
Priority Programme 1962

Solving Non-Smooth Semi-Linear Optimal Control Problems with
Abs-Linearization

Olga Ebel, Stephan Schmidt, Andrea Walther

Non-smooth and Complementarity-based
Distributed Parameter Systems:
Simulation and Hierarchical Optimization

Preprint Number SPP1962-093

received on October 26, 2018



Edited by
SPP1962 at Weierstrass Institute for Applied Analysis and Stochastics (WIAS)

Leibniz Institute in the Forschungsverbund Berlin e.V.
Mohrenstraße 39, 10117 Berlin, Germany

E-Mail: spp1962@wias-berlin.de

World Wide Web: http://spp1962.wias-berlin.de/

http://spp1962.wias-berlin.de/


Solving Non-Smooth Semi-Linear Optimal Control
Problems with Abs-Linearization

Olga Ebel1, Stephan Schmidt2, Andrea Walther1

1Institut für Mathematik, Universität Paderborn
2Institut für Mathematik, Universität Würzburg

October 26, 2018

Abstract

We investigate optimization problems with a non-smooth partial differential equation as
constraint, where non-smoothness is assumed to be caused by the functions abs(), min()
and max(). For the efficient as well as robust solution of such problems, we propose a
new optimization method based on abs-linearisation, i.e., a special handling of the non-
smoothness without regularization. The key idea of this approach is the determination of
stationary points by an appropriate decomposition of the original non-smooth problem into
several smooth so-called branch problems. Each of these branch problems can be solved by
classical means. The exploitation of corresponding optimality conditions for the smooth case
identifies the next branch and thus yields a successive reduction of the objective value. This
approach is able to solve the considered class of non-smooth optimization problems without
any regularization of the non-smoothness and additionally maintains reasonable convergence
properties. Numerical results for non-smooth optimization problems illustrate the proposed
approach and its performance.

1 Introduction
Non-smooth optimization problems with a partial differential equation (PDE) as constraint that
involves the non-differentiable functions abs(), min() and max() arise in many modern applica-
tions. For example, a corresponding semi-linear elliptic partial differential equation describes the
deflection of a stretched thin membrane partially covered by water, see [8]. Furthermore, a similar
non-smooth partial differential equation arises in free boundary problems for a confined plasma,
see, e.g., [8, 10]. Even nowadays, the optimization of such problems is challenging. Therefore,
often the non-smoothness is regularized to apply an algorithm suitable for smooth optimization or
the semi-smooth Newton method is used. Here, we propose an alternative algorithm that is not
based on the semi-smooth Newton method and that explicitly exploits the non-smoothness.
In the finite dimensional setting the unconstrained minimization of piecewise smooth functions
by successive abs-linearization without any regularization for the non-smoothness was studied by
Griewank, Walther and co-authors in [2, 3, 4] and related work. There, it is always assumed
that the non-smoothness of the considered optimization problem stems from evaluations of the
absolute value function only. Using well-known reformulations, this covers the maximum and the
minimum functions as well as complementarity problems. The purpose of this paper is to extend
the algorithmic idea of the approach in finite dimensions to the infinite dimensional case, i.e., to
PDE-constrained optimization problems. However, it is not possible to transfer the results obtained
to the PDE-constrained case directly. Here, one issue is that due to the lack of a chain rule in the
non-smooth case, one cannot directly handle the reduced unconstrained formulation. Therefore,
we propose here a penalty-based approach to treat the PDE constraint explicitly. Nevertheless, we
follow the idea for the finite dimensional case in that the key idea of the optimization method under
consideration is the location of stationary points by an appropriate decomposition of the original
problem into several smooth so-called branch problems. Each of these branch problems can be
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solved by classical methods for smooth PDE-constrained optimization. Then, the exploitation
of standard optimality conditions for the smooth case determines the next branch problem and
ensures the reduction of the target function value. In deriving necessary optimality conditions, the
difficulty lies in the fact that while the solution domain of the PDE is compact, the number and
location of the solutions is unknown. For this reason, a direct approach, i.e., first-discretize-then-
optimize, is presented for the numerical solution of the optimization problems.
The paper is organized as follows. In Sec. 2, we introduce the considered problem class, discuss
its properties and propose a reformulation of the first order necessary optimality conditions. The
resulting smooth branch problems will presented in Sec. 3. This includes a solution approach
involving a penalty term and an analysis of the corresponding optimality conditions. Sec. 4
summarizes the resulting optimization algorithm. Furthermore, the chosen discretization approach
as well as the corresponding solution of the subproblems is discussed. Numerical results for a
collection of test problems are presented and analysed in Sec. 5. Finally, a conclusion and an
outlook are given in Sec. 6.

