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OPTIMAL CONTROL OF STATIC CONTACT IN FINITE STRAIN

ELASTICITY

ANTON SCHIELA, MATTHIAS STOECKLEIN

Abstract. We consider the optimal control of elastic contact problems in the regime of finite

deformations. We derive a result on existence of optimal solutions and propose a regularization
of the contact constraints by a penalty formulation. Subsequential convergence of sequences of

solutions of the regularized problem to original solutions is studied. Based on these results, a

numerical path-following scheme is constructed and its performance is tested.

1. Introduction

Due to their relevance in mechanics, elastic contact problems have been the subject of intensive
research in the past decades. If two elastic bodies come into contact, they may interact by contact
forces that are supported by the contact boundary. Since this contact boundary depends on the
deformation, already the simple case of linear elasticity, the Signorini problem [Sig33, Coc84, KO88],
is a non-linear, non-smooth problem, a variational inequality induced by a convex optimization
problem on a Sobolev space. In a general geometric setting already the simulation of linearly elastic
contact is challenging [KO88].

In nonlinearly elastic contact, in the context of hyperelastic materials with polyconvex energy
function, additional difficulties arise: Solutions of hyperelastic problems can be modeled as en-
ergy minimizers. These energy minimizers do not have to be unique due to the non-convexity of
the respective energy functional. Also, local minimizers do not have to satisfy the weak form of
the equilibrium equation in general. Only modified equilibrium equations can be derived [Bal02].
Classical equilibrium conditions can only be shown under additional structural assumptions on the
energy minimizer, and even then, local stability of solutions under perturbation of forces can only be
achieved in very regular settings. All these factors have significant consequences for the theoretical
and numerical analysis of this class of problems.

In many cases, not only simulation of elastic bodies is of interest, but also optimization problems
in the context of elasticity may be considered. In [Lub15, LSW14], the authors studied the design of
implants which can be modeled by an optimal control problem of a hyperelastic body using a tracking
type objective functional. In these works, a rigorous proof for the existence of optimal solutions
to such kinds of problems was elaborated for the first time. Also, a specially suited composite
step method was developed to efficiently solve optimal control problems in nonlinear elasticity. In
[GH16], an optimal control problem using a non-tracking type objective functional was analyzed to
describe biological models. The resulting problems were solved by a quasi-Newton approach.

In this work, we extend the results from [Lub15] to optimal control of static contact problems in
non-linear hyperelasticity. Our aim is to establish basic results, concerning the existence of optimal
solutions and to analyze a regularization scheme for their numerical computation.

Our paper is structured as follows: In the following section, we introduce the setting for a
hyperelastic contact problem which is already a challenging problem by itself. The existence of
solutions to hyperelastic problems was shown by John Ball in the context of polyconvexity [Bal77]
and was extended to the case of contact in [CN85]. Since the techniques developed there are crucial
for the analysis of optimal control problems, we are going to give a short recapitulation of this
topic. Additionally, we introduce the so-called normal compliance approach [OM85, MO87] as a
regularization method for the contact constraints. From this, we obtain a regularized problem with
relaxed constraints. Existence results for this problem will be discussed as well. Also, we examine
the convergence of solutions of the regularized problem to solutions of the original problem.

Key words and phrases. nonlinear elasticity, optimal control, contact problem.
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Figure 1. Contact problem

In Section 3, we work out the necessary structural assumptions to derive convergence rates for
our regularization approach. For the derivation of explicit convergence rates, we will utilize ideas
and techniques from [Bal02] and [HSW14].

In Section 4, we study the optimal control of contact problems in the setting of nonlinear elasticity.
Optimal control of linear contact problems has been considered in [Bet15, MS17, Weh07], but the
non-linear case has not been treated so far, to the best knowledge of the authors. In our setting
we aim to minimize an objective functional while the state has to be an energy minimizer of a
nonlinear elastic energy functional with contact constraints. By applying a regularization method
to make this problem tractable, we additionally obtain a regularized optimal control problem with
relaxed constraints. The central point of this study will be to work out a convergence result which
states that solutions of the regularized problem converge to solutions of the original one. Due to
the non-uniqueness of energy minimizers, this study is very delicate and cannot be done without
structural assumptions.

Thereafter, we combine a path-following method with an affine covariant composite step method
as the inner solver for the numerical solution. This method was developed in [LSW17, Lub15] and
has been proven to be well suited for large-scale problems involving nonlinear elasticity. Finally, we
will present some numerical examples to assess the viability of our approach.

2. Contact Problems in Hyperelasticity

In this section, we derive a suitable model for hyperelastic contact problems and summarize the
most important theoretical aspects which will prove essential for the further study. We consider
the deformations of a three-dimensional body governed by a hyperelastic isotropic material law.
The deformation is caused by an external boundary force density and is constrained by an obstacle.
We will give a short introduction into the theory of nonlinear elastic problems. In particular, we
address the issue of existence of solutions to such problems as far as it will be required for the later
examination. A detailed summary of the analysis of nonlinear elastic problems can be found in
[Cia94].

2.1. Nonlinear elasticity. First, we introduce the required notation and assumptions. Our setting
is illustrated in Figure 1. By Ω ⊂ R3, we denote a bounded Lipschitz domain (in the sense of [Neč12])
representing the three-dimensional nonlinear elastic body. Its boundary Γ consists of three disjoint
relatively open subsets such that

Γ = ΓD ∪ ΓN ∪ ΓC ,

whereby each segment has a non-zero boundary measure. Here, ΓD denotes the part of the bound-
ary where Dirichlet boundary conditions are enforced. Further, ΓN denotes the Neumann boundary
where the external pressure load acts and ΓC denotes the contact boundary where the nonpene-
tration conditions are imposed. For the sake of brevity, we will suppress the notation of all trace
operators. The deformation of the body is denoted by

y : Ω→ R3,

and is an element of the vector valued Sobolev space W 1,p(Ω;R3) for p ≥ 2. If there is no risk
of an ambiguity, we use the shorter notation W 1,p(Ω) and skip the image space in general for all
vector valued spaces. We denote the deformation gradient by ∇y, using the notation from [Cia94].
Concerning boundary conditions, we require that y is the identity mapping on ΓD. On ΓN , we
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consider a boundary force density u ∈ Lq(ΓN ,R3) which causes the deformation of the body. Later,
u will be used as the control of our optimization problem, where state and control space will be
denoted by Y = W 1,p(Ω) and U = Lq(ΓN ), respectively. The specific choice of the index q will
be discussed later. Similarly, volume forces could be included in our problem and treated in an
analogous way.

Next, we derive the problem description with the respective hyperelastic model. In the context
of hyperelasticity, finding the deformation of a body corresponds to minimizing the total energy
functional I : Y × U → R, defined by

I(y, u) :=

∫
Ω

Ŵ (x,∇y(x)) dx−
∫

ΓN

yu ds.

If u ∈ U is fixed, we call minimizers of the functional y → I(y, u) solutions of the elastic problem.

Denoting by M3
+ the set of 3× 3 matrices with positive determinant, Ŵ : Ω×M3

+ → R is called the
stored energy function. It is used to model the properties of the specific material which is described.
The choice of Ŵ will be discussed in detail, below.

We introduce the following splitting

I(y, u) = Istrain(y)− Iout(y, u)

with

Istrain(y) =

∫
Ω

Ŵ (x,∇y(x)) dx and Iout(y, u) =

∫
ΓN

yu ds.

In this paper, we will concentrate on polyconvex stored energy functions. This is a class of functionals
that, although non-convex, are still weakly lower semicontinuous, and thus allows an existence theory
on energy minimizers.

We summarize the necessary assumptions. Let id : Ω → Ω be the identity mapping, ‖M‖ :=√
trMTM the norm on the space of 3 × 3 matrices M3 and let Cof M := det(M)M−T denote the

cofactor matrix for M ∈M3
+.

Assumption 2.1. Let Ŵ : Ω × M3
+ → R be the stored energy function. We assume that the

following properties hold.

(1) Polyconvexity: For almost all x ∈ Ω, there exists a convex function W(x, ·, ·, ·) : M3 ×
M3×]0,+∞[→ R such that

Ŵ (x,M) = W(x,M,Cof M,detM), for all M ∈M3
+,

whereby the function

W(·,M,Cof M,detM) : Ω→ R
is measurable for all (M,Cof M, detM) ∈M3

+ ×M3
+×]0,+∞[.

(2) For almost all x ∈ Ω, the implication

detM → 0+ ⇒ Ŵ (x,M)→∞
holds.

(3) The sets of admissible deformations are defined by

Ac := {y ∈W 1,p(Ω), Cof ∇y ∈ Ls(Ω), det∇y ∈ Lr(Ω),

y = id a.e. on ΓD, det∇y > 0 a.e. in Ω, y3 ≥ 0 a.e. on Γc},
and

A := {y ∈W 1,p(Ω), Cof ∇y ∈ Ls(Ω), det∇y ∈ Lr(Ω),

y = id a.e. on ΓD, det∇y > 0 a.e. in Ω},
for p ≥ 2, s ≥ p

p−1 , r > 1.

(4) Coerciveness: There exist a ∈ R, and b > 0, such that

Ŵ (x,M) ≥ a+ b(‖M‖p + ‖CofM ‖s + |detM |r),
for all M ∈M3

+.
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(5) Let the index p′ satisfy
1

p′
>

3− p
2p

,

for p ≤ 3 and p′ =∞ for p > 3. Further, q satisfies

1

q
= 1− 1

p′
.

(6) The identity mapping id : Ω→ Ω is a natural state, i.e.

Istrain(id) = 0,

and

id3 ≥ 0 a.e. on ΓC .

