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A COMPOSITE STEP METHOD WITH INEXACT STEP COMPUTATIONS

FOR PDE CONSTRAINED OPTIMIZATION

MANUEL SCHALLER, ANTON SCHIELA, AND MATTHIAS STÖCKLEIN

Abstract. We consider a composite step algorithm for equality constrained optimization

problems. The arising linear systems are inexactly solved with a conjugate gradient method

using a constraint preconditioner. The influence of the error on the damping parameters of
the underlying Newton scheme and algorithmic parameters is discussed and specialized termi-

nation criteria for the conjugate gradient method are given. Application to optimal control of

a quasilinear heat equation and nonlinear elasticity illustrates the numerical performance of
the resulting algorithm.
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1. Introduction

In a Hilbert space X with scalar product 〈·, ·〉 and a reflexive space P we consider minimization
problems of the form

min
x∈X

f(x) s.t. c(x) = 0,(1)

where f : X → R is a twice continuously Fréchet differentiable functional and c : X → P ?

is a twice continuously Fréchet differentiable nonlinear operator that could model a differential
equation in weak form:

c(x) = 0 in P ? ⇐⇒ c(x)v = 0 ∀v ∈ P.

This setting applies e.g. in the case of optimal control, where x = (y, u) and

c(x) = A(y)−Bu

with A : Y → P ? being a possibly nonlinear differential operator with continuous inverse and
B : U → P ? a linear and continuous operator. In the following, the Riesz isomorphism is
represented by a linear operator M : X → X?, defined by (Mv)w = 〈v, w〉.

We denote the Lagrangian function corresponding to (1) by L(x, p) = f(x)+pc(x). Proceeding
formally, we obtain the first order optimality conditions at a minimizer x? with multiplier p?

by L′(x?, p?)(v, q) = 0 ∀(v, q) ∈ X × P . For the derivation of this condition, we refer to [22].
Solving this nonlinear equation with a Newton algorithm yields the linear system for the Newton
update (δx, δp) ∈ X × P :(

Lxx(x, p) c′(x)?

c′(x) 0

)(
δx
δp

)
+

(
Lx(x, p)
c(x)

)
= 0.(2)

For the solution of the minimization problem (1) we consider a composite step algorithm based
on the preceding work [21]. The idea of composite step methods is to split the Newton update
δx into a normal and a tangential step for a precise treatment of optimality and feasibility.
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c(x) = c(xk)

Figure 1. Sketch of a composite step δx = δn+δt with second order correction
δs at iteration point xk

A normal step δn satisfies δn ∈ ker c′(x)⊥ and aims for feasibility, and a tangential step δt
satisfies δt ∈ ker c′(x) and aims for a decrease of the functional value. Moreover, as presented in
[21], a second correction δs is used, which is defined as a minimum norm solution of a simplified
Newton equation. The motivation for this step is twofold. First it is used for globalization and
second to to avoid the Maratos effect. Figure 1 illustrates the steps that are computed in each
outer iteration of the composite step algorithm.

In terms of globalization of the normal step, we extend an idea proposed in [11, Section 4.4],
where the region of Newton contraction is estimated and normal step damping is performed if
necessary. We aim to preserve affine covariance of the algorithm, hence residual norms ‖c(x)‖ will
be avoided. This is motivated by the observation that residual norms are often hard to interpret
in the context of partial differential equations. It is contrary to the approach of Byrd-Omojokun
[4, 5, 24], where the normal steps minimize ‖c(x)‖ in a trust region. We will compute normal
steps, denoted by δn as possibly damped minimum norm solutions of the Newton-equation
c(x) + c′(x)δn = 0. To assure the solvability of this equation, we need to assume surjectivity
of c′(x), which is often given in an optimal control context. The approach employed for the
computation of the normal step thus resembles more the ideas of Vardi in [32].

In terms of optimality, a tangential step δt ∈ ker c′(x) will be computed, minimizing a local
quadratic model. For globalization of this matter, we will use a cubic regularization approach as
proposed in [6] for the case of unconstrained optimization.

The computation of the steps results in the solution of saddle point systems that are typ-
ically of very large scale, in particular if c(x) models a time-dependent PDE or a nonlinearly
elastic material. In these cases, the use of iterative solvers is mandatory. In this paper, we
will discuss the conjugate gradient method with a constraint preconditioner, also called the pro-
jected preconditioned conjugate gradient method (PPCG) [15] as a solution technique. It has
the advantage to preserve the optimization structure of the linear systems and treats the equality
contraints exactly. Together with a block lower triangular constraint preconditioner the solution
of the saddle point system can be reduced to succesive solutions of the underlying linearized
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PDEs and their adjoint equations. This strategy is particularly well suited for large scale time
dependent problems. In this case one application of the preconditioner can be interpreted as a
forward-backward solve in time.

For reasons of efficiency, overly accurate solution of the arising linear systems should be
avoided. In other words, inexact steps should be taken. Within the approach of Byrd-Omojokun,
mentioned above, inexactness was considered in [17, 16, 25] and, in the context of spatial adap-
tivity [34].

Here we consider inexact steps for our affine covariant method. The arising residuals influence
several algorithmic quantities, which are e.g. necessary for the computation of the damping
parameters, and thus the globalization mechanism of the overall algorithm. In broad terms,
less accurate steps lead to smaller damping factors and thus to slower convergence of the outer
iteration. Thus, a good adaptive stategy to achieve a reasonable trade-off has to be devised.
Moreover, we aim to derive requirements on the residuals, such that local superlinear convergence
is preserved. This is the main objective of this paper.

2. Definition of exact substeps

In this section, we will introduce normal and tangential step as components of the update, the
Lagrange multiplier and the simplified normal step. First, we introduce the Lagrange multiplier
at an iterate (x, p) defined as the solution of(

M c′(x)?

c′(x) 0

)
︸ ︷︷ ︸

=:Hn

(
gx
px

)
+

(
f ′(x)

0

)
= 0.(3)

The second equation yields gx ∈ ker c′(x). Together with the first equation, this implies that gx
is the projected gradient of f(x) onto ker c′(x).

Remark 2.1. Note, that this multiplier is dependent on the current iterate x. Under continuity
assumptions on f ′(x) and a continuity and surjectivity assumption on c′(x), this multiplier
is given as a continuous implicit function in a neighborhood of x, cf. [21, Lemma 2.4]. For
algorithmic purposes, we compute a correction for the Lagrange multiplier each iteration via(

M c′(x)?

c′(x) 0

)(
gx
δp

)
+

(
Lx(x, p−)

0

)
= 0(4)

and set px := p− + δp, which yields the advantage of the right hand side approaching zero when
we get to a local minimizer [21, Section 3.1.2].

The normal step δnex aiming for feasibility is a minimum norm Gauss-Newton step for the
solution of the (underdetermined) problem c(x) = 0. The undamped normal step is denoted
by ∆nex, whereas the damped normal step is denoted by δnex = ν∆nex with a damping factor
ν ∈]0, 1]. We compute ∆nex as a solution of the minimum norm problem

min
∆nex∈X

1

2
〈∆nex,∆nex〉M s.t. c(x) + c′(x)∆nex = 0.(5)

The stationarity condition of above problem reads(
M c′(x)?

c′(x) 0

)(
∆nex

q

)
+

(
0
c(x)

)
= 0.(6)

Lemma 2.2 characterizes an important property of this normal step.

Lemma 2.2. The normal step δnex defined by (6) satisfies δnex ∈ ker c′(x)⊥.
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Proof. Let v ∈ ker c′(x). Then

0 = 〈∆nex, v〉M + (c′(x)?q)v = 〈∆nex, v〉M + qc′(x)v = 〈∆nex, v〉M .
The same holds for δnex = ν∆nex. �

For the computation of the tangential step direction ∆t, we aim to minimize a quadratic
model of the objective function q(∆t + δnex) in the linearized kernel of the equality constraint,
where we define

q(δx) :=f(x) + f ′(x)δx+
1

2
Lxx(x, px)(δx)2(7)

=f(x) + f ′(x)δx+
1

2
(f ′′(x) + pxc

′′(x))(δx)2

with δx = ∆t+ δnex. Note that δnex is known beforehand, such that we minimize only over the
tangential step ∆t. Ignoring globalization issues we define the undamped tangential step as a
solution of the quadratic problem

min
∆t∈X

q(δnex + ∆t) s.t. c′(x)∆t = 0,

which is, after adding pxc
′(x)∆t = 0, equivalent to

min
∆t∈X

(Lx(x, px) + Lxx(x, px)δnex)∆t+
1

2
Lxx(x, px)(∆t)2 s.t. c′(x)∆t = 0.(8)

Therefore, sufficiently close to the solution (x?, p?) of the optimal control problem, with Lxx(x, px)
being elliptic on ker c′(x), the first order optimality conditions for (8) read(

Lxx(x, px) c′(x)?

c′(x) 0

)(
∆t
∆p

)
+

(
Lx(x, px) + Lxx(x, px)∆nex

0

)
= 0.(9)

Thus, defining our update (∆x,∆p) := (∆t+∆nex,∆p) we observe the equivalence to computing
the full Lagrange-Newton step (2). Eventually, we define the second order correction δsex as a
solution to the minimum norm problem

min
δsex∈X

1

2
〈δsex, δsex〉M s.t. c(x+ δx)− c(x)− c′(x)δx+ c′(x)δsex = 0.(10)

This minimization problem (10) is strongly connected to (5) as we conclude the first order
optimality conditions (

M c′(x)?

c′(x) 0

)(
δsex

q

)
+

(
0

r(x, δx)

)
= 0,(11)

where r(x, δx) := c(x+δx)−c(x)−c′(x)δx. Just as the normal step, cf. Lemma 2.2, the simplified
normal step satisfies ker c′(x)⊥. We will denote the solution of above problem (10) by

δsex = −c′(x)−(c(x+ δx)− c(x)− c′(x)δx)(12)

where v = c′(x)−r denotes the least norm solution of c′(x)v = r.

