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Beyond the Oracle:
Opportunities of Piecewise Differentiation

Andreas Griewank and Andrea Walther

Abstract For more than thirty years much of the research and development
in nonsmooth optimization has been predicated on the assumption that the
user provides an oracle that evaluates at any given x ∈ Rn the objective
function value ϕ(x) and a generalized gradient g ∈ ∂ϕ(x) in the sense of
Clarke. We will argue here that, if there is a realistic possibility of computing
a vector g that is guaranteed to be a generalized gradient, then one must
know so much about the way ϕ : Rn → R is calculated that more information
about the behavior of ϕ in a neighborhood of the evaluation point can be
extracted. Moreover, the latter can be achieved with reasonable effort and
in a stable manner so that the derivative information provided varies Lip-
schitz continuously with respect to x. In particular we describe the calculation
of directionally active generalized gradients, generalized ε-gradients and the
checking of first and second order optimality conditions. All this is based on
the abs-linearization of a piecewise smooth objective in abs-normal form.

1 Motivation and Introduction

It is well understood that the convex set ∂ϕ(x) of generalized gradients is
highly volatile with respect to variations in x, never mind that it is by defini-
tion outer semi-continuous as a set-valued mapping ∂ϕ : Rn ⇒ Rn. Moreover,
due to Rademacher’s theorem for Lipschitzian functions on a Euclidean space,
we can expect that almost everywhere we get a singleton ∂ϕ(x) = {∂ϕ(x)} so
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that the users effort to somehow code up a guaranteed generalized gradient
will rarely ever pay off during an optimization run. In fact in the paper [30],
it is simply assumed that this exceptional event will never happen, so that at
the iterates the actually generated g will always be a classical Fréchet gra-
dient. However, it must be noted that even when this optimistic assumption
holds, nonsmooth functions may be poorly approximated by their tangent
plane, because there can be a kink nearby about which the local gradient
knows nothing. Fortunately, one can generate a local piecewise linear model
that reflects such close-by derivative discontinuities, so that whatever algo-
rithm one uses has a chance to deal with the nonsmoothness appropriately.
In other words, we suggest to handle (possibly multiple and deflected) kinks
at the level of the piecewise linearization.

This chapter is organized as follows. In the second section, we introduce
the basic notation and discuss the relation between the Oracle Paradigm and
Piecewise Differentiability. In Section 3, we discuss the framework of objec-
tive functions in abs-normal form and in Section 4 our approach to generate a
local piecewise linear model. In Section 5, we show how one can get informa-
tion about the gradients that are active in a neighborhood, in particular the
gradients and ε-gradients. While these only allow the checking of stationarity
and ε-stationarity, we discuss in Section 6 the issue of testing for criticality.
In the same section, we introduce briefly an algorithm that actually allows to
reach a stationary point. The various concepts discussed in this chapter are
illustrated in Section 7 by means of the Crescent example. Section 8 discusses
several ways of generating abs-linear approximations of functions including
the Euclidean norm and compare their efficiency on a paradigmatic example.
Finally, we give a summary and a conclusion in Section 9. Throughout we
will consider only the unconstrained case, but most arguments and results
carry over to constrained optimization.

2 The Oracle and Piecewise Differentiation

Throughout this chapter we assume that the objective ϕ : D 7→ R is locally
Lipschitz on an open domain D ⊂ Rn. Moreover, we will use the notation
and terminology

Fréchet gradient: ∇ϕ(x) ≡ ∂ϕ(x)
∂x : D 7→ Rn ∪ ∅

Limiting differential: ∂Lϕ(̊x) ≡ limx→x̊∇ϕ(x) : D ⇒ Rn

Clarke differential: ∂ϕ(x) ≡ conv(∂Lϕ(x)) : D ⇒ Rn .
where conv denotes the convex hull. The individual elements of the limiting
and the Clarke differential will be called limiting gradients and generalized
gradients, respectively. The limiting differential is the outer semi-continuous
limit of the Fréchet gradient in the Kuratowski-Painlevé sense [35, Section
4.B] so that we have more precisely
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Fig. 1 Different coincidence sets with tangential cones

∂Lϕ(x) ≡
{

lim
i→∞

∇ϕ(xi) : xi → x,D 3 xi 6∈ S
}
.

Here S denotes the set of exceptional points, where ϕ(x) is not Fréchet differ-
entiable. In the literature the limiting differential is often called the Bouligand
differential or derivative.

Definition 1 (Oracle Paradigm). The locally Lipschitz continuous func-
tion ϕ : Rn 7→ R is said to satisfy the Oracle Paradigm if at any x ∈ Rn
not only the function value ϕ(x) but also at least one generalized gradient
g ∈ ∂ϕ(x) can be made available to the optimization algorithm.

At first the task required by the oracle paradigm does not appear that hard
in the piecewise differentiable case.

Definition 2 (Piecewise Differentiability). The locally Lipschitz contin-
uous function ϕ : D ⊂ Rn 7→ R is said to be d > 0 times piecewise differen-
tiable if at any x ∈ D there exists a selection function ϕσ(x) ∈ Cd(D) such
that ϕ(x) = ϕσ(x). Here σ belongs to some finite index set E labeling the
selection functions ϕσ.

In the literature the elements of E are usually chosen as natural numbers, but
we will give ourselves a little more freedom and later define them as tuples
of a certain kind.

Definition 3 (Active Selections). The selection function ϕσ is said to
be active at x̊ ∈ D if the coincidence set Mσ = {x ∈ D : ϕ(x) = ϕσ(x)}
contains x̊. Moreover ϕσ is called essentially active if x̊ belongs to the closure
of the interior of Mσ. Finally, it is called conically active if the tangent cone
of Mσ at x̊ has a nonempty interior, The index sets of the correspondingly
active selection function indexes will be denoted by the chain E ⊃ Ea(̊x) ⊃
Ee(̊x) ⊃ Ec(̊x).

The inclusion relations at the end of the last definition are easily verified.
They become intuitively clear if one looks at the drawings in Figure 1.

Lemma 1 (Scholtes [36]). In the piecewise smooth case the limiting differ-
ential is the span of the essentially active gradients, i.e.,
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∂Lϕ(̊x) =
⋃

σ∈Ee(x)

{∇ϕσ (̊x)}

whose convex hull is of course the Clarke differential.

To realize the oracle here one would have to find a signature that is not
only active but essentially active, which does not seem quite so simple. For
our class it turns out to be easier to get the under and overestimations

∅ 6= ∂Kϕ(̊x) ≡
⋃

σ∈Ec(x)

{∇ϕσ (̊x)} ⊂ ∂Lϕ(̊x) ⊂
⋃

σ∈Ea(x)

{∇ϕσ (̊x)} .

