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Abstract

We investigate optimization problems with a non-smooth partial differential
equation as constraint, where non-smoothness is assumed to be caused by the
functions abs, min and max. For the efficient as well as robust solution of such
problems, we propose a new optimization method based on abs-linearization, i.e.,
a special handling of the non-smoothness without regularization. The key idea of
this approach is the determination of stationary points by an appropriate decom-
position of the original non-smooth problem into several smooth so-called branch
problems. Each of these branch problems can be solved by classical means. The
exploitation of corresponding optimality conditions for the smooth case identifies
the next branch and thus yields a successive reduction of the objective value. This
approach is able to solve the considered class of non-smooth optimization prob-
lems without any regularization of the non-smoothness and additionally maintains
reasonable convergence properties. Numerical results for non-smooth optimiza-
tion problems illustrate the proposed approach and its performance.

Keywords: Non-Smooth Optimization, Abs-Linearization, PDE Constrained Optimization,
Non-Smooth PDE, Elliptic Optimal Control Problem

1 Introduction
Non-smooth PDE-constrained optimization problems are known to be difficult to handle, the-
oretically as well as algorithmically. The difficulty usually lies in the fact that no adjoint
equation in the classical sense can be derived, which has a direct consequence on the devel-
opment of algorithms, since no reduced gradient is available for first-order methods. In this
paper we assume that the non-smoothness in the semi-linear elliptic state equation is caused
by a non-smooth superposition operator which can be decomposed into a finite number of
smooth functions and non-smooth Lipschitz continuous operators abs, min and max. The pre-
sented algorithm takes advantage of this structural assumption and specifically exploits the
non-smooth structure in the interest of solving the underlying optimization problem.
Non-smooth optimization problems with a partial differential equation (PDE) as constraint
that involves the mentioned non-smooth non-linear functions arise in many modern applica-
tions. For example, a corresponding semi-linear elliptic partial differential equation describes
the deflection of a stretched thin membrane partially covered by water, see [17]. Furthermore, a
similar non-smooth partial differential equation arises in free boundary problems for a confined
plasma, see, e.g. [17, 20]. Even nowadays, the optimization of such problems is challenging.
Therefore, often either the non-smoothness is regularized, i.e., the non-differentiable term is
replaced by a suitable smooth approximation to avoid dealing with the non-smoothness (see
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e.g. [3] and [8]) to apply an algorithm suitable for smooth optimization or the semi-smooth
Newton method is used. For example, in [6] a method from a semi-smooth Newton method is
proposed to solve a specific non-smooth optimization problem including the max operator.

Despite the fact that the model problems considered in this article are of a less demanding
nature as for instance the ones considered in [20], their treatment is an essential step in
understanding the problem class and developing an appropriate structure-exploiting algorithm.
For this purpose, we propose an alternative algorithm that is not based on the semi-smooth
Newton method and that explicitly exploits the non-smoothness.
In the finite dimensional setting the unconstrained minimization of piecewise smooth func-
tions by successive abs-linearization without any regularization for the non-smoothness was
studied by Griewank, Walther and co-authors in [10, 12, 13] and related work. There, it is
always assumed that the non-smoothness of the considered optimization problem stems from
evaluations of the absolute value function only. Using well-known reformulations, this covers
the maximum and the minimum functions as well as complementarity problems. In [24] we
already extended and adapted the algorithmic idea of the approach in finite dimensions to the
infinite dimensional case, i.e., to PDE-constrained optimization problems with non-smooth
objective functionals. Although the algorithm SALMIN presented in [24] can also handle
non-smooth optimization problems in function spaces by explicitly exploiting the non-smooth
structure, it is not applicable to the optimization problems considered in this paper. The
main difficulty involves the already mentioned challenge that the non-smoothness appears in
the state equation and thus no adjoint equation in the classical sense as well as no classical
reduced problem formulation can be derived. It is also important to note that the local model
generated in [24] for the non-smooth case does not support the classical chain rule. Hence, one
cannot directly handle the reduced unconstrained formulation. Therefore, we propose here a
penalty-based approach to treat the PDE constraint explicitly. Nevertheless, we follow the
idea for the finite dimensional case in that the key point of the optimization method under
consideration is the location of stationary points by an appropriate decomposition of the orig-
inal problem into smooth so-called branch problems. Each of these branch problems can be
solved by classical methods for smooth PDE-constrained optimization. Then, the exploitation
of standard optimality conditions for the smooth case determines the next branch problem
and ensures the reduction of the target function value. In deriving necessary optimality con-
ditions, the difficulty lies in the fact that, while the solution domain of the PDE is compact,
the number and location of the solutions is unknown. For this reason, a direct approach,
i.e., first-discretize-then-optimize, is presented for the numerical solution of the optimization
problems.
The paper is organized as follows. In Sec. 2, we introduce the considered problem class,
discuss its properties and propose a reformulation of the first order necessary optimality con-
ditions. The resulting smooth branch problems will be presented in Sec. 3. This includes a
solution approach involving a penalty term and an analysis of the corresponding optimality
conditions. Sec. 4 summarizes the resulting optimization algorithm. Furthermore, the chosen
discretization approach as well as the corresponding solution of the subproblems is discussed.
Numerical results for a collection of test problems are presented and analysed in Sec. 5. Finally,
a conclusion and an outlook are given in Sec. 6.

2 The Problem Class, its Properties and a Reformulation
In order to illustrate ideas, we consider the following prototypical example in the further
course of this paper, where we focus on real valued functions defined on a Lipschitz domain
Ω Ă Rn, n P N. As a model problem we consider PDE-constrained optimization problems of
the form

min
py ,uqPH1

0 pΩqˆL2
jpyq `

α

2
}u}2

L2

s.t. ´∆y ` `pyq ´ u “ 0 in Ω

(1)
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with a convex and twice continuously Fréchet differentiable functional j : H1
0 pΩq Ñ R and a

semi-linear elliptic PDE constraint.
The special and at the same time challenging feature of Eq. (1) is the non-smoothness in
the state equation which is caused by the non-smooth operator ` : H1

0 pΩq Ñ L2pΩq. For the
exact assumptions on the model problem as well as the definition of the operator ` we refer
to Assumption 2.1 given next. Throughout the paper, we assume that the model problem
Eq. (1) has the following properties:

Assumptions 2.1.

i. The domain Ω Ă Rn, n P N, is a Lipschitz domain.

ii. The functional j : H1
0 pΩq Ñ R is convex, twice continuously Fréchet differentiable and

bounded from below.

iii. The operator ` : H1
0 pΩq Ñ L2pΩq denotes the Nemytskij operator induced by an operator,

which is bounded and measurable in x P Ω for every fixed y , monotone in y for almost
every x P Ω and locally Lipschitz continuous.

iv. The operator ` can be expressed as finite composition of the absolute value function and
Fréchet differentiable operators.

v. The constant α ą 0 is a given Tikhonov parameter.

We will denote the Nemitzkii operator as well as the inducing operator having other domains
and regions with the same symbol, `. Note that point iv. in Ass. 2.1 refers to the fact that
the Lipschitz-continuous operator ` can be given by the structured evaluation presented in
Def. 2.4.

The Solution Operator
The solution or control-to-state operator Spuq “ y corresponding to the non-smooth state
equation given in Eq. (1) plays an impotent role in the analysis of the overall optimization
problem. Therefore we will state here some main properties and results:

Lemma 2.2 (The solution operator). Let ` : H1
0 pΩq Ñ L2pΩq be a non-smooth operator

satisfying Ass. 2.1 and Spuq “ y the solution operator associated with the PDE in Eq. (1).
Then S has the following properties.

i. The control-to-state operator Spuq “ y associated with Eq. (1) is a non-smooth operator.

ii. S is well-defined, bijective and globally Lipschitz continuous as a function from L2pΩq
to the image space tv P H1

0 pΩq|∆v P L2pΩqu.

iii. S is directionally but not Gâteaux differentiable

iv. S : L2 Ñ tv P H1
0 pΩq|∆v P L2pΩqu is Hadamar directional differentiable for all points

and in all directions in L2pΩq.

Proof. For the proof of these assertions, one can use similar arguments as in [6, Prop. 2.1].
For a detailed proof we refer the reader to [25].