3. Iterative Solution of the Saddle Point Systems

In this section, we present the solution algorithm for the computation of the steps at an
iteration point (x, p). We use a conjugate gradient algorithm with a constraint preconditioner
which solves the constraint exactly and to which we will refer to as the projected preconditioned
conjugate gradient (PPCG) method. We first present the solution method for the computation of
the Lagrange multiplier, the normal and the simplified normal step. Second, for the computation
of the tangential step with possibly indefinite system operator, we propose a modification of the
PPCG-method to allow for indefinite systems.
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3.1. Lagrange multiplier, normal and simplified normal step. In this subsection we are
interested in the linear system (

M c′(x)?

c′(x) 0

)
︸ ︷︷ ︸

Hn

+

(
r1

0

)
= 0(13)

for different r1 ∈ X?, which is to be solved to compute the Lagrange multiplier, the normal and
the simplified normal step.

Remark 3.1. We note, that the right-hand-side of the normal step system (6) and the simplified
normal step system (11) is not of the above form. In the case of optimal control however, one

can transform the system to obtain a right-hand-side

(
r1

0

)
. We will come back to this issue in

section 7, when we analyze the case of optimal control.

As we will use a particular conjugate gradient method, we introduce the constraint precondi-
tioner P : X × P → X? × P ?

P :=

(
M̃ c′(x)?

c′(x) 0

)
,(14)

where M̃ is an approximation of M , e.g. the diagonal of M . As an iterative solution method
for a general linear system with a a so called saddle point operator as in (13), we employ the
following algorithm, cf. [9], where P is the above defined constraint preconditioner. We now

Algorithm 1 Projected preconditioned conjugate gradient method

Require: z =

(
v
q

)
satisfying c′(x)v = 0, r = Hz + b, g = P−1r, d = −g

1: while convergence test failed do
2: σ ← rT g
3: α ← σ/dTHd . linesearch along d
4: z ← z + αd . iterate update
5: r ← r + αHd . derivative/residual update
6: g ← P−1r . preconditioning/computation of gradient
7: β ← rT g/σ
8: d ← −g + βd . search direction update
9: end while

10: return z

present several properties of the above algorithm which can be proven straighforwardly.

Proposition 3.2. Consider Algorithm 1 with constraint preconditioner (14) for the solution of
(13). Then

(1) all primal components of the CG-iterates are in ker c′(x), and
(2) Hn as defined in (3) is positive definite on the iterates (xi, pi) and ‖(xi, pi)‖Hn = ‖xi‖M ,

i.e. the energy norm coincides with the Hilbert space norm.

Proof. The first part follows easily by induction, as the initial iterate is in ker c′(x), the right-
hand-side is of the form (r1, 0) and the preconditioner yields g ∈ ker c′(x) if r = (r1, 0) for r1 ∈
X?. For the second part, we use that all PPCG-iterates are in ker c′(x) and hence (Hn)(xi, pi)

2 =
‖xi‖2M + 2pic

′(x)xi = ‖xi‖2M . �



6 MANUEL SCHALLER, ANTON SCHIELA, AND MATTHIAS STÖCKLEIN

3.2. Tangential step. For the computation of the tangential step, we aim to solve the possibly
indefinite system(

Lxx(x, px) c′(x)?

c′(x) 0

)
︸ ︷︷ ︸

=:Ht

(
∆t
q

)
+

(
Lx(x, px) + Lxx(x, px)∆n

0

)
= 0.

and employ a modified version of Algorithm 1 and use the same preconditioner P as introduced
in (14). However far away from the solution, Lxx(x, p) can be indefinite and nonconvexities can
occur, i.e. search directions d, such that Ht(d, d) ≤ 0. In this case, we will use the positive
definite operator Hn introduced in (3) as regularization. As this operator is positive definite on
ker c′(x) and by the properties of the preconditioner, see Proposition 3.2, we can find θ > 0,
such that Ht + θHn is positive definite and restart the iteration. However, far from a local
minimum we do not want to compute tangential steps overly accurately and thus we truncate
the PPCG-iteration in the spirit of cf. [27, 31]. For an in detail description of different methods
for the computation of the tangential step, we refer to [18, Section 4.3].

4. Inexact computation of Steps

In this section, we assume that the normal step, the simplified normal step and the Lagrange
multiplier are computed by the PPCG-algorithm, described in the previous section. If we ini-
tialize the PPCG-algorithm with an iterate in ker c′(x), the residual in the second component
will be zero, whereas an error term in the first component will remain. We will denote residuals
by εpx1 , ε∆n

1 and εδs1 for the linear system of the Lagrange multiplier, the normal step and the
simplified normal step respectively. The following equations characterize the solutions of the
saddle-point systems solved via the PPCG-method:(

M c′(x)?

c′(x) 0

)(
gx
px

)
+

(
f ′(x)

0

)
=

(
εpx1

0

)
,(15)

(
M c′(x)?

c′(x) 0

)(
∆n
q

)
+

(
0
c(x)

)
=

(
ε∆n

1

0

)
(16)

and (
M c′(x)?

c′(x) 0

)(
δs
q

)
+

(
0

r(x, δx)

)
=

(
εδs1
0

)
,(17)

where r(x, δx) = c(x+ δx)− c(x)− c′(x)δx.
Due to the constraint preconditioner, ∆n and δs still satisfy the underdetermined Newton

equations:

c′(x)∆n+ c(x) = 0

c′(x)δs+ (c(x+ δx)− c(x)− c′(x)δx) = 0,(18)

however, their minimal norm property and their orthogonality to ker c′(x) are lost.
We have the following relationship between the inexactly computed quantities δn and δs

defined by (16), (17) and the exact solutions δnex and δsex characterized by (6), and (11). The
difference between the exactly and inexactly computed normal step ∆nerr := ∆n−∆nex fulfills
the identity M∆nerr = ε∆n

1 , i.e. ∆nerr is the primal quantity corresponding to the residual ε∆n
1 .

Similarly, defining δserr := δs− δsex, it holds that Mδserr = εδs1 .
Moreover, by subtracting (16) from (6) and (17) from (11), we obtain

δnerr ∈ ker c′(x), δserr ∈ ker c′(x),(19)
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respectively, and thus

(20) δnex ⊥ δnerr, δsex ⊥ δserr.

In the remainder of this section, we recapitulate the globalization scheme from [21], study the
effect of inexact computations on this mechanism, and derive appropriate algorithmic measures.
This includes modified definitions of the algorithmic quantities and practical termination criteria
for the inner solvers.

4.1. Consistency of the quadratic model. In this section we study the influence of inexact-
ness on the consistency of the quadratic model qx(δx) with the true function value f(x+δx+δs).
In [21] a third order consistency result has been derived, giving an interpretation of δs as a
second-order correction that helps to avoid the Maratos effect.

Theorem 4.1. Assume that there are constants ωc, ωf ′ and ωL, such that

‖c′(x)−(c′(x+ v)− c′(x))v‖ ≤ ωc‖v‖2,(21)

|(Lxx(x+ v, px)− Lxx(x, px))(v, v)| ≤ ωL‖v‖3,(22)

|(f ′(x+ v)− f ′(x))w| ≤ ωf ′‖v‖‖w‖,(23)

where (x, px) are taken among the iterates, and v, w are arbitrary. Then, for arbitrary δx and

corresponding inexact and exact simplified normal steps δs and δsex, where ‖δserr‖‖δsex‖ < γ for γ > 0,

we have the estimates:

‖δsex‖ ≤
ωc
2
‖δx‖2(24)

‖δs‖ ≤ ω̃c
2
‖δx‖2, where ω̃c :=

√
1 + γ2ωc(25)

|f(x+ δx+ δs)− q(δx)− εpx1 δs+ εδs1 gx| ≤
(
ωL
6

+
ωf ′ ω̃c

2

(
1 +

ω̃c
4
‖δx‖

))
‖δx‖3,(26)

Here, q(δx) is the quadratic model as defined in (7), and εpx1 , δs, εδs1 , and gx are defined via (15)
and (17).