The first set on the left will be called the conic differential, as it contains only
gradients ∇ϕσ (̊x) of selection functions that are conically active at x̊. As we
will see ∂Kϕ(̊x) is never empty and we will be able to compute one or even
all of its finitely many elements for objectives in abs-normal form. It might
be reasonably claimed that only the conically active gradients are relevant
for optimizing ϕ in the vicinity of x̊.

The last set on the right can be a gross-overestimation which might come
about if one applies the generalized differentiation rules forward in a naive
way. To avoid this overestimation one has to detect all selection functions
that are active but not essentially active, a rather daunting task for a set of
nonlinear ϕσ(x) as the coincidence sets Mσ may be very complicated even if
all ϕσ(x) are assumed to be polynomial. Then realizing the oracle paradigm
must be considered rather difficult.

A challenging question is how we can evaluate the multifunctions

Ea : x ∈ D ⇒ E , Ee : x ∈ D ⇒ E , Ec : x ∈ D ⇒ E .

The first one appears easy except that testing equality in floating point arith-
metic is always a little dicey. A popular format used in some software packages
is that the coincidence sets are defined by |E| different systems of linear (or
nonlinear) inequalities like

σ ∈ Ea(x) ⇐⇒ Aσx ≤ bσ for Aσ ∈ Rmσ×n, bσ ∈ Rmσ .

The difficulty with this representation is that it suffers from three related
drawbacks.

• Likely exponential size of data structure.
• Redundancy because pieces must fit together.
• Numerical perturbations or typos destroy consistency.

Of course, everything is much worse in the nonlinear case. We view the repre-
sentation by pieces as one of the main reasons why piecewise linear or smooth
functions have not been used very much in scientific computing. Let us look
at a small example.
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The half pipe example

Firstly we consider the definition by pieces

ϕ : R2 7→ R, ϕ(x1, x2) =

ϕ−1,1(x1, x2) = x2
2 if x1 ≤ 0

ϕ1,−1(x1, x2) = x2
2 − x1 if 0 ≤ x1 ≤ x2

2

ϕ1,1(x1, x2) = 0 if 0 ≤ x2
2 ≤ x1

.

The graph of this function is given by Figure 2.
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Fig. 2 Half pipe function with a priori five smooth pieces

The double indexing of the functions will become clearer later. The corre-
sponding coincidence sets S−1,1, S1,−1, S1,1 are all essentially active at the
origin, but the double cusp shaped one in the middle is not conically active.
The corresponding gradients are

∇ϕ−1,1(0, 0) = (0, 0) = ∇ϕ1,1(0, 0) and ∇ϕ1,1(0, 0) = (−1, 0) .

Hence we get the differentials

{∇ϕ(0, 0)} = {(0, 0)} = ∂Kϕ(0, 0) ( ∂Lϕ(0, 0) = {(0, 0), (−1, 0)} .

As we see the function is actually differentiable at the origin, which is reflected
in the conic differential being a singleton containing only the Fréchet gradi-
ent (0, 0). In contrast the limiting differential picks up the gradient (−1, 0)
from the double cusp S1,−1, which is not conically active. Of course the Clarke
differential as the convex hull of the limiting differential is simply the line seg-
ment ∂ϕ(0, 0) = {(α, 0) : α ∈ [−1, 0]}. To highlight the role of nonessentially
active selection functions let us introduce the function ϕ0,1(x1, x2) = x2

2 +x1

with the coincidence set S0,1 = {0} × R. This selection function is active at
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the origin but its gradient ∇ϕ0,1(0, 0) = (0, 1) does and may not belong to
the Clarke differential [−1, 0] × 0. Hence it would be a failure for the oracle
to return the gradient (0, 1) of an active selection function as a generalized
let alone limiting gradient.

Generally this difficulty arises because generalized differentiation rules are
mostly only inclusions. Only the operations that are guaranteed to main-
tain convexity with respect to x, namely conic combinations and pointwise
maximization, i.e.,

v(x) =

m∑
i=1

αiui(x) and v(x) = max
i=1...m

{αiui(x)} with

αi ≥ 0 for i = 1, . . . ,m

also propagate the corresponding generalized gradients as identities, see [7],
such that

∂v(x) =

m∑
i=1

αi∂ui(x) and ∂v(x) = conv {αi∂ui(x) : ui(x) = v(x)} ,

respectively. All other elementary operations, in particular subtraction and
multiplication propagate generalized derivatives only as inclusions, i.e., we
have

∂(u− w) ⊂ conv{∂u− ∂w} and ∂(u · w) ⊂ conv{w ∂u+ u ∂w} ,

where we have left off the argument x for notational simplicity. The same is
true for the absolute value function v = abs(x) so that one can never be sure
to obtain true generalized gradients when propagating such vectors forward
through a chain of operations.

At a higher level, compositions of vector functions propagate generalized
derivatives by the chain rule also as an inclusion, with identity holding only
when one of the factors involved is smooth or at least subdifferentially reg-
ular [3, Def. 3.5]. The verification of this frequently assumed property was
shown to be co-NP complete in [39] on the class of piecewise smooth func-
tions Cdabs(D) defined below. It actually amounts to local convexity of the
piecewise linearization or equivalently the directional derivative ϕ′(x; ·) and
is thus a rather strong and complex assumption. Finally, we note that for
approximating generalized gradients by divided differences, see [3, Chap. 6],
one has to rely on this convex set being finitely generated and thus polyhe-
dral, which comes pretty close to assuming abs-normality as defined in the
next section. We will see, that assumption allows in fact the exact calculation
of the conical differential ∂Kϕ(x) which is an always nonempty subset of the
the limiting differential ∂Lϕ(x).
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3 Abs-normal objectives

For the half pipe example, one may consider several formulations. Firstly,
what one might consider the ’Original’ formulation in terms of max

ϕ(x1, x2) = max(x2
2 −max(x1, 0), 0) .

Here the Lipschitz continuity is immediately apparent. Alternatively, rewrit-
ing max in terms of abs we get after some mechanical manipulations

ϕ(x1, x2) = 1
2

(
x2

2 − 1
2 (x1 + |x1|) +

∣∣x2
2 − 1

2 (x1 + |x1|)
∣∣) .

Now we have a formulation where all nonsmoothness is cast in terms of the
absolute value function, which occurs at the two arguments x1 and x2

2 −
1
2 (x1 + |x1|). Wherever these quantities change their sign we will have a kink
in the function value. Therefore we name them switching variables and define
them as

(z1, z2) = F (x1, x2, z1) =
(
x1, x

2
2 − 1

2 (x1 + |z1|)
)
. (1)

Substituting them into the original expression we get

ϕ(x1, x2) = f(x, |z|) = 1
2

(
x2

2 − 1
2 (x1 + |z1|) + |z2|

)
. (2)

Now we have two equations (1) and (2) that define the half pipe function
in a nonredundant and stable way. Any of the coefficients, which are mostly
1 can be perturbed with the resulting function still being well defined and
Lipschitz continuous. Moreover, we can label the various smooth function
pieces by the vector σ = (sgn(z1), sgn(z2)) ∈ {−1, 0, 1}2, which is consistent
with the labeling we used in the previous section.