2 The Problem Class, its Properties and a Reformulation
In this paper we focus on real valued functions defined on a Lipschitz domain Ω Ă Rn, n P N. As
a model problem we consider the following class of PDE constrained optimization problems

min
py ,uqPH1

0 pΩqˆL2pΩq

1

2
}y ´ yd}

2
L2 `

α

2
}u}2

L2

s.t. ´∆y ` `pyq ´ u “ 0 in Ω

(1)

with a convex and twice continuously Fréchet differentiable objective functional and a semi-linear
elliptic PDE constraint.
The special and at the same time challenging feature of Eq. (1) is the non-smoothness in the state
equation which is given by the non-smooth operator ` : H1

0 pΩq Ñ L2pΩq. For the exact definition
of the operator ` we refer to Assumption 2.1 below.
It should be noted that the algorithm proposed in this paper is not limited to this class of semi-
linear PDE or this kind of objective functionals. Instead, the arguments can easily be adapted
to more general cases with, for example, a general linear elliptic differential operator of second
order instead of the Laplacian operator. Therefore, Sec. 5 presents also numerical results for other
differential operators. However, to illustrate the idea of the algorithm we restrict ourselves here
to this class of semi-linear elliptic PDEs.
Throughout the paper, we assume that the model problem (1) has the following properties:

Assumptions 2.1.

(a) The operator ` : H1
0 pΩq Ñ L2pΩq is bounded and measurable in x P Ω for every fixed y ,

strictly monotone in y for almost every x P Ω and locally Lipschitz-continuous. This means
in particular, that `p0q is bounded and measurable.

(b) It is assumed that ` can be expressed as composition of the absolute value function and
other Fréchet-differentiable functions.

(c) The control function u P L2pΩq is sufficiently smooth.

In addition to these assumptions on the non-smooth PDE, it can easily be observed that the
objective functional J : H1

0 pΩqˆL2pΩq Ñ R in Eq. (1) is weakly lower semi-continuous and twice
continuously Fréchet-differentiable. One particular example of this class of model problems of
non-smooth semi-linear elliptic optimal control problems, where `pyq “ maxp0, yq, can be found
in [1]. There the authors show, among other things, that the resulting non-smooth control-to-state
operator is directionally differentiable. They also precisely characterize its Bouligand subdiffer-
entials, derive first-order optimality conditions using the Bouligand subdifferentials and use the
directional derivative of the control-to-state mapping to establish strong stationarity conditions.
Following the approach in [1] and applying standard arguments for monotone operators, it can be
shown that for any given control u P L2pΩq the PDE of the optimization problem (1) is well posed
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for i “ 1, ... , s do
zi “ ψi py , pσjzjqjăi q

σi “ signpzi q
ˆ̀py ,σzq “ ψs`1py , pσizi q1ďiďsq with σz “ pσ1z1, ... ,σszsq

Table 1: Structured Evaluation of `pyq

and has a unique solution y . Further analysis reveals that the optimal control problem admits a
solution under the given assumptions.
For the optimization we have to take into account, that it is usually not possible to realize arbitrary
large controls u P L2pΩq. Therefore control constraints in the form of

u P Uad Ď L2pΩq

with the bounded and convex set of admissible controls

Uad “ tu P L
2pΩq : uapxq ď upxq ď ubpxq a.e. x P Ωu

can be introduced into the model problem. However, this is not directly dealt with in this paper.

Reformulating the PDE Constraint

Now, we introduce an essential reformulation of the PDE constraint based on the idea described
in [3, 5]. For this purpose, we define the Nemytskij-operator

Φ : L2pΩq ÞÑ L2pΩq, rΦpyqspxq “ `pvpxqq for almost all x P Ω .

Thus the Nemytskij-Operator is defined by the non-linear part of the PDE. Inspired by the finite
dimensional approach of Griewank and Walther, we assume that the non-smooth operator `
can be described as a composition of elemental functions that are either continuously Fréchet
differentiable or the absolute value operator. Subsequently, consecutive continuously Fréchet
differentiable elemental functions can be conceptually combined to obtain a representation, where
all evaluations of the absolute value function can be clearly identified and exploited, see Tab. 1.
In the finite dimensional case, one has zi P R and therefore σi P t´1, 0, 1u. For the infinite
dimensional setting considered here, one has zi P L2pΩq and the functions σi are also Nemytskij
operators defined by

σi : L2pΩq ÞÑ L2pΩq, rσi pvqspxq “ signpzi pxqq ¨ vpxq for almost all x P Ω

as a function of zi . This choice ensures that σi pzi q “ abspzi q P L2pΩq holds. From now on, we
will use the notation ˆ̀py ,σzq “ `pyq for σz “ pσ1z1, ... ,σszsq to refer explicitly to this particular
representation of the non-smooth part `pyq based on the auxiliary variables zi and σi , 1 ď i ď s.
It follows from the representation in Tab. 1 that ` is locally Lipschitz continuous. Hence, ` and
therefore also the equivalent ˆ̀py ,σzq are also continuous due to the assumed smoothness of ψi ,
i “ 1, ... , s, [7, Theo. 3.15] and [12, Cha. 1]. Furthermore, and this is important to note, the
new function ˆ̀p., .q is smooth, i.e., Fréchet differentiable, in its two arguments due to the chosen
formulation. This fact will be exploited later to define the smooth branch problems.
Using the well-known reformulations

min pv , uq “ pv ` u ´ abspv ´ uqq{2 and
maxpv , uq “ pv ` u ` abspv ´ uqq{2 ,

(2)

a large class of nonsmooth functions is covered by this function model.