Proof. Inequality (24) has been shown in [21, Theorem 3.4]. Since δsex ⊥ δs− δsex, we conclude
by the Pythagoras theorem:

‖δs‖ =
√
‖δsex‖2 + ‖δserr‖2 ≤

√
1 + γ2‖δsex‖,

which yields (25).
Finally, (26) can be shown using the identity

Lx(x, px)δs = f ′(x)δs+ pxc
′(x)δs = εpx1 δs− εδs1 v

and proceeding analogously to the proof of [21, Theorem 3.4]. �

The left hand side of (26) yields a measure for the nonlinearity of f . The term −εpx1 δs+εδs1 gx
can be evaluated algorithmically and represents the effect of the inexactness on the quality of
the quadratic model. The right hand side consists of higher order terms only and is independent
of the inexactness.
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4.2. Globalization Strategy. In this section, we sketch the globalization mechanism for the
algorithm. More details can be found in [21]. One popular globalization strategy is to measure
‖c(x)‖ and require descent in some sense. This leads to merit functions and filter methods.

However, our premise of affine covariance does not permit the evaluation of residual norms.
We therefore employ an idea coming from affine covariant Newton methods, cf. [11]. A point
x is considered to be sufficiently close to the feasible set, if a Newton algorithm for c(x) = 0
started at x yields fast convergence. By their definition, the normal and the simplified normal
step satisfy, in the absence of damping,

c(x) + c′(x)δn = 0,

c(x+ δx) + c′(x)δs = 0

and thus can be interpreted as two steps of a simplified Newton algorithm starting at x. Moti-
vated by this observation, we introduce the contraction factor

Θ(δx) :=
‖δs‖
‖δx‖

which allows us to quantify the vicinity of the feasible region: If Θ(δx) is small, ‖δs‖ � ‖δx‖
and hence fast local convergence of the Newton scheme takes place. In the general case, if we
have a damping factor ν < 1 for the normal step, we use the same argumentation for the relaxed
problem x(ξν) = (1 − ν)c(x), cf. [21, Section 4.1]. Hence, we will accept δx if Θ(δx) ≤ Θacc is
observed, where 0 < Θacc < 1 is given. By Theorem 4.1 we have the estimate

Θ(δx) ≤ ω̃c
2
‖δx‖,(27)

where we, however, have to estimate the theoretical quantity ω̃c by an estimate [ω̃c] and hence
introduce

[Θ](ξ) :=
[ω̃c]

2
‖ξ‖,

where [ω̃c] is an estimate from below for ω̃c defined in Theorem 4.1. The full step δx is then
computed, such that

[Θ](δx) :=
[ω̃c]

2
‖δx‖ ≤ Θaim,

and where Θaim is chosen in ]0,Θacc[. This can be interpreted as a trust-region constraint

‖δx‖ ≤ Γ :=
2Θaim

[ω̃c]
.(28)

After computing a step δx and the corresponding δs, we update the Lipschitz estimate [ω̃c] via

[ω̃c] :=
2Θ(δx)

‖δx‖
=

2‖δs‖
‖δx‖2

,(29)

where it follows from (25) that [ω̃c] ≤ ω̃c.

Damping of the normal step. Given a normal step direction ∆n, we compute a damping factor
ν, such that

‖ν∆n‖ ≤ Γn :=
2ρelbowΘaim

[ω̃c]
(30)

where ρelbow ∈]0, 1[ is an ”elbow-space” parameter for the tangential step δt to prevent δn from
occupying the the full trust region radius.



INEXACT COMPOSITE STEP METHODS 9

Damping of the tangential step. For the globalization of tangential step, we employ a cubic
regularization approach as proposed in [6] for unconstrained problems, i.e. we minimize the
cubic model

m[ωf ] := q(δx) +
[ωf ]

6
‖δx‖3

= f(x) + f ′(x)δx+
1

2
Lxx(x, p)(δx)2 +

[ωf ]

6
‖δx‖3

over δt ∈ X under the conditions

c′(x)δt = 0

and
[ω̃c]

2
‖δx‖ =

[ω̃c]

2
‖δn+ δt‖ ≤ Θaim,

where [ωf ] is an affine covariant estimate of the prefactor on the right hand side of (26). To this
end, we will first compute a direction ∆t, which minimizes the quadratic model (7) on ker c′(x).
With this direction ∆t, we employ a simple linesearch method for the cubic model, i.e.

τ := arg min
t

m[ωf ](ν∆n+ t∆t)(31)

s.t. ‖δn+ τ∆t‖ ≤ Γ.(32)

Remark 4.2. For the exactly computed normal step δnex, we have ‖δnex + δt‖2 = ν2‖δnex‖2 +
τ2‖δt‖2 and hence monotonicity of ‖δx‖ in τ . This does not hold for inexact step computations,
as certainly δt ∈ ker c′(x), but δn /∈ ker c′(x)⊥.

4.3. Influence of errors on algorithmic parameters. In this section, we will discuss the
influence of the residuals defined by (15), (16) and (17) on the quantities Θ(δx), [ω̃c] and [ωf ].
The error will be again denoted by the subscript err, i.e. δserr := δs− δsex, where δs solves (17)
and δsex solves (11). By Lemma 2.2, it holds that δsex ∈ ker c′(x)⊥. This orthogonality property
allows us to estimate the influence of the relative error on the contraction factor Θ(δx).

Lemma 4.3. Let ‖δserr‖‖δs‖ < γ and γ > 0. Then with Θ(δx) = ‖δs‖
‖δx‖ = ‖δsex+δserr‖

‖δx‖ and Θex(δx) :=
‖δsex‖
‖δx‖ , we have √

1− γ2Θ(δx) < Θex(δx) ≤ Θ(δx).

and √
1− γ2[ω̃c] < [ωc] ≤ [ω̃c].

where [ωc] is defined by definition (29) with δsex instead of δs.

Proof. By using the orthogonality of δsex and δserr, we have ‖δs‖2 = ‖δsex‖2 +‖δserr‖2 and thus

γ2 > ‖δserr‖2
‖δs‖2 = ‖δserr‖2

‖δsex‖2+‖δserr‖2

Θ2
ex(δx)

Θ2(δx)
=

‖δsex‖2

‖δsex + δserr‖2
=
‖δsex‖2 + ‖δserr‖2 − ‖δserr‖2

‖δsex‖2 + ‖δserr‖2
= 1− ‖δserr‖2

‖δsex‖2 + ‖δserr‖2
> 1− γ2.

For the second inequality, we conclude

Θ2
ex(δx)

Θ2(δx)
=

‖δsex‖2

‖δsex‖2 + ‖δserr‖2
≤ ‖δsex‖2

‖δsex‖2
= 1.

The estimate for [ω̃c] immediately follows by its definition (29). �
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As a consequence of Lemma 4.3, the contraction factor and the Lipschitz estimate of the
constraint will always be overestimated, yet only by a factor depending on the relative accuracy
in the simplified normal step computation.

For the influence of inexactness on the second Lipschitz estimate [ωf ] we recall the estimate
Theorem 4.1, inequality (26). Therefore, we update [ωf ] via

[ωf ] :=
6

‖δx‖3
(
f(x+ δx+ δs)− q(δx)− εpx1 δs+ εδs1 v

)
(33)

to obtain an estimate for the nonlinearity independent of the residuals and dv, εpx1 , δs, εδs1 are
given by (3) and (17) respectively. This quantity is computable, after δs has been computed. In
case of exact computations we obtain the same quantity as in [21].

Acceptable decrease. We employ the strategy described in [21, Section 4.4]. The acceptance
criterion for decrease in the functional value is motivated by unconstrained cubic regularization
approaches, see [6], replacing m[ωf ](0) by m[ωf ](δn) :

η :=
f(x+ δx+ δs)−m[wf ](δn)

m[wf ](δx)−m[wf ](δn)
.

We accept a tangential step if

η ≥ η(34)

for a user-defined η ∈]0, 1[. Combining these ideas, we arrive at the following algorithm.