Since the mappings M → Cof M and M → detM are nonlinear, polyconvex energy-functionals
are non-convex. However, these mappings have special properties, summarized in the following
theorem:

Theorem 2.1. Let p ≥ 2, and let r, s > 0 satisfy

r−1 = p−1 + s−1 ≤ 1.

Further, let yn be a sequence in W 1,p(Ω). Then, the following implication holds:

yn ⇀ ŷ in W 1,p(Ω),

Cof ∇yn ⇀ N in Ls(Ω),

det∇yn ⇀ d in Lr(Ω),

⇒
{
N = Cof ∇ŷ,
d = det∇ŷ.

Proof. For the proof, we refer to [Bal77, Lemma 6.1 and Theorem 6.2]. �

With its help, the weak lower semicontinuity of the total energy functional can be shown.

Lemma 2.1. Let Assumption 2.1 hold. Then, the outer energy functional Iout : Y × U → R is
weakly continuous. Additionally, the total energy functional is weakly lower semicontinuous w.r.t.
sequences that leave the strain energy Istrain bounded.

Proof. First, we show the weak continuity of the outer energy function Iout. Let (yn, un) ⊂ Y × U
be a weakly converging sequence with the limit (y, u) ∈ Y ×U . We know from [Neč12, Theorem 6.2]

and Assumption 2.1(5) that there exists a continuous and compact trace operator τ : Y → Lp
′
(Γ).

Hence, τ(yn)→ τ(y). Additionally, we obtain by Hölder’s inequality and by continuity of the trace
operator that

|Iout(y, u)| ≤
∫

ΓN

|τ(y)u| ds ≤ ‖τ(y)‖Lp′ (ΓN )‖u‖U ≤ C‖y‖Y ‖u‖U ,

for some constant C > 0. As a result, the outer energy Iout is bilinear and bounded and thus
continuous. Next, we can rewrite

Iout(yn, un)− Iout(y, u) = Iout(yn − y, un) + Iout(y, un)− Iout(y, u).

By combining the boundedness of un, the continuity of Iout and the existence of a compact trace
operator τ , it can be conclude that the term Iout(yn − y, un) approaches zero. The second term
Iout(y, un)− Iout(y, u) converges to zero due to the definition of weak convergence. This concludes
the first part of the proof. The arguments applied here are analogous to the ones in [Cia94, Proof
of Theorem 7.1-5].

The second statement follows from [Cia94, Proof of Theorem 7.7-1]. �

In the next lemma, which is a slightly modified version of the results in [Cia94, Proof of Theorem
7.3-2], we obtain a lower bound of the total energy functional.

Lemma 2.2. Let un ⊂ U be a bounded sequence. Then, there exist uniform constants a > 0 and
b ∈ R such that the total energy functional satisfies the estimate

I(v, un) ≥ a‖v‖pY + b, for all v ∈ A and for all n ∈ N.
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Proof. Assumption 2.1(4) implies that there exist constants c > 0 and d ∈ R such that the strain
energy satisfies

Istrain(v) ≥ c‖v‖pY + d, for all v ∈ A.
See [Cia94, Proof of Theorem 7.3-2]. Following the argumentation above, the existence of a trace

operator τ : Y → Lp
′
(Γ) and Hölder’s inequality yield the estimate

|Iout(v, un)| ≤
∫

ΓN

|τ(v)un| ds ≤ ‖τ(v)‖Lp′ (ΓN )‖un‖U ≤ C‖v‖Y ,

for some C > 0. Since p > 1,

I(v, un) ≥ Istrain(v, un)− |Iout(v, un)| ≥ a‖v‖pY + b

holds for some a > 0 and b ∈ R which concludes the proof. �

From this lemma, we also obtain the coercivity of the total energy functional I w.r.t. to the first
argument if the sequence un is bounded.

The established Assumption 2.1(2) corresponds to the physical interpretation that in order to
compress a given volume to zero, an infinite amount of energy is necessary. This conditions already
rules out convexity of the stored energy function [Cia94] and thus leads to potential non-uniqueness
of possible minimizers. It also has consequences for the numerical analysis, where non-convex
solution algorithms have to be applied. Besides non-convexity, the second requirement yields possible
singularities of the total energy functional which have to be taken into account as well.

The other important restriction to the deformation of a body is that it has to be injective in the
interior of the domain Ω to be physically reasonable. In the Sobolev sense, this can at least locally
be enforced by requiring that det∇y > 0 a.e. in Ω is satisfied.

2.2. Contact constraints. Next, we are going to incorporate the contact constraints into our
model. For simplicity, we restrict ourselves to simple constraints of the form

y3 ≥ 0 a.e. on ΓC ,

for some a-priori chosen contact boundary ΓC , meaning that the third component y3 of y should
be non-negative. This restriction corresponds to a setting in which the body has to stay above the
plane that is spanned by the first two canonical basis vectors.

The techniques developed in [Bal77, Theorem 4.8-1] were first extended to contact problems in
[CN85], in a more general setting.

In order to analyze the resulting contact problem in elasticity, we need the following result:

Lemma 2.3. The set
C = {v ∈W 1,p(Ω) | v3 ≥ 0 a.e. on ΓC}

is weakly closed in Y.

Proof. The following argumentation is analogous to the one in [CN85, Proof of Theorem 4.1].
Let vn ⇀ v be a weakly converging sequence in Y . Given the existence of a compact trace

operator τ : Y → Lp
′
(Γ), see [Neč12], we can extract a subsequence that converges pointwise

ds-almost everywhere on Γ. Since the set

K = {z ∈ R3 | z3 ≤ 0}
is closed, it follows that v3 ≥ 0 a.e. on ΓC . Thus, C is weakly closed. �

For a detailed introduction into elasticity, we refer here to the analysis in [Bal77]. From there, we
obtain the admissible set for deformations Ac as defined in Assumption 2.1(3). With this at hand,
finding the resulting deformation caused by some boundary pressure load u corresponds to solving
the minimization problem

(1) y ∈ argmin
v∈Ac

I(v, u).

One of the essential parts of proving the existence of solutions is to verify the weak closedness of
the sets Ac and A w.r.t. infimizing sequences.

Lemma 2.4. Let yn ⇀ y be a weakly converging sequence in A that leaves the strain energy
Istrain(yn) bounded. Then, y ∈ A.

Proof. See [Cia94, Proof of Theorem 7.7-1]. �
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We note that this result can be transferred to the set Ac since the set C is weakly closed.
Next, we can derive the following existence result which was first established in [CN85, Theorem

4.2] in a more general setting.

Theorem 2.2. Let u ∈ U be some fixed boundary force and let Assumption 2.1 hold. Further, we
assume that the admissible set Ac is not empty and that infv∈Ac I(v, u) <∞. Then, the total energy
functional I(·, u) has at least one minimizer in Ac.

Proof. Let yn ⊂ Ac be an infinimizing sequence. By applying Lemma 2.2 we obtain the boundedness
of I(yn, u) and yn. Due to reflexivity of Y , there exists a weakly converging subsequence, also
denoted by yn. The weak limit is denoted by y. Since I(yn, u) and yn are bounded, we obtain the
boundedness of the strain energy Istrain(yn) as well. As previously established, Lemma 2.4 and the
weak closedness of the set C yield y ∈ Ac.

Accordingly, Lemma 2.1 yields that the total energy functional I is weakly lower semicontinuous
w.r.t. the sequence yn. Then, the fact that y is again a minimizer results from

inf
y∈Ac

I(y, u) ≤ I(y, u) ≤ lim inf
n→∞

I(yn, u) = inf
y∈Ac

I(y, u).

�

2.3. Regularization of contact constraints. Solving nonlinear elasticity problems numerically
is already highly challenging due to the non-convexity and the singularities of the total energy
functional. Additionally, contact constraints add a non-smoothness to the problem. As a result,
regularization approaches for those kinds of problems are very popular.

In our analysis, we conduct the so-called normal compliance approach which has been studied
in [OM85, MO87]. In this context, we drop the contact constraints by adding a penalty functional
P : Y → R+

0 of the form

P (v) :=
1

k

∫
ΓC

[−v3]
k
+ ds, k ∈ N, k > 1, v ∈ Y

to the total energy functional I. Here, the functional P locally penalizes the violation of the
constraint. We multiply the penalty functional with a positive parameter γ. The idea behind this
approach is that by minimizing the penalized function, the resulting solutions approach solutions
of the original contact constraint problem for increasing parameter γ. The resulting penalized total
energy functional reads as follows:

Iγ(y, u) := I(y, u) + γP (y).

For sufficiently large p, there exists a trace operator τ : Y → Lk(Γ), see [Neč12]. Thus, in this case,
the penalty function is well defined, convex and weakly lower semicontinuous.

With the regularized total energy functional at hand, we can drop the contact constraint and
obtain the relaxed admissible set A as defined in Assumption 2.1(3). Consequently, for some fixed
penalty parameter γ > 0, this leads to the relaxed minimization problem

(2) y ∈ argmin
v∈A

Iγ(v, u).

In order to analyze whether the normal compliance approach is a reasonable regularization, two
properties have to be proven. First, we have to verify if the regularized problem (2) admits at
least one optimal solution. Secondly, solutions of the regularized problem (2) have to approach
solutions of the original one (1) as the penalty parameter γ approaches infinity. The first condition
is addressed in the following theorem.

Theorem 2.3. Let γ > 0 be a fixed penalty parameter and u ∈ U be some fixed boundary force.
We assume that the admissible set A is not empty and that infv∈A Iγ(v, u) < ∞. Then, under
Assumption 2.1, the regularized total energy functional Iγ(·, u) has at least one minimizer in A.