On the Model Problem
A frequently used functional j as part of the cost functional is the tracking-type functional

jpyq “
1

2
}y ´ yd}

2
L2
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with some given function yd usually denoting a given desired state. In the further course we
will therefore concentrate on the following optimization problem

min
py ,uqPH1

0 pΩqˆL2pΩq
J py , uq, with J py , uq “

1

2
}y ´ yd}

2
L2 `

α

2
}u}2

L2

s.t. ´∆y ` `pyq ´ u “ 0 in Ω .

(2)

However, this does not impose any restrictions. It should be noted that the algorithm proposed
in Sec. 4 of this paper is not limited to this specific class of semi-linear PDEs or this kind
of objective functionals. Instead, the arguments can easily be adapted to more general cases
with, for example, a general linear elliptic differential operator of second order instead of the
Laplacian operator, as well as to the more general objective functional considered in Eq. (1).
Therefore, Sec. 5 presents also numerical results for other differential operators. Nevertheless,
to illustrate the idea of the algorithm we restrict ourselves here to this class of semi-linear
elliptic PDEs.
In addition to the assumptions on the non-smooth state equation given in Ass. 2.1, it can
easily be observed that the tracking type objective functional J : H1

0 pΩq ˆ L2pΩq Ñ R in
Eq. (2) is weakly lower semi-continuous and twice continuously Fréchet-differentiable.
One particular example of this class of model problems of non-smooth semi-linear elliptic
optimal control problems, where `pyq “ maxp0, yq, can be found in [6]. There the authors also
show that the resulting non-smooth control-to-state operator is directionally differentiable.
They also precisely characterize its Bouligand subdifferentials, derive first-order optimality
conditions using the Bouligand subdifferentials and use the directional derivative of the control-
to-state mapping to establish strong stationarity conditions.

Lemma 2.3. For all u P H´1pΩq the PDE of the optimization problem (2) is non-linear, well
posed and has a unique solution y P H1

0 pΩq. Furthermore, the optimal control problem (2)
admits at least one solution.

Proof. The proof applies standard arguments for monotone operators. For a detailed proof
we refer the reader to [25].

Although the objective functional itself is convex, the optimization problem (2) is not convex,
which is why the existence of several locally optimal controls has to be taken into account.
Also, due to the non-convexity of the above optimal control problem, necessary first-order
optimality conditions are no longer sufficient and the consideration of sufficient second-order
optimality conditions becomes necessary if one wants to compute an actual minimal point.
However, in this paper we limit our considerations to stationary points and an alternative way
of ensuring a minimum, hence second-order conditions, will not be the subject of this paper.
For the optimization we have to take into account, that it is usually not possible to realize
arbitrary large controls u P L2pΩq. Therefore control constraints yielding a bounded and
convex set of admissible controls can be introduced into the model problem. In addition to
the methods presented here, the handling of such control constraints may include standard
optimal control methods for control constraints [21] or the application of an additional penalty
term similar to Eq. (18). However, this is not directly dealt with in this paper.

Reformulating the PDE Constraint
Now, we introduce an essential reformulation of the PDE constraint based on the idea described
in [12, 11]. For this purpose, we consider the Nemytskij operator ` which is defined by the
non-linear part of the PDE. Inspired by the finite dimensional approach of Griewank and
Walther, we assume that the non-smooth operator ` can be described as a composition of
elemental functions that are either continuously Fréchet differentiable or the absolute value
operator. Subsequently, consecutive continuously Fréchet differentiable elemental functions
can be conceptually combined to obtain a representation, where all evaluations of the absolute
value function can be clearly identified and exploited, see Def. 2.4.
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Definition 2.4 (Structured evaluation). Let ` : H1
0 pΩq Ñ R be some non-smooth Lipschitz

continuous operator satisfying Ass. 2.1. Then, an equivalent representation of ` denoted by ˆ̀

can be obtained using the structured evaluation given by

zi “ ψi py , pσjzjqjăi q

σi “ signpzi q

*

i “ 1, ... , s

ˆ̀py ,σzq “ ψs`1py , pσizi q1ďiďsq with σz “ pσ1z1, ... ,σszsq.

It should be noted that the notation pσjzjqjăi indicates that ψi might depend also explicitly
on the previously defined switching functions zj with j ă i . Hence, the switching function z1

is defined as the argument of the first absolute value evaluation, i.e., as ψ1pyq.
In the finite dimensional case, one has zi P R and therefore σi P t´1, 0, 1u. For the infinite
dimensional setting considered here, one has zi P H1pΩq and the functions σi are also Nemytskij
operators defined by

σi : H1pΩq Ñ L2pΩq, rσi pzi qspxq “ signpzi pxqqzi pxq a.e. in Ω

as functions of zi . This choice ensures that σi pzi q “ abspzi q P L2pΩq holds. From now on,
we will use the notation ˆ̀py ,σzq “ `pyq for σz “ pσ1z1, ... ,σszsq to refer explicitly to this
particular representation of the non-smooth part `pyq based on the auxiliary functions zi and
σi , 1 ď i ď s. It follows from the representation in Tab. 2.4 that ` is locally Lipschitz
continuous. Hence, ` and therefore also the equivalent ˆ̀py ,σzq are also continuous due to the
assumed smoothness of ψi , i “ 1, ... , s, [16, Theo. 3.15] and [26, Cha. 1]. Note, the operator
ˆ̀p., .q is not smooth in z since σ depends non-Fréchet differentiably on z . However, and this
is important to note, the new function ˆ̀p., .q is smooth i.e., Fréchet differentiable, in its two
arguments y and σz , due to the chosen formulation. This fact will be exploited later to define
the smooth branch problems.
Using the well-known reformulations

min pv , uq “ pv ` u ´ abspv ´ uqq{2 and
maxpv , uq “ pv ` u ` abspv ´ uqq{2 ,

(3)

a large class of non-smooth functions is covered by this function model.

Example 2.5. Consider the non-smooth operator `pyq “ maxp5y , y |y |q. Exploiting the iden-
tities (3), we can reformulate ` as a function in terms of the absolute value function and
smooth elemental functions in the following way:

`pyq “ maxp5y , y |y |q “ 1
2

´

5y ` y |y | `
ˇ

ˇ5y ´ y |y |
ˇ

ˇ

¯

.

The corresponding structured evaluation for `pyq “ maxp5y , y |y |q is given by

z1 “ ψ1pyq “ y
σ1 “ signpz1q

z2 “ ψ2py ,σ1z1q “ 5y ´ yσ1z1

σ2 “ signpz2q

ˆ̀py ,σzq “ ψ3py ,σzq “ 1
2

´

5y ` yσ1z1 ` σ2z2

¯

Inserting the formulation ˆ̀py ,σzq with the auxiliary functions σi and zi of ` into the original
optimal control problem (2), one obtains for the functions y P H1

0 pΩq, z P rH
1pΩqss and u P

L2pΩq the smooth optimization problem with state constraints

min
y ,z,u,σ

1
2}y ´ yd}

2
L2 `

α
2 }u}

2
L2

s.t. p∇v ,∇yqL2 ` pˆ̀py ,σzq ´ u, vqL2 “ 0 @v P H1
0 pΩq

pψi py , pσjzjqjăi q ´ zi , vqL2 “ 0 @v P H1
0 pΩq

σizi ě 0 a.e. in Ω

σi : Ω Ñ t´1, 0, 1u

,

/

.

/

-

@ i “ 1, ... , s .

(4)
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Here, rH1pΩqss denotes the product H1pΩq ˆ ¨ ¨ ¨ ˆ H1pΩq of the Hilbert spaces the switching
function z “ pz1, ... , zsq lives in.
In addition to Ass. 2.1 we also assume that the given non-smooth operator ` fulfills the
following property.

Assumptions 2.6. Let ` : H1
0 pΩq Ñ L2pΩq fulfill Ass. 2.1 and ˆ̀py ,σzq be given by Exam. 2.5.

We assume that ` and ˆ̀ are such that the corresponding constraints of optimization problem
(4) fulfill some kind of constraint qualification (e.g., in the sense of [4, 5, 21]) to ensure that
the Lagrange function and the corresponding Lagrange-Multipliers are well-defined.

The following lemma characterizes the essential relation between the solutions of the original
optimization problem (2) and the, according to Tab. 2.4 reformulated, optimization problem
(4) with additional equality and inequality constraints for the auxiliary functions z and σ.

Lemma 2.7. A pair py˚, u˚q P L2pΩq ˆ H1
0 pΩq with y˚ :“ y˚pu˚q is a local solution to

the original optimization problem (2) if and only if py˚, z˚, u˚,σ˚q with σ˚i “ signpz˚i q and
z˚i “ ψi py , pσ˚j z

˚
j qjăi q for 1 ď i ď s is a local solution of the optimization problem (4).