Algorithm 2 Raw outline of the composite step algorithm

Require: initial iterate x, [ω̃c], [ωf ].
repeat// NLP-loop

repeat// step computation loop
compute Lagrange multiplier px via (4)
compute normal step direction ∆n via (6)
compute normal step damping factor ν via (30)
compute tangential step direction ∆t (9)
compute damping factors via (31) and (32)
compute simplified normal step δs via (11)
update Lipschitz constants [ω̃c], [ωf ] via (29) and (33)

until δx accepted
until converged

4.4. Influence of errors on damping parameters. In this section, we will analyze the influ-
ence of the inexact normal step computation on the damping parameters ν and τ . First, as the
normal step is computed as a minimum norm solution, we have that the inexactly computed step
satisfies ‖∆n‖ ≥ ‖∆nex‖ due to the nesting of the Krylov spaces in the CG-method. Thus, the
normal step damping parameter defined in (30) will increase with a decreasing residual of the
PPCG-algorithm used for the solution of the minimum norm problem. In this section, a bound
for the normal step damping factor ν depending on the relative error will be given. Secondly,
a longer normal step could decrease the tangential step damping factor due to the trust region
constraint (28) on the total step. Therefore, we will to quantify this decrease of the tangential
damping factor and formulate an adaptive stopping criterion of the PPCG-iteration for the nor-
mal step system. Since the computation of the tangential step is done after the normal step, the
stopping criterion has to be independent of the tangential step.



INEXACT COMPOSITE STEP METHODS 11

We will again denote the error by ∆nerr, where ∆nerr := ∆n − ∆nex and the inexactly
computed normal step ∆n is defined by (16), whereas the exactly normal step ∆nex solves (6).
After a direction ∆n is computed, a damping factor is chosen via

ν = min{1, 2ρelbowΘaim

[ω̃c]‖∆n‖
},

where ρelbow ∈]0, 1[ and Θaim ∈]0,Θacc[ are algorithmic quantities and [ω̃c] is our estimate of the
Lipschitz constant of the equality constraint. Furthermore, we will denote the damping factor of
the exact normal step by

νex = min{1, 2ρelbowΘaim

[ω̃c]‖∆nex‖
}.

Influence on damping of the normal step. First, we derive a result similar to Lemma 4.3 which
bounds the fraction of the damping parameters by the relative error.

Lemma 4.4. Let Γρelbow ≤ ‖∆nex‖, i.e. normal step damping would occur with exact step
computation and with inexact step computation as ‖∆n‖ ≥ ‖∆nex‖. Then

ν

νex
=

1√
1 + ‖∆nerr‖2

‖∆nex‖2

.(35)

Proof. We compute using ∆nerr ⊥ ∆nex and Pythagoras:

ν2
ex

ν2
=
‖∆n‖2

‖∆nex‖2
= 1 +

‖∆nerr‖2

‖∆nex‖2
.

�

Influence on damping of the tangential step. The composite step δx = ν∆n+ τ∆t has to fullfill
the trust region bound

‖δx‖ ≤ 2Θaim

[ω̃c]
=: Γ.(36)

To achieve this, after computation of the normal step damping factor ν, a damping factor τ is
chosen such that

Γ2 ≥ ‖τ∆t+ δn‖2 = τ2‖∆t‖2 + 2τ〈∆t, δn〉+ ‖δn‖2.

For this inequality, we obtain an upper bound for τ with the solution of

τ̄ =
−〈∆t, δn〉+

√
〈∆t, δn〉2 + ‖∆t‖2(Γ2 − ‖δn‖2)

‖∆t‖2
(37)

as ‖δn‖ < Γ in every case by definition of the normal step damping.
We consider the case where both ∆n and ∆nex remain undamped, which is the case if

Γρelbow > ‖∆n‖ and therefore also Γρelbow > ‖∆nex‖ due to ‖∆nex‖ ≤ ‖∆n‖. First, we derive
a lower bound on the tangential step damping factor following an inexactly computed normal
step.

Lemma 4.5. Let τ̄ be defined by (37). Then

τ̄ ≥
−‖∆nerr‖+

√
Γ2 − ‖∆n‖2

‖∆t‖
.
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Proof. Using ∆nex ∈ ker c′(x)⊥,∆t ∈ ker c′(x) and the Cauchy-Schwarz inequality, we get

−〈∆t,∆n〉 = −〈∆t,∆nerr〉 ≥ −‖∆t‖‖∆nerr‖.(38)

Then we can bound the numerator of (37) from below by

− 〈∆t,∆n〉+
√
〈∆t,∆n〉2 + ‖∆t‖2(Γ2 − ‖∆n‖2)

≥− ‖∆t‖‖∆nerr‖+
√
〈∆t,∆n〉2 + ‖∆t‖2(Γ2 − ‖∆n‖2)

≥− ‖∆t‖‖∆nerr‖+
√
‖∆t‖2(Γ2 − ‖∆n‖2) = ‖∆t‖

(
−‖∆nerr‖+

√
(Γ2 − ‖∆n‖2)

)
.

Cancelling the term ‖∆t‖ yields the result. �

The above estimate includes the norm of the tangential step, which is not at hand when
computing the normal step. Therefore, we present a bound independently of the tangential step
in the following Lemma. To eliminate the dependence on ‖∆t‖, we need to assume, that the
tangential step norm following the inexact normal step and the tangential step norm following
the exact normal step is the same, i.e. the norm of the solution of

min
δt∈X

q(δn+ ∆t) s.t. c′(x)∆t = 0(39)

is the same for preceding normal steps δn and δnex. This would be the case if the derivatives are
the same, i.e. q′(δn) = q′(δnex). However, this can neither be verified nor estimated since the
influence of the error part of δn on the quadratic model is not clear. We only have an estimate
of the norm of δnerr during the PPCG process.

Lemma 4.6. Assume that the norm of the tangential step defined by (39) is the same for a
preceding exact and inexact normal step. Then

τ̄

τ̄ex
≥
−‖∆nerr‖+

√
Γ2 − ‖∆n‖2√

Γ2 − ‖∆nex‖2
.(40)

Proof. With Lemma 4.5 we compute

τ̄

τ̄ex
≥
−‖∆nerr‖+

√
Γ2−‖∆n‖2

‖∆t‖√
Γ2−‖∆nex‖
‖∆t‖

=
−‖∆nerr‖+

√
Γ2 − ‖∆n‖2√

Γ2 − ‖∆nex‖2
.

�

This bound on the ratio of the damping factors is independent of the computed tangential
step. This is crucial, as we want to employ an adaptive stopping criterion for the computation
of the normal step with the PPCG-Method, where we do not have the quantity ∆t at hand.
Furthermore, we can not readjust the accuracy of the normal step by performing some more
PPCG-iterations for the normal step after the computation of the tangential step as the right-
hand side depends on ∆n.

Remark 4.7. Rewriting the bound of Lemma 4.6 yields

τ̄

τ̄ex
≥

√
Γ2 − ‖∆n‖2√

Γ2 − ‖∆nex‖2
− ‖∆nerr‖√

Γ2 − ‖∆nex‖2
(41)

and using boundedness of Γ by ‖δx‖ from below, see (36), we observe that if ‖∆n‖‖δx‖ approaches

zero, which usually happens towards the end of the solution process near the optimal value of
the Newton iteration, the first term approaches one from below and the last term approaches
zero from above for a fixed error.
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Figure 2. Depiction of the division of the space into three regions around the
outer iteration point x.

5. Adaptive Termination Criteria

In the previous section we studied, how inexactness influences the damping factors, chosen
by our algorithm. Based on this information we will now formulate adaptive stopping criteria
for the computation of the normal step and the simplified normal step. The idea is to find a
trade-off between early termination and the requirement that ν and τ̃ do not deteriorate too
much, according to (35) and (40).

5.1. Normal step. Motivated by the considerations of subsection 4.4, we can formulate two
adaptive stopping criteria for the PPCG-method applied to the linear system of the normal step
as alternatives to the pure relative error termination criterion one usually has for CG-methods.
Recalling the definition of the normal step damping factor

ν = min{1, ρelbowΓ

‖∆n‖
}, where Γ =

2Θaim

[ω̃c]
,

we can rewrite this as a trust-region constraint

ν‖∆n‖ ≤ ρelbowΓ.

Moreover, with µ ∈]0, 1[, we define a stricter trust region with radius µρelbowΓ. We will consider
three cases for the length of the normal step, illustrated in Figure 2. First, if normal steps ∆n
and ∆nex are very small and contained in the stricter trust-region, we will stop the PPCG-
iteration since the normal step has very little influence and might not even be necessary in this
iteration as the feasible region is very close. Therefore, it is natural not to spend too much effort
in computing this very small step.