Example 2.2. Consider the non-smooth operator `pyq “ maxp5y , y |y |q. Exploiting the identi-
ties (2), we can reformulate ` as a function in terms of the absolute value function and smooth
elemental functions in the following way:

`pyq “ maxp5y , y |y |q “ 1
2

´

5y ` y |y | `
ˇ

ˇ5y ´ y |y |
ˇ

ˇ

¯

.

The corresponding structured evaluation is shown in Tab. 2.
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z1 “ ψ1pyq “ y
σ1 “ signpz1q

z2 “ ψ2py ,σ1z1q “ 5y ´ yσ1z1

σ2 “ signpz2q

ˆ̀py ,σzq “ ψ3py ,σzq “ 1
2

´

5y ` yσ1z1 ` σ2z2

¯

Table 2: Structured evaluation for `pyq “ maxp5y , y |y |q

Inserting the formulation ˆ̀py ,σzq with the auxiliary functions σi and zi of ` into the original
optimal control problem (1), one obtains for the functions py , z , uq P H1

0 pΩq ˆ H1
0 pΩq ˆ L2pΩq

the smooth optimization problem

min
y ,z,u

1
2}y ´ yd}

2
L2 `

α
2 }u}

2
L2

s.t ´∆y ` ˆ̀py ,σzq ´ u “ 0

ψi py , pσjzjqjăi q ´ zi “ 0

σizi ě 0

σi : Ω Ñ t´1, 1u

,

/

.

/

-

@ i “ 1, ... , s .

(3)

Assume that u˚ and the corresponding y˚ ” y˚pu˚q are solutions of the original optimization
problem (1). Defining the auxiliary functions z˚i and σ˚i by

z˚i “ ψi py , pσ˚j z
˚
j qjăi q, σ˚i “ signpz˚i q @ i “ 1, ... , s ,

it follows that py˚, z˚, u˚q is a solution of the optimization problem (3) if σi “ σ˚i holds. Here,
the additional equality and inequality constraints for the definitions of the additional functions z˚i
and σ˚i , 1 ď i ď s, ensure that σ˚i pz

˚
i q “ abspz˚i q P L2pΩq holds for 1 ď i ď s. This observation

motivates the optimization algorithm proposed in this paper, i.e., a solution of a sequences of
smooth subproblems of the form Eq. (3) to solve the original non-smooth optimization problem (1).
To determine the sequence of branch problems to be solved, we examine the necessary optimality
conditions for Eq. (3). Using standard KKT theory for smooth PDE-constrained optimization
problems [6], i.e., introducing corresponding Lagrange multipliers λPDE , λ “ pλ1, ... ,λsq, and
µ “ pµ1, ... ,µsq, one obtains for the Lagrangian

Lpy , z ,u,λ
PDE

,λ,µq “ J py , uq `
`

∇λ
PDE

,∇y
˘

L2pΩq

`
`

λ
PDE

, ˆ̀py ,σzq ´ u
˘

L2pΩq
`

s
ÿ

i“1

`

λi ,ψi py , pσjzjqjăi q ´ zi
˘

L2pΩq
´

s
ÿ

i“1

`

µi ,σizi qL2pΩq

at the optimal point the first order necessary conditions

0 “ DyLpỹq “ BJ
By ỹ `

`

∇λPDE ,∇ỹ
˘

L2pΩq
`
`

λPDE , B
ˆ̀

By ỹ
˘

L2pΩq

`

s
ÿ

i“1

`

λi ,
Bψi py ,pσjzj qjăi q

By ỹ
˘

L2pΩq
@ỹ (4)

0 “ DuLpũq “ BJ
Bu ũ ´

`

λPDE , ũ
˘

L2pΩq
@ũ (5)

0 “ DλPDE
Lpλ̃PDE q “

`

∇λ̃PDE ,∇y
˘

L2pΩq
`
`

λ̃PDE , ˆ̀´ u
˘

L2pΩq
@λ̃PDE (6)

0 “ DλiLpλ̃i q “
`

λ̃i ,ψi py , pσjzjqjăi q ´ zi
˘

L2pΩq
@λ̃i , i “ 1, ... , s (7)