Proof. Assume that u˚ and the corresponding y˚ :“ y˚pu˚q are solutions of the original
optimization problem (2). Considering the equivalent reformulation of the operator ` into ˆ̀

by Tab. 2.4 and defining the auxiliary functions z˚i and σ˚i by

z˚i “ ψi py , pσ˚j z
˚
j qjăi q, σ˚i “ signpz˚i q @ i “ 1, ... , s , (5)

it follows that py˚, z˚, u˚,σq is a local solution of the optimization problem (4) if σi “ σ˚i holds.
Here, the additional equality and inequality constraints for the definitions of the additional
functions z˚i and σ˚i , 1 ď i ď s, ensure that σ˚i pz

˚
i q “ abspz˚i q P L

2pΩq is valid for 1 ď i ď s.
On the other hand, assume that py˚, z˚, u˚,σ˚q, with σ˚i defined by Eq. (5), is a local solution
for optimization problem (4). Then σ˚i pz

˚
i q “ abspz˚i q P L2pΩq is valid for 1 ď i ď s and one

can replace in Eq. (4) σi accordingly, as well as zi by ψi py , pσjzjqjăi q for 1 ď i ď s, taking
the second equality condition in Eq. (4) into account. This then yields the optimal control
problem (2) with solution py˚, u˚q.

This observation motivates the optimization algorithm (Algo. 1) proposed in this paper, i.e.,
the solution of a sequence of smooth subproblems of the form Eq. (4) to solve the original
non-smooth optimization problem (2). Note that the derivation of meaningful optimality
conditions for Eq. (4) does not succeed with classical methods because of the non-smooth
dependence of σ on z . However, if σ˚ is known and σ ” σ˚ is fixed accordingly, the optimality
conditions can be derived using classical Karush–Kuhn–Tucker (KKT) theory, since the non-
smooth dependence of σ and z is removed.
To determine the sequence of branch problems to be solved, we examine the necessary opti-
mality conditions for Eq. (4) with fixed functions σi ” σ˚i according to Eq. (5). Using standard
KKT theory for smooth PDE-constrained optimization problems [14], i.e., introducing corre-
sponding Lagrange multipliers λPDE , λ “ pλ1, ... ,λsq, and µ “ pµ1, ... ,µsq, one obtains for the
Lagrangian

Lpy , z , u,λ
PDE

,λ,µq “J py , uq `
`

∇λ
PDE

,∇y
˘

L2 `
`

λ
PDE

, ˆ̀py ,σzq ´ u
˘

L2

`

s
ÿ

i“1

`

λi ,ψi py , pσjzjqjăi q ´ zi
˘

L2 ´

s
ÿ

i“1

`

µi ,σizi qL2

6



at the optimal point for σi “ σ˚i the first order necessary conditions

0 “ DyLpδy q “ BJ
By δy `

`

∇λPDE ,∇δy
˘

L2 `
`

λPDE , B
ˆ̀

By δy
˘

L2

`

s
ÿ

i“1

`

λi ,
Bψi py ,pσjzj qjăi q

By δy
˘

L2 @δy P H
´1 (6)

0 “ DuLpδuq “ BJ
Bu δu ´

`

λPDE , δu
˘

L2 @δu P pL
2q˚ (7)

0 “ DλPDE
LpδλPDE

q “
`

∇δλPDE
,∇y

˘

L2 `
`

δλPDE
, ˆ̀´ u

˘

L2 @δλPDE
P H´1 (8)

0 “ DλiLpδλi q “
`

δλi ,ψi py , pσjzjqjăi q ´ zi
˘

L2 @δλi , i “ 1, ... , s, δλi P C pΩ̄q
˚

(9)

0 “ DzkLpδzk q “
`

λPDE ,σk
B ˆ̀py ,σzq
Bzk

δzk
˘

L2 ´
`

λk , δzk
˘

L2

`

s
ÿ

i“k`1

`

λi ,σk
Bψi py ,pσjzj qjăi q

Bzk
δzk

˘

L2

´ pµk ,σkδzk qL2 @δzk , k “ 1, ... , s, δzk P L
2 (10)

0 “ pµi ,σizi qL2 i “ 1, ... , s

0 ď µi i “ 1, ... , s , (11)

where the arguments of L are omitted for brevity. Note that in these equations one obtains
extra factors σk due to the chain rule. Rearranging the terms in the integrals, the condition
(10) yields for k “ 1, ... , s

0 “ σk
B ˆ̀py ,σzq
Bzk

λPDE ´ λk `
s
ÿ

i“k`1

σk
Bψi py ,pσjzj qjăi q

Bzk
λi ´ σkµk .

In this case the right-hand side represents the zero function in the corresponding Hilbert space.
Applying σk and exploiting the non-negativity of µk according to Eq. (11), one obtains

0 ď µk |σk | “ rpσk , y , z ,λq a.e. in Ω , (12)

with

rpσk , y , z ,λq :“ |σk |
B ˆ̀py ,σzq
Bzk

λPDE ´ σkλk`
s
ÿ

i“k`1

|σk |
Bψi py ,pσjzj qjăi q

Bzk
λi . (13)

We will use inequality (12) later to define the sequence of subproblems to be solved.

3 Defining and Solving the Branch Problems
Definition 3.1 (Abs-Linearization). For a given structured evaluation and the resulting op-
erator ˆ̀ described in Def. 2.4 the Abs-Linearization is obtained by fixing all σi for 1 ď i ď s
to given σ̄i P L2pΩq, σ̄i : Ω Ñ t´1, 1u for 1 ď i ď s.

Using the abs-linearization, the resulting operator ˆ̀p., σ̄.q is smooth in both arguments.
Now, everything is prepared to introduce the main idea of the new optimization algorithm.
For fixed functions σ̄i P L2pΩq, σ̄i : Ω Ñ t´1, 1u for 1 ď i ď s, we define for py , z , uq P
H1

0 pΩq ˆ rL
2pΩqss ˆ L2pΩq the branch problem

min
y ,z,u

J py , uq (14)

s.t. p∇v ,∇yqL2 ` pˆ̀py , σ̄zq ´ u, vqL2 “ 0 @v P H1
0 pΩq (15)

pψi py , pσ̄jzjqjăi q ´ zi , vi qL2 “ 0 @vi P H
1
0 pΩq @ i “ 1, ... , s (16)

σ̄izi ě 0 a.e. in Ω @ i “ 1, ... , s . (17)
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All functions occurring in this branch problem are smooth in the variables y , u and z be-
cause the function ˆ̀p., .q is smooth in its arguments as mentioned already in the last section.
Therefore, standard smooth optimization methods can be used to solve the branch problem
(14)–(17). Naturally, the question arises how to chose the functions σ̄i , 1 ď i ď s, such that
the solutions of the branch problems approach the solution of the original non-smooth problem
(2). A corresponding strategy will be derived in this section.

The Lagrangian with Bi-quadratic Penalty
As mentioned already above, so far the solution of the non-smooth optimization problem using
a reduced formulation for simulation based approaches, which results essentially from applying
the implicit functions theorem, is not possible due to the lack of the classical chain rule as well
as the non-smoothness of the control-to-state operator associated with the non-smooth state
equation. For this reason, we propose here a penalty-based approach to solve the optimization
problem (14)–(17), where the constraints (15) and (16) are handled explicitly. Methods based
on a reduced formulation will be subject of future research.
From a formal point of view, we treat the inequality constraints (17) with a penalty approach
such that the target function (14) is modified to

min
y ,z,u

J py , uq ` ν

ż

Ω

s
ÿ

i“1

´

maxp´σ̄izi , 0q
¯4

dΩ (18)

with a penalty factor ν ą 0. In this context, as well as in the further course, ν describes a
non-negative constant penalty parameter for the inequality conditions on σizi . Note that the
resulting penalty term does not serve for regularizing the non-smoothness into a smoother
term but to treat the inequality constraint. Here, we chose the exponent 4 to ensure that the
target function is twice continuously differentiable despite the max function that is used for
the formulation of the penalty function. This modified target function is then coupled with
the equality constraints by means of Lagrange multipliers yielding the Lagrangian

Lppy , z , u,λ
PDE

,λ1, ... ,λsq “ J py , uq `
`

∇λ
PDE

,∇y
˘

L2 `
`

λ
PDE

, ˆ̀py , σ̄zq ´ u
˘

L2

`

s
ÿ

i“1

`

λi ,ψi py , pσ̄jzjqjăi q ´ zi
˘

L2 ` ν

ż

Ω

s
ÿ

i“1

´

maxp´σ̄izi , 0q
¯4

dΩ .
(19)

A similar penalty approach was studied in [23], where the logarithm was used as barrier
function. Here, we employ the max-function since we have to evaluate the penalty function
also at 0.