Secondly, we discuss the case where the normal step is contained in the trust-region with
radius ρelbowΓ and hence remains undamped. In this context, we will refer to subsection 4.4,
more specifically formula (41). The term√

Γ2 − ‖∆n‖2√
Γ2 − ‖∆nex‖2

− ‖∆nerr‖√
Γ2 − ‖∆nex‖2

approaches one from below during the iterative solution process and gives a lower bound to the
fraction τ̄

¯τex
. Therefore, we aim to iterate the PPCG-Algorithm as long as the inexactness of

the normal step occupies too much space from the total step due to the trust-region constraint
imposed on the total step. More precisely, we stop the iteration if the above estimate yields an
acceptable bound on the fraction of the maximal tangential step damping parameters.
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Thirdly, we consider the case of the normal step leading towards the outside of the trust-region.
In this case, the normal step will be damped and we do not want to exit the PPCG-iteration
early as we are away from the feasible region. This is motivated by our idea, stressing feasibility
first, when we are far away from the feasible region. Moreover, the premise on the estimate for
the tangential step damping factor was that the norm of the computed tangential step is similar
for both ∆n and ∆nex, see (39). For a large normal step at a iteration point with a small trust
region, this assumption might be violated if ∆n and ∆nex differ by a large amount. For those
reasons, the only termination criterion for the PPCG-method is a relative error criterion, where
we aim to satisfy

‖∆nerr‖
‖∆nex‖

< γ

for a desired accuracy γ > 0.

Remark 5.1. Note that the second and the third case use the quantities ‖δnex‖ and ‖δnerr‖
which have to be estimated. This can be done by methods of error estimation for the conjugate
gradient method, i.e. [1, 28, 29] which, however, use the current CG-iterate as an approximation
of the exact solution. These algorithms often include warm-up phases with no error estimate.
Therefore, as long as no error estimate is available, we use a worst case estimate for (41) and
assume that ∆nex = 0 and hence ∆nerr = ∆n.

Algorithm 3 PPCG-iteration for the normal step ∆n

Require: initial offset ∆n0, ητ ∈]0, 1[, γ > 0.
repeat// PPCG-loop

update cg-iterate ∆ñk
compute ‖∆nk‖ = ‖∆n0 + ∆ñk‖
if ‖∆nk‖ ≤ µΓρelbow then // in region 1©

break
end if
if ‖∆nk‖ ≤ Γρelbow then // in region 1© or 2©

if have error estimate then

l ←
√

Γ2−‖∆n‖2√
Γ2−‖∆nex‖2

− ‖∆nerr‖√
Γ2−‖∆nex‖2

// see (41)

else

l ←
√

Γ2−‖∆n‖2
Γ − ‖∆n‖Γ

end if
if ητ ≤ l then // τ

τex
large enough

break
end if

end if
until ‖∆nerr‖

‖∆nex‖ < γ // in region 1©, 2© or 3©.

5.2. Simplified normal step. The simplified normal step fulfills two tasks in our context.
First, to avoid the Maratos effect and second, to assist the globalization. By (25) we see that
close to the solution, the simplified normal steps get very small. Therefore, we want to avoid
to spend too much effort on guaranteeing orthogonality of a small step whose purpose is mainly
for globalization. The monotonicity properties of the PPCG-method yield a decrease of the

norm of δs, i.e. also a decrease of Θ(δx) := ‖δs‖
‖δx‖ in every PPCG-iteration. Motivated by these
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Algorithm 4 Summary of composite step algorithm with inexact step computations

Require: initial iterate x, [ω̃c], [ωf ], γ, γ∆t,px , γ∆t,px
,Θδs, ητ

repeat// NLP loop
compute ∆n by the solution of (6) with rel. error γ and Algorithm 3 with ητ for the
alternative stopping criteria.

ν ← min{1, 2ρelbowΘaim

[ω̃c] }
if ν < 1 then

γ∆t,px ← γ∆t,px
else

γ∆t,px ← γ
∆t,px

end if
compute px by the solution of (4) with rel. error γ∆t,px .
compute ∆t by the solution of (9) with rel. error min{Θ(δs), γ∆t,px}.
repeat// Inner loop

DiscardTangentialStep ← false
ν ← min{1, 2ρelbowΘaim

[ω̃c] }
compute τ via (31) and (32).
δx ← ν∆n+ τ∆t
compute δs by the solution of (11) with rel. error γ and the alternative stopping criterion
with Θδs as in Subsection 5.2.
update [ω̃c] via (29), [ωf ] via (33).
if Stagnating update of [ωf ] then

DiscardTangentialStep ← true
δx ← ν∆n

end if
until Θ(δx) ≤ Θacc ∧ ((34) ∨DiscardTangentialStep)
x ← x+ δx+ δs

until converged

observations, we will define Θδs ∈]0,Θacc] and terminate the PPCG-iteration for δs if Θ(δx) ≤
Θδs. This assures, that the simplified normal step is just computed exactly enough, i.e. its norm
is small enough, such that the step δx is not rejected. If we do not fall below this bound during
the PPCG-iteration, we only terminate via a relative error criterion.

5.3. Tangential step. For the tangential step, we use another adaptive mechanism. If a strong
damping of the total step ∆x is to be expected, we will increase the tolerance for the relative
error of the undamped tangential step ∆t and for the Lagrange multiplier correction δp. This is
motivated by the construction of the algorithm which focuses on feasibility first. Therefore, we
will consider two parameters, 0 < γ

∆t,px
< γ∆t,px < 1, which we will set as relative accuracy,

depending on the normal step being damped. If the normal step is damped, we will choose γ∆t,px
as relative accuracy and hence obtain a less exact solution. For the other case of an undamped
normal step, we pick the more accurate solution of the tangential step system with γ

∆t,px
.

Additionally, as it will be shown in the proof of convergence in Section 6, we need the error
of the Newton step to approach zero as we converge to the solution. To achieve this, we will set
the final relative accuracy for the iterative solver to min{Θ(δx), γ∆t,px}, where γ∆t,px is chosen
as stated above and δx is the previous step. This results in the desired convergence of the error
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since Θ(δx) = ‖δs‖
‖δx‖ and ‖δs‖ = o(‖δx‖). Moreover do not need the normal step error norm to

approach zero because we solve the Newton equation c(x) + c′(x)∆n = 0 exactly.

6. Local Convergence analysis

In this section, the proof of local superlinear convergence given in [21, Section 6] is adapted
to fit the setting with inexact step computations. It is shown that only the relative error of the
tangential step system has to approach zero to guarantee local superlinear convergence, whereas
the relative error for the computation of the Lagrange multiplier has to be constant. In addition,
it is shown that the norm minimizing property of the normal step does not contribute to the
Newton step as a whole. Thus, all normal steps that satisfy the Newton equation c(x)+c′(x)δn =
0 guarantee local superlinear convergence. Eventually, when looking at the convergence of the
damping parameters in the third part of this section, we observe that if the relative error of the
normal step is constant, we achieve convergence of our computed step ‖∆n‖ → 0.

6.1. Transition to local superlinear convergence. In this subsection, we show local super-
linear convergence of the Newton scheme. In the course of this, we assume sufficient smoothness
and second order sufficient optimality conditions at the local minimzer. In the absence of damp-
ing, the tangential step ∆t is computed as a solution of (9). Furthermore, let ∆n be an arbitrary
normal step satisfying

c(x) + c′(x)∆n = 0.

Then ∆x = ∆t + ∆n satisfies the Newton equation (2). It was shown in [21, Proposition 6.2]
that the iteration

(xk+1, w) = (xk, pxk
)− L′′(xk, pxk

)−1L′(xk, pxk
)

converges locally superlinearly. Note that this is not the general Newton-Lagrange-Method as w
is a dummy variable that is discarded after each update. However, with the help of the implicit
function theorem, one can show that the above iteration converges anyway. In the following,
p will be the inexactly computed Lagrange multiplier fulfilling (15), whereas p? denotes the
Lagrange multiplier at the optimal value (x?, p?) of the optimization problem (1).

Lemma 6.1. Let f ′ and c′ depend continuously on x and assume that c′(x?) : X → P ? is a
bounded and surjective operator. Let (v, pex) be the solution of(

M c′(x)?

c′(x) 0

)(
v
pex

)
=

(
f ′(x)

0

)
.

Then pex is given as a continuous implicit function of x in a neighborhood of x? and

‖pex − p?‖ = ω(‖x− x?‖).

Proof. See [21, Lemma 2.4]. �

Lemma 6.2. Let the assumptions of Lemma 6.1 hold. Then, if c′′(x) is bounded, Lxx(x, p?) is
positive definite and ‖p− p?‖ = ω(‖x− x?‖), it holds that

‖(L′′(x, p)−1L′(x, p))x − (L′′(x, p?)
−1L′(x, p?))x‖ ≤ ‖∆x‖ω(‖x− x?‖).

