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Abstract. We consider shape optimization problems subject to elliptic partial differential
equations. In the context of the finite element method, the geometry to be optimized is represented
by the computational mesh, and the optimization proceeds by repeatedly updating the mesh node
positions. It is well known that such a procedure eventually may lead to a deterioration of mesh
quality, or even an invalidation of the mesh, when interior nodes penetrate neighboring cells. We
examine this phenomenon, which can be traced back to the ineptness of the discretized objective
when considered over the space of mesh node positions. As a remedy, we propose a restriction in
the admissible mesh deformations, inspired by the Hadamard structure theorem. First and second
order methods are considered in this setting. Numerical results show that mesh degeneracy can be
overcome, avoiding the need for remeshing or other strategies.
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1. Introduction. Shape optimization is ubiquitous in the design of structures of
all kinds, going from drug eluting stents Zunino, 2004 until aircraft wings Schmidt,
Gauger, et al., 2011 or horn-like structures appearing in devices for acoustic or
electromagnetic waves Udawalpola, Berggren, 2008. All of these and many other
applications involve the solution u of a partial differential equation (PDE), so the
general formulation of shape optimization problems considered here is as follows:

(1.1) min J (2, u(Q).

Here u(2) is the solution of the underlying PDE defined on the domain €2, which is to
be optimized.

Computational approaches to solving PDE-constrained shape optimization prob-
lems usually proceed along the following lines. First, one derives an expression for the
FEulerian derivative of the objective w.r.t. vector fields which describe the perturbation
of the current domain 2. The perturbations are carried out either in terms of the
perturbation of identity, or the velocity method. The Eulerian derivative can be

*Submitted to the editors October 24, 2018.

Funding: This work was partially supported by DFG grants HE 6077/10-1 and WA 3636/4-1
within the Priority Program SPP 1962, which is gratefully acknowledged.

TTechnische Universitat Chemnitz, Faculty of Mathematics, Professorship Numerical Mathemat-
ics (Partial Differential Equations), 09107 Chemnitz, Germany (TE: tommy.etling.tu-chemnitz.de,
https://www.tu-chemnitz.de /mathematik /part_dgl /people/etling; RH: roland.herzog@mathematik.tu-
chemnitz.de, https://www.tu-chemnitz.de/herzog; EL: estefania.loayza@mathematik.tu-chemnitz.de,
https://www.tu-chemnitz.de/mathematik /part_dgl /people/loayza).

¥Brandenburgische Technische Universitit Cottbus-Senftenberg, Institute of Mathematics, Chair of
Optimal Control, Platz der Deutschen Einheit 1, 03046 Cottbus, Germany (gerd.wachsmuth@b-tu.de,
https://www.b-tu.de/fg-optimale-steuerung).


https://spp1962.wias-berlin.de
mailto:tommy.etling.tu-chemnitz.de
https://www.tu-chemnitz.de/mathematik/part_dgl/people/etling
mailto:roland.herzog@mathematik.tu-chemnitz.de
mailto:roland.herzog@mathematik.tu-chemnitz.de
https://www.tu-chemnitz.de/herzog
mailto:estefania.loayza@mathematik.tu-chemnitz.de
https://www.tu-chemnitz.de/mathematik/part_dgl/people/loayza
mailto:gerd.wachsmuth@b-tu.de
https://www.b-tu.de/fg-optimale-steuerung

2 T. ETLING, R. HERZOG, E. LOAYZA, AND G. WACHSMUTH

stated either as an expression concentrated on the boundary 0f2, or as a volume
expression. The first is due to the Hadamard structure theorem (Sokolowski, Zolésio,
1992, Theorem 2.27). For volume expressions, we refer the reader, for instance, to
Laurain, Sturm, 2016; Hiptmair, Paganini, Sargheini, 2015. Second, the Eulerian
derivative, which represents a linear functional on the perturbation vector fields, needs
to be converted into a vector field V itself, often referred to as the shape gradient.
This can be achieved by evaluating the Riesz representative of the derivative w.r.t.
an inner product. The latter is often chosen as the bilinear form associated with the
Laplace-Beltrami operator on 92, or with the linear elasticity (Lamé) system on €,
see e.g. Schmidt, Gauger, et al., 2011; Schulz, Siebenborn, 2016; Schmidt, Schulz,
2010; 2009. More sophisticated techniques include quasi-Newton or Hessian-based
inner products; see Eppler, Harbrecht, 2005; Novruzi, Roche, 2000; Schulz, Siebenborn,
Welker, 2015; Schulz, 2014. This perturbation field is then used to update the domain
Q) inside a line search method, where the transformed domain

(1.2) Q={z+tV(z):z e}
associated with the step size t is obtained from the perturbation of identity approach.

While the computation of the Eulerian derivative is either based on the continuous
or some discrete formulation of problem (1.1), the computation of the shape gradient
and the subsequent updating steps will always be carried out in the discrete setting.
Typically, the shape {2 is represented by a computational mesh, and the underlying
PDE is solved, e.g., by the finite element method. The perturbation field V' is then
expressed as a piecewise linear field, i.e., it is represented in terms of a velocity vector
attached to each vertex position. The domain €2 is subsequently updated according to
(1.2) inside a line search procedure.

It has been observed in many publications that this straightforward approach
has one major drawback: it often leads to a degeneracy of the computational mesh.
This degeneracy manifests itself in different ways, but mostly through degrading cell
aspect ratios, or even mesh nodes entering neighboring cells. Indeed, Dogan et al.,
2007 observe that

It is typical of surface evolution undergoing large deformations
that triangles may tangle and cross, and that their angles may become
large. These mesh distortions limit resolution and approximability, as
well as impair computations, thereby leading to numerical artifacts.

In practice, both phenomena often lead to a breakdown of computational shape
optimization procedures.

Over the past 10 years, a range of various techniques have been proposed to
circumvent this major obstacle in computational shape optimization. A natural choice
is to remesh the computational domain; see for instance Wilke, Kok, Groenwold, 2005;
Morin et al., 2012; Sturm, 2016; Dokken et al., 2018; Feppon et al., 2018. In fact,
Morin et al., 2012 point out that

A rule of thumb for dealing with complicated domain deformations
is that remeshing is indispensable and unavoidable.

Remeshing can be carried out either in every iteration or whenever some measure of
mesh quality falls below a certain threshold. Drawbacks of remeshing include the high
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computational cost and the discontinuity introduced into the history of the objective
values.

Bénsch, Morin, Nochetto, 2005; Dogan et al., 2007 describe several techniques such
as mesh regularization, space adaptivity, angle control in addition to a semi-implicit
Euler discretization for the velocity method, with time adaptivity and backtracking line
search. In a follow-up work, Morin et al., 2012 consider a line-search method that aims
to avoid mesh distortion due to tangential movements of the boundary nodes, combined
with a geometrically consistent mesh modification (GCMM) proposed in Bonito,
Nochetto, Pauletti, 2010. Giacomini, Pantz, Trabelsi, 2017 address the issue of spurious
descent directions, attributed to discretization errors in the underlying PDE model, via
a goal-oriented mesh adaptation approach. Recently, Iglesias, Sturm, Wechsung, 2017
proposed to enforce shape gradients from nearly conformal transformations, which are
known to preserve angles and ensure a good quality of the mesh along the optimization
process.