Example 3.2. We consider again `pyq “ maxp5y , y |y |q “ 1
2

´

5y ` y |y | `
ˇ

ˇ5y ´ y |y |
ˇ

ˇ

¯

. For
the reformulated optimization problem given by

min
py ,z,uqPH1

0ˆH1
0ˆL2

1
2}y ´ yd}

2
L2 `

α
2 }u}

2
L2

s.t. p∇v ,∇yqL2 `
`

1
2

`

5y ` y σ̄1z1 ` σ̄2z2

˘

´ u, v
˘

L2 “ 0 @v P H1
0 pΩq

py ´ z1, vqL2 “ 0 @v P H1
0 pΩq

p5y ´ y σ̄1z1 ´ z2, vqL2 “ 0 @v P H1
0 pΩq

σ̄1z1 ě 0 a.e in Ω

σ̄2z2 ě 0 a.e in Ω ,

8



one obtains the Lagrangian

Lppy , z , u,λ
PDE

,λ1,λ2q

“J py , uq `
`

∇λ
PDE

,∇y
˘

L2 `
`

λ
PDE

, 1
2

´

5y ` y σ̄1z1 ` σ̄2z2

¯

´ u
˘

L2

`
`

λ1, y ´ z1

˘

L2 `
`

λ2, 5y ´ y σ̄1z1 ´ z2

˘

L2

` ν

ż

Ω

2
ÿ

i“1

´

maxp´σ̄izi , 0q
¯4

dΩ .

Deriving Necessary Optimality Conditions
A simple comparison of the equivalently reformulated problem and the penalty branch problem
suggests that a solution to the penalty branch problem is feasible for the original problem, if
it satisfies the condition

σizi “ abspzi q a.e in Ω . (20)

However, this provides no statement about the optimality of the solution. In addition, if the
condition Eq. (20) is not met, only a statement about the selected penalty parameter can
be made, but no efficient strategy for switching the fixed σi can be derived. The strategy
presented below, on the other hand, guarantees a descent in the objective value due to Farkas’
lemma, which is stated and proved in Thm. 4.1.
For a branch problem, the first-order necessary optimality conditions can now be derived from
the Lagrangian (19) by using once more standard KKT theory for smooth PDE-constrained
optimization problems given that some regularity conditions are satisfied at the local minimum.
This yields as necessary first order conditions the equations

0 “ DyLppδy q “ BJ
By δy `

`

∇λPDE ,∇δy
˘

L2 `
`

λPDE , B
ˆ̀

By δy
˘

L2

`

s
ÿ

i“1

`

λi ,
Bψi py ,pσ̄jzj qjăi q

By δy
˘

L2 @δy (21)

0 “ DuLppδuq “ BJ
Bu δu ´

`

λPDE , δu
˘

L2 @δu (22)

0 “DλPDE
LppδλPDE

q“
`

∇δλPDE
,∇y

˘

L2 `
`

δλPDE
, ˆ̀

˘

L2 ´
`

δλPDE
, u
˘

L2 @δλPDE
(23)

0 “ DλiLppδλi q “
`

δλi ,ψi py , pσ̄jzjqjăi q ´ zi
˘

L2 @δλi , 1ď iďs (24)

0 “ DzkLppδzk q “
`

λPDE , σ̄k
B ˆ̀py ,σ̄zq
Bzk

δzk
˘

L2 ´
`

λk , δzk
˘

L2

`

s
ÿ

i“k`1

`

λi , σ̄k
Bψi py ,pσ̄jzj qjăi q

Bzk
δzk

˘

L2 (25)

` ν

ż

Ω

´4σ̄k maxp´σ̄kzk , 0q3 δzk dΩ @δzk , 1ďkďs

As one can easily see, the optimality conditions (6)–(9) coincide with the optimality conditions
(21)–(24). The following relation between the KKT point of the branch problem Eqs. (14)–(17)
and the original optimization problem Eq. (2) can be derived.

Lemma 3.3. Let ȳ P H1
0 pΩq, z̄ “ pz̄1, ... , z̄sq P rH

1
0 pΩqs

s , ū P L2pΩq, λ̄PDE P H´1 and
λ̄ “ pλ̄1, ... , λ̄sq P rpL

2q˚ss . Assume that the conditions Eq. (21)–(25) hold for pȳ , z̄ , ū, λ̄PDE , λ̄q
together with Eq. (12) for all 1 ď k ď s. Then the pair pȳ , z̄ , ū, λ̄PDE , λ̄q is a KKT point of the
optimization problem Eq. (4). Furthermore, pȳ , ūq is a stationary point of the original problem
Eq. (2).

Proof. We again point out that the optimality conditions (6)–(9) for the branch problem
coincide with the optimality conditions (21)–(24) for the reformulated problem Eq. (4). Hence,
if one computes a solution of the slightly modified branch problem with the target function
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(18) and the constraints (15)–(16), the necessary first order conditions (6)–(9) of the original
optimization problem are already satisfied. Consequently, the only condition to verify is
Eq. (12). Since the expressions on the right-hand side are completely independent of the
Lagrange multiplier µ of the original optimization problem, one can compute this quantity
also for the solution of the modified branch problem. If it is non-negative, the computed
solution pȳ , z̄ , ūq of the modified branch problem fulfills the necessary first order conditions
of the original optimization problem for the chosen functions σ̄i P L2pΩq. Hence, pȳ , z̄ , ūq is a
stationary point of Eq. (4) and by Lem. 2.7 it is also a stationary point of Eq. (2).

Note, that if Eq. (12) is does not hold, i.e, the expression on the right-hand side is negative, it is
a very natural strategy to choose the index k for which the right-hand side of the condition (12)
is minimal, to modify the corresponding σ̄k appropriately and to solve the then newly defined
branch problem by the same strategy. Due to the structure of Eq. (12), the Lagrange multiplier
λk identifies the regions where the sign of σ̄k has to be changed to obtain a reduction in the
function value. Obviously, other strategies to choose the index k as alternatives to the greedy
approach described here might be applied as well.

Original Problem `pyq

Equivalent Reformulation ˆ̀py ,σzq, σz ě 0

Branch Problem ˆ̀py ,σzq, σz ě 0, σ “ σ̄

Penalty Branch Problem ˆ̀py , σ̄zq, ν maxp´σ̄izi , 0q4

(6
)–
(9
)

Figure 1: The different optimization problems and how they relate to each other
.

Fig. 1 illustrates the nature of the relationships between the different problem formulations
that are derived and discussed in this paper.

4 The Resulting Optimization Algorithm
Motivated by the observations of the last section, we propose the following method stated in
Algo. 1 to solve optimal control problems with non-smooth PDEs of the class considered here
as constraints. Since the proposed algorithm is essentially motivated by the special handling
of the absolute value function, i.e., the abs-linearization, we call the resulting optimization
algorithm SALi for Successive Abs-Linearization. Note that the formulation of the algorithm is
done in the function space. Therefore, up to this point one can use the own method of choice to
solve the smooth modified branch problems. Following standard practice for PDE-constrained
optimization, we develop the algorithm in a function space setting. This has the advantage
that the associated algorithms are often able to provide mesh-independent convergence for a
variety of conform discretizations, see for example [1, 2, 15, 22]. As can be seen from the
numerical results in Sec. 5, mesh independence is also an important feature of the algorithm
presented here.
For the numerical results shown in the next section, we used a Finite-Element-Approach based
on FEniCS [19] to discretize the PDEs and to describe the other constraints in combination
with a Newton method for the solution of the smooth modified branch problems.
For the initial state, control and parameters σ̄i , the non-linear variational Lagrange problem
is solved by Newton’s method using the derivatives calculated within FEniCS.
The computed solution is examined according to the switching rule and the branch problem