Proof. Similar to [21, Lemma 6.1], we conclude the inequality

α‖∆x−∆x?‖2 ≤ −(p− p?)c′′(x)(∆x,∆x−∆x?),(42)

where ∆x? = (L′′(x, p?)
−1L′(x, p?))x and ∆x = (L′′(x, p)−1L′(x, p))x. By taking norms we

obtain

−(p− p?)c′′(x)(∆x,∆x−∆x?) ≤ ‖p− p?‖‖c′′(x)‖X×X→P?‖‖∆x‖‖∆x−∆x?‖.
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With (42), the claim follows by cancelling ‖∆x−∆x?‖. �

In the following, we will consider an inexact tangential step ∆t = ∆tex + ∆terr, where ∆tex is
the solution of (9). Since we use a constraint preconditioner, we have ∆t, ∆terr ∈ ker c′(x).

Theorem 6.3. Assume that the assumptions of Lemma 6.2 hold. Additionally, let L′′(x, p?) be

continuous w.r.t. x, and ‖∆terr‖‖∆x‖ = ω(‖x− x?‖). Then, the method converges local superlinearly,

i.e.

‖x+ − x?‖ = o(‖x− x?‖).

Proof. The proof follows similar to [21, Proposition 6.2], as we compute

x+ − x? =(x+ − x) + (x− x?) = ∆x− (x− x?)
=− (L′′(x, p)−1L′(x, p))x + ∆terr − (x− x?, 0)x

=−
[
(L′′(x, p)−1L′(x, p))x − (L′′(x, p?)

−1L′(x, p?))x
]

+ ∆terr

−
(
L′′(x, p?)

−1 (L′(x, p?)− L′(x?, p?) + L′′(x, p?)(x− x?, 0))
)
x
.

The first term can be estimated with Lemma 6.2:[
(L′′(x, p)−1L′(x, p))x − (L′′(x, p?)

−1L′(x, p?))x
]
≤ ‖∆x‖ω(‖x− x?‖),

whereas for the third term we use continuity of L′′(x, p?) and the fundamental theorem of calculus.
Together with the assumption for the error ∆terr and ‖∆x‖ ≤ ‖x− x?‖+ ‖x? − x+‖, we get

‖x+ − x?‖ ≤ ω(‖x− x?‖)(‖∆x‖+ ‖x− x?‖)
≤ ω(‖x− x?‖)(‖x? − x+‖+ 2‖x− x?‖).

Eventually, if ω(‖x− x?‖) ≤ ε < 1, we obtain

‖x+ − x?‖(1− ε) ≤ ω(‖x− x?‖)‖x− x?‖.

�

6.2. Convergence of the damping parameters. In this subsection, the convergence ν, τ → 1
of the damping parameters will be assured to guarantee the transition to the local superlinear
convergence analyzed in the previous chapter. We will consider two different total steps. First,
∆xex = ∆tex + ∆nex, where ∆nex solves (6) and ∆tex solves (9) with ∆nex on the right-hand
side. Secondly, we consider ∆x = ∆t + ∆n, where ∆n solves (16) and ∆t solves equation (9)
with ∆n on the right-hand side. We note that, as described in the beginning of Section 6.1, for
any ∆n fulfilling the equation c(x) + c′(x)∆n = 0, the step ∆x = ∆t+ ∆n satisfies the Newton
equation (2), and hence both ∆xex and ∆x are primal components of Newton steps for the first
order optimality condition. In the following, we will assume that the iterates x converge to the
SSC-point x?.

Lemma 6.4. Let ‖∆xex‖ → 0. Then it follows that ‖∆tex‖ → 0 and ‖∆nex‖ → 0.

Proof. Using orthogonality of ∆tex ∈ ker c′(x) and ∆nex ∈ ker c′(x)⊥, we get

‖∆xex‖2 = ‖∆tex + ∆nex‖2 = ‖∆tex‖2 + ‖∆nex‖2.

If the left-hand side approaches zero and both summands are positive, every summand has to
approach zero as well. �

Lemma 6.5. Let ‖∆xex‖ → 0. Then, if ‖∆n−∆nex‖
‖∆nex‖ < γ, it holds that ‖∆n‖ → 0 and ‖∆t‖ → 0.
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Proof. First, for the normal step, we conclude with Lemma 6.4 that

‖∆n‖2 ≤ ‖∆n‖2 + ‖∆nex‖2 ≤ ‖∆nex‖2(γ2 + 1)→ 0.

Moreover, as ∆tex and ∆t solve (9) with ∆nex and∆n respectively, we get

‖∆tex −∆t‖ ≤‖L′′(x, p)−1(−Lx(x, p) + Lxx(x, px)∆nex)− L′′(x, p)−1(−Lx(x, p) + Lxx(x, px)∆n)‖

=‖
(
−L′′(x, p)−1

(
Lxx(x, px)∆nex

0

))
x

+

(
L′′(x, p)−1

(
Lxx(x, px)∆n

0

))
x

‖

≤C‖∆nex −∆n‖ = C‖∆nerr‖ ≤ Cγ‖∆nex‖

by continuity of L′′(x, p)−1 and Lxx(x, px), for a constant C > 0. Using Lemma 6.4, we obtain
‖∆t‖ → 0. The result for ∆x follows by the triangle inequality. �

Corollary 6.6. Let the assumptions of Lemma 6.5 hold. Then, ν → 1.

Proof. Lemma 6.5 and the definition of the normal step damping factor ν := min{1, ρelbow

‖∆n‖ } yield

the result. �

Where ∆x = ∆t + ∆n denoted the undamped step without residual in the tangential step,
we introduce the damped version with a possible error term in the tangential step, δx := τ(∆t+
∆terr) + ν∆n. The term ∆terr stems from an inexactly solved tangential step equation.

Lemma 6.7. Let the assumptions of Lemma 6.5 hold and ‖∆terr‖ → 0.Then, τ → 1.

Proof. We use the minimizing property of δx along ∆t and get

0 = m′[ωf ](δx)∆t

= (f ′(x) + Lxx(x, p)δn)∆t+ Lxx(x, p)(δt,∆t) +
[ωf ]

2
‖δx‖〈δx,∆t〉

= (f ′(x) + Lxx(x, p)δn)∆t+ τ(Lxx(x, p)(∆t,∆t) +
[ωf ]

2
‖δx‖〈∆t,∆t〉)

+
[ωf ]

2
‖δx‖〈δn,∆t〉.

Since the full tangential step ∆t minimizes m0, we also obtain

0 = m′0(δn)∆t = (f ′(x) + Lxx(x, p)δn)∆t+ Lxx(x, p)(∆t,∆t).

Subtracting these two equations, we get

1 ≥ τ =
Lxx(x, p)(∆t,∆t)− [ωf ]

2 ‖δx‖〈δn,∆t〉
Lxx(x, p)(∆t,∆t) +

[ωf ]
2 ‖δx‖〈∆t,∆t〉

=
Lxx(x, p)(∆t,∆t)− [ωf ]

2 ‖δx‖ν〈∆n−∆nex,∆t〉
Lxx(x, p)(∆t,∆t) +

[ωf ]
2 ‖δx‖〈∆t,∆t〉

≥
Lxx(x, p)(∆t,∆t)− [ωf ]

2 ‖δx‖ν‖∆n−∆nex‖‖∆t‖
Lxx(x, p)(∆t,∆t) +

[ωf ]
2 ‖δx‖〈∆t,∆t〉

→ 1,

as ‖∆n − ∆nex‖ < γ‖∆nex‖ → 0 and [ωf ]‖δx‖ → 0 by boundedness of [ωf ] and ‖δx‖ ≤
(ν + τ)(‖∆t‖+ ‖∆terr‖+ ‖∆n‖)→ 0 using the assumptions and Lemma 6.5. �

With the convergence of both of the damping parameters, we can now proof the following
lemma.
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Lemma 6.8. Let the assumptions of Lemma 6.5 hold. Then, if ‖∆terr‖‖∆x‖ → 0,

‖∆x− δx‖ = o(‖∆x‖)
‖δs‖ = o(‖∆x‖).

Proof. For the first claim, we compute

‖∆x− δx‖
‖∆x‖

=
‖(1− ν)∆n+ (1− τ)∆t+ ∆terr‖

‖∆x‖
≤ ‖max{(1− ν), (1− τ)}‖ ‖∆n+ ∆t‖

‖∆x‖︸ ︷︷ ︸
=1

+
‖∆terr‖
‖∆x‖

=‖max{(1− ν), (1− τ)}‖+
‖∆terr‖
‖∆x‖

→ 0.

Moreover, it follows by Theorem 4.1, that ‖δs‖ = o(‖δx‖). Thus, we get

‖δx‖ = ‖∆x− (∆x− δx)‖ ≤ ‖∆x‖+ ‖(∆x− δx)‖ = ‖∆x‖
(

1 +
‖(∆x− δx)‖
‖∆x‖

)
.