0 “ DzkLpz̃kq “
`

λPDE ,σk
B ˆ̀py ,σzq
Bzk

z̃k
˘

L2pΩq
´
`

λk , z̃k
˘

L2pΩq

`

s
ÿ

i“k`1

`

λi ,σk
Bψi py ,pσjzj qjăi q

Bzk
z̃k
˘

L2pΩq

´ pµk ,σk z̃kqL2pΩq @z̃k , k “ 1, ... , s (8)
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0 “ pµi ,σizi qL2pΩq i “ 1, ... , s

0 ď µi i “ 1, ... , s , (9)

where the arguments of L are omitted for brevity. Note that in these equations one obtains extra
factors σ̄k due to the chain rule. Rearranging the terms in the integrals, the condition (8) yields
for k “ 1, ... , s

0 “ σk
B ˆ̀py ,σzq
Bzk

λPDE ´ λk `
s
ÿ

i“k`1

σk
Bψi py ,pσjzj qjăi q

Bzk
λi ´ σkµk .

In this case the right hand sight represents the zero function in the corresponding Hilbert space.
Applying σk and exploiting the non-negativity of µk according to Eq. (9), one obtains

0 ď µk |σk | “ |σk |
B ˆ̀py ,σzq
Bzk

λPDE ´ σkλk`
s
ÿ

i“k`1

|σk |
Bψi py ,pσjzj qjăi q

Bzk
λi

” rpσk , y , z ,λq a.e. in Ω . (10)

We will use this inequality later to define the sequence of subproblems to be solved.

3 Defining and Solving the Branch Problems
Now, everything is prepared to introduce the main idea of the new optimization algorithm.
For fixed functions σ̄i P L2pΩq, σ̄i : Ω Ñ t´1, 1u for 1 ď i ď s, we define for py , z , uq P
H1

0 pΩq ˆ H1
0 pΩq ˆ L2pΩq the branch problem

min
y ,z,u

J py , uq (11)

s.t. ´∆y ` ˆ̀py , σ̄zq ´ u “ 0 (12)
ψi py , pσ̄jzjqjăi q ´ zi “ 0 @ i “ 1, ... , s (13)

σ̄izi ě 0 @ i “ 1, ... , s . (14)

All functions occurring in this branch problem are smooth in the variables y , u and z because the
function ˆ̀p., .q is smooth in its arguments as mentioned already in the last section. Therefore,
standard smooth optimization methods can be used to solve the branch problem (11)–(14). Nat-
urally, the question arises how to chose the functions σ̄i , 1 ď i ď s, such that the solutions of the
branch problems approach the solution of the original non-smooth problem (1). A corresponding
strategy will be derived in this section.

The Lagrangian with Bi-quadratic Penalty

As mentioned already above, so far the solution of the non-smooth optimization problem using a
reduced formulation is not possible due to the lack of the chain rule. For this reason, we propose
here a penalty-based approach to solve the optimization problem (11)–(14), where the constraints
(12) and (13) are handled explicitly. Approaches based on a reduced formulation will be subject
of future research.
From a formal point of view, we treat the inequality constraints (14) with a penalty approach
such that the target function (11) is modified to

min
y ,z,u

J py , uq ` µ

ż

Ω

s
ÿ

i“1

´

maxp´σ̄izi , 0q
¯4

dΩ (15)

with a penalty factor µ ą 0. Here, we chose the exponent 4 to ensure that the target function is
twice continuously differentiable despite the max function that is used for the formulation of the
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penalty function. This modified target function is then coupled with the equality constraints by
means of Lagrange multipliers yielding the Lagrangian

Lppy , z , u,λ
PDE

,λ1, ... ,λsq “ J py , uq `
`

∇λ
PDE

,∇y
˘

L2pΩq
`
`

λ
PDE

, ˆ̀py , σ̄zq ´ u
˘

L2pΩq

`

s
ÿ

i“1

`

λi ,ψi py , pσ̄jzjqjăi q ´ zi
˘

L2pΩq
` µ

ż

Ω

s
ÿ

i“1

´

maxp´σ̄izi , 0q
¯4

dΩ .
(16)

A similar penalty approach was studied in [11], where the logarithm was used as barrier function.
Here, we use the max-function since we have to evaluate the penalty function also at 0.