Proof. Since the penalty function P is weakly lower semicontinuous, we can apply the arguments
from the constrained case, and the proof follows analogously. �

Before we can address the second condition, we need to establish the following theoretical result
that in hyperelasticity, bounded boundary forces leave the resulting total energy bounded.
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Lemma 2.5. Let Assumption 2.1 hold. Further, let γn → ∞ be a positive sequence of penalty
parameters and let un ⊂ U be a bounded sequence. Additionally, let yn ⊂ A be a sequence of
corresponding energy minimizers which satisfy

yn ∈ argmin
v∈A

Iγn(v, un).

Then, Iγn(yn, un) and I(yn, un) are bounded, and yn is bounded in Y.

Proof. The boundedness from below results from Lemma 2.2. For the boundedness from above, we
derive from Theorem 2.2 the existence of a state ỹ ∈ Ac satisfying Istrain(ỹ) <∞. Then, there exists
a constant C > 0 such that

Iγn(yn, un) ≤ Iγn(ỹ, un) = I(ỹ, un) ≤ Istrain(ỹ) + |Iout(ỹ, un)| < C.

The last estimate follows from Hölder’s inequality as applied in the proof of Lemma 2.2. The
boundedness from above of I(yn, un) simply follows from the previous estimate and the fact that
γnP (yn) > 0. Again, Lemma 2.2, which also holds for Iγn ≥ I, implies the boundedness of yn. This
concludes the proof. �

With this at hand, we prove a continuity result that allows us to pass to the limit later:

Lemma 2.6. Let γn →∞ be a monotonically increasing sequence of penalty parameters. Consider
a weakly convergent sequence (yn, un) ⇀ (y, u) such that

yn ∈ argmin
v∈A

Iγn(v, un).

Then, (y, u) ∈ Ac × U and

y ∈ argmin
v∈Ac

I(v, u).

Additionally,

lim
n→∞

Iγn(yn, un) = I(y, u).

Proof. The weak convergence of (yn, un) implies its boundedness in Y × U . Thus, we also obtain
the boundedness of the outer energy Iout(yn, un) just as in the proof of Lemma 2.2. Consequently,
Istrain(yn) is bounded as well. Hence, Lemma 2.4 applies and y ∈ A.

Next, the relation

P (yn) =
Iγn(yn, un)− I(yn, un)

γn
yields limn→∞ P (yn)→ 0 since the numerator is bounded as previously established. By combining
this with the weak lower semicontinuity of P , we obtain

0 ≤ P (y) ≤ lim inf
n→∞

P (yn) = 0.

This yields y ∈ Ac.
Finally, we show that y is again a solution to the original contact problem (1). From Theorem

2.2, we derive the existence of a state ỹ ∈ Ac which satisfies

ỹ ∈ argmin
v∈Ac

I(v, u).

Furthermore, the weak lower semicontinuity of the total energy I w.r.t. (yn, un) follows from the
boundedness of Istrain(yn) and Lemma 2.1. Next, we obtain

lim sup
n→∞

Iγn(yn, un) ≤ lim sup
n→∞

Iγn(y, un) = lim sup
n→∞

I(y, un) = lim
n→∞

I(y, un)

= I(y, u) ≤ lim inf
n→∞

I(yn, un) ≤ lim inf
n→∞

Iγn(yn, un).

Hence,

lim
n→∞

Iγn(yn, un) = I(y, u).

A similar argumentation was applied in [LSW14, Proof of Lemma 3.3].
From the above results, we derive

I(ỹ, u) ≤ I(y, u) = lim
n→∞

Iγn(yn, un) ≤ lim
n→∞

Iγn(ỹ, un) = I(ỹ, u)
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which shows that y is again a minimizer of the total energy functional.
�

Finally, we prove that limit points of regularized solutions exist and satisfy the original contact
problem:

Proposition 2.1. Let u ∈ U , γn →∞ be a monotonically increasing sequence of penalty parameters
and yn ∈ argminv∈A Iγn(v, u). Then, yn has a weakly converging subsequence. The limit point y of
any such sequence satisfies y ∈ argminv∈Ac I(v, u).

Proof. Boundedness of yn follows from Lemma 2.5 so that we can extract a weakly converging
subsequence. Application of Lemma 2.6 to each of these subsequences yields the desired result. �

3. Asymptotic rates of the energy

By using refined arguments and an assumption on the geometric setting, it is possible to derive
a-priori estimates on the rate of convergence of the energy if γ → ∞. We are thus interested in
estimates of the form:

min
v∈Ac

I(v, u)−min
v∈A

Iγ(v, u) ≤ cγ−ρ,

for some positive constants ρ and c.
To this end, we will use ideas from [HSW14] and [Bal02]. We consider the case p > 3 so that

W 1,p(Ω) is continuously embedded into the space Cβ(Ω) of Hölder continuous functions for some
suitable β ∈]0, 1[. Further, we make the following assumption on the geometry of the boundary
conditions:

Assumption 3.1. Assume that there is a constant K > 0 such that for each ε > 0 there exists an
invertible mapping ψε ∈W 1,∞(R3), such that

‖ψε − id‖W 1,∞ ≤ Kε,

ψε = id on ΓD and

∀x ∈ R3 : x3 ≥ −ε ⇒ ψε(x)3 ≥ 0.

Denoting

Cε := {y ∈ A : y3(x) ≥ −ε, ∀x ∈ ΓC},
we see that y ∈ Cε implies ψε ◦ y ∈ C.

Next, we utilize the growth assumption (C1) from [Bal02].

Assumption 3.2. We assume that Ŵ describes the stored energy function of some homogeneous
material. Further, we assume that there exists a constant K > 0 such that Ŵ satisfies the following
growth condition

(3) |Ŵ ′(M)MT | ≤ K(Ŵ (M) + 1), for all M ∈M3
+.

From there, we can show the following estimate:

Lemma 3.1. Let u ∈ U be a fixed boundary force. If Assumption 3.1 and 3.2 hold and if ε > 0 is
sufficiently small, then there is a constant C > 0, such that

|I(ψε ◦ y, u)− I(y, u)| ≤ C(I(y, u) + 1)ε,

for all y ∈ Cε.

Proof. Let M ∈ M3
+, satisfying ‖M − Id‖ < ε. Here, Id denotes the identity matrix. Further, we

define M(t) := tM + (1− t)Id, with t ∈ [0, 1]. From ‖M − Id‖ < ε and ‖Id‖ =
√

3 < 2, we derive
‖M(t)−1‖ ≤ 2.

Following the arguments in the proof of Lemma 2.5 in [Bal02], we obtain

(4) Ŵ (MA) + 1 ≤ 3

2
(Ŵ (A) + 1), for all A ∈M3

+.

Next, we define

Θ(A) := sup
‖M−Id‖<ε

Ŵ (MA)
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and we denote by K > 0 the constant from the growth condition (3). Then, applying again the
arguments of the proof of Lemma 2.5 in [Bal02] yields the estimate:

Ŵ (MA)− Ŵ (A) =

∫ 1

0

(Ŵ ′(M(t)A)) · ((M − Id)A) dt

(3)

≤ K

∫ 1

0

(Ŵ (M(t)A) + 1)‖M − Id‖‖M(t)−1‖ dt

≤ 2Kε

∫ 1

0

(Ŵ (M(t)A) + 1) dt

≤ 2Kε(Θ(A) + 1)
(4)

≤ 3Kε(Ŵ (A) + 1).

Integrating over the domain Ω yields the desired result. �

This implies the following result:

Corollary 3.1. Under the above assumptions we have:

min
v∈Ac

I(v, u) ≤ min
y∈A∩Cε

I(v, u) + Cε.

3.1. An estimate for the constraint violation in L∞. It remains to show that for sufficiently
large γ, energy minimizers of Iγ are contained in Cε, where ε = O(γ−ρ) at a certain rate. For this,
we use that the corresponding sequence of minimizers yγ is bounded in Cβ in the setting p > 3.

Our analysis here is based on the techniques applied in Proposition 2.4 in [HSW14]. First, we
derive an upper bound for the supremum norm in a general setting.

At this point, we require additional assumptions on the boundary segment ΓC in order to simplify
the computations. In the setting here, we assume that ΓC is a flat two-dimensional sub-manifold
of R3. Nevertheless, under suitable assumptions, the following results still hold if ΓC is curved.
However, this is fairly technical and does not yield further insight. Thus, we restrict ourselves to
the simple case.

Additionally, we require the following assumption on the boundary segment ΓC .

Assumption 3.3. Assume that ΓC satisfies a uniform interior cone condition in the following
sense: For each point x ∈ ΓC , we can construct a two-dimensional circular sector

(5) SR′,θ(x) ⊂ ΓC

with center at x, radius R′ > 0 and center angle θ > 0. We assume that R′ and θ can be chosen
independently of x.

Here, each circular sector SR′,θ(x) ⊂ ΓC is interpreted as a two-dimensional sub-manifold in R3.
Due to the flatness assumption on ΓC , this is a meaningful definition. With some abuse of notation,
we denote by (y)k+ the function max(0,−y3)k on ΓC . From here, we can derive the following estimate:

Proposition 3.1. Let β ∈]0, 1[ and s ≥ 1. Further, let f ∈ Cβ(ΓC)∩Ls(ΓC) be a positive function.
Additionally, let Assumption 3.3 hold and let ‖f‖Cβ(ΓC) ≤ M and ‖f‖Ls(ΓC) ≤ 1. Without loss of
generality, we assume that 0 ∈ ΓC and f(0) = ‖f‖L∞(ΓC). Due to Assumption 3.3, we can deduce
the existence of a circular sector SR′,θ(0) ⊂ ΓC with R′ ≤ 1.