More generally, we will consider the class of objective functions that are
defined as compositions of smooth elemental functions and the absolute value
function abs(x) = |x|. Hence they may also include max(x, y),min(x, y), and
the positive part function pos(x) ≡ max(x, 0), which can all be easily cast
in terms of an absolute value. By successively numbering all arguments of
absolute value evaluations as switching variables zi for i = 1 . . . s, we obtain
a piecewise smooth representation of y = ϕ(x) in the abs-normal form

z = F (x, |z|) (3)

y = f(x, |z|) , (4)

where for D ⊂ Rn open, F : D × Rs+ 7→ Rs and f : D × Rs+ 7→ R with
D × Rs+ ⊂ Rn+s. Here, zj can only influence zi if j < i so that when inter-
preting F as a function of |z|, its Jacobian with respect to |z| is strictly lower
triangular. Consequently, we can evaluate for any x the unique, piecewise
smooth value z(x). In other words, we state the calculation of all switching
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variables as equality constraints and handle the vector of the absolute val-
ues of the switching variables as extra argument of the then smooth target
function f . Sometimes, we write

ϕ(x) ≡ f(x, |z(x)|)

to denote the objective directly in terms of the argument vector x only. In this
chapter, we are mostly interested in the case where the nonlinear elementals
are all once or twice continuously differentiable. The resulting function class
was first considered in [12] and is specified as follows:

Definition 4. For any d ∈ N and D ⊂ Rn, the set of functions ϕ : D 7→ R
defined by an abs-normal form (3)-(4) with f, F ∈ Cd(D×Rs+) is denoted by
Cdabs(D).

Recall that Cd(Ω) is the set of functions that possess continuous d-th
derivatives in the open set Ω that can be continuously extended to the bound-
ary ∂Ω = Ω\Ω. In the usual case, where F and f are themselves compositions
of smooth elemental functions ϕi these are assumed to be Cd(Di) functions
on their respective domains Di reachable from x ∈ D. The combinatorial
structure of the nonsmooth function ϕ can be described by the signature
vector and matrix

σ = σ(x) ≡ sgn(z(x)) ∈ {−1, 0,+1}s and Σ ≡ Σ(x) = diag(σ(x)) ∈ Rs×s .

For fixed σ and the corresponding Σ we can locally solve Eq. (3) using
|z(x)| = Σz(x) for z(x) and thus have the implicitly defined selection func-
tion

ϕσ(x) ≡ f(x, Σz(x)) s.t. z(x) = F (x, Σz(x)) . (5)

Again due to the assumed triangularity, the system of equations is locally
solvable for z(x) by the implicit function theorem. Hence, the functions in
Cdabs(D) are certainly piecewise smooth as defined in Definition 2. In our
scenario E is a subset of {−1, 0, 1}s by definition of σ. Generally in the lit-
erature, it remains a little mysterious how a suitable index σ is chosen as a
function of x such that the resulting function is continuous. In our function
model the determination of the σ(x) is intertwined with the computation of
the numerical values.

Related piecewise linear functions

The class Cdabs(D) covers many piecewise smooth functions but certainly not
all. For example, on a given triangulation of the plane or space, somebody
may have spliced together different local models such that they fit continu-
ously across the triangle edges or tetrahedron faces. In this situation it seems
impossible to deduce from the properties of the function within one triangle
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or tetrahedron anything about what is happening in the neighboring triangles
or tetrahedrons, let alone further afield.

In contrast, in some sense the functions belonging to Cdabs(D) allow ex-
trapolation from one polyhedron to its neighbors. We even harbor the hope
that there might be reasonably efficient methods to globally optimize piece-
wise linear functions using their abs-linear form. That representation always
exists but may be not so easy to construct.

On the other hand, we must admit that in the spliced situation the oracle
paradigm appears quite natural with each limiting differential being just the
gradient of the adjacent patches, i.e., one of the selection functions. However,
except on triangular or quadrilateral grids it may again not be easy to decide
which selection function is essentially active as defined in Definition 3. Of
course any statement of stationarity or optimality will only apply to the
patch and nothing can be said about the behavior of the piecewise smooth
function in an open neighborhood, no matter how small.

Another class of possibly even linear piecewise smooth functions that does
not fit within the Cdabs(D) framework are solution operators like

ϕ(x) = max{ 1
2yTQy + cTy : Ay ≤ Bx + c} with Q = QT � 0 .

Here we may use a finite solver to compute the mathematically well defined
piecewise linear function ϕ(x) : Rn 7→ R but the number of steps may vary
depending on the argument x. Moreover, there may be degeneracies whose
numerical resolution requires if-statements and other program branches. As
shown in [4], for implicitly defined functions like G(x,y(x)) = 0 with G in
abs-normal form one, can compute its abs-linear approximation ∆y(̊x, ∆x)
by a generalized version of the implicit function theorem. Albeit with some
nontrivial effort, this could be integrated into the extended AD software,
which has not been done.

In the penultimate section of the paper we will consider the extension of
Cdabs(D) to its superset Cdeuc(D), which consists of all functions that can be
evaluated as compositions of Cd elementals and the Euclidean norm ‖ · ‖ =
‖ · ‖2. These Lipschitz continuous functions are no longer piecewise smooth,
but one can still construct abs-linear approximations that appear to be useful
for optimization purposes.

It has recently been observed [21] that minimizing a function in abs-normal
form is equivalent to solving the equality constrained MPEC

minϕ = f(x,u + v)

s.t. 0 ≤ u ⊥ v ≥ 0

u− v = F (x,u + v) .

Here, MPEC means Mathematical Programming with Equilibrium Con-
straints [31]. Notice that in general, i.e., without the triangularity of F with
respect to |z| = u+v, the MPEC may be quite hard to solve, if only because
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one cannot easily compute a feasible z = u−v for any given x. Nevertheless,
it was shown in [21] that in the triangular case the constraint qualification
MPEC-LICQ is equivalent to the Linear Independent Kink Qualification in-
troduced in [17] for abs-normal objectives.

4 The abs-linear approximation

All abs-normal objectives are strongly semi-smooth as defined in [8, Chap. 7]
and thus their generalized gradients satisfy for fixed x̊ the backward approx-
imation property [22]

ϕ(x)− ϕ(̊x)− gT(x− x̊) = O(‖x− x̊‖2) for all g ∈ ∂ϕ(x) .