Finally, we mention Schulz, Siebenborn, Welker, 2015; 2016; Schulz, Siebenborn,
2016, who advocate the linear elasticity model as the inner product to convert Eulerian
derivative into a shape gradient. In particular in Schulz, Siebenborn, Welker, 2016
the authors propose to omit the assembly of interior contributions appearing in the
discrete volume expression of the Eulerian derivative. This approach is vaguely related
to but conceptionally different from our idea and no analysis is provided there.

Our Contribution. In this paper we propose an approach to avoid spurious
descent directions in the course of numerical shape optimization procedures, which is
different from all of the above. The main idea is based on the observation that—in
the continuous setting—shape gradients are perturbation fields which are generated
exclusively by normal forces on the boundary of the current domain. This follows from
the Hadamard structure theorem. However, in the discrete setting, the Hadamard
structure theorem is not available, and thus classical discrete shape gradients also
contain contributions from interior forces and tangential boundary forces. We therefore
propose to project the shape gradient onto the subspace of perturbation fields generated
by normal forces. We refer to this approach as restricted mesh deformations.

We demonstrate that the proposed approach indeed avoids spurious descent
directions and degenerate meshes. As a consequence, we can solve discrete shape
optimization problems to high accuracy, i.e., very small norm of the restricted gradient.
Both gradient and Newton schemes are considered.

The paper is structured as follows. In section 2 we present a shape optimization
model problem and prove, as an auxiliary result, the existence of a globally optimal
domain. In section 3 we review the volume and boundary representations of the Eulerian
derivative. In section 4 we consider the discrete counterpart of the model problem and
its Eulerian derivative. We also illustrate the detrimental effect of spurious descent
directions. The main idea of restricted mesh deformations is introduced in section 5.
An associated restricted gradient scheme is also introduced and its performance is
compared to the classical shape gradient method in section 6. Sections 7 and 8
are devoted to second-order Eulerian derivatives in the restricted setting and the
demonstration of the associated Newton scheme. Finally we present in section 9
a new result on the convergence of a sequence of stationary domains for discrete
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shape optimization problems to a stationary point of the continuous problem as the
discretization mesh size goes to zero. Conclusions are given in section 10.

2. Preliminaries. Throughout the paper, we consider the following model prob-
lem,

o . —Au=f infQ,
(2.1) Minimize / udx s.t. Q C D is open,
Q u=0 on 0.
Here the optimization variable  C R? is an admissible domain contained in some
bounded and open hold-all D C R¢, and f € H'(D) is a given right hand side. The
elliptic state equation is understood in weak form,

(2.2) Find u € H} (D) such that / Vu-Voder = [ fodx Yoec Hi(Q).
Q Q

The next result shows that our shape optimization problem (2.1) has a solution
if we slightly relax the class of admissible sets. We will see that it is sufficient to
consider quasi-open rather than open sets. For an introduction of quasi-open sets, quasi-
continuity and related notions, we refer the reader to Attouch, Buttazzo, Michaille,
2014, Section 5.8. We consider the slightly relaxed problem

(2.3) Minimize / udz s.t. QC D is quasi-open, —Au = f in H(Q).
Q

Let us recall that H}(Q) = {u € H}(R?) | u = 0 q.e. in R\ Q} and H~1(Q) is the
dual space of H}(Q2). The PDE in (2.3) is also to be understood in the weak sense,
ie.,

Find u € HJ(Q) such that / Vu-Vv = / fvdx Vv e H(Q).
D D

We emphasize that the main reason for this existence result is that the objective is
monotone w.r.t. the state u, see also Remark 2.3 below.

THEOREM 2.1. Problem (2.3) admits a global minimizer (0, ).

Note that the extreme case (€, @) = (0),0) is possible.

Proof. First, we remark that it is sufficient to consider only pairs ({u < 0}, u)
with 4 < 0 in (2.3). Indeed, if (Q,u) is any admissible pair, we can consider ({u <
0}, min(u,0)) in its stead. Note that {u < 0} is quasi-open since u can chosen to be
quasi-continuous. This pair is again admissible due to

/Vmin(u,O)-Vvdx:/Vu~Vvdac:/ fvdz Vv e Hy({u<0}),
D Q D

since v = 0 q.e. on 2\ {u < 0}. Moreover, the objective value of ({u < 0}, min(u, 0))
is not larger than the objective value of (€, ).

Now, let {(2,,un)} be a minimizing sequence for (2.3) with u,, < 0 and Q,, =
{u, < 0}. It is clear that the sequence {u,} is bounded in H{ (D), therefore we
can extract a weakly convergent subsequence (without relabeling) with weak limit w.
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Clearly, v < 0. Now we define Q = {u < 0} and denote by & € H}(Q) the solution
of —Ad = fin H*I(Q). It remains to check that @ < u holds since this implies the
global optimality of @ (due to the monotonicity of the objective). To this end, we
choose an arbitrary v € H}(D) such that —u > v > 0. For v, := min(—u,,v) we
have v, € H(9,) due to v > 0. Moreover, v, — min(—u,v) = v in H}(D), see
Wachsmuth, 2016, Lemma 4.1. Thus,

n—oo n—oo

/ fvdr = lim fopdr = lim Vu, - Vv, dx
D D D

= lim [ V(up,+v) -V(v, —v)+ Vu, -Vo—-Vu-V(v, —v)de

n—oo D

= lim —V|min(—u, —v,0)|* + Vu, - Vodz < / Vu - Vodez.

Since v € HE (), we can test the equation for @& with v and we find
[ V(t—u) -Vodr <0 Vo e Hj(D) satisfying —u > v > 0.
Q

Now, we can use a density argument, see Mignot, 1976, Lemme 3.4, to obtain that
this inequality holds for all v € H}(€2) which satisfy v > 0. Using v = max(@ — u,0)
implies max (@ — u,0) = 0, i.e., 4 < u. Finally, the optimality of ({2, 4) follows from

/ﬂdxﬁ/udx: lim U, dz.
D D n—oo Jp ]

Remark 2.2. There is a deeper reason for & < u being true in the above proof.
Indeed, using the theory of relaxed Dirichlet problems, one can show that u satisfies
—Au + pu = f for some capacitary measure u. We refer to Attouch, Buttazzo,
Michaille, 2014, Section 5.8.4 for a nice introduction to capacitary measures. Due
to u < 0 we have (in a certain sense) pu < 0 and therefore @ < wu follows from the
maximum principle since “—At = f < f — pu = —Au”. However, we included the
above direct proof because it does not rely on the notion of capacitary measures.

Remark 2.3. The above proof of existence generalizes to a larger class of objective
functionals. In fact, we can replace the objective in (2.3) with

[ it uw)) o
Q
if the integrand j satisfies

(2.4a) j(z,-) is monotonically increasing on (—oo, 0] and non-negative on [0, c0),
(2.4b)  j(-,u) € LY(D) Yu € H}(D),

(2.4¢)  u, — u in Hy(D) implies / j(u)dz < lim inf/ J(up)dz.
D

D n—roo

Under these general assumptions, one can use the same proof as the one given for
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Theorem 2.1 above, but the final estimate has to be replaced by

/flj(‘aﬂ)dfﬂﬁ/Qj(yu)dx:/Dj(-,u)—j(-,O)dm+/{u<0}j(0)dx

< lim inf j(~,un)—j(~,0)dx+/ j(0)dx
{un<0}

Note that Fatou’s lemma together with u,, — w a.e. (along a subsequence) implies

/ j(0)dz < liminf j(0)dz.
{u<0}

n=o0 J{u, <0}

Again, this shows the optimality of (Q, a).