Then, we obtain the following estimate:

‖f‖L∞(ΓC) ≤ c(s, β,R′, θ,M)‖f‖
βs
βs+2

Ls(ΓC),

where the positive constant c(s, β,R′, θ,M) only depends on the exponents β and s, the angle θ, the
radius R′ and the upper bound M .

Proof. First, we define

(6) R =

(
f(0)

‖f‖Cβ(ΓC)

) 1
β

=

(‖f‖L∞(ΓC)

‖f‖Cβ(ΓC)

) 1
β

.

Next, we choose the maximum positive α ≤ 1 such that for R̃ := αR, the inequalities

(7)
(
R̃
R

)β
s ≤ 1⇔ αβs ≤ 1
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and R̃ ≤ R′ hold. As a result, we obtain the inclusion

(8) SR̃,θ(0) ⊂ SR′,θ(0).

In addition, we recall Bernoulli’s inequality

(9) (1 + x)n ≥ 1 + nx,

for real numbers x ≥ −1 and n ≥ 1.
Next, the Hölder continuity of f yields the estimate

(10) f(x) ≥ f(0)− ‖f‖Cβ(Γc)‖x− 0‖β , for all x ∈ SR′,θ(0).

From there, we obtain the following estimate:

‖f‖sLs(ΓC) =

∫
ΓC

|f(x)|s dx ≥
∫
SR′,θ(0)

|f(x)|s dx

(8)(10)

≥
∫
SR̃,θ(0)

|f(0)− ‖f‖Cβ(ΓC)‖x− 0‖β |s dx

(6)
= ‖f‖sCβ(ΓC)

∫
SR̃,θ(0)

|Rβ − ‖x− 0‖β |s dx

= 2|S1,θ(0)|‖f‖sCβ(ΓC)

∫ R̃

0

|Rβ − rβ |sr dr

(7)(9)

≥ 2|S1,θ(0)|‖f‖sCβ(ΓC)R
βs

∫ R̃

0

(
1− s r

β

Rβ

)
r dr.

At this point, we have to distinguish between two cases. The first case is αβs = 1 which implies
R̃ ≤ R′. In this case, we obtain

2|S1,θ(0)|‖f‖sCβ(ΓC)R
βs

∫ R̃

0

(
1− s r

β

Rβ

)
r dr

= 2|S1,θ(0)|‖f‖sCβ(ΓC)R
βs
[

1
2r

2 − srβ+2

(β+2)Rβ

]αR
0

= 2|S1,θ(0)|‖f‖sCβ(ΓC)R
βs+2 α2

β+2

(
1
2 (β + 2)− sαβ

)
.

Due to the condition αβs = 1, we know that the constant

c0(s, β,R′, θ) := 2|S1,θ(0)| α
2

β+2

(
1
2 (β + 2)− sαβ

) (7)
> 0

does not approach zero even if R → 0. Thus, we can insert the definition of R and obtain the
estimate

‖f‖sLs(ΓC) ≥ c0(s, β,R′, θ)‖f‖sCβ(ΓC)

(
‖f‖L∞(ΓC )

‖f‖
Cβ(ΓC )

)βs+2
β

.

Now, solving for ‖f‖L∞(ΓC) yields

‖f‖L∞(ΓC) ≤ c0(s, β,R′, θ)−
β

βs+2 ‖f‖
2

βs+2

Cβ(ΓC)
‖f‖

βs
βs+2

Ls(ΓC)

≤ c(s, β,R′, θ,M)‖f‖
βs
βs+2

Ls(ΓC)

which shows the desired result.
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For the second case, we have αβs < 1 which implies R̃ = R′. Here, we get the estimate

2|S1,θ(0)|‖f‖sCβ(ΓC)R
βs

∫ R̃

0

(
1− s r

β

Rβ

)
r dr

= 2|S1,θ(0)|‖f‖sCβ(ΓC)R
βs
[

1
2r

2 − srβ+2

(β+2)Rβ

]R̃
0

= 2|S1,θ(0)|‖f‖sCβ(ΓC)R
βs
(

1
2 R̃

2 − sR̃β+2

(β+2)Rβ

)
(7)

≥ 2|S1,θ(0)|‖f‖sCβ(ΓC)R
βsR̃2

(
1
2 −

1
(β+2)

)
.

By applying R̃ = R′, we can define the constant

c0(s, β,R′, θ) := 2|S1,θ(0)|(R′)2
(

1
2 −

1
(β+2)

)
> 0

which does not depend on R. Analogously to the computations above, we insert the definition of R
and obtain

‖f‖sLs(ΓC) ≥ c0(s, β,R′, θ)‖f‖sCβ(ΓC)

(
‖f‖L∞(ΓC )

‖f‖
Cβ(ΓC )

)βs
β
.

Solving for ‖f‖L∞(ΓC) and using ‖f‖Ls(ΓC) ≤ 1 yields

‖f‖L∞(ΓC) ≤ c0(s, β,R′, θ)−
1
s ‖f‖Ls(ΓC) ≤ c(s, β,R′, θ)‖f‖

βs
βs+2

Ls(ΓC).

Taking both estimates together, we obtain the desired result. �

In the following, we assume that Assumption 3.3 holds throughout the whole section.
We extend the previous result to sequences that leave the term γP (·) bounded.

Corollary 3.2. Let γn →∞ and let yn ⊂ Y be a bounded sequence with γnP (yn) being bounded as
well. Then, there exists a constant C > 0 such that we obtain the following estimate:

‖(yn)+‖L∞(ΓC) ≤ Cγ
− β
kβ+2

n .

Proof. From the boundedness of P (yn)γn, we deduce the existence of a constant c > 0 such that

P (yn) ≤ cγ−1
n .

Next, the continuous embedding of W 1,p(Ω) into the space Cβ(Ω) yields the boundedness of (yn)+

in the space Cβ(ΓC). By definition, P (yn) = ‖(yn)+‖kLk(ΓC). Thus, Corollary 3.1 applies, and we

obtain the stated estimate. �

From this, we can directly deduce a convergence rate for the regularized total energy.

Corollary 3.3. Let u ∈ U be some fixed boundary force. Additionally, let γn →∞ be an arbitrary
sequence of penalty parameters and yn a sequence of minimizers to the corresponding regularized
contact problems (2). Further, we assume W 1,p(Ω) is continuously embedded into the space Cβ(Ω)
and that Assumption 3.1 and 3.2 hold. Then, there exists a constant C > 0 such that we obtain the
following convergence rate

min
v∈Ac

I(v, u)−min
v∈A

Iγn(v, u) ≤ Cγ−
β

kβ+2
n .

Proof. Let yn ⊂ A denote a sequence of minimizers to problem (2) corresponding to the sequence
γn. From Lemma 2.5, we deduce that Iγn(yn, u) and I(yn, u) are bounded. Consequently, γnP (yn)
is bounded as well. Therefore, Corollary 3.2 applies and we obtain

‖(yn)+‖L∞(ΓC) ≤ cγ−
β

kβ+2 ,

for some constant c > 0.
Utilizing Lemma 3.1, we obtain the transformation functions ψεn , where εn denotes the respective

maximum constraint violation ‖(yn)+‖L∞(ΓC).
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In addition, for sufficiently large γn, Lemma 3.1 yields the estimate

0 ≤ min
v∈Ac

I(v, u)−min
v∈A

Iγn(v, u) ≤ |I(ψεn ◦ yn, u)− I(yn, u)| ≤ c0(I(yn, u) + 1)εn,

for a constant c0 > 0. Inserting the estimate for εn and utilizing the boundedness of I(yn, u) yield

min
v∈Ac

I(v, u)−min
v∈A

Iγn(v, u) ≤ c1cγ−
β

kβ+2 ,

for some c1 > 0. This shows the desired result. We note here that the same convergence rate holds
for the sequence I(yn, u). In addition, due to the relation

0 ≤ min
v∈Ac

I(v, u)−min
v∈A

Iγn(v, u),

we obtain

0 ≤ γnP (yn) ≤ min
v∈Ac

I(v, u)− I(yn, u) ≤ c1cγ−
β

kβ+2 .

This estimate can be used to derive sharper convergence rates. �

3.2. A bootstrapping argument. The previous results can be refined by applying a bootstrapping
argument, similar to the one in [HSW14, Theorem 2.12].

Corollary 3.4. Let u ∈ U be some fixed boundary force and let γn → ∞ be an arbitrary sequence
of penalty parameters. Further, we denote by yn ⊂ A a sequence of minimizers to the corresponding
regularized contact problems (2). We assume W 1,p(Ω) is continuously embedded into the space
Cβ(Ω) and that Assumption 3.1 and 3.2 hold. Then, there exists a constant c > 0 such that we
obtain the following convergence rate:

‖(yn)+‖L∞(ΓC) ≤ cγ
− β

(k−1)β+2
n .

Proof. From the Corollaries 3.3 and 3.2, we deduce that there exist positive constants c0, c1 and c2
such that the following estimates hold:

P (yn) ≤ c0γ−1.

From there, we derive the convergence rate for the maximum constraint violation

‖(yn)+‖L∞(ΓC) ≤ c1c
β

kβ+2

0 γ
− β
kβ+2

n .

Subsequently, we obtain the rates for the regularized total energy

min
v∈Ac

I(v, u)− Iγn(yn, u) ≤ c2c1c
β

kβ+2

0 γ
− β
kβ+2

n

and

min
v∈Ac

I(v, u)− I(yn, u) ≤ c2c1c
β

kβ+2

0 γ
− β
kβ+2

n .

As discussed in the proof of Corollary 3.3, it can be concluded that

γnP (yn) ≤ c2c1c
β

kβ+2

0 γ
− β
kβ+2

n .