10



Algorithm 1

Input: Initial values: σ̄0 “ pσ̄0
1, ... , σ̄0

s q, y
0, z0 “ pz0

1 , ... , z0
s q, u

0

Parameter: α ą 0, ν ą 0, i “ 0
for i “ 0, 1, ... do
Solve branch problem (18) with constraints (15)–(16) to obtain y i , z i , ui ,λi

PDE
,λi

if Eq. (12) holds for k “ 1, ... , s then
y i , z i , ui stationary for original optimal control problem, stop

else
κ “ argmaxtk P t1, ... , su : ´rpσ̄ik , y , z ,λqu, where rp.q is given by Eq. (13)
Switch branch using λκ to define σ̄i`1

κ

Set σ̄i`1
k “ σ̄ik for k “ 1, ... , s, k ‰ κ

end if
i “ i ` 1

end for

is modified by updating the corresponding σi . Here again the update strategy is based on
Eq. (12).
Hereinafter we derive a heuristic for the switching strategy, which is presented in Algo. 2, and
provides the desired effect, as we will see in the numerical results. By exploiting the essence
of Eq. (12), a beneficial and comparatively easy way to implement an update strategy for the
parameters σ̄i can be created. Reformulation of Eq. (12) and application of σk provides

0 ď
`

λPDE , |σk |
B ˆ̀py ,σzq
Bzk

δzk
˘

L2 ´
`

λkσk , δzk
˘

L2 `

s
ÿ

i“k`1

`

λi , |σk |
Bψi py ,pσjzj qjăi q

Bzk
δzk

˘

L2 @δzk ,@k “ 1, ... , s.

This condition is violated if and only if there exists an index k P t1, ... , su such that σk “
signpλkq with

0 ą
`

λPDE , |σk |
B ˆ̀py ,σzq
Bzk

δzk
˘

L2 ´
`

|λk |, δzk
˘

L2 `

s
ÿ

i“k`1

`

λi , |σk |
Bψi py ,pσjzj qjăi q

Bzk
δzk

˘

L2 .

Since |σk | ” 1, this is equivalent to

0 ą
`

λPDE , B
ˆ̀py ,σzq
Bzk

δzk
˘

L2 ´
`

|λk |, δzk
˘

L2 `

s
ÿ

i“k`1

`

λi ,
Bψi py ,pσjzj qjăi q

Bzk
δzk

˘

L2 . (26)

Again, as already discussed in Sec. 3 it is a natural strategy to choose the index k for which the
right-hand side in Eq. (26) is minimal. Since this is significantly influenced by the Lagrange
multiplier λk , we use this as an indicator to switch from the current branch problem defined
by σ̄i

k to the next one defined by σ̄i`1
k by switching the signs of σ̄i

k in the regions where the
corresponding |λik | is largest. For this purpose, the Lagrange multipliers λi corresponding to
the solution of the current branch problem are projected to the adequate finite dimensional
function space and their L8-norm is computed in order to determine the Lagrange multiplier
λk with maximum influence on Eq. (26). If this maximum value (almost) vanishes, a stationary
point is already reached and the algorithm stops. Otherwise, the sign of the corresponding
discretized σ̄k is switched at those mesh points where |λk | is large and exceeds a certain
threshold. Certainly, there are also other update strategies, however this is the one we have
chosen and which has show convincing results, as we will see in the further course of this
report. We would like to emphasize that the vanishing Lagrange multiplier λk corresponds to
the equality constraint Eq. (16) for the definition of the switching function zk . The termination
condition due to this vanishing Lagrange multiplier is based on the requirement that the
associated equality constraint Eq. (16) is satisfied naturally at the solution. Nevertheless, the
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Algorithm 2

Input: Solved branch problem (18) for σ̄k with solution yk , zk , uk ,λk
PDE

,λk ;
Lpyk , zk , uk ,λk

PDE
,λkq, J pyk , ukq, Lpyk´1, zk´1, uk´1,λk´1

PDE
,λk´1q, J pyk´1, uk´1q

Parameter: ε1, ε2, ε3 ą 0
if }λk}8 ă ε1 holds for k “ 1, ... , s then
y i , z i , ui stationary for original optimal control problem, Stop

end if
if |Lpyk , zk , uk ,λk

PDE
,λkq ´ J pyk , ukq| ă ε2 and |J pyk´1, uk´1q ´ J pyk , ukq| ă ε3

holds then
Stop

else
κ “ argmaxtk P t1, ... , su : }λk}8u
Switch branches, e.g., switch sign σ̄i`1

κ where |λκ| is large
Set σ̄i`1

k “ σ̄ik for k “ 1, ... , s, k ‰ κ
end if

Lagrange multiplier do not necessarily have to vanish at the stationary point. For this reason,
it is additionally checked whether the admissibility is maintained by calculating the difference
between the Lagrange function of the current branch problem at the calculated solution and
the original target function (without penalty term). Admissibility is achieved if this difference
is close to zero. The algorithm stops if admissibility is reached and the objective function
value does not improve significantly compared to the previous values, even if }λk}8 is not
close to zero for all 1 ď k ď s.
Note that if no switching occurs, then the branch problem with an optimal solution was
reached, and the algorithm stops. Otherwise, the branch problem is updated accordingly and
a new solution is computed by once again solving the non-linear variational Lagrange problem
by applying Newton’s method. This way a successive reduction in the objective function value
is observed. This can also be seen in Fig. 2(a) for one example.
Despite the fact that this heuristic works well in practice, we will continue to develop our
existing approach further and adapt it for the calculation of Eq. (12) and a related systematic
switching strategy of the branch problems.
In what follows we will deal with the reduction of the target function value after each branch
problem switch and examine it in more detail.

Theorem 4.1 (Decent Direction). Consider the optimization problem Eq. (2) with a non-
smooth operator ` : H1

0 pΩq Ñ L2pΩq satisfying Ass. 2.6. Then a solution pȳ , z̄ , ūq for the
associated penalty optimization problem corresponding to σ̄ with objective functional Eq. (18)
and the constraints Eqs. (15)–(16) is already an optimal solution for Eq. (2) or there exists a
σ˝ such that the solution py˝, z˝, u˝q to the corresponding penalty branch problem is feasible
for Eq. (2) and satisfies Jpy˝, u˝q ď Jpȳ , ūq.

Proof. According to Ass. 2.6 the considered optimization problem satisfies some kind of con-
straint qualification. The constraint qualification allows the use of the Farkas alternative (see
e.g. Appendix A as well as [7, 9, 18]) to provide necessary conditions of the KKT type. The
Farkas alternative then especially yields that, if the solution to the penalty branch problem
fails to be an optimal solution to the original problem formulation, i.e., Eq. (12) does not hold,
then there exists some descent direction yielding descent in the objective value.
According to Lem. 3.3 the solution w̄ :“ pȳ , z̄ , ūq for the associated penalty optimization prob-
lem is already a solution for the original optimization problem (2) if Eq. (10) —and hence
condition (12)— holds. Since the optimality conditions Eqs. (6)–(9) coincide with the opti-
mality conditions Eqs. (21)–(24), they hold for w̄ . Hence, the only potential non vanishing
components in the derivative of Lppw̄ ,λ

PDE
,λq are the derivative with respect to the switching
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functions zi , i “ 1, ... , s. Let K be the cone that is spanned by the equality and active inequal-
ity constraints Eqs. (15)–(17), A : L2pΩq Ñ L2pΩq˚ the operator defined by the derivatives
of the constraints and b :“ DJpw̄q the derivative of the objective functional Jpw̄q :“ Jpȳ , ūq
at the considered point w̄ . Note, that for the active inequality constraints we have zi “ 0.
Hence, the extended Farkas Lemma, Lem. A.1, yields that the solution to the current penalty
branch problem either fulfills Eq. (12) and therefore all optimality conditions for the original
optimal control problem are met and the current iterate is already a solution to the original
problem, or there exists a direction v˚ such that

xDJpw̄q, v˚y ă 0 . (27)

The latter implies a descent direction for the objective functional and hence the existence
of a σ˝ ‰ σ̄ such that the solution to the corresponding penalty branch problem satisfies
Jpy˝, u˝q ď Jpȳ , ūq. Once again the Farkas alternative implies that this solution is either an
optimal solution to the original optimization problem or there exists a decent direction in the
sense of Eq. (27). This proofs the assertion.

Thus, it should be noted that because of this choice, the corresponding penalty branch problem
either already provides an optimal solution of the original problem or, by using Eq. (26), a
descent direction. It is precisely this circumstance that is exploited in the switching strategy
and the heuristic, explained previously, and thus leads iteratively to a reduction in the objective
functional and ultimately to a stationary point.