3. Shape Calculus. This section is devoted to the presentation of the shape
differentiability of problem (2.1). Since this is rather standard problem we will be able
to directly apply results from Ito, Kunisch, Peichl, 2008. To this end, we assume that
both the hold-all D ¢ R% and Q C R¢ are open and have C'''-boundaries 0D and
09, respectively. Moreover we assume Q C D so that  has a positive distance to the
boundary of D.

We are describing variations of the domain Q by the perturbation of identity
method, i.e., we consider a family of transformations {7} };c[o,-) such that

(3.1) T, =id+1tV,

where V € CY1(D)? is a given vector field. The family {T}} creates a family of
perturbed domains Q; = T;(Q2). In view of Banach’s fixed point theorem, there exists
a bound 7 > 0 such that T is invertible for all ¢ € [0, 7].

By a straightforward application of Ito, Kunisch, Peichl, 2008, Theorem 2.1 we
obtain the following result.

THEOREM 3.1. The shape functional given in (2.1) is shape differentiable and its
FEulerian derivative in the direction of the perturbation field V is given by

(32) J(V)= /Q u (div V) de

+ / (Vu)" [(divV)id — DV — DV '] Vpdx — / div(fV)pda
Q Q

where DV denotes the Jacobian of V and the adjoint state p is the unique solution of
the following adjoint problem,

. mdpe such that p-Voder = — vdx forallv e .
3.3) Find H&Q h th Vp-Vud dx  for all H&Q
D D

Notice that (3.2) is the so-called volume or weak formulation of the Eulerian
derivative of (2.1). Besides the volume formulation, there exists an alternative rep-
resentation of (3.2) by virtue of the well known Hadamard structure theorem; see
Delfour, Zolésio, 2011, Chapter 9, Theorem 3.6. We state it here in a particularized
version for problem (2.1). From now on, v denotes the outer unit normal vector along
the boundary 992 of €.
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COROLLARY 3.2 (Hadamard structure theorem for (2.1)). The Fulerian deriva-
tive (3.2) of problem (2.1) has the representation

. ou Op
(O V) — ) _ e
(3.4) J(;V) /a ga (V-v)ds with go "

Notice that under the assumption that 2 has a C'!'-boundary, « and p belong to
H?(Q) and thus their normal derivatives are in H'/2(92), which embeds into L*(99)
when d < 3; see for instance Adams, Fournier, 2003, Theorem 4.12. Consequently,
go = —g—ﬁ % belongs to L?(9€) in this case.

Formula (3.4) is known as the boundary or strong representation of (3.2), and it can
be obtained from (3.2) by the divergence theorem; compare Sturm, 2015, Sokolowski,
Zolésio, 1992, Chapter 3.3, Haslinger, Mékinen, 2003, Example 3.3. We also refer
the reader to Hiptmair, Paganini, Sargheini, 2015, where the volume and boundary
formulations are compared w.r.t. their order of convergence in a finite element setting.

4. Investigation of the Discrete Objective. In order to solve the shape
optimization problem (2.1) numerically, some kind of discretization has to be applied.
The most common choice in the literature consists in a discretization of the PDE by
some finite element space defined over a computational mesh, which we denote by 2,
and whose nodal positions serve to represent the discrete unknown domain.

A common choice is to replace Hj(f2) by the finite element space of piecewise
linear, globally continuous functions,

(4.1) S5(Q) = {u € HY () : u‘T € P1(T) for all cells T in 4}

defined over an approximation {2, of €2 consisting of geometrically conforming simplicial
cells, i.e., triangles and tetrahedra in d = 2 or d = 3 space dimensions, respectively.
Consequently, the state equation (2.2) is replaced by

(4.2) Find uy, € S& () such that / Vuy, - Vo, da = / fopdx Vo, € Sé ().
Q Q

This leads to the following discrete version of (2.1) frequently encountered in the
literature,

(43) Minimize / updr  w.r.t. u, € S5(Q) and the nodal positions in
. Qp,

st (4.2).

We refer the reader to Gangl et al., 2015; Sturm, 2016; Schulz, Siebenborn, Welker,
2016; Schulz, Siebenborn, 2016 for examples of this procedure.

Let us denote by J;(92;) the reduced objective value in (4.3), i.e., Jo(Qp) =
th up, dx, where uy is the unique solution of (4.2). In order to derive a discrete
variant of the volume formulation (3.2) of the Eulerian derivative, we introduce the

discrete adjoint equation,
(4.4)

Find py € S3(Q) such that Vpp-Vop da = —/ vy da for all vy, € Sg().
Qp Qn
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The following theorem shows that a straightforward replacement of the state u
and adjoint state p by their finite element equivalents u;, and pp, in (3.2) yields the
correct formula for the Eulerian derivative Jj (€2,; V) of the discrete objective Jp,
provided that the perturbation field V}, is piecewise linear, i.e., V} belongs to

(4.5) S ={u e H ()" : u|, € P1(T)¢ for all cells T in Qp}.

THEOREM 4.1. Suppose that up, and py, are the unique weak solutions of the discrete
state equation (4.2), and the discrete adjoint equation (4.4), respectively. Moreover,
let Vi, € SY(Q,)?. Then

(4.6) J}/L(QhQ Vi) = / up, (div Vh) dx
Qh

+ / (Vuh)T [(le Vh) id — DVh - DVhT] Vph dz — / le(f Vh)ph dz.
Qh Qh

The proof of this theorem follows along the lines of the continuous case, see, e.g.,
Hiptmair, Paganini, Sargheini, 2015; Laurain, Sturm, 2016. A detailed derivation can
be found in Delfour, Payre, Zolesio, 1985, Section 4.

Remark 4.2. 1. Theorem 4.1 can be viewed as the statement that discretiza-
tion and optimization (in the sense of forming the Eulerian derivative) commute
for problem (2.1).

2. The finite element analogue of the boundary expression (3.4) is not an exact
representation of the discrete Eulerian derivative. This is since the integration
by parts necessary to pass from the volume to the boundary expression has to
be done element by element and it leaves inter-element contributions; see also
the discussion in Berggren, 2010.

3. Theorem 4.1 remains true when higher order Lagrangian finite elements on
simplices are used in place of S (). However it is essential that V}, remains
piecewise linear so piecewise polynomials are transformed into piecewise
polynomials of the same order.

4. Alternative expressions for (4.6) can be obtained following the so-called discrete
adjoint approach, in which the derivative of Jy,(£2;) w.r.t. the nodal positions
of Qj, is addressed by differentiating the finite element matrices. We refer to
Schneider, Jimack, 2008; Berggren, 2010; Roth, Ulbrich, 2013 for examples of
this procedure.

Despite the simplicity to obtain the Eulerian derivative of the discrete problem,
we would like to emphasize here that the discrete problem (4.3) itself has the following
serious drawback. The search space obtained from utilizing the nodal positions of
the mesh 0} as optimization variables includes meshes with very degenerate cells.
Those lead to poor approximations of solutions of the state equation, which may give
rise, however, to smaller values of the discrete objective. Therefore, any optimization
algorithm for the solution of (4.3) sooner or later is likely to encounter spurious descent
directions which typically have support in only a few mesh nodes and which lead to
degenerate meshes.

EXAMPLE 4.3. Let us illustrate this behavior by means of problem (2.1) with data
f(z,y) =25 (z+ 0.4 —y*)? + 2% +y* — 1. The optimal domain 2 is unknown. We
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begin with the computational mesh Qy, shown in Figure 2 (left). Consider for example
the piecewise linear vector field Vi, represented by its nodal values

] (~0.9510,-0.3090) ",  for the node vy,
" 0,0)7, for all other nodes

where the boundary node vy can be easily identified from Figure 2.