In comparison to the analysis above, this allows the refined estimate

P (yn) ≤ c2c1c
β

kβ+2

0 γ
−1− β

kβ+2
n .

By writing c := c2c1c
β

kβ+2

0 and inserting it into the estimate of Corollary 3.2, we can further
improve the estimate for the convergence rate of the maximum constraint violation to

‖(yn)+‖L∞(ΓC) ≤ c1c
β

kβ+2 γ
(−1− β

kβ+2 ) β
kβ+2

n .

This estimate carries over to the convergence rate of the total energy. Applying this technique
recursively yields the formula

‖(yn)+‖L∞(ΓC) ≤ c1C
β

kβ+2

i γ
(−1−δi) β

kβ+2
n ,

with δi+1 = (1 + δi)
β

kβ+2 and Ci+1 = c2c1(Ci)
β

kβ+2 . The initial values are δ0 = 0 and C0 = c0,

respectively.
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Next, for i ≥ 1, we derive the equivalent formulas

δi =

i∑
m=1

(
β

kβ+2

)m
, Ci = (c2c1)

∑i−1
j=0( β

kβ+2 )jC
( β
kβ+2 )i

0 .

As i→∞, we can compute the limit δ∞ by

δ∞ =

∞∑
m=1

(
β

kβ+2

)m
=

1

1− β
kβ+2

− 1 =
β

(k − 1)β + 2
.

Analogously, the limit C∞ can be computed by

C∞ = lim
i→∞

((c2c1)
∑i−1
j=0( β

kβ+2 )jC
( β
kβ+2 )i

0 ) = (c2c1)
kβ+2

(k−1)β+2 .

Finally, we obtain

‖(yn)+‖L∞(ΓC) ≤ c1C
β

kβ+2
∞ γ

(−1−δ∞) β
kβ+2

n = c1C
β

kβ+2
∞ γ

− β
(k−1)β+2

n .

This concludes the proof. �

This result carries over to a refined version of Corollary 3.3.

Corollary 3.5. Let u ∈ U be some fixed boundary force. Additionally, let γn →∞ be an arbitrary
sequence of penalty parameters and yn a sequence of minimizers to the corresponding regularized
contact problems (2). Further, we assume W 1,p(Ω) is continuously embedded into the space Cβ(Ω)
and that Assumption 3.1 and 3.2 hold. Then, there exists a constant C > 0 such that we obtain the
following convergence rate:

min
v∈Ac

I(v, u)−min
v∈A

Iγn(v, u) ≤ Cγ
− β

(k−1)β+2
n .

Proof. The proof simply follows by combining the results from Corollary 3.4 and the techniques
applied in the proof of Corollary 3.3. �

From a theoretical point of view, the convergence of the energy hinges on an a-priori bound on
the Hölder continuity of the solutions for some β > 0. In practical computations, as presented
below, β can be quite large, e.g., β = 1. Nevertheless, we will see in our numerical results (below)
that the rate of convergence of the energy is faster than predicted by theory.

4. Optimal Control of Nonlinear Elastic Contact Problems

In the optimal control setting, we want to minimize an objective functional

J : Y × U → R.

As a constraint for the optimal control problem, we require that the optimal state y∗ is a minimizer
of the total energy functional i.e.

y∗ ∈ argmin
v∈Ac

I(v, u∗),

where u∗ is the corresponding optimal control.
In our analysis we choose a tracking type functional defined by

J(y, u) :=
1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(ΓN ),

where yd ∈ L2(Ω) denotes the desired state and α > 0. This standard tracking type functional is
obviously weakly lower semicontinuous and coercive w.r.t. its second argument. Here, we require
q ≥ 2 for the space U = Lq(ΓN ). Next, we state the optimal control problem and analyze the
existence of optimal solutions.
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4.1. Optimal control of elastic contact problems. With the objective functional at hand, the
optimal control problem reads as follows:

(11)

min
(y,u)∈Y×U

J(y, u)

s.t. y ∈ argmin
v∈Ac

I(v, u).

In proving the existence of optimal solutions to this problem, we encounter several difficulties.
First, we are dealing with a bi-level optimization problem where it is not possible to derive first-order
optimality conditions without strong additional assumptions [Bal77]. Additionally, the total energy
functional I is non-convex and therefore, its minimizers do not have to be unique. In [LSW14], the
existence of solutions to an optimal control problem in hyperelasticity without contact constraints
has been proven. We can directly transfer the results from [LSW14] to our analysis.

Before we address the existence of solutions, we introduce the following definition.

Definition 4.1 (Solution set). The solution set S is defined as

S := {(y, u) ∈ Y × U | y ∈ argmin
v∈Ac

I(v, u)}.

Next, we can state an existence result in the following theorem.

Theorem 4.1. We assume that Assumption 2.1 holds. Then, the optimal control problem (11) hast
at least one optimal solution in S.

Proof. The proof follows the lines of [LSW14, Proof of Theorem 3.1]. Let (yn, un) ⊂ S be an
infimizing sequence whereby J(yn, un) is bounded. We know that such a sequence exists due to
Assumption 2.1 and due to the definition of the tracking functional J . The coerciveness of J w.r.t.
the second variable yields the boundedness of un.

The boundedness of I(yn, un) follows from the same arguments as applied in the proof of Lemma
2.5. Accordingly, Lemma 2.2 implies the boundedness of yn. From there, we can deduce the
boundedness of the strain energy Istrain(yn).

Now, reflexivity of Y ×U yields the existence of a weakly converging subsequence which we also
denote by (yn, un). Its weak limit is denoted by (y, u) ∈ Y × U . Here, Lemma 2.4 and the weak
closedness of C ensure that y ∈ Ac.

Next, we have to verify that (y, u) satisfies again the constraints of the optimal control problem
(11) i.e.

y ∈ argmin
v∈Ac

I(v, u).

Theorem 2.2 guarantees the existence of a state ỹ ∈ Ac satisfying

ỹ ∈ argmin
v∈Ac

I(v, u).

As a result, Lemma 2.1 yields the weak lower semicontinuity of I w.r.t. the sequence (yn, un) and
the weak continuity of the outer energy Iout.

Then,

lim sup
n→∞

I(yn, un) ≤ lim sup
n→∞

I(y, un) = I(y, u) ≤ lim inf
n→∞

I(yn, un),

and consequently,

lim
n→∞

I(yn, un) = I(y, u).

From there, we obtain

I(ỹ, u) ≤ I(y, u) = lim
n→∞

I(yn, un) ≤ lim
n→∞

I(ỹ, un) = I(ỹ, u).

Thus, (y, u) satisfies the constraints of the optimal control problem (11).
Finally, the estimate

inf
(y,u)∈S

J(y, u) ≤ J(y, u) ≤ lim inf
n→∞

J(yn, un) = inf
(y,u)∈S

J(y, u)

concludes the proof. �
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4.2. Regularized optimal control problem. Although it is possible to show the existence of
optimal solutions, the numerical computation of such solutions poses significant challenges due
to the contact constraints and the resulting non-smoothness. In order to apply the specialized
algorithm developed in [LSW17], we deploy the normal compliance approach to relax the constraints.
Consequently, we obtain the regularized problem:

(12)

min
(y,u)∈Y×U

J(y, u)

s.t. y ∈ argmin
v∈A

Iγ(v, u),

for some fixed parameter γ > 0.
Next, we can state the following existence result.

Theorem 4.2. We assume that Assumption 2.1 holds. Furthermore, let γ > 0 be some fixed penalty
parameter. Then, the optimal control problem (12) has at least one optimal solution.

Proof. The regularization does not alter the two crucial properties of the total energy functional
which are coerciveness and weak lower semicontinuity w.r.t. infimizing sequences. Thus, the exis-
tence of optimal solutions can be proven analogously to the constrained case. �

5. Convergence of Solutions of the Regularized Problem

In this section, we analyze how the regularized optimal control problem (12) relates to the original
one (11). The crucial part of every regularization scheme is to verify that as the regularization
parameter approaches its limit, solutions of the regularized problem approach solutions of the original
problem.

However, in optimal control of nonlinear elasticity, we encounter several difficulties. First of all,
we have a bi-level optimization problem with no solution operator for the second level problem
due to the non-uniqueness of energy minimizers in hyperelasticity. Secondly, the lack of first-order
optimality conditions also rules out usual techniques to show convergence. Thus, in order to obtain
a satisfactory convergence result, we will need some additional structure or information on the
problem. In this section, we discuss two alternative approaches to show the desired convergence
result. In the first approach, we utilize a structural assumption, namely that optimal solutions
can be approximated by regularized solutions. In the second approach, we modify the regularized
energy-functional by adding a small fraction of the cost functional. This allows us to drop the
reachability assumption.

5.1. Convergence under a reachability assumption. In our setting so far, one critical case
cannot be excluded. If no optimal solution pair of the original problem (11) can be approximated
by a sequence of solutions of the regularized contact problem (2), we have no chance of proving any
convergence result at all. In the general setting of hyperelastic contact problems, this case cannot be
ruled out. Therefore, we have to require additional structure in order to get an analytical relation
between solutions of the regularized contact problem (2) and solutions of the original problem (1).

In this context, we introduce a property which ensures that solutions of the original contact
problem (1) can be approximated by solutions of the regularized contact problem (2).

Definition 5.1 (Reachable). A feasible solution (y, u) ∈ S is called reachable, if for each sequence
γn →∞ there exists a subsequence γnk and a corresponding sequence (ỹnk , ũnk) ⊂ A×U , satisfying
ỹnk ⇀ y, ũnk → u and

ỹnk ∈ argmin
v∈A

Iγnk (v, ũnk).