Finite Dimensional Formulation
If one considers the discretized and hence finite dimensional problem, the convergence of the
algorithm follows immediately. This is due to the fact that the bounded original problem was
decomposed into a large but finite number of discretized branch problems and the objective
function value decreases with each iteration step. Therefore, a stationary point is reached
after finitely many steps.
One might suspect that the update strategy for σ is somehow reminiscent of active-set strate-
gies. However, let us highlight one more time that the σ update strategy depends only on
the Lagrange multiplier associated with the specific equality constraint corresponding to the
definition of the specific switching function z .
In the last paragraph, the algorithm was presented and explained in the continuous function
space setting. Now, the natural question is how to put this into practice and, especially,
how to solve the individual branch problems. For the numerical treatment of the optimal
control problem (18) with the constraints given by Eqs. (15) and (16), the Lagrange equation
(19) will be discretized. For this purpose we apply a standard finite element method with
piecewise linear and continuous ansatz functions for the discretization of the functions y and
ziσi , i “ 1, ... , s, and piecewise constant ansatz functions for the control u. The resulting
problem is solved by the Galerkin method within the open source finite element environment
FEniCS.
Below we will discuss the spatial discretization of the constrained optimization problem (2),
which will result in a large-scale non-linear optimization problem. We focus on finite element
approaches with a quasi uniform triangulation Th “ tT1, ... ,Tmu, the vector space of test
functions V h :“ tvh P C 0pΩ̄q : vh|Tj P P1pT q @T P Th, vh|BΩ “ 0u “ spantξ1, ... , ξnu and the
discrete control space Uh :“ spanteT : T P Thu where eT : Ω Ñ R denotes the characteristic
function for the simplex T P Th. The superscript h denotes the mesh size of the triangulation
and is given by

h :“ max
TPTh

diampT q .

Then the discretization of Eq. (2) can be stated as

min
pyh,uhqPV hˆUh

Jpyh, uhq (28)

s.t. p∇yh,∇vhqΩ ` p`pyhq, vhqΩ ´ pu
h, vhqΩ “ 0 @vh P V h . (29)
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For a given function yh P V h we denote by y “ py1, ... , ynq
T P Rn its vector of coefficients with

respect to the basis tξ1, ... , ξnu, i.e.,

yhpxq “
n
ÿ

i“1

yiξi pxq .

Similarly, every discretized control function in the space Uh with u “ pu1, ... , umq
T P Rm can

be written as

uhpxq “
m
ÿ

i“1

uieTi pxq ,

where m is the total number of elements T in the triangulation Th. Taking into account that
the operator ` is non-linear, the above representations yield the following discretizations:

`pyhq “ `p
n
ÿ

i“1

yiξi q

and

p`pyhq, vhqL2 “

ż

Ω

`pyhqvhdx «
ÿ

TPTh

ż

T

`pyhqvhdx . (30)

The integrals over the elements T P T are approximated by some quadrature formula

ÿ

TPTh

ż

T

`pyhqvhdx «
ÿ

TPTh

nk
ÿ

k“1

ωk `

˜

ni
ÿ

i“1

yiξi pxkq

¸

nj
ÿ

j“1

ξjpxkq , (31)

with nk quadrature points per element T and corresponding weights ωk .
Hence, the naturally arising discretization for the non-smooth operator from Definition 2.4 in
the finite element context is per quadrature point.This increases the number of absolute value
evaluations, but not the way they are nested.
As seen in Eq. (31), we would like to point out that the number of non-smooth functions `
in the discretized problem is per quadrature point. Compared with our substitution strategy
Tab. 2.4, this is not in perfect alignment with a representation by a finite element function
like the state y . Consequentially, the choice of this discretization and the execution of the
equivalent reformulation according to Tab. 2.4 leads to an increase of the polynomial degree due
to the multiplication σ̄i ¨zi in the discretized representation of the operator ˆ̀ in contrast to the
operator `. However, this specific discretization allows for a straight forward implementation
with FEniCS.
Inserting Eq. (30) into Eq. (29) and replacing v by ξ leads to:

ż

Ω

n
ÿ

k“1

∇ξjpxq ¨∇ξkpxqyk ` `
`

n
ÿ

i“1

yiξi pxq
˘

ξjpxqdx “

ż

Ω

˜

m
ÿ

s“1

useTs pxq

¸

ξjpxqdx , (32)

for i ď j ď n. By defining

Ajk :“

ż

Ω

∇ξjpxq ¨∇ξkpxqdx “ p∇ξj ,∇ξkqΩ,

bkpy
hq :“

ż

Ω

`
`

n
ÿ

i“1

yiξi pxq
˘

ξkpxqdx

and

gj :“

ż

Ω

uhpxqξjpxqdx “

ż

Ω

˜

m
ÿ

s“1

useTs pxq

¸

ξjpxqdx
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Eq. (32) can be rewritten as

n
ÿ

k“1

Ajkyk ` bkpy
hq “ gj .

Here Ajk represent the entries of the stiffness matrix A. The discretization of the PDE results
in a non-linear system of algebraic equations, which we abbreviate as

Ay ` bpyq “ uTE , (33)

with the control matrix Eij :“ peTi , ξjq and y “ py1, ... , ynq
T denoting the finite-element ap-

proximation belonging to the right-hand side given by the discrete control u. To this end, the
function yh|Tk

on the linear element Tk , is realized in terms of its point values at preselected
sets of nodes scattered along the boundary of Tk . Note that in the above algebraic system
the vector u and the matrices A,E are constant since they are independent of the unknown
y1, ... , yn. However, as previously mentioned, this non-linear algebraic equation is assumed to
be based on a reasonable approximation of the integral via quadrature.
Hence, the resulting discretized objective functional reads as

min
py,uqPRnˆRm

Jpy, uq “
1

2
py ´ ydq

TMpy ´ ydq `
α

2
uTDu .

Herein M P Rnˆn denotes the mass matrix Mij “ pξi , ξjqΩ and D the control mass matrix with
the entries Dij “ peTi , eTj qΩ, where D is a diagonal matrix because the interior of the triangles
are disjunct to each other.
Similarly, to the previously derived discretization, the discrete counterpart to branch problem
Eq. (14)–(17) is given by:

min
pyh,zh,uhqPV hˆrV hssˆUh

Jpyh, uhq ` ν

ż

Ω

max
`

´σ̄h
i z

h
i , 0

˘4
dx

s.t. p∇yh,∇vhqΩ `

´

ˆ̀pyh, σ̄hzhq, vh
¯

Ω
“ puh, vhqΩ, @vh P V h

pzhi ´ ψi py
h, pσ̄h

j z
h
j qjăi q, v

hqΩ “ 0 @ 1 ď i ď s, @vh P V h .

(34)

Note that zh “ pzh1 , ... , zhs q P rV
hss . Hence, it becomes clear that the inequality constraint

from Eq. (17) is enforced per quadrature point via our penalty approach.

The assumptions for the non-smooth operator ` are carried over from the continuous setting
into the discrete and hence once again we assume that the optimization problem Eq. (34) fulfills
some kind of constraint qualification to ensure that the Lagrange function and the Lagrange
multipliers are well-defined, i.e., the existence of the Lagrange multipliers is ensured. The
corresponding discrete Lagrange functional related to the penalty branch problem of system
Eq. (34) is now given by

Lppyh, zh, uh,λh
PDE

,λhq “ J pyh, uhq `
`

∇λh
PDE

,∇yh
˘

Ω
` ν

ż

Ω

s
ÿ

i“1

´

maxp´σ̄h
i z

h
i , 0q

¯4

dx

`
`

λh
PDE

, ˆ̀pyh, σ̄zhq ´ uh
˘

Ω
`

s
ÿ

i“1

`

λhi ,ψi py
h, pσ̄h

j z
h
j qjăi q ´ zhi

˘

Ω
.