Example 3.1. We consider again `pyq “ maxp5y , y |y |q “ 1
2

´

5y ` y |y | `
ˇ

ˇ5y ´ y |y |
ˇ

ˇ

¯

. For the
reformulated optimization problem given by

min
py ,z,uqPH1

0ˆH1
0ˆL2

1
2}y ´ yd}

2
L2 `

α
2 }u}

2
L2

s.t. ´∆y ` 1
2

´

5y ` y σ̄1z1 ` σ̄2z2

¯

´ u “ 0 in Ω

y ´ z1 “ 0

5y ´ y σ̄1z1 ´ z2 “ 0

σ̄1z1 ě 0

σ̄2z2 ě 0 ,

one obtains the Lagrangian

Lppy , z , u,λ
PDE

,λ1,λ2q

“J py , uq `
`

∇λ
PDE

,∇y
˘

L2pΩq
`
`

λ
PDE

, 1
2

´

5y ` y σ̄1z1 ` σ̄2z2

¯

´ u
˘

L2pΩq

`
`

λ1, y ´ z1

˘

L2pΩq
`
`

λ2, 5y ´ y σ̄1z1 ´ z2

˘

L2pΩq
` µ

ż

Ω

2
ÿ

i“1

´

maxp´σ̄izi , 0q
¯4

dΩ .

Deriving Necessary Optimality Conditions

For a branch problem, the first-order necessary optimality conditions can now be derived from the
Lagrangian (16) by using once more standard KKT theory for smooth PDE-constrained optimiza-
tion problems. This yields as necessary first order conditions the equations

0 “ DyLppỹq “ BJ
By ỹ `

`

∆λPDE , ∆ỹ
˘

L2pΩq
`
`

λPDE , B
ˆ̀

By ỹ
˘

L2pΩq

`

s
ÿ

i“1

`

λi ,
Bψi py ,pσ̄jzj qjăi q

By ỹ
˘

L2pΩq
@ỹ (17)

0 “ DuLppũq “ BJ
Bu ũ ´

`

λPDE , ũ
˘

L2pΩq
@ũ (18)

0 “DλPDE
Lppλ̃PDE q“

`

∆λ̃PDE , ∆y
˘

L2pΩq
`
`

λ̃PDE , ˆ̀
˘

L2pΩq
´
`

λ̃PDE , u
˘

L2pΩq
@λ̃PDE (19)

0 “ DλiLppλ̃i q “
`

λ̃i ,ψi py , pσ̄jzjqjăi q ´ zi
˘

L2pΩq
@λ̃i , 1ď iďs (20)

0 “ DzkLppz̃kq “
`

λPDE , σ̄k
B ˆ̀py ,σ̄zq
Bzk

z̃k
˘

L2pΩq
´
`

λk , z̃k
˘

L2pΩq

`

s
ÿ

i“k`1

`

λi , σ̄k
Bψi py ,pσ̄jzj qjăi q

Bzk
z̃k
˘

L2pΩq
(21)

` µ

ż

Ω

´4σk maxp´σkzk , 0q3 z̃k dΩ @z̃k , 1ďkďs

As one can easily see, the optimality conditions (4)–(7) coincide with the optimality conditions
(17)–(20). Hence, if one computes a solution of the slightly modified branch problem with the
target function (15) and the constraints (12)–(13), the necessary first order conditions (4)–(7)
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Original Problem `pyq

Equivalent Reformulation ˆ̀py ,σzq, σz ě 0

Branch Problem ˆ̀py ,σzq, σz ě 0, σ “ σ̄

Penalty Branch Problem ˆ̀py , σ̄zq, µmaxp´σ̄izi , 0q4
(4
)–
(7
)

Table 3: The different optimization problems.

of the original optimisation problem are already satisfied. Hence, the only condition to verify
is Eq. (10). Since the expressions on the right-hand side are completely independent of the
Lagrange multiplier µ of the original optimisation problem, one can compute this quantity also
for the solution of the modified branch problem. If it is non-negative, the computed solution
py˚, z˚, u˚q of the modified branch problem fulfills the necessary first order conditions of the
original optimisation problem for the chosen functions σ̄i P L2pΩq and the optimisation algorithm
can be stopped. Otherwise, it is a very natural strategy to choose the index k for which the
right-hand side of the condition (10) is minimal, to modify the corresponding σ̄k appropriately
and to solve the then newly defined branch problem by the same strategy. Due to the structure of
Eq. (10), the Lagrange multiplier λk identifies the regions where the sign of σ̄k has to be changed
to obtain a reduction in the function value. Obviously, other strategies to choose the index k as
alternatives to the greedy approach described here might be applied as well.
Tab. 3 illustrates the nature of the relationships between the different problem formulations that
are derived and discussed in this paper.