We denote the set of all reachable pairs by R ⊂ S.

Since R ⊂ S, we obtain minS J ≤ infR J . However, it is not clear, whether both values coincide.

Assumption 5.1. We assume that

min
S
J = inf

R
J

Next, we address the convergence result.
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Theorem 5.1. Let Assumption 2.1 and Assumption 5.1 hold. Further, let γn → ∞ be a positive
and monotonically increasing sequence of penalty parameters. In addition, let (yn, un) ⊂ A× U be
a sequence of optimal solutions to the corresponding regularized problems (12). Then,

lim
n→∞

J(yn, un) = min
S
J.

Furthermore, there exists a subsequence (ynk , unk) and a pair (y, u) ∈ Ac × U such that we obtain
the weak convergence ynk ⇀ y in Y and the strong convergence unk → u in L2(ΓN ). Additionally,
(y, u) solves the original optimal control problem

min
(y,u)∈Y×U

J(y, u)

s.t. y ∈ argmin
v∈Ac

I(v, u).

Proof. We start by proving the boundedness of J(yn, un). Recalling the identity mapping id, we
know that J(id, 0) < ∞. Due to Assumption 2.1(6), the pair (id, 0) ∈ Y × U satisfies the regular-
ized constraint for every parameter γn. This is due to the fact that the identity mapping id is a
natural state and that id ∈ C. Therefore, the boundedness of J(yn, un) can be concluded so that
lim supn→∞ J(yn, un) <∞.

Let (y, u) be any reachable pair. Then, we can choose a subsequence γnk , such that

lim sup
n→∞

J(yn, un) = lim
k→∞

J(ynk , unk).

Simultaneously, there exists a sequence (ỹnk , ũnk) ⊂ A × U corresponding to γnk with ỹnk ⇀ y in
Y and ũnk → u in U satisfying

ỹnk ∈ argmin
v∈A

Iγnk (v, ũnk).

The compact embedding W 1,p(Ω) ↪→ Lp(Ω), (see [Ada75]), implies ỹnk → y in Lp(Ω). Consequently,
we conclude by optimality of (ynk , unk) and strong continuity of J :

lim sup
n→∞

J(yn, un) = lim
k→∞

J(ynk , unk) ≤ lim
k→∞

J(ỹnk , ũnk) = J(y, u), ∀(y, u) ∈ R.

Hence,

lim sup
n→∞

J(yn, un) ≤ inf
R
J.

The coercivity of the objective functional J w.r.t. the second variable yields the boundedness of un
and thus, by Lemma 2.5, the boundedness of yn. Hence, by reflexivity, there exists a subsequence
of (ynk , unk), such that simultaneously

lim
k→∞

J(ynk , unk) = lim inf
n→∞

J(yn, un) and (ynk , unk) ⇀ (y, u).

By Lemma 2.6, we conclude that (y, u) satisfies the original constraint

y ∈ argmin
v∈Ac

I(v, u).

By weak lower semicontinuity of J , we obtain

min
S
J ≤ J(y, u) ≤ lim

k→∞
J(ynk , unk) = lim inf

n→∞
J(yn, un) ≤ lim sup

n→∞
J(yn, un) ≤ inf

R
J.

Invoking Assumption 5.1, namely minS J = infR J , we obtain

min
S
J = J(y, u) = lim

n→∞
J(yn, un).

Thus, (y, u) is an optimal solution.
Finally, we show strong convergence of the sequence unk . By the Sobolev embedding theorem,

ynk converges strongly in L2(Ω) and thus,

1

2
‖ynk − yd‖2L2 →

1

2
‖y − yd‖2L2 .

By incorporating the convergence J(ynk , unk)→ J(y, u), we can deduce that

α

2
‖unk‖2L2(ΓN ) →

α

2
‖u‖2L2(ΓN ).

Since unk is weakly converging in U , this implies the strong convergence in L2(ΓN ). �
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5.2. A modified regularization. Although we have been able to show a convergence result, this
was only possible under the assumption of reachability. However, in applications, it is usually not
possible to verify whether this assumption holds.

The following critical case is conceivable: the original contact problem may have several solutions,
some of which are in contact and some of which are not. In this case, our regularization scheme is
biased towards those that are in contact because violating the contact allows reducing the energy.

To compensate for this bias, we introduce an alternative regularized total energy function Eγ
which contains an additional term from the objective functional. Roughly speaking, this introduces
a bias of energy-minimizers towards optimality of the objective functional J .

Our modified new regularized energy functional is

(13) Eγ(y, u) := Iγ(y, u) + ϕ(γ)
1

2
‖y − yd‖2L2(Ω),

where ϕ : [0,∞[→]0,∞[ is a positive function in γ, that is monotonically decreasing, such that

lim
γ→∞

ϕ(γ) = 0.

The latter property ensures that solutions of this new regularized problem can approach solutions
of the original contact problem (1).

First of all, we observe existence of regularized solutions:

Theorem 5.2. Let Assumption 2.1 hold. Further, let u ∈ U be some fixed boundary force and let
γ > 0 be a fixed penalty parameter. If A is not empty and if infv∈A I(v, u) < ∞, then, the energy
minimization problem

y ∈ argmin
v∈A

Eγ(v, u)

has at least one solution.

Proof. We note that the functional Eγ is weakly continuous w.r.t. the second variable and weakly
lower semicontinuous w.r.t. sequences that leave the strain energy Istrain bounded. Thus, the proof
is completely analogous to the proof of Theorem 2.2. �

Without giving the details of the proof, we remark that the results of Lemma 2.2 and Lemma 2.5
also hold for Eγ .

Next, we establish the result that limits of regularized problems solve the original contact problem:

Lemma 5.1. Let γn →∞ be a monotonically increasing sequence of penalty parameters. Consider
a weakly convergent sequence (un, yn) ⇀ (u, y) such that

yn ∈ argmin
v∈A

Eγn(v, un).

Then, (y, u) ∈ Ac × U with
y ∈ argmin

v∈Ac
I(v, u)

and
lim
n→∞

Eγn(yn, un) = I(y, u).

Proof. Theorem 2.2 guarantees the existence of a state ŷ ∈ Ac such that Istrain(ŷ) <∞. From there,
it follows that the sequence Eγn(ŷ, un) is bounded since un is bounded and

γnP (ŷ) = 0, for all n ∈ N.
Therefore, we deduce that the sequence Eγn(yn, un) is bounded due to

Eγn(yn, un) ≤ Eγn(ŷ, un).

We have to show that the pair (y, u) satisfies the original constraint (1). First, boundedness of
(yn, un) and Eγn(yn, un) implies the boundedness of Istrain(yn), and thus Lemma 2.4 implies y ∈ A.
By the same argumentation as in the proof of Theorem 2.6, we even obtain y ∈ Ac.

Again, by using the techniques applied in the proof of Theorem 2.6 and by applying ϕ(γn)→ 0,
we obtain:

lim sup
n→∞

Eγn(yn, un) ≤ lim sup
n→∞

Eγn(y, un) = lim sup
n→∞

I(y, un) + ϕ(γn)
1

2
‖y − yd‖2L2(Ω)

= I(y, u) ≤ lim inf
n→∞

I(yn, un) ≤ lim inf
n→∞

Eγn(yn, un).
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Thus,
lim
n→∞

Eγn(yn, un) = I(y, u).

Next, Theorem 2.2 yields the existence of a state y̌ with

y̌ ∈ argmin
v∈Ac

I(v, u).

Consequently, it follows that

I(y̌, u) ≤ I(y, u) = lim
n→∞

Eγn(yn, un) ≤ lim
n→∞

Eγn(y̌, un) = I(y̌, u).

�

Applying this new approach to the optimal control problem yields:

(14)

min
(y,u)∈Y×U

J(y, u)

s.t. y ∈ argmin
v∈A

Eγ(v, u).

Next, we can state the existence result.

Theorem 5.3. We assume that Assumption 2.1 holds. Further let γ > 0 be some fixed penalty
parameter. Then, the optimal control problem (14) has at least one optimal solution.

Proof. The proof is analogous to the proof of Theorem 4.1. �

So far, no further restrictions of the regularization function ϕ have been necessary. However, in
order to overcome the lack of structure for the convergence proof, we have to ensure that minimizing
a part of the objective functional in the constraint is sufficiently weighted as the penalty parameter
approaches infinity. Therefore, we need to introduce an additional condition for the function ϕ.

Recall that for fixed u, the function γ → minv∈A Iγ(v, u) is monotonically increasing and bounded.
Moreover, by Lemma 2.6, we obtain

lim
γ→∞

min
v∈A

Iγ(v, u) = min
v∈Ac

I(v, u).

Assumption 5.2. Let u ∈ U be fixed. Assume that

lim
γ→∞

minv∈Ac I(v, u)−minv∈A Iγ(v, u)

ϕ(γ)
= 0.

With this at hand, we can state a convergence result without the structural assumption of reach-
ability.

Theorem 5.4. Let Assumption 2.1 hold and let γn →∞ be a positive and monotonically increasing
sequence of penalty parameters. Furthermore, let (y∗, u∗) denote an optimal solution to problem (11).
In addition, let (yn, un) ⊂ A×U be a sequence of optimal solutions to the corresponding regularized
problems (14), where the regularization function ϕ satisfies Assumption 5.2 w.r.t. u∗. Then,

lim
n→∞

J(yn, un) = J(y∗, u∗).

Further, there exists a subsequence (ynk , unk) and a pair (y, u) ∈ Ac × U such that we obtain the
weak convergence ynk ⇀ y in Y and the strong convergence unk → u in L2(ΓN ). Additionally, the
pair (y, u) solves the original optimal control problem

min
(y,u)∈Y×U

J(y, u)

s.t. y ∈ argmin
v∈Ac

I(v, u).