We found that V' is not only a descent direction for the objective at € but in
fact that the line search function

t— J(Ty()), Ti=id+tV,

decreases until the triangle formed by vg and its two interior neighbors degenerates to a
line, which happens at t = 0.1; see Figure 1. At this point, finite element computations
break down.

In computational experience spurious descent directions do not usually occur during
the early iterates. Thus they can be, and often are, avoided by early stopping, at the
expense of a reduced tolerance. Alternatively, mesh quality control and remeshing can
help to avoid mesh destruction, but this introduces discontinuities in the objective
function’s history.

In any case, the existence of spurious descent directions is a structural disadvantage
of problem (4.3). Therefore we propose in the following section a new computational
approach. Our approach does not seek to solve (4.3) literally but in a certain relaxed
sense, which is inspired by the Hadamard structure theorem and which avoids spurious
descent directions.

5. Restricted Mesh Deformations. By the Hadamard structure theorem, the
Eulerian derivative for the continuous problem consists of normal boundary forces only,
see (3.4) above. This is no longer the case for the discrete problem. The reason is that
the finite element solutions u, and pp, are only of limited regularity, and thus a global
integration by parts necessary to pass from the volume expression (4.6) to a boundary
expression is not available. This has been pointed out, for instance, in Delfour, Zolésio,
2011, note on p. 562. Therefore, we are going to continue with the discretely exact
volume expression (4.6) but mimic the behavior of the continuous setting in the
evaluation of the shape gradient, where we alloy only for shape displacements which
are induced by normal forces.

5.1. Continuous Setting. To illustrate the situation, we start by discussing
the continuous case. We have seen in (3.2) that the Eulerian derivative J'(£2;-) is
an element of a dual space, e.g. an element of (W1°>°(Q)?)*. In order to utilize this
information for moving the domain €2, we have to convert this dual element into a
proper function. We follow the approach of Schulz, Siebenborn, Welker, 2016. To this
end, we introduce the elasticity operator £ : H'(Q)% — (H*(Q)?)* via

(5.1) (EV,W):= /522u€(V) ce(W) + A trace(e(V)) trace(e(W)) + 0V - W dx

for all V,W € H(Q)¢. Here and throughout, D denotes the derivative (Jacobian) of a
vector valued function, €(V) = (DV + DV ")/2 is the linearized strain tensor, p, A are
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10-2 Objective function

—-1.15 *

—1.2 8

—1.25| -

0 0.02 0.04 006 0.08 0.1

step size t

Fig. 1: t — J(Tt(Qh)) for Example 4.3. The step sizes t = 0.00, t = 0.05, t = 0.10
belonging to the domains in Figure 2 are highlighted.

Fig. 2: Evolution of the mesh under ¢ — T3(€2;) with perturbation field V}, given in
Example 4.3 at ¢t = 0.00, t = 0.05, ¢t = 0.10 (from left to right). The solutions uy of
the state equation (4.2) are also shown.

the Lamé parameters and § > 0 is a damping term. We assume p > 0, dA+2pu >0
so that E becomes positive semi-definite on H'(Q)?. Note that we do not consider
Dirichlet boundary conditions in the space H'(2)¢. Therefore a positive damping
parameter § > 0 is needed to ensure the coercivity of E, i.e., (EV, V) > ¢ ||V||§{1(Q)d
with some ¢ > 0. This result is due to Korn’s inequality, see for instance Attouch,
Buttazzo, Michaille, 2014, Proposition 6.6.1. Thus, F is an isomorphism and it
furnishes H'(Q)¢ with an inner product (V, W)g := (E'V, W) so that E becomes the
associated Riesz isomorphism.

In order to avoid technical regularity issues, we assume that the Eulerian derivative
(3.2) enjoys the higher regularity J/(Q;-) € (H'(2)%)*. This holds, e.g., if Q is
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sufficiently smooth, due to the higher regularity of u and p. In order to compute the
negative shape gradient w.r.t. the F-inner product on the continuous level, we solve

1
(5.2) Minimize J'(Q; V) + 3 (EV, V) st. Ve H Q)
The solution of this problem yields the negative shape gradient
(5.3) Vigrad := —E71J(Q; ).

Now, we introduce the normal force operator N : L?(9Q) — (H(Q)%)* given by

(5.4) (NF, V) = F(V-v)ds
o0

for all F € L?(09Q) and V € H'(Q)9. Using again (3.4), we find that J'(£2;-) can be
written as J'(Q;-) = Ngq with

Oou Op

_ P 2
gq = E eL (69)

Therefore, it is easy to see that problem (5.2) is equivalent to

Minimize J'(;V) + % (EV, V)

(5.5) with respect to V€ H'(Q)?, F € L*(9Q)
such that EV — N F =0.

Indeed, the additional constraint £V — N F' = 0 is automatically satisfied by the
unconstrained solution of (5.2). However, we will see that this property is lost
after discretization, i.e., the discrete counterparts of (5.2) and (5.5) are going to
differ. Note that the solution (V,F) of (5.5) is unique due to coercivity of E and
injectivity of N. Moreover, since [E —N ] is surjective, there exists a unique Lagrange
multiplier IT € H*(Q)? associated with the constraint £V — N F = 0; see for instance
Luenberger, 1969, Chapter 9.3, Theorem 1. We therefore obtain the following necessary
and sufficient optimality conditions for (5.5) in saddle-point form,

E 0 E 1% — T )
(5.6) 0 0 -N*||F]|= 0
E -N 0 I 0

Here, N* : HY(Q)4 — L2(09) is the adjoint of N, where we identified L2(99) with its
dual space. The multiplier IT in (5.6) necessarily satisfies IT = 0 since FE is bijective.
Now, it is easy to see that (5.6) is equivalent to solving

o ()

(5.7b) V=—-E"YJ(Q) 1L

Recall that —E~1J’(€; +) is the usual negative shape gradient w.r.t. E (i.e., the solution
of (5.2)), whereas —II is a correction in order to obtain a shape displacement in the
subspace im(E~!N). Again, we emphasize that we have IT = 0 in the continuous
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setting, due to —J'(2;-) = —N gq. Therefore, the solution of (5.7) is just the usual
shape gradient Vgaa = —E~1J'(; ).

Before discussing the discretized setting, we note that (5.5) is equivalent to

1
Minimize = (E(V = Vigraa), V = Vigrad)

(5.8) with respect to V€ H(Q)%, F € L?(09)
such that EV — NF =0.

Hence, the solution V is the orthogonal projection (w.r.t. the inner product induced
by E) of the usual shape gradient Vgaqa = —E~1J/(2;-) into the space im(E~'N),
i.e., the space of deformations induced by normal forces. This motivates to denote the
solution of (5.5) by Vprojgrad-

5.2. Discretized Setting. Next, we discuss the discretized setting. We refer to
section 4 above for the introduction of the finite-element discretization. In addition
to the FE space S} () € H}(Q4), we recall from (4.5) the discrete space of mesh
deformations

SHQ) ={u € H ()" : u|, € Pr(T)? for all cells T in 0}
and the boundary space
(5.9) SHO) = {u € C(02)" : u|, € P1(E)* for all edges E on 09}

We recall that the discrete Eulerian derivative J; (Qp;-) € (S1(Q5)%)* was given
in (4.6). Moreover, the discretization directly leads to the discretized operators
Ep, : SY(Q)% — (SY(Q)D)*, Np, 2 SH0Q) — (S1(2,)%)* which are defined via

(Ey Vi, Wy) = /Q 2pe(Vy) : e(Wh) + A trace(e(Vy,)) trace(e(Wy)) + 6 Vi, - Wi, da,

<NhFh, Vh> = Fh (Vh-u)ds
oy,

for all Vi, W), € S1(2,)% and F), € S*(99,). Next, we will investigate the discrete
counterparts of (5.2) and (5.5). The straightforward discretization of (5.2) reads

1
(5.10) Minimize J;,(Qp; Vi) + 3 (EpVh, V).