4 The Resulting Optimization Algorithm
Motivated by the observations of the last section, we propose the following method to solve
optimal control problems with non-smooth PDEs of the class considered here as constraints:

Algorithm 1

Input: Initial values: σ̄0 “ pσ̄0
1 , ... , σ̄0

s q, y
0, z0 “ pz0

1 , ... , z0
s q, u

0

Parameter: α,µ, i “ 0
for i “ 0, 1, ... do

Solve branch problem (15) with constraints (12)–(13) to obtain y i , z i , ui ,λi
PDE

,λi

if Eq. (10) holds for k “ 1, ... , s then
y i , z i , ui stationary for original optimal control problem, stop

else
κ “ argmaxtk P t1, ... , su : ´rpσ̄i

k , y , z ,λqu, where rp.q is given by Eq. (10).
Use λκ to define σ̄i`1

κ

Set σ̄i`1
k “ σ̄i

k for k “ 1, ... , s, k ‰ κ
end if
i` “ i

end for

Since the proposed algorithm is essentially motivated by the special handling of the absolute
value function, i.e., the abs-linearization, we call the resulting optimization algorithm SALi for
Successive Abs-Linearization. Note that the formulation of the algorithm is done in the function
space. Therefore, up to this point one can use the own method of choice to solve the smooth
modified branch problems. For the numerical results shown in the next section, we used a Finite-
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Element-Approach based on FEniCS to discretise the PDEs and to describe the other constraints
in combination with a Newton method for the solution of the smooth modified branch problems.

Finite Dimensional Formulation

In the last paragraph, the algorithm was presented and explained in the continuous function
space setting. Now, the natural question is how to put this into practice and, especially, how
to solve the individual branch problems. For the numerical treatment of the optimal control
problem (15) with the constraints given by Eqs. (12) and (13), the Lagrange equation (16) will
be discretized. Therefore we apply a standard finite element method with piecewise linear and
continuous ansatz functions for the functions y and zi , i “ 1, ... , s, and piecewise constant
ansatz functions for the control u. The resulting problem is solved by the Galerkin method within
the open source simulation tool FEniCS [9]. For the initial state, control and parameters σ̄i ,
the nonlinear variational Lagrange problem is solved by Newton’s method using the derivatives
calculated within FEniCS. The computed solution is examined according to the switching rule
and the branch problem is modified by updating the corresponding σi . Here again the update
strategy is based on Eq. (10). Since the calculation of the function rp.q is relatively complicated
and expensive, we derive a heuristic described below which, as we will see in the numerical results,
provides the desired results. By exploiting the essence of Eq. (10), a beneficial and comparatively
easy way to implement an update strategy for the parameters σ̄i can be created. Reformulation
of Eq. (10) and application of σk provides

0 ď
`

λPDE , |σk |
B ˆ̀py ,σzq
Bzk

z̃k
˘

´
`

λkσk , z̃k
˘

`

s
ÿ

i“k`1

`

λi , |σk |
Bψi py ,pσjzj qjăi q

Bzk
z̃k
˘

@z̃k ,@k “ 1, ... , s.

This condition is violated if and only if there exists an index k P t1, ... , su such that σk “ signpλkq
with

0 ą
`

λPDE , |σk |
B ˆ̀py ,σzq
Bzk

z̃k
˘

´
`

λkσk , z̃k
˘

`

s
ÿ

i“k`1

`

λi , |σk |
Bψi py ,pσjzj qjăi q

Bzk
z̃k
˘

.

Since |σk | ” 1, this is equivalent to

0 ą
`

λPDE , B
ˆ̀py ,σzq
Bzk

z̃k
˘

´
`

|λk |, z̃k
˘

`

s
ÿ

i“k`1

`

λi ,
Bψi py ,pσjzj qjăi q

Bzk
z̃k
˘

. (22)

Again, as already discussed in Sec. 3 it is a natural strategy to choose the index k for which
the right hand side in Eq. (22) is minimal. Since this is significantly influenced by the Lagrange
multiplier λk , we use this as an indicator to switch from the current branch problem to the next
one by switching the signs of σk in the regions where the corresponding |λk | is largest. For this
purpose, the Lagrange multipliers λi corresponding to the solution of the current branch problem
are projected to the adequate function space and their max-norm is computed in order to determine
the Lagrange multiplier λk with maximum influence on Eq. (22). If this maximum value (almost)
vanishes, the stationary point is already reached and the algorithm stops. Otherwise the sign of
the corresponding discretized σk is switched at those mesh points where |λk | is large and exceeds
a certain threshold. Despite the fact that this heuristic works well in practice, we will continue to
develop our existing approach further and adapt it for the calculation of Eq. (10) and a related
systematic switching strategy of the branch problems.
If no switching occurs, the algorithm stops. Otherwise the branch problem is updated accordingly
and a new solution is computed by once again solving the non-linear variational Lagrange problem
by applying Newton’s method. This way a successive reduction in the objective function value is
observed. This can also be seen in Fig. 2.
If one considers the discretized and hence finite dimensional problem, the convergence of the
algorithm follows immediately. This is due to the fact that the original problem was decomposed
into finitely many discretized branch problems and the function value decreases with each iteration
step. Therefore a minimal solution is reached after finitely many steps.
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5 Numerical Results
For the numerical tests we considered two dimensional examples defined below in Case 1 to
Case 3. In each case Ω was chosen to be the unit square and we take as an initial guess
y ” 0, u ” 0, z1 ” 0, z2 ” 0. Furthermore, σ1 and σ2 are chosen such that they fit the
ones defined by the desired state yd . We terminate the iteration if either the L2-Norm of the La-
grange multipliers λi becomes less than 10´9 and therefore no further switching between branch
problems is done, or if the difference between the Lagrange function value which includes the
bi-quadratic penalty terms and the original objective functional becomes less then 10´12. The
latter implicitly ensures that the sign condition σizi ě 0 is correctly adhered to.