Proof. Let us construct a sequence (ỹn, u∗) ⊂ A × U that satisfies the regularized constraints for
each element in γn and that fulfills the condition

lim sup
n→∞

J(ỹn, u∗) ≤ J(y∗, u∗).

To this end, let ỹn ⊂ A be a sequence satisfying

ỹn ∈ argmin
v∈A

Eγn(v, u∗).
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We know from Theorem 5.2 that such sequences exist. The minimization property of ỹn yields

(15) Eγn(ỹn, u∗)− Eγn(y∗, u∗) ≤ 0, for all n ∈ N.

Then, we can derive the estimate

Eγn(ỹn, u∗)− Eγn(y∗, u∗) = Iγn(ỹn, u∗)− I(y∗, u∗)

+ ϕ(γn)

(
1

2
‖ỹn − yd‖2L2(Ω) −

1

2
‖y∗ − yd‖2L2(Ω)

)
≥ min

v∈A
Iγn(v, u∗)− min

v∈Ac
I(v, u∗)

+ ϕ(γn)(J(ỹn, u∗)− J(y∗, u∗)).

In combination with (15), this yields

J(ỹn, u∗) ≤ J(y∗, u∗) +
minv∈Ac I(v, u∗)−minv∈A Iγn(v, u∗)

ϕ(γn)
.

Since (yn, un) is optimal and ϕ satisfies Assumption 5.2, we obtain

lim sup
n→∞

J(yn, un) ≤ lim sup
n→∞

J(ỹn, u∗) ≤ J(y∗, u∗).

By coercivity of J in the second variable, un is bounded. Consequently, yn is also bounded due to
Lemma 2.5. Thus, we can choose a subsequence such that simultaneously

lim
k→∞

J(ynk , unk) = lim inf
n→∞

J(yn, un) and (ynk , unk) ⇀ (y, u).

By Lemma 5.1, the pair (y, u) satisfies

y ∈ argmin
v∈Ac

I(v, u).

Due to the weak lower semicontinuity of J , we conclude

J(y∗, u∗) ≤ J(y, u) ≤ lim
k→∞

J(ynk , unk)

= lim inf
n→∞

J(yn, un) ≤ lim sup
n→∞

J(yn, un) ≤ J(y∗, u∗).

This yields

lim
n→∞

J(yn, un) = J(y∗, u∗) = J(y, u).

The strong convergence of un follows from the same arguments which have been applied in the proof
of Theorem 5.1. �

In short, if ϕ(γ) tends to zero sufficiently slowly, then we can recover an optimal solution of the
original problem. In view of Section 3, we can even quantify a-priori, what sufficiently slowly means.
Depending on the problem characteristics, Section 3 yields a rate of convergence of the energy that
yields a theoretically backed choice of ϕ(γ).

6. A Numerical Path-Following Algorithm

Based on our regularization approach, we present a numerical algorithm for the solution of the
optimization problems introduced above. We combine an affine covariant path-following method
in the spirit of [Deu11, Chap. 5], which sends the regularization parameter γ to infinity, with an
affine covariant composite step method, as introduced in [LSW17]. The composite step method
is used as a corrector in the path-following scheme. The latter has a globalization mechanism
and has been successfully applied for the numerical solution of optimization problems subject to
nonlinear elasticity [Lub15]. Such a globalized corrector seems appropriate in our context of non-
convex problems, adding additional robustness to our overall method, compared to a plain Newton
corrector.

To apply the composite step method in our setting, we to have replace the minimizing problem
(2) by its formal first order optimality conditions.
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6.1. Equilibrium conditions of energy minimizers. In the context of elasticity, it cannot be
guaranteed in general that a local minimizer y∗ ∈ Y of the total energy functional I satisfies

∂yI(y∗, u)v = 0, for all v ∈ Y,
see [Bal02]. The crucial point here is the assumed singularity of the stored energy function:

det∇y → 0+ ⇒ Ŵ (x,∇y(x))→∞.
From a physical point of view, this condition prevents local self-penetration of the body and yields
extreme compressions “expensive” in terms of the total energy. As a result, the set

Y∞ := {v ∈ Y |
∫

Ω

Ŵ (x,∇v(x)) dx =∞}

is a dense subset of W 1,p(Ω) for p <∞. This already rules out Gâteaux differentiability in W 1,p(Ω).
By an additional assumption on y∗, the situation can be improved slightly:

Assumption 6.1. Let y ∈ A be a deformation. We call y non-degenerate if y ∈ W 1,∞(Ω) and if
for an ε > 0

det∇y(x) ≥ ε, for a.e. x ∈ Ω,

is satisfied.

In [LSW14, Theorem 4.6], it was proven that for a compressible Mooney-Rivlin model these
assumptions guarantee that an energy minimizer satisfies the stationarity optimality condition

∂yI(y, u) = 0.

However, it cannot be shown a-priori that an energy minimizer y satisfies Assumption 6.1.

6.2. Formal KKT conditions for the optimal control problem. These considerations show
that, at best, a useful framework for differentiability of Istrain is W 1,∞(Ω). To proceed towards KKT-
conditions of our optimal control problem, a local sensitivity of energy minimizers with respect to
perturbations in the control would be necessary, e.g., by the application of an implicit function
theorem. Such sensitivity studies have been conducted (cf. e.g. [Cia94, Section 6]), however, within
a W 2,p(Ω) framework, with p > 3, so that W 2,p(Ω) ↪→W 1,∞(Ω). Unfortunately, this theory requires
very strong regularity assumptions on the problem data, because application of the implicit function
theorem requires W 2,p-regularity of the solution of the linearized elastic problems. Such assumptions
are unlikely to be satisfied for many problems of interest. In particular, the important case of mixed
boundary conditions is ruled out, in general. Therefore, we will only derive KKT-conditions in a
formal way.

Let us introduce the notation x = (y, u) and

cγ(x)v = ∂yI(y, u)v − γ
∫

ΓC

[−y3]
k−1
+ v3 ds, v ∈ Y.

Then, formally, the KKT-conditions at a minimizer x∗ state the existence of an adjoint state p such
that:

J ′(x∗) + c′γ(x∗)
∗p = 0

cγ(x∗) = 0.

6.3. Composite step method. We start by sketching our correction algorithm. More details
on this method can be found in [LSW17]. For a fixed penalty parameter γ, we have to solve
the respective regularized optimal control problem (12). In order to algorithmically approach this
problem, we formally replace the energy minimizing constraint by its first order optimality condition.
Then, the reformulated problem reads as follows:

(16)
min

(y,u)∈Y×U
J(y, u)

s.t. cγ(y, u) = 0.

In the following, we abbreviate x := (y, u) and X = Y × U and obtain the problem:

(17)
min
x∈X

J(x)

s.t. cγ(x) = 0.
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Then, the formal KKT conditions are

(18)
J ′(x) + c′γ(x)∗p = 0 in X∗

cγ(x) = 0 in Y ∗.

This system can be solved (under appropriate assumptions) by a Lagrange Newton method. The
defining idea of composite step methods is to split the Lagrange Newton step δx into a normal step
δn ∈ ker c′γ(x)⊥ and into a tangential step δt ∈ ker c′γ(x). The normal step approaches feasibility,
whereas the tangential step approaches optimality. This class of methods is popular in equality
constrained optimization and optimal control [Var85, Omo89, Rid06, HR14, ZU11].

The algorithm, proposed in [LSW17] adds a simplified normal step, which we denote by δs, at
the end of each iteration. This allows for an affine covariant globalization scheme and also acts as
a second order correction to avoid the well known Maratos effect. The resulting composition of the
step δx is illustrated in Figure 2.

The special feature of this algorithm, affine covariance, means that norms are only evaluated
in the domain space X, but not in the image space of cγ . In particular, in the context of PDE-
constraints, meaningful norms in the image space (which usually is some dual space) are hard to
define, whereas problem suited norms in the domain space can be constructed much more easily.

Roughly speaking, our globalization mechanism combines affine covariant Newton techniques for
underdetermined problems, due to [Deu11, Chap. 4.4] for feasibility, with a cubic regularization
approach [Gri81, WDE07, CGT11], applied to the tangent step for optimality.

x̃+ ker c′γ (x̃)

x̃

cγ(x) = 0

δ
n

δt

δ
s

δ
x

Figure 2. Composite Step

In the case of nonlinear elastic problems, some additional modifications have to be made to
address the local injectivity constraint det y > 0. Due to Assumption 2.1(2), we can assume that
this constraint is inactive at an energy minimizer, but computed trial iterates may violate this
condition. If this is the case, say for a trial iterate x+ δx, we reduce the length of δx until x+ δx is
feasible with respect to this constraint by a simple back-tracking procedure. Only afterwards, the
globalization scheme of [LSW17] is applied for possibly further reduction of the step size.

In the context of function space problems, the choice of an appropriate norm is important. For
our experiments, we took the simple choice:

‖δx‖2 = ‖(δy, δu)‖2 := ‖δy‖2My
+ α‖δu‖2Mu

.

Here, ‖ · ‖My and ‖ · ‖Mu denote the norms induced by the H1-scalar product on Ω and by the

L2-scalar product on ΓN , respectively.

6.4. A simple path-following algorithm. It is to be expected that the difficulty of (17) depends
on the regularization parameter γ, which should be driven to∞ in order to approximate the original
problem. Thus, we augment our optimization algorithm by a path-following method, which is
equipped with a simple adaptive step-size strategy.