We denote its unique solution by Vgrad,n-

The important difference to the continuous case is that Hadamard’s structure
theorem is not available. The reason is that the discrete state uy has only the limited
regularity u, € H} () and this regularity is not enough to transform the domain
integral into a boundary integral via integration by parts, see the last paragraph in
chapter 10, section 5.6 of Delfour, Zolésio, 2011. Therefore, unlike in the continuous
case, J; (Qn;-) does not belong, in general, to the image space of Nj,. Consequently,
the solution V}, of (5.10) has contributions not only from normal forces in the Eulerian
derivative Jj (Qy;-), but also from interior forces as well as tangential boundary forces.
Numerical examples in section 6 will show that these interior and tangential forces are
responsible for spurious descent directions, which in turn lead to degenerate meshes.
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Therefore, we conclude that it is not reasonable to try to solve
Minimize Jy(Qp)
or its stationarity condition
(5.11) Find a triangulation €2, such that Vgyaqa,n = —E,ZIJ;L(Q;L; =0
as a discretization of the continuous problem (1.1).
Hence, we consider the discretization of (5.5)

1
Minimize J;,(Qn; Vi) + 3 (EnVi, Vi)

(5.12) with respect to  Vj, € S*(Q,)%, Fi, € S*(04,)

such that Ej V), — Ny Fj, = 0.

in which we restrict E V}, to the image space of the discrete normal force operator NVj,.
As in the continuous setting, this problem is equivalent to the solution of

E, 0 Ep Vi —Jp (s -)
(5.13) 0o o -nN|[E]|= 0
E, —Ny 0 11, 0

It is clear that (5.13) can also be reduced as in (5.7). For later reference, we mention
that the solution (Vpyojgrad,hs Fh, L) of (5.13) satisfies

<Eh Vproj grad,h» Vproj grad,h> = _<Eh Vproj grad,h» Hh> - J}/l(Qh, Vproj grad,h)
= _<Nh th Hh> - J}Il(th Vproj grad,h)
(514) = _J}/l (Qh7 Vproj grad,h)

since Ny I, = 0 holds. This shows that Vjrojerad,n is always a descent direction for
the discrete objective Jp, (g ).

As we have seen in (5.8) for the continuous setting, the solution Vj, of (5.12) also
solves

1
Minimize 5 <Eh(Vh — Vgrad,h)7 Vh — Vgrad,h>

(5.15) with respect to Vi, € S*(,)%, Fj, € S*(9Q,)
such that FE, V), — Ny Fj, =0,
where Vgrad,n = —E,:lJ]’l(Qh; -) is the solution of (5.10). Again, the solution Vjyoj grad,n

of (5.15) can be interpreted as the projection (w.r.t. the Ej, inner product) of Vgaa,n
onto the image space of E;’ LNj,. Therefore, the notation Vproj grad,n for the solution of
(5.12) is justified.

Our main idea is now to propose, instead of (5.11),
(5.16) Find a triangulation €2, such that Vp,ojgrad,n = 0

as an appropriate discrete version of (1.1). Note that this is fundamentally different
from the ad-hoc discretization (5.11) since we neglect the contributions of J; (€4 )
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which do not belong to the image space of Nj. We will see via numerical examples
that this problem (5.16) can be solved to high accuracy by an iterative algorithm
using the solution Viiojgraa,n of (5.12) for the displacement of the triangulation
(together with a line-search). Moreover, we will see that the solutions {2}, converge to
a stationary point of the continuous problem (1.1) under suitable assumptions when
successively finer meshes are used; see section 9 below.

For later use, we are going to characterize stationarity of Qj, in the sense of (5.16).
The deformation V}, = 0 solves the projection problem (5.15) if and only if

(Ep Varaans By " Ny F) =0 VF, € S1(0Qp).

This, in turn, is equivalent to

(5.17) Fy, (Vgraan -v)ds =0 VE, € SY(0Qy,).
oQy,

This means that €, is stationary in the sense of (5.16) if and only if the usual shape
gradient Viraq,n is a tangential vector field on 25 in a discrete sense.

We can now state a restricted gradient algorithm for the solution of (5.16), where
we use Viprojgrad,h as the deformation field which provides the search direction in the
domain transformation. It is sufficient to utilize a simple a backtracking strategy to
comply with the Armijo condition

(518) Jh ((ld + t Vproj grad,h)(Qh)) § Jh(Qh) +o t J}/L(Qh, Vproj grad,h)~
Here, o € (0,1) is a parameter.

Since we are using the perturbation of identity approach (1.2) instead of a more
sophisticated family of domain transformations, we also perform a mesh quality control
in order to avoid gradient steps which are too large. To this end, we check that the
conditions

f— 3

(5.19) < det(id + tDmej grad,h) <2 ||t DVprOj grad,h”F <0.3

N | =

are satisfied in every cell throughout the entire domain. Here, ||| denotes the
Frobenius norm of matrices. The first condition monitors the change of volume of the
cell, while the second additionally inhibits large changes of the angles. Note that this
amounts to checking three inequalities per cell. Due to (5.14), we use

(520) <Ehvproj grad,h Vproj grad,h> = _J;L(Qlﬁ Vproj grad,h) < 5301

as a convergence criterion for some small e, > 0. These considerations lead to
Algorithm 1.

6. Numerical Results: Restricted vs. Classical Gradient Method. The
main goal of this section is to compare our proposed restricted gradient method, see
Algorithm 1, to a classical shape gradient method. The latter is identical to Algorithm 1
except that Vprejerad,n is replaced everywhere by the negative shape gradient Vgraq,n
from (5.10). We consider our model problem (2.1) with data f as in Example 4.3.
The line-search parameters § = 0.5 and ¢ = 0.1 are used. The initial shape for both
methods is the same as in Figure 2 (left).
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Algorithm 1: Restricted gradient method for (5.16).

Data: Initial domain 2,
Initial step size t, convergence tolerance ey,
Line-search parameters 8 € (0,1), o € (0,1)
Result: Improved domain €2 on which (5.16) holds up to &4
for i < 1 to oo do
Solve the discrete state equation (4.2) for wup;
Solve the discrete adjoint equation (4.4) for pp;
Solve (5.12) for Vpyojgrad,»n With shape derivative J'(Qp;-) from (4.6);
if <Ethr0j grad,h> Vproj grad,h> < 5301 then
| STOP, the current iterate €, is almost stationary for (5.16);
end
Increase step size t « t/[3;
while (5.18) or (5.19) is violated do
‘ Decrease step size t < (t;
end
Transform the domain according to €y, < (id + ¢ Viroj grad,h) (Ch);
end

© 00 N o ok W N =

o
= o

o
[V V]

We implemented Algorithm 1 and its classical counterpart in FENICS, ver-
sion 2018.1 (Logg, Mardal, Wells, et al., 2012). All derivatives were automatically
generated by the built-in algorithmic differentiation capabilities. The restricted shape
gradient Vproj grad,h, i-€., the solution of (5.12), was computed via the discrete counter-
part of (5.7). The linear system was solved using SCIPY’s spsolve with the SUPERLU
solver (Li, 2005), i.e., with the setting use_umfpack = False.