While the vector version of this relation forms the basis of the semi-smooth
Newton method it is not clear how it can be exploited for the purposes of
unconstrained local optimization. Instead we aim for a generalization of the
classical first order Taylor expansion, which is in some sense forward, from
the reference point x̊ with the corresponding z̊ = z(̊x) and ẙ = y(̊x) to
a trail point x ≈ x̊ and the corresponding z = z(x) and y = y(x). From
Equations (3) and (4), one obtains the smooth Taylor expansion[

z−z̊
y − ẙ

]
=

[
Z L

aT bT

] [
x−x̊
|z|−|̊z|

]
+ O

([
‖x−x̊‖2
‖z−z̊‖2

])
as abs-linear approximation of y = ϕ(x). Here the matrices

L ≡ ∂F (x, |z|)
∂|z|

∈ Rs×s, Z ≡ ∂

∂x
F (x, |z|) ∈ Rs×n (6)

and the vectors

a =
∂

∂x
f(x, |z|) ∈ Rn, b =

∂

∂|z|
f(x, |z|) ∈ Rs (7)

are evaluated at the reference point (̊x, z̊). Due to the triangularity of F and
thus L one can easily check by induction that ‖z− z̊‖ = O(‖x− x̊‖). Hence
we obtain with ∆x ≡ x− x̊ and

z̃ ≡ c + Z∆x + L|z̃| ≡ (̊z− L|̊z|) + Z∆x + L|z̃| (8)

the incremental approximation

∆ϕ(̊x;∆x) ≡ aT∆x + bT(|z̃| − |̊z|) = y − ẙ +O(‖∆x‖2) (9)

or equivalently
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ϕ(̊x +∆x)− ϕ(̊x) = ∆ϕ(̊x;∆x) +O(‖∆x‖2) . (10)

In other words, we have a generalized Taylor approximation with uniform
error term O(‖∆x‖2), which is in contrast to directional differentiation com-
pletely independent of the direction ∆x/‖∆x‖. This is possible because
∆ϕ(̊x;∆x) is with respect to ∆x piecewise linear but in contrast to the
directional derivative ϕ′(̊x;∆x) not homogeneous. That means, it “knows”
about nearby kinks, which is exactly the kind of information that any kind of
strictly local generalized differentiation can not pick up. In previous papers
[13], [15] we have derived the relation (10) by induction on the intermediate
quantities occurring in the evaluation procedure of the overall ϕ(x). This ap-
proach then directly yields the partial elemental derivatives, from which the
“global” matrices and vectors [L,Z,a,b, c] can be accumulated by suitable
variants of the chain rule.

For example let us consider the half pipe example in the abs-normal form
(1) and (2). Then, we get by differentiation at any x̊

L =

[
0 0
− 1

2 0

]
and b =

[
−0.25

0.5

]
and in dependence on the reference point x̊ = (̊x1, x̊2) with z̊ = z(̊x)

Z =

[
1 0
− 1

2 2 x̊2

]
and a =

[
−0.25
x̊2

]
.
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Fig. 3 The half pipe function and its abs-linearisation at x̊ = (−1, 1)

The original function and the resulting abs-linearization at x̊ = (−1, 1)
are illustrated in Figure 3. At x̊ we have z̊ = (−1, 1) and thus σ̊ = (−1, 1)
which means that the function is locally completely smooth at x̊ but the
abs-linearization still has an idea where there are kinks. Notice that Z has
the determinant 2x2 which means that at the origin where both switching
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variables are active the Linear-Independent-Kink Qualification, as introduced
in [17] is not satisfied.

Evaluating ∆ϕ(̊x;∆x) via Equation (8) and (9) is quite cheap, provided
the matrices and vectors (Z,L,a,b, c), which constitute the abs-linear ap-
proximation are known. They are all first derivatives of smooth, composite
functions, so they can be obtained by algorithmic or automatic differentiation.
In fact the well known AD tools ADOL-C [38], CPP-AD [5] and Tapenade [20]
have been extended to generate abs-linear approximations. Of course, just like
in the smooth case, where the evaluation of the full Jacobian can be avoided
through iterative methods that are based exclusively on tangents in the sense
of Jacobian×vector products and co-tangents or adjoints in the sense of row-
vector×Jacobian products, such a matrix free approach can also be pursued
for the abs-linear approximation. However, for notational simplicity we will
assume in this chapter that the matrices Z and L are completely accumu-
lated. As defined via Equations (8) and (9) for fixed x̊ the function ∆ϕ(̊x;∆x)
is just an abs-normal function, where all operations other than the absolute
value are linear or more precisely affine.

5 Checking gradient activity

Now the question arises what information about ϕ(x) near the reference point
x̊ we can gain from the analysis of its abs-linear approximation ∆ϕ(̊x;∆x)
near ∆x = 0. For notational simplicity we set x̊ = 0, replace ∆x by x and
z̃ by z as well as ignoring constant shifts in the objective function. Then we
have simply the abs-linear minimization problem

min∆y(x) ≡ aTx + bT|z| s.t. z ≡ c + Zx + L|z| . (11)

Due to the strict lower triangularity of L there is a unique piecewise linear
z = z(x) for all x ∈ Rn, which is a special case of the piecewise smooth
z(x) considered before for the abs-normal ϕ itself. However, on the abs-linear
level we have a much better chance of dealing with the nonsmoothness re-
presented by the kinks explicitly. Then the full domain Rn is decomposed
into polyhedra, which can be identified by the signature vector and matrix

σ = σ(x) ≡ sgn(z(x)) ∈ {−1, 0,+1}s and Σ ≡ Σ(x) = diag(σ(x)) ∈ Rs×s

now as a function of the piecewise linear z(x). The inverse images

Pσ ≡ {x ∈ Rn : σ(x) = σ} (12)

are pairwise disjoint, relatively open polyhedra. Using the partial order of
the signatures given by
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σ̃ ≺ σ ⇐⇒ σ̃iσi ≤ σ2
i for i = 1 . . . s ,

we can define the essential closures

P̄σ ≡ {x ∈ Rn : σ(x) ≺ σ} ,

which are no longer disjoint and whose inclusion ordering corresponds exactly
to the partial ordering ≺ of the signatures such that

P̄σ ⊂ P̄σ̃ ⇐⇒ σ ≺ σ̃ .

Hence, we see that x̊ = 0 with σ̊ = σ(̊x) belongs exactly to the essential
closures P̄σ for which σ � σ̊. Consequently, we find for some open ball B(̊x; ρ)

B(̊x; ρ) =

{⋃
σ�σ̊

Pσ

}
∩B(̊x; ρ) .

Here, the σ on the right hand side can be restricted to be definite, i.e., only
have nonzero components σi = ±1, which will be denoted by σ 63 0. Within
each Pσ, we have |z| = Σz so that one can solve the equality constraint on
the right hand side of Equation (11) for z to obtain the affine function

z(x) = (I − LΣ)−1(c + Zx) for x ∈ P̄σ . (13)

Note that due to the strict lower triangularity of L the unit lower triangular
matrix (I −LΣ)−1 is for any σ well defined and its elements are polynomial
in the entries of L. For definite signatures σ 63 0 the elements x ∈ P̄σ are
exactly characterized as solutions of the system of inequalities

Σ(I − LΣ)−1(c + Zx) = (Σ − L)−1(c + Zx) ≥ 0 .

