
solutions and DoF at final iteration:

ERC =

∣∣∣∣ log(‖u− uk‖H(curl))− log(‖u− uk−1‖H(curl))

log(DoFk)− log(DoFk−1)

∣∣∣∣ .
In this case, the values of ERC for the uniform and adaptive refinement methods read as

ERCuniform = 0.33444649636 and ERCadaptive = 0.62175515649.
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This reconfirms the better convergence of the adaptive algorithm over the standard uniform mesh
refinement, but the improvement may not be seen so significant as the exact solution is smooth,
without any singularities, which are the main targets of the adaptive method.

Furthermore, we show in Table 1 the exact error ‖u−uk‖H(curl) and the estimator ηk(uk,f , g)
at each adaptive discretization level. In particular, the numerical results illustrate our theoretical
findings concerning the reliability of the proposed estimator (Theorem 3.1) and the convergence
of Algorithm 4.1 (Theorem 5.2). In the last column of Tabel 1, we report the effectivity index

Ik :=
ηk(uk,f , g)

‖u− uk‖H(curl)
.

According to our numerical results, we find that Ik ≈ 5, which shows a reliable and accurate
prediction of the exact energy error by our a posterior error estimator. Figure 2 displays the
adaptive mesh after 15 refinement steps in Algorithm 4.1, over which the computed solution u15

is depicted in Figure 3 (left). For comparison, the exact solution u = ∇ϑ is visualized in Figure 3
(right).

Figure 1: Exact error for uniform (dash line) and adaptive mesh refinement (straight line).

6.1 An example with unknown solution

We now consider an example, in which case the exact optimal solution is unknown. For this,
we choose the data:

g ≡ 0 and f = (0, 0, χω), (6.5)

where χω denotes the characteristic function of the subset ω := {x ∈ Ω | x2
1 + x2

2 < 10−3}.
Differently from the previous example, the solution of (1.1) cannot be described analytically.
Moreover, due to the non-convex structure of the computational domain and the non-smoothness
of the given data (6.5), a smooth solution cannot be expected. In general, the solution enjoys only
the regularity property H0(curl)∩Hs(Ω) for some s ∈ (0.5, 1) and may feature strong singularities
[16, 17]. To deal with this issue, our adaptive edge element method may be useful for predicting
the behavior of the unknown solution and capturing its local singularities. Figure 4 depicts the
chosen initial mesh (k = 0) and the adaptive meshes generated by Algorithm 4.1 for different levels
k = 10, 15, 20. It is noticeable that a local refinement mainly occurs in the concave edge of Ω. Due
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Table 1: Convergence history and effectivity index.

k DoF ‖u− uk‖H(curl) ηk(uk,f , g) Ik

0 1700 1.3814 7.7770 5.6299
1 2372 1.3213 7.3392 5.5543
2 3416 1.1753 6.4422 5.4813
3 5549 0.9272 5.2076 5.6162
4 8000 0.7692 4.4217 5.7482
5 15116 0.7298 3.7953 5.2003
6 26346 0.6503 3.2883 5.0562
7 39028 0.4994 2.7918 5.5901
8 61774 0.4026 2.2942 5.6982
9 98444 0.3890 2.0323 5.2251
10 156093 0.3624 1.7892 4.9378
11 244497 0.2993 1.5761 5.2669
12 371258 0.2177 1.2741 5.8539
13 566179 0.1994 1.1120 5.5763
14 896464 0.1935 0.9791 5.0590
15 1405368 0.1735 0.8738 5.0374
16 2143814 0.1357 0.7454 5.4914
17 3204062 0.1057 0.6184 5.8480

Figure 2: Adaptive mesh and its cross section generated by Alogrithm 4.1 for k = 15.

to the choice of f , this behavior is not surprising. Next, in Figure 5, we plot the computed solution
on the finest adaptive mesh generated by Algorithm 4.1. Indeed, we observe that the solution is
mainly concentrated in the concave edge of Ω and vanishes outside this region. Finally, Table
2 presents the computed values of the error estimator ηk(uk,f , g) generated by Algorithm 4.1.
Similarly to the previous example, we observe a convergence behavior of the estimator towards
zero for increasing k, which is in agreement with Theorem 5.3.

Based on the previous two numerical tests, we may safely conclude a reasonable numerical
performance of the adaptive Algorithm 4.1. In particular, the newly proposed adaptive algorithm
seems to be competitive for dealing with the possible non-smoothness and singularities in the
solution of the nonlinear saddle point magnetostatic Maxwell system (1.1).
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Figure 3: Computed solution u15 on the adaptive mesh (left) and the exact solution u (right).

Table 2: Convergence history of the estimator

k 0 1 2 3 4 5 6 7 8 9
ηk(uk,f , g) 0.2599 0.2023 0.1389 0.1128 0.0719 0.0457 0.0308 0.0228 0.0148 0.0106
DoF 262 304 345 395 493 589 690 800 992 1148

k 10 11 12 13 14 15 16 17 18 19 20
ηk(uk,f , g) 0.0071 0.0045 0.0034 0.0027 0.0028 0.0025 0.0020 0.0015 0.0013 0.0011 0.0008
DoF 1357 1719 2103 2593 3434 10265 13962 19303 23721 36109 59831

7 Concluding remarks

We have derived an adaptive edge element method for the numerical solution of the quasilinear
saddle point magnetostatic Maxwell system (1.1). Our main theoretical results include the estab-
lishment of the reliability and efficiency of the error estimator (3.1)-(3.3) and the H(curl)-strong
convergence of the discrete solutions generated by the new adaptive Algorithm 4.1. Numerical
tests have confirmed these theoretical findings. Our future efforts may include the extension of
the adaptive method to some other related problems, such as the optimal control problem associ-
ated with the system (1.1) and the nonlinear hyperbolic evolution Maxwell equations, which are
truly challenging and related to many real-world applications, such as those in high-temperature
superconductivity [44, 45].
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