The restricted gradient method reached the desired tolerance
HVprOj grad,h”Eh < Etol = 10_7

at iteration 858, while the classical gradient method was stopped at iteration 1000,
where it had only reached
[Verad,pllm, 2 71077,

Figures 4 and 5 show the complete history of the objective and respective shape
gradient norms.

Figure 3 shows the domains 2, during the iteration of both methods for comparison.
It can clearly be inferred that the initial iterates are virtually identical but both methods
begin to produce visibly different shapes around iteration 500, when the objective
value (shown in Figure 4) has practically converged but the gradient norms are still

Verad,nllz, #5-107°  and  [|Vprojgraa,nlle, =~ 4-107°,

respectively. At this point, the classical gradient method starts to pursue spurious
descent directions, which results in a further decrease of the discrete objective at the
expense of increasingly degenerate meshes.

To further illustrate this point, we show in Figure 6 visualizations of the Eulerian
derivative J; (Qy;-) for both methods; see (4.6). In fact, this is a linear functional on
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Fig. 3: Intermediate shapes €}, obtained with the classical gradient method (left) and
the restricted gradient method (right) at iterations 5, 300, 600, 900.
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Fig. 4: History of the objective value J;,(£2;) along the iterations.
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Fig. 5: History of the norm of the gradients ||Vgradnllg, (for the gradient descent
method) and ||Vprojgrad,hll £, (for the restricted gradient method) along the iterations.

the space of piecewise linear perturbation fields Vj, € S*(€2;,)?. In Figure 6 we display
the S1(Q,)¢ representer of J} (Q;-) w.r.t. the L? inner product, i.e., we solve a linear
system governed by a block-diagonal mass matrix.

Let us comment on the Eulerian derivative for the restricted gradient method
as shown in the right column of Figure 6. It is apparent that the displacement field
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Fig. 6: Visualization of the Eulerian derivatives Jj (Qs;-) obtained with the classical
gradient method (left) and the restricted gradient method (right) at iterations 300,
600, 900 (top to bottom).

Varad,n, 1.€., the solution of (5.10), is non-zero and in fact essentially the same for the
iterations 300, 600, and 900 shown. However Vgraq,n also has essentially no component
in the space of deformations induced by normal forces. Therefore its projection into
this space, see (5.15), leaves us with a very small norm ||Vproj grad i || £, @s shown in
Figure 5. The images visualizing the Eulerian derivative for the classical gradient
method in the left column of Figure 6 show that the method has allowed the spurious
part of the derivative to build up, which eventually dominates the search direction.
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7. Restricted Newton-Like Method. In the previous two sections we have
seen that (5.16) is a reasonable discrete optimality condition and that it can be solved
to high accuracy via a first-order gradient descent method. However, as is well known
for the minimization of even mildly ill-conditioned quadratic polynomials, gradient
descent methods require a large number of iterations to achieve convergence. We
observed the same behavior in section 6.

Therefore, we are also investigating a Newton-like method for solving (5.16). First,
we focus on the continuous case and comment on its discretization afterwards. Let
Q be our current iterate. As before, we denote by u the associated state, see (2.2),
and by p the adjoint state, see (3.3). The solution of the restricted shape gradient
problem (5.6) at € is denoted by (Vprojgrad, F, IT). Recall that our goal is to achieve
Vprojgrad = 0 or, equivalently, F' = 0, cf. (5.16). In practice, we impose a stopping
criterion of the form ||VirojgradllE < €to1 as we did for the gradient method.

In order to allow the reader to follow the derivation for the solution of (5.16)
of our Newton method more easily, we draw the parallel with Newton’s method for
®(x) = 0 for some ® : R — R™. We consider the equation ®(z + dz) = 0 for the
unknown update dx. In our context the iterate x represents the current domain € and
the update corresponds to a perturbation field W. Since the update takes §2 into a
new domain, we need to manipulate the expression ®(z + dz) = 0 and pull it back to
Q. Finally, we linearize about dx = 0, which amounts to ®(z) + D®(x) dz = 0.

In our Newton method we seek a deformation field W (taking the role of dz above)
such that the updated domain Qy := (id + W)(Q) is stationary in the sense that the
solution of (5.6) (at Qy instead of ) satisfies Vp‘ff)j grad = 0. As in section 5 we are only
considering updates W which are induced by a normal force G, i.e., EW — NG =0

should hold.

In order to characterize the stationarity of the transformed domain Qu, we
introduce the elasticity operator Ew : H'(Qw)? — (H'(Q)%)* and the normal
force operator Ny : L2(0Qw) — (H*(Qw)%)* on Qu analogously to (5.1) and (5.4).
With the transformation field Ty := id + W : Q — Qu, we define the pullbacks
EW : HY(Q) — (HY(Q)?)* of Ey and NW : L2(02) — (H'(Q)4)* of Ny via

(EW Wy, Wa) = (Ew (W10 Ty'), Wa o Tyh),
(NWE, W) = (Nw (FoTy'), Wo Tih)

for Wi, Wo, W € Hl(Q)d

Since we wish to achieve conditions defined on the current domain €, rather than
on the unknown transformed domain Qy after the Newton step, we consider the
Lagrangian associated with problem (2.1) on Qy = Tw () and pull it back to €.
Using the usual integral substitution and chain rule, and denoting the pulled-back
solutions of the state and adjoint equations on Qy by v" and p"V, respectively, we
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obtain £ : W (Q)4 x H () x HE(Q) — R, defined as
LW, u", p") = /QUW det(id + DW) dz
+ /Q((id + DW= T vu) - ((id + DW)~ T Vp") det(id + DW) dz
- /Q(f oTw) det(id + DW) dz.

Notice that %E(VV, u", p") is the shape derivative J'(Qy;-). Thus we find that the
stationarity of Qy is equivalent to the requirement that the solution of the nonlinear
system

: : : " = LW, u?, p)
BV JJEVVVVV* Varojgrad | + | i L0V, pY) | =0
gv aw SO |

satisfies Vp‘?gj arad = 0. In view of the injectivity of NW . this is equivalent to FV' = 0.
Here, “-” stands for a zero block. We mention that the first two equations in this
system correspond to the adjoint and state equation on Qy but pulled back to €2,
respectively. Moreover, note that the solution (u",p", var‘gj grads W TI") of the
above system is the pull-back of the solution of the state equation, adjoint equation

and the projected shape gradient of the system (5.6) formulated on the domain Q.

Together with the requirement that the deformation field W itself is induced by

some normal force G, we have to solve the nonlinear system
(7.1)

. . id . w

E —-N . . G
uv
. . . pW +
EW ! EW Vp‘;[f)' rad %E(W uW7pW)
: : —(NW)* F :
EW —NW . HW

As before, N and F denote the normal force operator and the elasticity operator on €.

The system (7.1) for W and the further, auxiliary unknowns corresponds to the
nonlinear system ®(x + dx) = 0 for the step dx. For convenience, we recall the
meaning of the seven equations in (7.1). The first equation requires F"V' = 0, i.e.,
the stationarity of the updated domain €y,. The second equation is the requirement
that the displacement W is induced by the (normal) force G. The third and fourth
equation are the adjoint and state equation on Q. Finally, the last three equations
are the pullback of the system (5.6) on Qu to €.