If there is an x ∈ P̄σ with definite signature σ(x) 63 0 then the polyhedron Pσ
has a nonempty interior. The converse needs not be true in the presence of
degeneracy. From duality theory it is known that either, P̄σ has a nonempty
interior, in which case we call it full-dimensional, or the rows of (Σ −L)−1Z
have a vanishing convex combination such that

λT(Σ − L)−1Z = 0 with 0 ≤ λ 6= 0 .

Obviously this can be checked by standard Linear Optimization techniques.
One can also check whether dim(P̄σ) = n in which case we have the gradient

gσ = aT + bTΣ(I − LΣ)−1Z = aT + bT (Σ − L)−1Z , (14)

where the last equality relies on definiteness, i.e., σ 63 0, so that det(Σ)± 1.
Hence we obtain for the abs-linear approximation the nonempty set of

limiting gradients
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∂L∆x∆ϕ(̊x;∆x)
∣∣
∆x=0

=
⋃

063σ�σ̊

{aT + bTΣ(I − LΣ)−1Z} . (15)

Conic activity

Now, let ϕ be again a general nonlinear Cdabs function. It was shown in [13]
and [27] that

∅ 6= ∂Kx ϕ(x)
∣∣
x=x̊
≡ ∂L∆x∆ϕ(̊x, ∆x)

∣∣
∆x=0

⊂ ∂Lxϕ(x)
∣∣
x=x̊

,

which immediately implies the corresponding inclusion for the Clarke dif-
ferential as convex hull of the limiting differential. The limiting gradients
gσ ∈ ∂Kϕ(̊x) are conic gradients of ϕ as defined in Definition 3. Then we
have in fact gσ = ∂ϕσ (̊x) for some σ ∈ Ec(̊x). The limiting gradient ∂Lϕ(̊x)
may contain other gradients ∂ϕσ̃ (̊x) of selection functions ϕσ̃ that are essen-
tially active so that σ̃ ∈ Ee(̊x) \ Ec(̊x). If ϕ happens to be differentiable, but
not necessarily strictly differentiable at x̊ we have simply ∂Kϕ(x) = {∂ϕ(x)},
which must be the case at almost all points in Rn by Rademacher’s theorem.
This applies also to functions like ϕ(x) = |1 − sin2(x) − cos2(x)| where a
conventional chain rule oriented “Are we differentiable at this point?” test,
whose use is for example suggested in [6] would naturally always respond
“no”.

Back to the oracle

Obviously, the observations above also hold for generalized Jacobians of
vector-valued functions, so abs-linearization also provides a practical pro-
cedure for implementing the semi-smooth Newton method [23, 28]. Then,
only one element of ∂Lϕ(̊x) ⊂ ∂ϕ(̊x) is required. The same holds true for
the subgradient as well as the bundle methods. If checking the openness of
the interiors of the candidate P̄σ appears too laborious, one can employ the
technique of polynomial escape in a given preferred direction d1 ∈ Rn. Af-
ter complementing it with (n − 1) directions di for i = 2 . . . n such that
det(d1 . . .dn) 6= 0 one knows that for some σ and all small 0 < t ≈ 0

x(t) = x̊ +

n∑
i=1

tidi ∈ Pσ

with Pσ being open. This corresponding σ and the corresponding gradient
gσ can be calculated independently of the parameter t using the function
firstsign as described in [13]. It is a version of lexicographic differentiation
introduced by Nesterov [34] and generalized to the case of composite functions
by Khan and Barton [26]. The resulting gσ is active in the direction d1 in
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Fig. 4 Directional active gradients

that for some t̄ > 0

gTσd1t = ∆ϕ(̊x; td1) = ϕ(̊x + td1)− ϕ(̊x) +O(t2) for 0 ≤ t ≤ t̄ .

The procedure for computing directionally active generalized gradients is
actually matrix free and can be implemented efficiently using the so-called
reverse mode of AD [16] except in the most degenerate cases. In those bad sit-
uations the complexity might equal that of the forward mode of AD, namely
n times the complexity of evaluating the function ϕ(x) itself, see also [25].

In the scenario ϕ ∈ Cdabs(D) the directionally active gradient represents a
little bit more then just any generalized gradient. The so-called critical mul-
tiplier gives important information about the nonsmoothness of ϕ from x̊ in
the direction d1. Moreover, if t̄ <∞ we can also provide a gradient g+(̊x,d1)
that is active in the direction d1 on the abs-linearization ∆ϕ(̊x, ∆x) at the
point t̄d1. The difference g+(̊x,d1) − g(̊x,d1) will then be a normal of the
hyperplane separating the polyhedron before and beyond the kink location
t̄d1. This situation is depicted in Figure 4, where the dashed lines represent
the kinks. Of course we can expect that on the underlying nonlinear function
the situation is similar up to perturbations of O(‖t̄d1‖2). This should pro-
vide a lot of useful information for any kind of method based on generalized
gradients.

Provided the complementing of d1 by (n− 1) linearly independent direc-
tions is continuous, the mapping

(̊x,d1) ∈ Rn+n 7→ (g, t̄) ∈ Rn × (0,∞)

has the following property: The multiplier t̄ is continuous in the sense of
extended real valued functions. The gradient g itself may have jumps and
reduces to the Fréchet gradient, wherever that exists. The second gradient
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g+(x; d1) will be in many cases an ε-gradient at x̊, but obviously one of them
will generally not be enough to model ϕ locally even in the convex case.
Of course, bundle methods could collect several of them, picking up several
hyperplanes at a time.

ε−activity

Since the limiting and Clarke generalized differentials are not inner semi-
continuous [35], the minimal norm of their elements gives no indication of
the distance to any stationary point, in particular stopping criteria can not
be based on it. Therefore, nonsmooth analysis has partly abandoned the
strictly local point of view and introduced ε−differentials, which take note of
the objective function behavior nearby. In our notation the definition of the
Goldstein ε-differential reads

∂Gεϕ(̊x) ≡ conv
{⋃

∂Lϕ(x) : x ∈ B̄(̊x; ε)
}
.

By definition the Goldstein ε-differential is inner semicontinuous. Obviously,
we have ∂ϕ(̊x) = ∂G0ϕ(̊x). The natural question is how the Goldstein ε-
differential ∂Gε ϕ(̊x) can actually be computed. Of course, looking at all points
x in a spherical neighborhood of the reference point x̊ and computing the
convex hull of the union of the limiting subdifferentials ∂Lϕ(x) appears prac-
tically impossible.