Case 1

min
py ,uq

1

2
}y ´ yd}

2
L2 `

α

2
}u}2

L2

s.t. ´∆y `maxp0, yq ´ u “ 0 in Ω “ p0, 1q2 ,

with ydpx1, x2q “

#

ppx1 ´
1
2 q

4 ` 1
2 px1 ´

1
2 q

3q sinpπx2q, if x ď 1
2

0, otherwise .

Case 2

min
py ,uq

1

2
}y ´ yd}

2
L2 `

α

2
}u}2

L2

s.t. ´∆y `maxp5y , y |y |q ´ u “ 0 in Ω ,

with ydpx1, x2q “
sin
`

10πppx1´
1
2 q

2
`px2´

1
2 q

2
q

˘

c

1
100`px1´

1
2 q

2`px2´
1
2 q

2

´ 1 .

Case 3

min
py ,uq

1

2
}y ´ yd}

2
L2 `

α

2
}u}2

L2

s.t. ´ ε∆y `maxp5y , y |y |q ´ u “ 0 in Ω ,

with ydpx1, x2q “min
´

max
`
ˇ

ˇx1 ´
1
2

ˇ

ˇ,
ˇ

ˇx2 ´
1
2

ˇ

ˇ

˘

´ 1
4 , 0

¯

and ε ě 0, const.

The numerical results for these three cases, considering different values of the mesh size denoted
by h, the penalty parameter α for the control in the objective functional, and the penalty parameter
µ in the bi-quadratic penalty term, are presented in Tab. 4 -7.
It can be observed that in almost all cases only a few Newton iterations are needed to solve the
problem and to compute the minimal solution.
A commonly used method for solving such non-smooth problems are semi-smooth Newton-like
methods. Therefore, we also provide a comparison with results obtained with a semi-smooth
Newton approach.
Case 1 represents an example taken from [1]. The parameters were adopted accordingly and the
mesh size was reconstructed in the best possible way. Tab. 4 shows a comparison between the
non-regularized approach presented here and the proposed semi-smooth Newton’s method in [1].
It can be observed that in the more involved example, according to [1], the approach presented
here requires only one single Newton step and no switches between branch problems to compute
the optimal solution. The semi-smooth Newton method on the other hand requires an average
of three to five steps for the considered problem. Tab. 1 shows also the quality of the resulting
approximation which is given the relative error ‖yh ´ y‖L2 { ‖y‖L2 .
The fact, that SALi does not require any switches between branch problems is mainly due to the
fact, that the reformulation described in Tab. 1 makes it possible to exploit as much information
as possible given by the optimization problem and in particular by the given desired state yd . The
initial choice of the σi motivated by the desired state already provides the perfect guess of the
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h α µ Obj. Value ‖yh´y‖L2

‖y‖L2
# Newton SALi # Newton [1]

3.009e-02 1e-4 50 1.174e-12 5.765e-04 1 4
1.537e-02 1e-4 50 8.102e-14 1.514e-04 1 5
7.728e-03 1e-4 50 5.119e-15 3.790e-05 1 3
3.885e-03 1e-4 50 3.306e-16 9.664e-06 1 3
3.009e-02 1e-4 100 1.174e-12 5.764e-04 1 4
1.537e-02 1e-4 100 8.102e-14 1.514e-04 1 5
7.728e-03 1e-4 100 5.120e-15 3.790e-05 1 3
3.885e-03 1e-4 100 3.306e-16 9.664e-06 1 3
7.728e-03 1e-4 500 5.121e-15 3.790e-05 1 3
7.728e-03 1e-2 100 1.345e-14 8.106e-05 1 2
7.728e-03 1e-3 100 1.037e-14 6.609e-05 1 2
7.728e-03 1e-5 100 1.236e-15 1.237e-05 1 5
7.728e-03 1e-6 100 1.778e-16 3.056e-06 1 no conv.

Table 4: Numerical results in Case 1.

h α µ Objective ||y´yd ||
||yd ||

# Swaps # Newton

1.537e-02 1e-4 100 1.633 7.996e-01 10 63
1.159e-02 1e-4 100 1.640 8.000e-01 11 65
7.071e-03 1e-4 100 1.645 8.005e-01 21 72
1.159e-02 1e-4 500 1.640 8.002e-01 15 89
7.071e-03 1e-4 500 1.646 8.009e-01 13 90
1.159e-02 1e-6 100 0.361 2.920e-01 3 23
7.071e-03 1e-6 100 0.363 2.925e-01 4 28

Table 5: Numerical results for smooth but non reachable yd (Case 2).