We can now describe a step of our Newton-like procedure for the solution of the
nonlinear system (7.1). Suppose that Q is the current domain and consider an iterate
of the form (0,0, u, p, Vproj grad, F, II) with the state, the adjoint state, and the solution
of (5.6) on Q. Notice that for this iterate, the residual of (7.1) is (F,0,0,0,0,0,0).
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Next we linearize the system (7.1) about this current iterate w.r.t. all seven variables.
We refrain from stating the lengthy formula for the linear system which results. In
practice, we generate this linear system governing the Newton step using the algorithmic
differentiation capabilities of FENICS (Logg, Mardal, Wells, et al., 2012). From the
solution of that linear system we only extract the Newton update for the perturbation
field. We refer to it as W since its current value is zero. We then apply W to the
current domain ) to obtain the new domain (id + W)(£2). The six remaining variables
are updated in a different fashion. Rather than using the solution from the Newton
step, we solve again the state and adjoint state equations on the new domain, as well
as the system (5.6) returning the projected shape gradient. This procedure can be
understood as a Newton-like method with nonlinear updates for some of the variables.
It ensures that the new iterate is of the same form as above. Moreover, it allows us
access to the projected shape gradient and its norm in every iteration so that we can
use ||Vprojgrad||E < €tol @s a stopping criterion as we did for the restricted gradient
method.

Numerically, we have observed some instabilities if the current iterate 2 is far
from being stationary. Moreover we wish to establish a step size control in order to
monitor the Armijo condition (5.18) and the mesh quality condition (5.19). To this
end we added a regularization term —G/t to the first equation of (7.1), i.e., we obtain
(7.2)

—t~4d - - id . w

E -N . . . . . G
u En
. . . P + 8@
Ew : Ew Vproj grad aiE(W, u,p)
. . Ny, F .

Ew —Nw : I

Thus, the update resulting from the solution of the Newton system satisfies —t~16G +
0F = —F'. Heuristically, this leads to G = t F' for small . Consequently, the trans-
formation field which is applied to the current domain € satisfies W = E~! N §G ~
t Voroj grad is essentially a scaled (restricted) gradient direction for small ¢t. Therefore,
similar as in a Levenberg—Marquardt method, we will refer to ¢t as the damping
parameter and it serves the same purpose as the step length parameter in Algorithm 1.

A discrete variant of our Newton-like method is readily derived and given as
Algorithm 2. In order to determine an appropriate damping parameter we consider
analogues of the Armijo condition (5.18) and the mesh quality criterion (5.19). For
the sake of clarity we re-state them with the relevant quantities for the Newton-like
method. In particular, we use the step length ¢t = 1 therein, since the scaling of the
step is already realized by the damping in (7.2). The Armijo condition becomes

(7.3) Jn ((d + W) () < Jn(Q) + 0 Jj(Qn; Wh).
with some parameter o € (0,0.5). The mesh quality criterion holds if

1
(7.4) 5 Sdet(id + DWy) <2, | DWillr < 0.3

is satisfied in every cell. In addition we verify that W}, yields a descent direction. If
any of the above conditions fails, we decrease the damping parameter ¢.
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Algorithm 2: Restricted Newton method for (5.16).

Data: Initial domain 2,

Initial damping parameter ¢, convergence tolerance e,

Line-search parameters 8 € (0,1), o € (0,0.5)

Result: Improved domain €2 on which (5.16) holds up to &4

for i < 1 to oo do

Solve the discrete state equation (4.2) for wup;

Solve the discrete adjoint equation (4.4) for pp;

Solve (5.12) for Vprojgrad,»n With shape derivative Jj (Qp;-) from (4.6);

if <Ethr0j grad,h> Vproj grad,h> < 5301 then
| STOP, the current iterate €, is almost stationary for (5.16);

end

Increase damping parameter ¢t < t/3;

Solve the Newton system associated with (7.2) with damping parameter ¢
and extract the first component as Wp;

10 while J] (Qp,; W) > 0 holds, or (7.3) or (7.4) is violated do

11 Decrease damping parameter t < (§t;

12 Solve the Newton system associated with (7.2) with damping

parameter t and extract the first component as Wp;

© 00 N o ok W N =

13 end
14 Transform the domain according to €, < (id + W3)(Qy,);
15 end

8. Numerical Results: Newton-Like Method. This section is devoted to
numerical results obtained by solving the same problem as in section 6 using the
Newton-like method as described in section 7. For this approach the stopping criterion

varoj grad,h”E‘h § Etol = 1079

was satisfied after 12 iterations. Some of the intermediate shapes are shown in Figure 7.
As was already mentioned, we have the linear system in each Newton step assembled
using the algorithmic differentiation capabilities of FENICS and solved in the same
way as we did for the gradient method.

9. Convergence of Discrete Shapes. In this section we prove a result con-
cerning the convergence of a sequence of discretely stationary domains €2, satisfy-
ing Vprojgrad,n = 0 to a stationary point 2 of the continuous problem satisfying
Verad = Vprojerad = 0 as the discretization mesh size goes to zero. This result is a
further indication that our discretization (5.16) is reasonable.

To our knowledge, similar results are only available if the space of shapes is
restricted to a class of parametrized shapes. In Eppler, Harbrecht, Schneider, 2007, the
authors consider shapes in R? which are star-shaped w.r.t. the origin. Consequently, this
class of shapes is discretized using periodic splines and the boundary element method
is employed for the state equation. Under appropriate assumptions, convergence of the
discretization is proved. A similar approach is used in Kiniger, Vexler, 2013. Therein,
the authors considered the optimization of the lower boundary of the unit square
(0,1)2 C R2. They employ a parametrization of this lower boundary and the entire
problem is mapped back to the unit square (0,1)2. The problem is discretized by finite
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Fig. 7: Intermediate shapes ) obtained with the restricted Newton method at
iterations 0, 4, 5, 6, 9, 12.
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elements and the convergence of this scheme is proven. The same technique is used in
Fumagalli, Parolini, Verani, 2015 for shape optimization of Stokes flow. We emphasize
that these three results also derive convergence rates.

As already said, we consider a sequence of triangulations. Note that we are going
to solve (5.16) on each of these triangulations and the mesh deformations change the
mesh width (which is usually denoted by k). Hence, we do not use the index h to
refer to the triangulations, but we will just use n € N as discretization parameter. In
what follows, for all n € N, Q,, will be a triangulated domain. For the purpose of this
section we denote by

Next, we fix the assumptions which are necessary for our convergence result. To
this end, we introduce the elasticity operator on €, via

(9.1) (B, V,W):= /Q 2pue(V):e(W) + X trace(e(V)) trace(e(W)) + 5V - W dz

for all VW € H'(Q,,)%

ASSUMPTION 9.1. Suppose that {1, } is a sequence of triangulations, each of which
is stationary in the sense of (5.16). Moreover, let  be a domain of class C'' and we
assume the following.

(A1) The right-hand side f of the PDE satisfies f € WH4(D).
(A2) The mazimum mesh width h, in Q, goes to 0 as n — oco.
(A3) For arbitrary g € L*(D) the FE solutions wy, € S§(Qy) of

Qn Qn

extended by zero to all of D, converge in W01’4(D) towards (the zero extension
of) the solution w € Hg(2) of

—Aw=ginQ, w=0 ondf.
(A4) For arbitrary Gy € L?(D)?, Gy € L*(D)*™*? the FE solutions W,, € S*(Q,)¢
of
(B W, V) = / Go Vo +G1:DV,dz YV, € §Y(Q,)?