In the case of limiting gradients as in Equation (15) we only looked at
signatures σ and their gradients gσ of which we were certain that they are
active for the abs-linearization and thus the function itself at x̊. For all these
neighboring signatures σ we know that σ � σ̊ which is equivalent to Σz̊ ≥ 0.
That means when z̊i 6= 0 the σi must have the same sign as σ̊i and where
z̊i = 0 we may choose freely σi ∈ {−1, 1}. In order to get a larger set of
gradients we may relax the condition on σ and only require that Σz̊ > −ε e
for the given ε > 0 and e = (1, 1, . . . , 1). Then we define the corresponding
limiting ε-differential

∂Lεϕ(̊x) =
{

a + bT(Σ − L)−1Z : Σz̊ > −ε e
}
⊃ ∂L0ϕ(̊x) ⊃ ∂Lϕ(̊x) . (16)

and correspondingly “our” ε−differential simply as

∂εϕ(̊x) = conv(∂Lεϕ(̊x)).

Now we establish the desirable inner semicontinuity of both.

Lemma 2. For fixed ε > 0 the multi-function x ⇒ ∂Lεϕ(x) ⊂ Rn and its
convex hull x ⇒ ∂εϕ(x) = conv{∂Lεϕ(x)} ⊂ Rn are inner semicontinuous.

Proof. First let us consider any g̊ ∈ ∂Lεϕ(̊x) and its correspondingΣ satisfying
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g̊ = åT + b̊
T
(Σ − L̊)−1Z̊ and Σz̊ > −ε e

with σ definite and thus |det(Σ)| = 1 without loss of generality. Moreover
consider any sequence xk → x̊ and the corresponding zk → z̊. Then we must
have by continuity also Σzk → Σz̊ > −ε e so that already Σzk > −ε e for
all large k. Thus the corresponding gk = ak + bTk(Σ − Lk)−1Zk belong to
∂Lεϕ(xk) and of course their limit is g̊. Thus every element of ∂Lεϕ(̊x) is the
limit of limiting ε-gradients at any sequence converging to x̊. Any g̊ ∈ ∂εϕ(̊x)
is a convex combination of at most n + 1 elements of ∂Lεϕ(̊x). As we have
shown above each one of them is the limit of elements of ∂Lεϕ(xk) for any
given sequence xk → x̊. Their convex combinations with the same coefficients
belong to ∂εϕ(xk), which completes the proof. ut

The lemma implies in particular that if any sequence xk converges to a point
x that is ε-stationary, the smallest elements short(∂εϕ(xk)) of the ∂εϕ(xk)
with respect to the Euclidean norm must converge to 0. Hence any stopping
criterion ‖ short(∂Gε ϕ(xk))‖ < δ for some positive δ must eventually be satis-
fied. Let us look at the situation in case of the half pipe function as defined
in Equation (1) at origin x̊ = 0, where we have

∂Kϕ(0, 0) = {(0, 0)} ⊂ ∂Lϕ(0, 0) = {(−1, 0), (0, 0)}
⊂ lim inf

ε→0
∂Gε ϕ(0, 0) = lim inf

ε→0
conv {(−1, 0), (0, 2x2) : |x2| < ε} .

Here, the Goldstein ε-subdifferential can be computed exactly but that is
a very special situation. From now on we only consider our limiting ε-
differential at a particular convergent sequence.

If we had a sequence xk that converges to 0 ∈ R2 all the time staying in
the quadratic crescent S1,1 where 0 < xk,1 and x2

k,2 > xk,1 then we have for
all k the singleton

∂Lεϕ(xk) = {(−1, 2xk,2)} = ∂Gε ϕ(xk) = short(∂Gε ϕ(xk)) .

Then the length of short(∂Gε ϕ(xk)) would stay constantly greater than 1
despite the convergence to the Clarke stationary and even critical point x̊ = 0.
On the other hand since zk → 0, the condition Σzk > −ε e is eventually
satisfied for all σ ∈ {−1, 1}2 so that the late ∂Lε ϕ(xk) are given by

∂Lεϕ(xk) =

{
ak + bT

[
σ1 0
1
2 σ2

]−1 [
1 0
− 1

2 2xk,2

]∣∣∣∣∣σ ∈ {−1, 1}2
}

=

{
ak + bT

[
σ1 0

− 1
2σ1σ2 σ2

] [
1 0
− 1

2 2xk,2

]∣∣∣∣σ ∈ {−1, 1}2
}

=

{
ak + bT

[
σ1 0

− 1
2σ2(σ1 + 1) 2xk,2σ2

]∣∣∣∣σ ∈ {−1, 1}2
}
.
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These are actually four different generalized gradients. However as we let xk,2
tend to zero we get

lim
k→∞

∂Lεϕ(xk) =

(−0.25 0) +

{
(−0.25 0.5)

[
1 0
−1 0

]
, (−0.25, 0.5)

[
1 0
1 0

]
, (−0.25, 0.5)

[
−1 0

0 0

]}
so that we get only the two generalized gradients

(−0.25, 0) + (−0.75, 0) = (−1 0) and (−0.25, 0) + (0.25, 0) = (0, 0) .

Hence, in this case we have that the limiting differential is indeed contained
and thus equal to the inner limit of our limiting ε-differential as a sequence
of points converging to the limit x̊ . The same relation applies to their convex
hulls, which we simply call ε-differentials.

Beyond mere gradient activity

The property 0 ∈ conv{∂Kϕ(̊x)} of conic stationarity is considerably more
restrictive than that of Clarke stationarity, i.e., 0 ∈ conv{∂Lϕ(̊x)}, which in
turn is more restrictive than 0 ∈ ∂Gε ϕ(̊x). However, all are merely depending
on which gradients are active at some arbitrary points near the reference
point x̊. The relative positions do not matter, which is why |x| and −|x|
have the same limiting gradient {−1,+1} and generalized gradient as well as
ε-differential, namely [−1, 1], respectively. In this case, there is no difference
between the conic, Clarke and Goldstein ε-differential. Obviously that is not
very useful in the context of optimization, where one wants to distinguish
between minimizers and maximizers. To do that one must look at a proper
local model function.

6 Checking Criticality and Second Order Optimality

It is immediately clear from Equation (10) that x∗ = x̊ can only be a local
minimizer of ϕ if it is a local minimizer of ∆ϕ(̊x;∆x) with respect to ∆x ≈ 0.
We call that first order minimality (FOM). It is not difficult to see that on the
function class Cdabs(D) this property is equivalent to criticality as defined in [1]
and [2], where 0 ∈ Rn must be a Fréchet subgradient. The term “criticality”
insinuates that critical points of ϕ should also be critical points of −ϕ, which
is decidedly not the case. By the sign change first order minimal points turn
into first order maximal points, which unfortunately yields the same acronym
FOM. So the proper terminology remains to be decided upon.
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In general, i.e., for functions outside Cdabs(D) we know of no practical
procedure to check a candidate point x̊ for local minimality. Inside Cdabs(D)
that can be done by a simple analysis of the abs-linear approximation data
Z,L,a,b, c with c = ẙ obtained from an extended AD tool in the following
way. For simplicity, we assume that for a given point x∗ one has zi(x∗) = 0
for i = 1 . . . s. This condition can be relaxed which requires technical refor-
mulations [17]. For this reason we just concentrate on the simple case of full
activity also called the localized case. Then one could first check, whether Z
has full rank yielding LIKQ. As proven in the same paper, then first order
optimality requires that for such a given point x∗, there exists a Lagrange
multiplier vector λ∗ ∈ Rs such that

aT(x∗, 0) + λT∗Z(x∗, 0) = 0 Tangential Stationarity (TS) (17)

F (x∗, 0) = 0 Full kink activity and (18)

bT(x∗, 0)+ λT∗L(x∗, 0) ≥ |λ∗|T Normal Growth (NG) (19)

holds. Similar results apply if x∗ is not localized in that some of the zi are
nonzero. It is important to note that these optimality conditions can be
verified in polynomial time. If they do not hold, it is possible to construct
a descent direction from the available derivative information Z,L,a,b, c as
described in [17]. If all component inequalities hold strictly we say that Equa-
tion (19) represents strict normal growth.