Therefore, together with the the first part of this proof, it follows that

‖δs‖
‖∆x‖

≤ ‖δs‖
‖δx‖

(
1 +
‖(∆x− δx)‖
‖∆x‖

)
→ 0.

�

Eventually, we obtain locally superlinear convergence of our iterates to the Newton iterate
∆x, and hence inherit the superlinear convergence of the classical Newton scheme.

Theorem 6.9. Let the assumptions of Lemma 6.5 hold. Then, if ‖∆terr‖‖∆x‖ → 0,

‖∆x− (xk+1 − xk)‖ = o(‖∆x‖).

Proof. Follows with Lemma 6.8 and

‖∆x− (xk+1 − xk)‖ = ‖∆x− (δx+ δs)‖ ≤ ‖∆x− δx‖+ ‖δs‖.

�

7. Application to optimal control and numerical results

In this section, we use the presented algorithm for the solution of two fundamentally different
optimal control problems. In the first example, we consider a quasilinear heat equation and in
the second example an obstacle problem in the context of elasticity.

First, we discuss a constraint preconditioner for optimal control problems which we employed
for the examples. We will move from the general setting to an optimal control context and
consider an optimal control problem with X = Y × U and x = (y, u), where y ∈ Y is the state
and u ∈ U the corresponding control. Let 〈·, ·〉Y and 〈·, ·〉U denote the scalar product in Y and
U respectively. The norm on the product space is then given by the norms on Y and U and
denoted by

‖x‖2M = ‖(y, u)‖2M := ‖y‖2My
+ ‖u‖2Mu

.

Here My : Y → Y ? and Mu : U → U? correspond to the scalar products of Y and U respectively.
We consider a constraint c(x) = A(y)− Bu = 0, where A(y) is continuously invertible, twice

continuously Fréchet differentiable and B is linear. Let A := A′(yk) for a fixed Newton-iterate
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xk = (yk, uk). Then, the saddle point matrix for the normal step, the simplified normal step and
the Lagrange multiplier is given by

Hn =

My 0 AT

0 Mu −BT
A −B 0

 .

For the solution of the normal and simplified normal step and the Lagrange multiplier system
with Algorithm 1, we employ the preconditioner

P :=

0 0 AT

0 diagMu −BT
A −B 0

 .

Hence, M̃ in (14) is chosen as

(
0 0
0 diagMu

)
. This choice of M̃ is motivated by the spectral

equivalence of Mu and My by boundedness of the operator ‖A−1B‖U→Y :

〈u, u〉U ≤ 〈x, x〉Y×U = 〈y, y〉Y + 〈u, u〉U
= 〈A−1Bu,A−1Bu〉Y + 〈u, u〉U ≤

(
1 + ‖A−1B‖2U→Y

)
〈u, u〉U .

Furthermore for mass matrices, the diagonal is a reasonable preconditioner and we refer to [33]
for this matter.

This choice of the preconditioner allows for an efficient solution if we factorize the block
containing A, as we can solve equations in a row-wise fashion, starting from the first. As indicated
in Remark 3.1, the transformation in [18, Chapter 4] remedies the problem of the right-hand side
of the normal step and the simplified normal step system, see (6) and (11). In this case, the
search space is not ker c′(xk) = ker (A′(yk),−B). A solution to this is presented in [18, Chapter

4] with computing z = z0 + z̃, where z0 =
(
A′(yk)−1rp, 0, 0

)T
, rp = A(yk)−Buk for the normal

step and rp = r(x, δx) for the simplified normal step. The auxiliary solution z̃ can be computed
by

Hnz̃ = r −Hnz0 =

−MyA
′(yk)−1rp
0
0

 .(43)

Therefore, in an optimal control framework, we can transform the system to obtain right-hand
sides of the form r = (ry, ru, 0)T .

All following examples were implemented in the C++-library Spacy1, using the finite element
library Kaskade7 [14]. For the factorizations we applied the sparse direct solver UMFPACK [10].
Additionally, the automatic differentiation library FunG [19] was used to compute the derivatives
of the total energy functional in the case of elasticity.

7.1. Quasilinear heat equation. As a first example, we consider a quasilinear heat equation
with distributed control. For this, we introduce a time interval [0, 1] and Ω = [0, 3] × [0, 1]
and define the space-time cylinder Q := [0, 1]× Ω. For the variable’s spaces, we have Y × U :=
W ([0, 1])×L2([0, 1]×Ω) and P = W ([0, 1]). We aim to minimize the tracking-type cost-functional

f(x) = f(y, u) =
1

2
‖y − yd‖2L2(Q) +

α

2
‖u‖2L2(Q)

1https://spacy-dev.github.io/Spacy/
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Initial State y(t0) y(t11) and yd

Initial Control u∣∣(t0,t1] u∣∣(t10,t11]

Figure 3. Setting c = 100, d = 0.01. Top left: Initial state. Top right: State
at timestep 11 and the reference state (transparent). Bottom left: Control at
timestep 1. Bottom right: Control at timestep 11.

with constant reference yd ∈ H1
0 (Ω), subject to the quasilinear dynamics

0 = c(y, u)(v, v0) =

1∫
0

〈y′, v〉V ?,V dt+ 〈κ(y)∇y,∇v〉L2(Q) − 〈u, v〉L2(Q) + 〈y(0)− y0, v0〉L2(Ω)

for test functions v ∈ L2(0, 1;H1
0 (Ω)) and v0 ∈ L2(Ω). The prescribed initial datum is denoted

by y0 ∈ L2(Ω) and κ(y)(t, x) := (c|y(t, x)|2 + d)I models an isotropic heat conduction tensor.
With the parameters c, d > 0 we can control the nonlinearity and singularity of the problem. The
higher c, the more nonlinear the problem gets and for smaller d, the diffusion term is less elliptic.
For analysis on optimal control problems governed by quasilinear parabolic PDEs, we refer to
[3] and the references therein. Where a result on maximal parabolic regularity and second order
optimality conditions are derived, even for the control constrained case, as well as a result on
Hölder continuity of the state which implies boundedness of κ(y).

We discretize the equations arising in the algorithm with a Galerkin method, constant and
discontinuous in time and linear, continuous in space, cf. [13, 12, 30]. We discretize the time
interval [0, 1] with 101 equidistant points 0 = t0 < t1 · · · < t100 = 1. For the spatial discretization,
we use a grid with 3201 degrees of freedom.

At an iterate (yk, uk), we employ the local scalar product

〈(y, u), (z, v)〉 = 〈y, z〉My(yk) + 〈u, v〉Mu

where

〈y, z〉My(yk) = α〈κ(yk)∇y,∇z〉L2(Q) + 〈y, z〉L2(Q)

〈u, v〉Mu
= α〈u, v〉L2(Q).

In Figure 3 we illustrate the initial state y(t0), the state at time t11 and the (constant in time)
desired state yd as well as the initial control u∣∣(t0,t1]

and the control at time t11. It is observed,
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Table 1. Number of composite step iterations and total computations time in
seconds for different parameters of the heat conduction tensor.

c, d 1, 1 101, 10−1 102, 10−2 103, 10−3

Iterations / time(sec.) 4/204 7/464 38/4672 144/18424
Reference 4/325 6/1108 41/16295

that at the time t11 = 0.11, a steady state is approached, being an optimal compromise between
the tracking term in y and the penalization of the control. This steady state is depicted in the
right column. This behavior is well known for time dependent systems and is often called the
turnpike property. Table 1 shows the iterations for different parameters of the heat conduction
tensor κ(y) = (c|y|2 + d), increasing in difficulty from left to right. It can be seen, that for
harder problems, more iterations and hence more time is needed. However, in every case, the
optimal solution was found, which reflects that even for strongly nonlinear and almost singular
problems, e.g. c = 103, d = 10−3, the globalization mechanism and the preemptive adaptive
termination of the PPCG-iterations described in Section 5 lead to stable performance of the
algorithm. Moreover, for time-dependent problems, the special block-diagonal structure of the
differential operator A in the case of a discontinuous Galerkin method in time allows for a time-
step wise factorization, which results in high saving of memory as opposed to factorization of
the full matrix A. In the two settings c = d = 1 and c = 10, d = 0.1, no nonconvexities were
encountered. This indicates, together with the low iteration numbers, that the starting value
(y, u) = (0, 0) is close to a local solution. For the other two cases, nonconvexities and stronger
nonlinearities led to higher computations times and to all mechanisms of the algorithm being
used.

Figure 4 depicts the evolution of several quantities over the course of the composite step
iterations for two of the above settings. On the left-hand side of Figure 4, we observe the
behaviour of the algorithm for a moderate difficulty. No nonconvexities are encountered and
the algorithm converges in seven steps. After three iterations, the steps are undamped and
superlinear convergence is observed. On the right-hand side, the same quantities for a more
difficult problem are depicted. For the eleven iterations, the normal step is damped, i.e. the
focus is laid on admissibility. In this phase, the effort for the computation of the tangential step
and the Lagrange multiplier is kept low. Afterwards we focus on optimality while staying close
to the admissible set. In iteration 22, we enter the final phase, with the functional being convex,
and the steps being undamped. Again, we observe the local superlinear convergence proven in
Section 6.