Q”L

and the solution W € H'(Q)? of
(EW, V) = / Go-V+G:DVdr YV e H'(Q)
Q

satisfy

/ (Wn~un)g0ds—>/ (W-v)pds Y € Wh*(D),
oy, 1919)

where vy, and v denote the outer unit normal vectors on §,, and 2, respectively.
(A5) The trace operators from H'Y(Q,) to L'(99Q,) are uniformly bounded, inde-
pendently of n € N.
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Remark 9.2. Tt would be nice to replace (A3) and (A4) by some more tractable
conditions. One possibility is to use the geometric assumption

QL \ QU (Q\ Q) C {zeR?|dist(x,00) <e,}

with €, — 0 and to assume that, additionally to (A2), the aspect ratios of all triangles
in {Q,,} remain bounded as n — oo. With these assumptions it is possible to show that
the FE solutions w,, converge to w in H*(D). However, it is not clear how to improve
this convergence to convergence in W1 4(D). For this, it would, e.g., be sufficient to
get a uniform bound for ||w,||y1.0, but this seems to be far from trivial. With similar
arguments one is able to obtain (A4) from the above geometric assumption. For this,
it is crucial to use

/ Wy -vp) pds = / div(W, ¢) dz, / (W-v)pds = / div(W ) dz
a, Q a0 Q

due to Gauf}’ divergence theorem.

Since we assumed that the hold-all D has a C*! boundary, we have C%'(D) =
W1e2(D), see Delfour, Zolésio, 2011, Section 2.6.4.

First we remark that Assumption 9.1 implies the convergence of states and adjoints.

LEMMA 9.3. Let us denote by u,, p, the discretized states and adjoints, i.e., the
solutions of (4.2) and (4.4), respectively, with h replaced by n. Similarly, u and p
denote the state and adjoint associated with ). Then,

l|un — U”W(}A(D) + llpn —p||W01,4(D) — 0.
Proof. This is a direct consequence of (A3) with g = f and g = —1, respectively.0

Next, we consider the convergence of the representation of the Eulerian derivatives.
Recall that for V€ W1°°(D) we have

J (V) = /Qu (divV) + (Vu) " [(divV)id — DV — DV "] Vp — div(f V) pdz

:/G(]V+G1DVd.’E

Q

with

9.2)  Go=-pVf, Gi=w+Vu-Vp—fp)id—Vu(Vp)" —Vp(Vu)'.

Note that Gy = 0 and G; = 0 a.e. on D \ . Similarly we obtain for the discrete
Eulerian derivative

T (Vi) = / tn (div Vi) + (Vun) T [(divV,)id — DV, — DV,'] Vp, da
Q

—/le(an)pndgj
Q

_ / Gom Vi + G DV, da
Q
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for all V,, € S*(Q,,)¢ with

(93&) GO,n = —DPn v.fa
(9.3b) G = (tn 4+ Vi, - Vpp — fpn)id = Vau, (Vpa) T — Vpn (Vu,) '

Now, it is clear that Lemma 9.3 implies

HGO - GO,nHL?(D)d + ||G1 - Gl,n

‘LQ(D)dxd — 0.

Next, we are going to exploit the stationarity of €2, in the sense of (5.16). In
particular, we use the characterization (5.17) in terms of the shape gradient Vgrad,n €
S1(2,)%, i.e., the solution Vypaa,n € S1(0y,)9 of

<Eanrad,na Zn> = J;,(Qn, Zn) = / GO,n . Zn + Gl,n : DZn dz VZn - Sl(Qn)d
Qn
satisfies
/ (‘/grad,n ' Vn) ©Pn dx =0 VL,OTL S Sl(aﬁn)
0Qy,

The next result shows that we can pass to the limit in these two equations.

LEMMA 9.4. We denote by Virad € HY(Q)? the solution of
(EVigradn Z) = J' (0 Z) = / Go-Z+Gi:DZdx  VZe HY Q).
Q

Then,
/ (Vgrad " V) pdz =0 Vo € L*(09).
o0

Proof. We first consider the case of ¢ being Lipschitz continuous. Then, ¢ can be
extended to a function ¢ € W*°(D). We denote by Vgrad,n € S1(92,,)? the solution of

<E ngdm, Zn> = / Go-Z,+Gy:DZ,dx VZ, € Sl(Qn)d
Q,
The stability of the Galerkin scheme implies

Veradn = Verad,nll i @,)a < C ([Go = Gollrz@,e + 1G1 = GinllL2a,yixe)
<C (”GO — GO,nHLQ(D)d + ||G1 — G17n||L2(D)d><d) — 0.

Now, we use the divergence theorem to obtain

—_~—

AQ (‘/grad,n - varad,n) *VUn SOdS

—_~—

/ diV((‘/grad,n - Vgrad,n) 90) dx
Qp

< C ||Vgrad,n - varad,nHHl(Qn)d ||§0||H1(QT,) — 0.

—_~—

By definition of Vygyad n, we can invoke (A4) to obtain

/ (Varad,n - Vn) @ ds — / (Vgrad - v) @ ds.
29, Ele)
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Together with the previous estimate, we obtain

/ (Vgradm . Vn) SOdS — / (Vérad : V) (pdS
[2197% o0

Thus, it remains to prove
/ (Varad,n - Vn) pds — 0.
a9,

Since ¢ is Lipschitz continuous, (A2) implies the existence of ¢,, € S1(9Q,) such that

e = enllL=@0.) < Clle = enllL=(@,) < Chnlelwr(p):

Together with the stationarity of €2,, we obtain

‘/ (Vgrad,n . Vn) QDdS‘ - ‘/ (varad,n . Vn) (90 - 9071) ds
o, 0Qy,

< C|Verad,nllL1a9,)4 |9 = @nll Lo (00.,)
< C|Vgradnll 1 (@0)¢ |0 = @nllL=(00,) = 0
Note that we have used (A5) in the final inequality. This shows the claim in the

case that ¢ is Lipschitz. Finally, the density of Lipschitz functions in L?(99) and
Vgrad - v € L?(092) implies the claim. 0

With the above preparations, we can prove our main theorem.
THEOREM 9.5. The limit domain § is stationary, i.e., J'(€;-) = 0 holds.

Proof. Since © is assumed to have a C'*! boundary, we obtain from Corollary 3.2
that

J(Q;V) = /SQgQ (V-v)ds

holds with
_ _Oudp
go = ov Ov

Now, using Z = Vjaa in the equation for Viyaq, we obtain

€ L*(09).

<E‘/grad7 Vgrad> = JI(Q; Vgrad) = / gQ (Vgrad . V) ds.
o0
Lemma 9.4 implies
<E‘/grad7 varad> =0.

Hence, Vygaa = 0 and, thus, /() = 0. 0

10. Conclusions. In this paper we introduce the concept of restricted mesh
deformations for the computational solution of shape optimization problems involving
PDEs. In a nutshell, we only admit perturbations fields which are induced by normal
boundary forces. We argue that the stationarity condition (5.11) which does not
impose any restriction on the mesh deformations leads to degenerate meshes and
premature stopping. By contrast, we were able to solve the corresponding restricted
stationarity condition (5.16) to high accuracy even with a gradient method. We also
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propose a Newton-like method based on restricted mesh deformations which exhibits
fast convergence.

Even though we require only the restricted stationarity condition (5.16) to hold,
we were able to show in section 9 the convergence of the corresponding discrete shapes
towards a stationary point of the continuous problem.

It is not clear whether (5.16) are the optimality conditions of a discrete optimization
problem in Euclidean space. We conjecture that (5.16) are the optimality conditions
for a problem defined on a discrete shape manifold, whose tangent space is represented
by restricted mesh deformations.
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