First order minimality can be ensured for cluster points of the so-called
proximal iteration

xk+1 = xk + argmin∆x

{
ϕ(xk +∆x) +

∆q

2
‖∆x‖2

}
. (20)

Here, ∆q can be any positive constant or vary within some interval. The
practical challenge for the proximal point concept is that the inner prob-
lem of minimizing the right hand side seems almost as hard as the direct
minimization of ϕ.

Before we develop an approximate version where ϕ(xk+∆x) is replaced by
the more tractable ∆ϕ(xk;∆x) let us briefly look at second order necessary
and sufficiency conditions.

Second order piecewise differentiation and conditions

Here, we assume that ϕ ∈ Cdabs(D) with d ≥ 2 so that all second order deriva-
tives of F and f are continuous on the respective domains. These derivatives
are conventional except that they are only valid on certain subspaces in cer-
tain polyhedral domains. We therefore talk of second order piecewise differen-
tiation. Abs-linearization is a form of first order piecewise differentiation but
it is more powerful in it works out the polyhedral decomposition at the same



20 Andreas Griewank and Andrea Walther

time, which is then relevant for higher order piecewise differentiation. As of
now we believe that differentiation on nonpolyhedral domains is impractical.
The equalities in our first order condition represent n + s equations in the
unknowns (x∗, λ∗) whose Jacobian is given by the saddle point matrix[

H ZT

Z 0

]
∈ R(n+s)×(n+s) (21)

with

H = H(x∗, λ∗) ≡ f(x∗, 0)xx +
(
λTF (x∗, 0)

)
xx
∈ Rn×n .

Obviously the Hessian H is the second derivative of the Lagrangian

L(x, 0, λ) = f(x, 0) + λTF (x, 0) (22)

with respect to x. The saddle point Jacobian (21) is nonsingular provided
we have second order sufficiency in that UTHU � 0, where the columns of
U ∈ Rn×(n−s) span the null space of Z. Then we have a sufficient optimal-
ity condition in combination with tangential stationarity and strict normal
growth. If det(UTHU) = 0, but the projected Hessian is still positive semi-
definite we have a second order necessary condition of optimality. Wherever
LIKQ holds the function ϕ will be smooth within Pσ but may have kinks (up-
ward or downward) along certain normal directions. As was proven in [17]
this geometry corresponds to the VU decomposition of Mifflin and Sagas-
tizábal [33] and Lewis [29], where the kinks are restricted to point upward.
Here we can define at a point x the pair of orthogonal subspaces

U(x) ≡ range (U(x)) and V(x) ≡ U(x)T .

It should be noted that the VU decomposition exists for some functions out-
side Cdabs(D), for example again the Euclidean norm in two variables or more.

Reaching Criticality

Based on the abs-linearisation described at the end of Section 3, the following
iterative optimization algorithm was proposed in [13]

xk+1 = xk + argmin∆x

{
ϕ(xk) +∆ϕ(xk;∆x) + q

2‖∆x‖2
}
. (23)

We call this approach SALMIN for Successive Abs-Linear MINimization. The
penalty factor q of the quadratic term is an estimated bound on the discrep-
ancy between ϕ and its local abs-linear model given by

ϕ(xk) +∆ϕ(xk;∆x) .
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This method was shown in [13] to generate a sequence of iterates (xk)k∈N ⊂
Rn whose cluster points are first order minimal. If the inner problem of mini-
mizing the regularized piecewise linear model is not solved exactly, but incre-
ments ∆x that are merely Clarke stationary for ∆ϕ are accepted also, then
the cluster points are guaranteed to be also Clarke stationary as shown in [9].

The SALMIN algorithm as stated in Equation (23) can be interpreted also
as a quadratic overestimation method, where the error between the model and
the real function is bounded by a power of the distance, see, e.g., [11, 14].
This approach is in some sense related to a proximal point method as stated
in Equation (20). However, in Equation (23) the local abs-linear model of
the function to be minimized at the current iterate xk is used instead of the
original function. This makes the solution of the inner optimization problem
considerably easier in comparison to the proximal point method. Moreover,
without looking at generalized gradients or ε−subdifferentials SALMIN has a
very simple stopping criterion. The outer iteration terminates as soon as the
objective function reduction promised by the solution of the inner problem
falls below a user supplied tolerance.

One possible strategy to solve the inner problem, i.e., determine the min-
imizer of

argmin∆x

{
ϕ(xk) +∆ϕ(xk;∆x) + q

2‖∆x‖2
}
,

exploits the polyhedral domain decomposition defined by Equation (12).
Starting with an arbitrary initial point and the corresponding polyhedron,
one can derive an adapted QOP solver by exploiting the local first order
optimality condition from [17] as stated for the localized case (18) in Equa-
tions (17) and (19). This strategy is based on the computation of stationary
points by successively activating and dropping kinks appropriately as de-
scribed in detail in [18].

7 Demonstration on Crescent

The various quantities that we promised as benefits of piecewise differenti-
ation and the convergence behavior of SALMIN are illustrated on the two
dimensional Crescent example [3, Nr. 21 in Sec. 9.1], namely

y = f(x1, x2) = max{x2
1 + (x2 − 1)2 + x2 − 1,−x2

1 − (x2 − 1)2 + x2 + 1}

with the starting point (−1.5, 2). In abs-normal form we can write

z1 = F (x1, x2) = x2
1 + (x2 − 1)2 − 1

and
y = f(x1, x2, |z1|) = x2 + |z1| .
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The new form was achieved by replacing max(u,w) with the equivalent value
1
2 [u+w+abs(w−u)] and then canceling various terms, which can of course be
done by computer algebra or an AD package. Here one sees immediately that
the set of kink locations is formed by the shifted unit circle x2

1 +(x2−1)2 = 1.

Abs-linear Approximation

With respect to the abs-linear form we note that since there is only one
switching variable we must have the trivial strictly lower triangular matrix
L = 0 ∈ R1×1. The remaining parts of the abs-linear form at a point x̊ are
given by

Z = ∂xz1 = 2(̊x1, x̊2 − 1), a = (0, 1)T, b = 1 and

c = z̊ = x̊2
1 + (̊x2 − 1)2 − 1 .