σi . Since the desired state which is reachable by the given state equation no switches between
branch problems are required and the optimal solution can be computed by solving the initial
branch problem which is already the final one.
The numerical results for Case 2 are given in Tab. 5. In this demanding case where a genuine
nonlinear and non-smooth operator in the PDE and an unreachable target function yd occur,
comparatively more switches between branch problems and also more Newton iterations are needed
to compute the minimal solution.
Fig. 1 shows the initial and the last iteration step in σ1,σ2 as well as the resulting states y , z with
an over line plot for the z and σ components showing how the prescribed signs are observed. The
target function yd is shown in the top left corner. Fig. 2 shows how the successive exploitation of
the corresponding dual variables leads to the next branch problem and thus to successive reduction
in the function value.
The method presented here also allows the treatment of optimization problems of the considered
problem class with non-smooth target functions yd as given in Case 3. Such non-smooth target
functions are not achievable due to the PDE constraint with the Laplace operator as differential
operator. Nevertheless, in the example considered in Case 3, with non damped Laplacian, i.e.,
ε ” 1, no switches and only two Newton steps are required to calculate the minimum solution.
The numerical results are given in Tab. 6.
However, if the Laplace operator is attenuated by a factor ε ă 1, also less smooth solutions for y
are achievable. Fig. 3 shows the non-smooth target function yd as well as the solution y and u in
Case 3 when setting ε ” 1e ´ 2. Tab. 7 shows the numerical results for different values for ε in
Case 3.
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σ1 σ2

z1 z2

(b)

Figure 1: Case 2. (a) Initial Branch problem with resulting solution for y , z1 and z2. (b) Final
iteration step with final Branch problem and resulting solution for y , z1 and z2.

Switching iterations
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Figure 2: History of the objective function value with respect to the branch problem switches in
Case 2 corresponding to the parameters given in he first row in Tab. 5.

h α µ Objective ||y ´ yd || # Swaps # Newton
1.537e-02 1e-4 100 3.884e-04 2.132e-02 0 2
1.159e-02 1e-4 100 3.878e-04 2.129e-02 0 2
7.071e-03 1e-4 100 3.884e-04 2.131e-02 0 2
1.159e-02 1e-4 500 3.878e-04 2.129e-02 0 2
7.071e-03 1e-4 500 3.884e-04 2.131e-02 0 2
7.071e-03 1e-6 100 2.273e-05 3.673e-03 0 2

Table 6: Numerical results in Case 3 for ε ” 1.
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yd

u

y

Figure 3: Considered target function yd and resulting solution for the sate y and control u in Case
3 with ε ” 1e ´ 2.

h ε α µ Objective ||y ´ yd || # Swaps # Newton
1.159e-03 1e-1 1e-4 100 2.453e-05 3.691e-03 1 4
7.071e-03 1e-1 1e-4 100 2.476e-05 3.600e-03 1 4
1.537e-02 1e-2 1e-4 500 1.202e-06 7.027e-04 0 2
1.159e-03 1e-2 1e-4 500 1.145e-06 6.422e-04 0 2
7.071e-03 1e-2 1e-4 500 1.175e-06 6.689e-04 0 2
1.537e-02 1e-4 1e-4 100 1.348e-07 4.100e-05 0 2
1.159e-03 1e-4 1e-4 100 1.341e-07 3.685e-05 0 2
7.071e-03 1e-4 1e-4 100 1.340e-07 3.311e-05 0 2
7.071e-03 1e-6 1e-4 100 1.302e-07 5.820e-06 0 2

Table 7: Numerical results in Case 3 with damped Laplacian.

6 Conclusion and Outlook
We presented a new approach based on successive abs linearization for the solution of optimiza-
tion problems constrained by non-smooth PDEs. This approach enables for the considered class
of genuinely non-smooth problems the optimization without any substitute assumptions and reg-
ularizations for the non-smoothness. The key idea is to appropriately decompose the non-smooth
problem into smooth branch problems, which can be solved by classical smooth optimization prob-
lems. Optimality conditions for the considered formulations were derived and discussed. Solving
the current branch problem, exploiting standard optimality conditions for the smooth case as well
as using an indicator strategy to determine the next branch problem, ensures successive reduction
in the objective function value and leads to the minimal solution. By treating the inequality con-
dition with a bi-quadratic penalty approach the sign condition could easily be incorporated into
the algorithmic framework. Finally, several non-smooth PDE-constrained problems that fit into
the considered setting were discussed. However, a comprehensive convergence analysis for the
continuous case is still lacking and remains subject of future research.
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