Introducing the notation Z := X × Y and z = (x, p), the KKT-system (18) system can be
interpreted as an parameter dependent nonlinear system

F (z, γ) = 0.
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Path-following methods are widely applied to solve highly nonlinear or non-smooth systems. In
convex problems, the existence of a homotopy-path γ → z(γ) of zeros of F (·, γ) can often be shown,
and even sensitivity and a-priori length estimates can be derived. In our non-convex setting, such
results can only be observed a-posteriori by a numerical algorithm, and it may happen, that several
paths exist that may converge to local solutions or end prematurely. The possible occurrence of
such situations is another reason to employ a robust correction method, as described above.

The idea of a path-following method is to successively compute solutions on the homotopy path
for a increasing sequence of parameters γk. We assume (zk, γk) to be an initial solution close to the
path. For the next solution, we increase γk by some factor s > 1:

γk+1 = sγk.

Typically, due to the robustness of the corrector, a simple, constant choice of s = 10 is appropriate.
However, an adaptive choice of the update parameter, depending on the progress of the corrector is
advisable.

Next, we apply the composite step method to compute the corresponding solution pair (zk+1, γk+1)
close to the path, whereby zk is used as starting point. This resembles a classical continuation
method for parameter dependent systems. This process is repeated until a solution close to the
path with the desired parameter γmax is found. Here, we restrict ourselves to the simple approach,
where s is some fixed update parameter. In case the parameter γ is increased too rapidly, we expect
that the globalization mechanism of the composite step method will steer the iterate back to the
path. This basic approach is illustrated in the following algorithm.

Algorithm 1 Basic Path-following

1: initial guess: (z0, γ0)
2: fixed update factor: s
3:

4: function Path-following(z0, γ0)
5: (z0, converged)← compositeStepMethod(z0, γ0)
6: if not converged then
7: return; (No initial solution on the path found)
8: end if
9: do

10: zk+1 ← zk
11: γk+1 ← sγk
12: γk+1 ← min(γk+1, γmax)
13: (zk+1, converged)← compositeStepMethod(zk+1, γk+1)
14: if not converged then
15: return; (Algorithm did not converge)
16: else
17: k ← k + 1
18: end if
19: while γk < γmax

20: return zk+1; (Algorithm converged)
21: end function

7. Examples

In the numerical examples, we test our combined composite step path-following approach at the
following model problem. As mentioned above, we choose to minimize a tracking type functional
defined by

J(y, u) :=
1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(ΓN ),

whereby we aim at approximating a reference deformation yd ∈ L2(Ω). As regularization parameter
we choose α = 0.25. It is obvious that the tracking type functional satisfies all the required properties
stated above. In the context of nonlinear elasticity, we choose a compressible Mooney-Rivlin model
for the stored energy function:
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Ŵ (∇y) = a‖∇y‖2 + b‖Cof ∇y‖2 + c(det∇y)2 − d log det∇y.
The material is determined by its parameters which are chosen as follows:

a = 0.08625, b = 0.08625, c = 0.68875, d = 1.895.

This corresponds to a model for soft tissue [Lub15]. In addition, we choose k = 3 as exponent in
the penalty function P . Further, we apply homogeneous Dirichlet boundary conditions on ΓD.

The domain is described by a discretized cuboid Ω = [0, 2] × [0, 2] × [0, 0.2] which is displayed
in Figure 3. Here, the respective grid is uniform. For the discretization of the variables, linear
finite elements are used. The degrees of freedom for the state and the control are 44415 and 5043,
respectively. Additionally, for the implementation, the finite element library KASKADE7 [GWS12]
was applied. This library has been developed at the Zuse Institute Berlin and is based on the DUNE
library [BBE+06].

The software package UMFPACK [DD97] was used to directly solve the sparse linear systems
that arise during the computations. This limits, of course, the size of tractable problems, but
keeps the implementation simple. For larger problems, problem suited iterative solvers, based on a
block-decomposition of the linearized KKT-matrix, are currently under investigation.

The optimization and path-following algorithms were implemented in Spacy 1 which is a C++
library designed for optimization algorithms in a general setting. Also, the library FunG [Lub17]
for automatic differentiation was applied to compute the required derivatives of the total energy
functional.

As reference deformation, we choose a precomputed deformation displayed in Figure 3. The
contact constraint y3 ≥ 0 a.e. on ΓC corresponds to a plane which the body cannot penetrate. This
plane, in relation to the reference deformation, is also illustrated in Figure 3. For the convenience
of the reader, the figures have been rotated.

In order to solve this problem, we apply our previously introduced approach which combines the
composite step method with a path-following algorithm. Here, each subproblem is described by the
regularized optimal control problem (12) for a corresponding parameter γ. The resulting optimal
solutions are displayed in Figure 4 for some chosen parameters. There, we observe that the optimal
solutions approach the contact constrained solution as the penalty parameter γ increases.

In order to numerically examine our theoretical results, we also combine the path-following ap-
proach with the extended regularized optimal control problem (14) and compare the two approaches.

As regularization function we choose ϕ(γ) = γ−
1
4 . In the following figures, we will distinguish solu-

tions corresponding to this problem by adding the letter ϕ in the subscript. The respective numerical
quantities of the two approaches are displayed in the Figures 5 to 9. The simple geometric situa-
tion suggests that energy minimizers are unique in this problem instance so that the reachability
assumption is satisfied. This coincides with our observation that the additional regularization is not
necessary for convergence in this particular problem setting.

Regarding the number of corrector steps required by the composite step method, Figure 5 shows
moderate numbers of corrector steps and quite robust behaviour. This indicates that a path-
following method is a reasonable approach for this kind of problem. For very large values of γ,
the number of corrector steps becomes smaller. This suggests that γ could be increased more
aggressively in this region.

Considering the objective functional values, we observe in Figure 6 that for both approaches, the
difference between two consecutive function values approaches zero. These observations coincide
with our convergence result elaborated in Theorem 5.1. However, we observe a slower convergence
rate for problem (14).

The convergence of the path-following approach is also reflected in behavior of the norm of the
updates δx. In this context, Figure 7 shows that the respective updates approach zero at similar
rates for both approaches.

Next, we consider the convergence rates of the maximum constraint violation ‖y+‖L∞(ΓC) and
of the penalty term γP (y). Since we know that both terms approach zero, we can compute local
estimates for the convergence rates at each iterate γn. Here, yn denotes the optimal deformation

1https://spacy-dev.github.io/Spacy/



24 ANTON SCHIELA, MATTHIAS STOECKLEIN

Undeformed body Reference deformation

Reference deformation and obstacle

Figure 3. Top left: Undeformed body Ω. Top right: Desired deformation. Bot-
tom: Desired deformation with obstacle (transparent).

of the corresponding optimal control problem. Analogously to the examples in [HSW14], we define
these estimates by

ρyn :=
ln(‖(yn)+‖L∞(ΓC))− ln(‖(yn+1)+‖L∞(ΓC))

ln(γn+1)− ln(γn)

and

ρPn :=
ln(γnP (yn))− ln(γn+1P (yn+1))

ln(γn+1)− ln(γn)
,

respectively.
From Corollary 3.4 and 3.5, we expect the same asymptotic convergence rate of ρ = β

2β+2 for

both terms. Inserting the reasonable value β = 1 for the Hölder exponent yields the minimal
convergence rate ρ = 1

4 . We note here that in the path-following setting, the boundary force u is not
fixed. Therefore, the comparison between the theoretical convergence rates and the observed ones
is only a heuristical analysis. Numerically, we observe in Figure 8 and 9 the estimated asymptotic
convergence rate ρ ≈ 1

2 for both approaches. This is significantly better than the predicted value,
suggesting that further theoretical progress may be possible.
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Optimal deformation for γ = 1 Optimal deformation for γ = 10

Optimal deformation for γ = 102 Optimal deformation for γ = 1010

Figure 4. Optimal deformations for the respective penalty parameter γ

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

γ

3

4

5

6

7

8

9

It
e

ra
ti
o

n
s

Iterations for y

Iterations for yϕ

Figure 5. Number of composite step iterations in each path step

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

γ

10
-7

10
-6

10
-5

10
-4

10
-3

|∆J(y, u)|
|∆J(yϕ, uϕ)|

Figure 6. Difference of the objective function value compared to the previous iterate



26 ANTON SCHIELA, MATTHIAS STOECKLEIN

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

γ

10
-4

10
-3

10
-2

10
-1

10
0

‖δx‖
‖δxϕ‖

Figure 7. Norm of the updates ‖δx‖ of the path-following method

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

γ

0.2

0.3

0.4

0.5

rate for ‖y+‖L∞ (ΓC )

rate for ‖(yϕ)+‖L∞ (ΓC )

Figure 8. Estimates for the convergence rate ρ of ‖y+‖L∞(ΓC)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

γ

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

rate for γP(y)
rate for γP(yϕ)

Figure 9. Estimates for the convergence rate ρ of γP (y)

8. Conclusion and Outlook

In summary, we can conclude that the combined approach of path-following and composite step
method converges robustly and efficiently for both regularization variants and thus can be seen as
a viable approach for optimal control of contact problems.

While analytic and algorithmic groundwork is laid, some algorithmic extensions are conceivable.
First of all, this current implementation is limited by the use of direct sparse solvers for the step
computation. To be able to use finer discretizations, iterative solvers have to be employed instead.
For works in this direction, we refer to [SSS18]. Second, although our corrector is rather robust due
to the underlying composite step method, an adaptive increase of γ is certainly a useful algorithmic
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extension of the current concept. In particular, for very large values of γ, we expect more aggres-
sive updates, yielding faster local convergence. Finally, our approach should be extended to more
complicated geometries, which is, however, a topic of future research.
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