We used 0.1 as relative accuracy for the PPCG-iteration for the normal and the simplified
normal step. The truncation of the Lagrange multiplier’s system’s solution was only performed
due to a relative accuracy criterion. For the normal step termination, we formulated an adaptive
termination in Algorithm 3. The behavior of this adaptive criterion for c = 100, d = 0.01 is
shown in Figure 5. We observe, that in the first third of the iterations, away from the admissible
set with the normal step being damped, only termination via relative error is permitted. This is
consistent with the main idea of our algorithm, aiming for feasibility first, hence focusing on the
normal step. After this phase, optimality is pursued. Thus, only small normal steps are needed
to stay in the area close to the feasible set. These smaller normal steps are computed by less
conjugate gradient iterations due to our adaptive criterion. Often, the normal step computation
is exited in the first few iterations, leading to a negligible computational effort without interfering
with fast local convergence.
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Figure 4. Left: c = 10, d = 0.1. Right: c = 100, d = 0.01. Damping
factors, Stepsizes and CG-Iterations are depicted for each outer composite step
iteration. If several computations of the simplified normal step δs are computed
in one outer iteration, the number shown is the sum over all computations.

1 5 10 15 20 25 30 35

Composite step iteration

rel. Error small

τ

τex
small

‖dn‖ small

Termination criteria normal step

Figure 5. Depiction of the criteria which led to the termination of the normal
step computation for each composite step iteration. For a formulation of the
criteria, see Algorithm 3.

Secondly, we proposed an adaptive termination criterion for the simplified normal step cf. (5.2),

i.e. Θ(δx) = ‖δs‖
‖δx‖ ≤ Θδs. This assures that no rejection of δx is caused solely by inaccuracy of

the simplified normal step. In some outer iterations, the rejection of the step δx and hence
a decrease of the damping parameters led to repeated computations of the simplified normal
step. By construction, the termination of the simplified normal step was not terminated early,
if a rejection due to the contraction Θ(δs) being too large is to be expected. However, every
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simplified normal step that led to acceptance of the total step was terminated by the adaptive
criterion formulated in Subsection 5.2.

7.2. Static nonlinear elastic contact problem. In the second example, we study the optimal
control of a static nonlinear elastic contact problem. In this setting, the state is required to be
a deformation of an elastic body that results from applying some external boundary force. This
boundary force also acts as the control. Additionally, the deformation is constrained by some
obstacle which the body cannot penetrate.

We briefly introduce the required notation and assumptions. In our setting, the domain
Ω ⊂ R3 is required to be a Lipschitz domain which represents the nonlinear elastic body. Its
boundary Γ consists of three disjoint subsets such that

Γ = ΓD ∪ ΓN ∪ ΓC .

Theses segments denote the Dirichlet, Neumann and contact boundary, respectively.
In this example, Ω is described by a discretized cuboid Ω = [0, 2] × [0, 2] × [0, 0.2], whereby

the respective grid is uniform. The grid is displayed in Figure 6.
For the state space, we choose Y = H1(Ω) and for the control space we choose U = L2(ΓN ).

Additionally, in order to reasonable describe deformations, each state y is required to satisfy the
local injectivity condition

(44) det∇y > 0 a.e. in Ω.

In the case of hyperelasticity, deformations can be modeled as energy minimizers w.r.t. the
state of the total energy functional

I(y, u) :=

∫
Ω

Ŵ (x,∇y(x)) dx−
∫

ΓN

uy ds,

where u ∈ U is some fixed boundary force. Here, the stored energy function Ŵ is chosen as a
compressible Mooney-Rivilin model

Ŵ (∇y) = a‖∇y‖2 + b‖Cof ∇y‖2 + c(det∇y)2 − d log det∇y

with the respective parameters

a = 3.69, b = 0.41, c = 2.09, d = 13.20.

For a detailed introduction into elasticity, we refer here to [7].
Furthermore, the deformation of the body is restricted by the following constraint

yz ≥ 0 a.e. on ΓC .

Those kinds of problems were first analyzed in [8] in a more general setting. However, since
contact constraints are difficult to handle theoretically and numerically, we instead apply a
regularization approach, the so called normal compliance method [23]. In this approach, we
consider the penalty function

P (y) :=
1

4
[−yz]4+

which is evaluated on the contact boundary ΓC . This function locally penalizes the violation of
the constraints. Consequently, the regularized total energy functional reads as follows:

Iγ(y, u) := I(y, u) +
γ

4

∫
ΓC

[−yz]4+ ds,
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for some penalty parameter γ ≥ 0. For the numerical example, we choose γ = 107. In order
to apply the composite step method, we have to replace the minimizing property by the formal
first order optimality condition

cγ(y, u)v =

∫
Ω

Ŵ ′(x,∇y(x))∇v dx−
∫

ΓN

uv ds− γ
∫

ΓC

[−yz]3+vz ds = 0, ∀v ∈ Y.

This can only be done in a formal way, since in the current setting, it cannot be proven
whether minimizers satisfy this condition or not. We assume here that the expression is well
defined throughout our analysis and we refer to [2] for a more detailed discussion.

For the objective functional, we choose a standard tracking type functional

f(y, u) :=
1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(ΓN ).

Here, yd ∈ L2(Ω) denotes the desired state and we used the Tikhonov parameter α = 6 · 10−5.
A detailed theoretical analysis of optimal control in hyperelasticity can be found in [20].

In the case of elasticity, we perform two modifications to the composite step method. First,
at each iterate (yk, uk), we apply the problem adjusted scalar product

〈(y, u), (z, v)〉 = 〈y, z〉H1(Ω) + γ〈y, P ′′(yk)z〉L2(ΓC) + α〈u, v〉L2(ΓN ).

Second, in case that a new iterate violates the local injectivity condition (44), we reduce the
normal and tangential step damping factor by the factor 1

2 each.
The resulting solution is depicted in Figure 6. There, the desired state and the optimal

solution in relation to the obstacle are displayed. It can be seen that the optimal solution
already represents a good approximation of a contact constrained solution. Therefore, this
approach can be used for a more sophisticated path-following approach with a composite step
method as inner solver. More details to this approach can be found in [26]. In Figure 7, the
respective quantities of the composite step method are displayed. In case of nonlinear elasticity,
the problem is highly nonlinear and nonconvex. Nevertheless, we observe that the globalization
mechanism of the composite step method again can overcome non-convexities and steer the
algorithm towards a feasible solution. In contrast to before, we observe additional damping due
to violation of the local injectivity condition (44). Only in iteration four, the normal step is
damped solely due to nonlinearity. After that, damping only occurs occasionally to maintain
condition (44). As a result, we do not obtain the separation between first achieving feasibility
and after that approaching optimality as clearly as in the example in Subsection 7.1. This
behavior is partially caused by the fact that in case of rejection due to condition (44), the entire
step is damped. Nevertheless, we observe that most of the damping of the normal step occurs
at the beginning of the composite step method and that overall the tangential step has to be
damped more significantly throughout most parts of the computation. At the end, when the
problem is convex, we see a significant reduction in damping and we again enter the final phase
of superlinear convergence.

We also note the computational effort for the normal and simplified normal step are high before
the algorithm enters the phase of superlinear convergence. Especially, the number of iterations
required for the computation of the simplified normal step is significant, due to multiple rejections
at the beginning. However, close to the feasible solution, only a few CG-iterations are required
since even small normal steps keep the iterate sufficiently close to the feasible set.

In contrast to the previous example in Subsection 7.1, we observe that the computation of
the Lagrange multiplier requires significantly more iterations in comparison to the computation
of the tangential step.

In Figure 8, the reason for normal step termination is depicted for all outer iterations. The
situation is quite different to Figure 5. Only in three outer iterations the normal step system is
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(a) Undeformed domain

(b) Desired deformation (c) Optimal deformation

Figure 6. Top: Undeformed domain. Bottom left: Desired deformation
with obstacle (transparent). Bottom right: Optimal deformation with obsta-
cle (transparent).

solved up to the relative accuracy. For the majority of the steps, the termination was due to the
estimated fraction of tangential step damping parameters being small enough. After iteration
19, when the phase of local superlinear convergence is entered, see also Figure 7, every normal
step computation is exited as the norm of the normal step is very small, indicating that we are
very close to the feasible set.
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Figure 8. Depicition of the criteria which led to the termination of the normal
step computation for each composite step iteration. For a formulation of the
criteria, see Algorithm 3.
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