(35)

The KKT system corresponding to Eq. (35)is then solved with a non-linear variational Newton
solver. To determine the sequence of branch problems to be solved, we apply the already
explained switching method in its discrete version corresponding to the discretization described
above.
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5 Numerical Results
For the numerical tests we considered two-dimensional examples defined below in Case 1 to
Case 4. In each example Ω was chosen to be the unit square, and we take as an initial guess
y ” 0, u ” 0, z1 ” 0, z2 ” 0. Furthermore, σ̄1 and σ̄2 are chosen such that they fit the
ones defined by the desired state yd . We terminate the iteration if either the L2-Norm of the
Lagrange multipliers λi becomes less than 10´9 and therefore no further switching between
branch problems is done, or if the difference between the Lagrange function value, which
includes is the same as the bi-quadratic penalty terms and the original objective functional,
becomes less than 10´12. The latter implicitly ensures that the sign condition σ̄izi ě 0 is
correctly adhered to. All calculations were performed with FEniCS, version 2019.1.0, using
the Python interface.

Case 1

min
py ,uq

1

2
}y ´ yd}

2
L2 `

α

2
}u}2

L2

s.t. ´∆y `maxp0, yq ´ u “ f in Ω “ p0, 1q2 ,

with ydpx1, x2q “

#

ppx1 ´
1
2 q

4 ` 1
2 px1 ´

1
2 q

3q sinpπx2q, if x1 ď
1
2

0, otherwise ,

where f P L2pΩq is chosen on the right hand side such that ´∆yd `maxp0, ydq “ f is fulfilled.

Case 2

min
py ,uq

1

2
}y ´ yd}

2
L2 `

α

2
}u}2

L2

s.t. ´∆y `maxp5y , y |y |q ´ u “ 0 in Ω ,

with ydpx1, x2q “
sin
`

10πppx1´
1
2 q

2
`px2´

1
2 q

2
q

˘

c

1
100`px1´

1
2 q

2`px2´
1
2 q

2

´ 1 .

Case 3

min
py ,uq

1

2
}y ´ yd}

2
L2 `

α

2
}u}2

L2

s.t. ´ ε∆y `maxp5y , y |y |q ´ u “ 0 in Ω ,

with ydpx1, x2q “min
´

max
`
ˇ

ˇx1 ´
1
2

ˇ

ˇ,
ˇ

ˇx2 ´
1
2

ˇ

ˇ

˘

´ 1
4 , 0

¯

and ε ě 0, const.

Case 4

min
py ,uq

1

2
}y ´ yd}

2
L2 `

α

2
}u}2

L2

s.t. ´∆y `minpy , y |y |q ´ u “ 0 in Ω ,

with ydpx1, x2q “px1 ´
1
2 q

3 cospπx2q .

The numerical results for these cases, considering different values of the mesh size denoted by h,
the penalty parameter α for the control in the objective functional, and the penalty parameter
ν in the bi-quadratic penalty term, are presented in Tab. 1–4. Herein the abbreviation #SC
denotes the total number of of switches between branch problems for the given parameter
setting.
It can be observed that in almost all cases only a few Newton iterations are needed to solve
the problem and to compute the stationary point.
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A commonly used method for solving such non-smooth problems are semi-smooth Newton-like
methods. Therefore, we also provide a comparison with results obtained with a semi-smooth
Newton approach.
Case 1 represents an example taken from [6]. The parameters were adopted accordingly and
the mesh size was reconstructed to match the one used in [6] in the best possible way. Tab. 1
shows a comparison between the non-regularized approach presented here and the proposed
semi-smooth Newton’s method in [6]. It can be observed that in the more involved example,
according to [6], the approach presented here requires only one single Newton step and no
switches between branch problems to compute the optimal solution. The semi-smooth Newton
method on the other hand requires an average of three to five steps for the considered problem.
Tab. 2.4 shows also the quality of the resulting approximation which is given the relative error
‖yh ´ y‖L2 { ‖y‖L2 .
The fact that SALi does not require any switches between branch problems is mainly due to
the fact that the reformulation described in Tab. 2.4 makes it possible to exploit as much
information as possible given by the optimization problem and in particular by the given
desired state yd . The initial choice of the σi motivated by the desired state already provides
the perfect guess for the σi . Since the desired state is reachable by the given state equation no
switches between branch problems are required and the optimal solution can be computed by
solving the initial branch problem, which is already the final one. Therefore, the convergence
in just one Newton step in Tab. 1 is not surprising either. Due to the desired state yd being
reachable, we know the respective branch of the corresponding absolute value beforehand.
Hence the state equation could also be written as

´∆y ` 1
2 py ` signpydqyq ´ u “ f .

Note that this might be a different PDE than the original one, but in the tracking type
optimization context both optimization problems will attain the same solution. Modifying
the state equation this way, we receive a quadratic objective with a linear constraint in y and
hence convergence in just one Newton step. For similar reason we can observe convergence in
two Newton steps in Tab. 5.
It is important to highlight that having knowledge about the optimal branch given by σ˚

corresponding to signpydq beforehand and using this to define the initial values accordingly,
the operator rpσ˚, y , z ,λq given by Eq. (13) is already non-negative. Thus, the described
switching method based on rpσk , y , z ,λq leads to the desired result, i.e., no switching, since
the initial σ̄ “ σ˚ has already the correct sign.

SALi [6]
h α ν

‖yd´yh‖L2

‖yd‖L2
#SC # Newton # Newton

3.009e-02 1e-4 50 5.764e-04 0 1 4
1.537e-02 1e-4 50 1.514e-04 0 1 5
7.728e-03 1e-4 50 3.790e-05 0 1 3
3.885e-03 1e-4 50 9.663e-06 0 1 3
3.009e-02 1e-4 100 5.764e-04 0 1 4
1.537e-02 1e-4 100 1.514e-04 0 1 5
7.728e-03 1e-4 100 3.790e-05 0 1 3
3.885e-03 1e-4 100 9.663e-06 0 1 3
7.728e-03 1e-4 500 3.790e-05 0 1 3
7.728e-03 1e-2 100 8.106e-05 0 1 2
7.728e-03 1e-3 100 6.609e-05 0 1 2
7.728e-03 1e-5 100 1.237e-05 0 1 5
7.728e-03 1e-6 100 3.056e-06 0 1 no conv.

Table 1: Numerical results in Case 1.
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Figure 2: (a) History of the objective function value with respect to the branch problem
switches corresponding to the parameters given in the first row in Tab. 2. (b) Final
iteration step with final branch problem and resulting solution for y , z1 and z2.

The numerical results for Case 2 are given in Tab. 2. In this demanding case, where a genuine
non-linear and non-smooth operator in the PDE and an unreachable target function yd occur,
comparatively more switches between branch problems and also more Newton iterations are
needed to compute the minimal solution.
It should be noted that in each test case, it is verified that the condition σz “ abspzq in the
integral sense holds for the resulting z . This is shown here only in an exemplary fashion for
the second case in Fig. 2 and has also been computed for Case 4 in Tab. 5, where the maximal
value of ‖σizi´|zi |‖L2 for i “ 1, 2 is always fairly close to zero. Fig. 2(b) illustrates the last
iteration step in σ1,σ2 as well as the resulting states y , z with an over line plot for the z
and σ components showing how the prescribed signs are observed. The target function yd is
shown in the top left corner. In Fig. 2(a) one can see how the successive exploitation of the
corresponding dual variables leads to the next branch problem which results in a successive
reduction in the objective function value for all considered cases.
The method presented here also allows the treatment of optimization problems of the con-
sidered problem class with non-smooth target functions yd as given in Case 3. Such target
functions are not achievable due to the PDE constraint with the Laplace operator as differen-
tial operator. Nevertheless, in the example considered in Case 3, with non damped Laplacian,
i.e., ε ” 1, no switches and only two Newton steps are required to calculate the minimum
solution. The numerical results are given in Tab. 3.
However, if the Laplace operator is attenuated by a positive factor ε ă 1, also less regular
solutions for y are achievable. Tab. 4 shows the numerical results for different values for ε in
Case 3.
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h α ν Objective ||y´yd ||
||yd ||

#SC #Newton

1.537e-02 1e-4 100 1.678 8.027e-01 26 132
1.159e-02 1e-4 100 1.677 8.025e-01 28 141
7.071e-03 1e-4 100 1.677 8.023e-01 35 165
1.537e-02 1e-4 500 1.678 8.027e-01 33 118
1.159e-02 1e-4 500 1.677 8.025e-01 36 185
7.071e-03 1e-4 500 1.677 8.023e-01 46 225
1.159e-02 1e-6 100 0.379 2.963e-01 22 118
7.071e-03 1e-6 100 0.377 2.937e-01 34 178
1.159e-02 1e-6 500 0.381 2.976e-01 15 92
7.071e-03 1e-6 500 0.378 2.962e-01 31 175
7.071e-03 1e-7 500 0.127 1.800e-01 49 317

Table 2: Numerical results for smooth but non reachable yd (Case 2).

h α Objective ||y ´ yd ||L2 max
i“1,2

t‖σizi´|zi |‖L2u #SC # Newt.

7.071e-03 1e-2 1.158e-03 4.568e-02 8.9e-30 0 2
7.071e-03 1e-3 7.679e-04 3.431e-02 5.1e-28 0 2
1.537e-02 1e-4 3.889e-04 2.133e-02 2.0e-08 0 2
1.159e-02 1e-4 3.886e-04 2.132e-02 2.0e-08 0 2
7.071e-03 1e-4 3.885e-04 2.131e-02 1.9e-08 0 2
1.159e-02 1e-4 3.886e-04 2.132e-02 2.0e-08 0 2
7.071e-03 1e-4 3.885e-04 2.131e-02 1.9e-08 0 2
1.159e-02 1e-6 2.283e-05 3.690e-03 1.4e-06 0 3
7.071e-03 1e-6 2.277e-05 3.677e-03 1.4e-06 0 3
1.159e-02 1e-7 4.431e-06 1.574e-03 7.5e-06 0 3
7.071e-03 1e-7 4.397e-06 1.559e-03 7.3e-06 0 3

Table 3: Numerical results in Case 3 for ε ” 1.

h ε α Objective ||y´yd ||
||yd ||

#SC # Newton

1.537e-02 1e-1 1e-4 3.886e-04 4.181e-01 0 2
1.159e-02 1e-1 1e-4 3.886e-04 4.179e-01 0 2
7.071e-03 1e-1 1e-4 3.884e-04 4.177e-01 0 2
1.537e-02 1e-2 1e-4 3.888e-04 4.181e-01 0 2
1.159e-02 1e-2 1e-4 3.886e-04 4.179e-01 0 2
7.071e-03 1e-2 1e-4 3.884e-04 4.177e-01 0 2
1.537e-02 1e-4 1e-4 3.888e-04 4.181e-01 0 2
1.159e-02 1e-4 1e-4 3.886e-04 4.179e-01 0 2
7.071e-03 1e-4 1e-4 3.884e-04 4.177e-01 0 2
7.071e-03 1e-6 1e-4 3.886e-04 4.179e-01 0 2

Table 4: Numerical results in Case 3 with damped Laplacian.
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h α Objective ‖y´yh‖L2

‖y‖L2
max
i“1,2

t‖σizi´|zi |‖L2u #SC #Newt.

2.8e-02 1e-02 5.572e-04 9.97e-01 1.1e-11 0 2
2.8e-02 1e-03 5.434e-04 9.73e-01 3.8e-10 0 2
2.8e-02 1e-04 4.750e-04 8.76e-01 5.0e-09 0 2
2.8e-02 1e-06 2.183e-04 5.54e-01 1.5e-08 0 2
1.4e-02 1e-02 5.565e-04 9.97e-01 9.7e-12 0 2
1.4e-02 1e-03 5.426e-04 9.73e-01 7.7e-11 0 2
1.4e-02 1e-04 4.737e-04 8.75e-01 6.2e-10 0 2
1.4e-02 1e-06 2.143e-04 5.47e-01 1.8e-09 0 2
1.4e-02 1e-08 7.463e-05 3.22e-01 2.6e-09 0 2
7.7e-03 1e-02 5.564e-04 9.97e-01 1.2e-11 0 2
7.7e-03 1e-03 5.425e-04 9.73e-01 2.9e-11 0 2
7.7e-03 1e-04 4.735e-04 8.75e-01 4.8e-12 0 2
7.7e-03 1e-06 2.133e-04 5.45e-01 1.2e-11 0 2
7.7e-03 1e-08 7.183e-05 3.12e-01 1.7e-11 0 2

Table 5: Numerical results for Case 4.

One may wonder how the algorithm reacts if one cannot extract the correct branch problem
or the correct signs of the σi from the underlying a priori information as in Cases 1 and 3. We
also tested Case 1 with some random initial σ̄i . Tab. 6 shows the numerical results for Case
1 with initial σ̄1 given by

σ̄1 “

#

`1, if x1 ` x2 ą 1

´1, otherwise .

This shows in particular that the presented algorithm and more precisely the associated switch-
ing method performs as intended, even if we do not start with the proper branch problem.
In any case Algo. 1 converges properly. However, provided the optimization problem provides
already the correct sign for σ as for instance with tracking type objective functionals, it is
always advisable to exploit this for the initial σ̄.

h α ν
‖yd´yh‖L2

‖yd‖L2
#SC # Newton

3.009e-02 1e-4 50 5.711e-04 1 3
1.537e-02 1e-4 50 4.430e-04 1 3
7.728e-03 1e-4 50 4.911e-04 1 3
3.885e-03 1e-4 50 5.103e-04 1 3
3.009e-02 1e-4 100 5.750e-04 1 3
1.537e-02 1e-4 100 4.577e-04 1 3
7.728e-03 1e-4 100 5.108e-04 1 3
3.885e-03 1e-4 100 5.335e-04 1 3
7.728e-03 1e-4 500 6.775e-04 1 3
7.728e-03 1e-2 100 1.519e-03 1 3
7.728e-03 1e-3 100 1.027e-03 1 3
7.728e-03 1e-5 100 2.220e-04 1 3
7.728e-03 1e-6 100 1.403e-04 1 3

Table 6: Numerical results in Case 1 with initial σ not corresponding to sgnpydq.
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As additional observation, Tab. 1, Tab. 2 and Tab. 5 suggest a further special property of
the SAli algorithm, namely mesh independence. Regardless of the mesh size, the behavior for
the relative error ‖yd ´ y‖L2 { ‖yd‖L2 with respect to different parameters α remains the same.
The mesh independence can also be observed in Tab. 1 for Case 1 since independent of the
mesh size only one Newton step is required. The same applies to Case 4 presented in Tab. 5.
There, however, independent of the mesh size always two Newton steps are required, since the
nesting of the absolute value occurring in case 4 leads to a quadratic term appearing in the
PDE. Moreover, with Tab. 5 it is clearly evident that in each parameter setting the desired
condition σ̄izi “ abspzi q for i P t1, ... , su is met in the integral sense.

6 Conclusion and Outlook
We presented a new approach based on successive abs-linearization for the solution of opti-
mization problems constrained by non-smooth PDEs. For the considered class of genuinely
non-smooth problems, this approach enables the optimization without any substitute assump-
tions and regularizations for the non-smoothness. The key idea is to appropriately decom-
pose the non-smooth problem into smooth branch problems, which can be solved by classical
smooth optimization problems. Optimality conditions for the considered formulations were
derived and discussed. Solving the current branch problem, exploiting standard optimality
conditions for the smooth case as well as using an indicator strategy to determine the next
branch problem, which results in a successive reduction in the objective function value for all
tested cases and leads to the minimal solution. By treating the inequality condition with a
bi-quadratic penalty approach the sign condition could easily be incorporated into the algo-
rithmic framework. The type of discretization employed here was also presented and critically
examined. Finally, several non-smooth PDE-constrained problems that fit into the considered
setting were discussed. The corresponding numerical results clearly show also the resulting
mesh independence of the presented method. However, a comprehensive convergence analysis
for the continuous case as well as the more detailed analytical investigation of the optimality
conditions and their classification, such as the comparison with the optimality conditions of
MPECS, remain the subject of current research.
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A Farkas Alternative in Hilbert Spaces
We recall an extended version of the Farkas’ Lemma, which gives necessary and sufficient
conditions on the solvability of a linear system. The following is derived from [7].

Lemma A.1 (Farkas’ Lemma). Let H and V be some Hilbert spaces over a domain Ω Ă Rn,
and denote by H˚ and V ˚ the topological dual of H and V respectively. Furthermore, let K be
a convex cone in H and A : H Ñ V a bounded linear operator. If ApK q is weakly closed, then
the following are equivalent:

(a) The system Ax “ b has a solution x P K˚.

(b) xb, v˚y ě 0 for all v˚ with A˚v˚ P K˚.

For a more general version of the Farkas lemma see for instance [9] and [18].
Note, that the equivalence in Lem. A.1 also indicates, that only one of the two following
properties can hold:

(a ) The system Ax “ b has a solution x P K˚.
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(b’) Dv˚ with A˚v˚ P K˚ such that xb, v˚y ă 0.

This is known as the Farkas alternative.
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