The matrix Z has full rank except at the center (0, 1) of the circle. Hence,
LIKQ is satisfied everywhere on the kink circle.

Looking for optimal points

To test for optimality we first look at tangential stationarity, which requires
that

0 = (0, 1) + λ 2(x1, x2 − 1) and z1 = 0 .

This system of equations has the two solutions solution (x1, x2) = (0, 0)
with λ = 1

2 and (x1, x2) = (0, 2) with λ = − 1
2 . The normal growth requires

that b = ∂y/∂|z1| ≡ 1 ≥ |λ| = 1
2 which is satisfied as strict inequality at

both points. Thus we have at both points first order optimality, which is also
known as criticality. Finally, at x = (0, 2) the null space of Z = (0, 2) is
spanned by U = (1, 0)T so that the Hessian of the Lagrangian at the first
order optimal point x = (0, 2) with λ = − 1

2

− 1
2 (1, 0)

[
2 0
0 2

](
1
0

)
= −1 < 0 .

Here we have used that f is linear and hence its second derivatives vanish
completely. Thus, the first order optimal point (0, 2) does not satisfy the
second order necessary condition and cannot be a minimizer. At the only
other point satisfying tangential stationarity, namely the origin, we have Z =
(0,−2) so that with U = (1, 0)T and the positive Lagrange multiplier one
obtains

1
2 (1, 0)

[
2 0
0 2

](
1
0

)
= 1 > 0 .
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This projected Hessian is positive definite and the origin is therefore a strict
local minimizer and thus in fact the one and only global minimizer. Notice
that the VU decomposition is well defined all around the kink circle with V
being the radial direction, i.e., the normal of z1 = 0 and U the tangential
direction. Everywhere the kink is pointed upwards, although that need nor
be valid in general.

Let us go back and calculate the other goodies at some general point x̊,
say the usual starting point x̊ = (̊x1, x̊2) = (−1.5, 2). There we have z̊ = 9

4

and thus σ̊ = 1 = Σ. Moreover, Z̊ = (−3, 2) so that independently of any
preferred direction differentiation yields the gradient

g̊ = aT +b(Σ−L)−1Z = (0, 1)+1·(−3, 2) = (−3, 3) =⇒ −g̊ = (3,−3) .

With respect to the limiting ε-subdifferential, according to Equation (16) for
ε > 0 we are admitting σ ∈ {−1, 1} that satisfy σ 9

4 > −ε. Hence, σ = −1
and the corresponding

gσ = (0, 1) + (1)(−1)(−3, 2) = (3, −1)

will only be an ε-gradient when ε > 9
4 . Obviously that is a strong condition

but then the reference point (−1.5, 2) is quite some distance away from the
next kink.

Finally, let us consider the performance of our SALMIN approach from
the standard starting point with q = 3 constant. As one can see on the right
hand side of Figure 5 the convergence rate is clearly linear. It can not be
better because no effort is made by SALMIN to approximate the curvature
term that defines the circular valley.
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Fig. 5 Iterates and function values of SALMIN on Crescent example

We have applied earlier versions of SALMIN to most of the academic
problems listed in [3]. The results in [9] are quite competitive with a gener-
alization of BFGS [30] and the bundle method [24]. In fact the number of
outer iterations is usually significantly smaller and a thorough comparison
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of the runtime cost of solving the inner problem remains to be done. In any
case the inner loop of SALMIN is still undergoing rapid development, espe-
cially in view of larger dimensional applications. Another generalization that
is under way is the extension to problems with constraints, which may be of
complementarity type.

8 Covering the Euclidean norm

In the context of geometric modeling, see, e.g., [32], one may easily think of
optimization problems or systems of constraints that involve for u ∈ Rk the
Euclidean norm

||u|| =

(
k∑
i=1

u2
i

) 1
2

= ‖(u1, ‖(u2, u3, . . . , uk)‖)‖ . (24)

The identity on the right shows that the Euclidean norm in k > 2 vari-
ables can be expressed recursively in terms of the binary Euclidean norm
‖(u1, u2)‖ =

√
u2

1 + u2
2. This elemental function is of course a generalization

of our beloved unary absolute value ‖u‖ = |u| for u ∈ R. Already the binary
Euclidean norm is no longer piecewise differentiable, because at the origin
one would need more than finitely many C1 selection functions to represent
it. However it is Lipschitz continuous with constant 1 and almost everywhere
differentiable, which one can see directly without referring to Rademacher.
As we already foreshadowed at the end of Section 3 we now consider the
extension of Cdabs(D) obtained by allowing not only the univariate abs(·) but
its multivariate generalization ‖ · ‖.

Problems in Cd
euc(D)

As main example we consider the simplest so-called location problem [19],
which goes back to Fermat in the planar case. Given m distinct client points
yj ∈ Rk for j = 1, . . . ,m we are looking for a supply point x that minimizes
the sum of the Euclidean distances to the clients.

minϕm(x) ≡
m∑
j=1

‖x− yj‖ ∈ C∞euc(Rn,R) .

The problem is convex, coercive and Lipschitz continuous so that it must
have a nonempty compact and convex solution set. Moreover ϕm(x) is also
differentiable except where x = yj for some 1 ≤ j ≤ m.
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When m = 3 and thus w.l.o.g n = 2 we have the classical Fermat problem,
whose solution was be constructed geometrically with a pair of compasses and
ruler by Toricelli. Now suppose one has solved the problem in the horizontal
plane, i.e., for three points and their geometric median

y1 = (y1,1, y1,2, 0), y2 = (y2,1, y2,2, 0), y3 = (y3,1, y3,2, 0), w = (w1, w2, 0) .

The minimizer w is the only stationary point of ϕ3(.) so that one has

∇ϕ3(w) = 0 and ϕ3(x) = ϕ3(w) +O(‖x−w‖2) .

Now let us add a forth data point y4 = (y4,1, y4,2, y4,3) that is reasonable
close to w. Then we will have for the new ϕ4(.) that

ϕ4(x) = ϕ3(x) + ‖x− y4‖ = ϕ3(w) + ‖x− y4‖+O(‖x−w‖2)

and in particular when y4 = w

ϕ4(x) = ϕ3(w) + ‖x−w‖+O(‖x−w‖2)

with x = w as the nonsmooth (global) minimizer of ϕ4(.). Moreover, since
for x 6= y4

∇ϕ4(x) = ∇ϕ3(x) + (x− y4)/‖x− y4‖

the same will be true for all y4 with ‖∇ϕ3(y4)‖ < 1 and even ‖∇ϕ3(y4)‖ = 1
since ϕ4(.) is convex. For each of these y4 we have a convex test problem with
the global minimizer x = y4, at which ϕ4(x) is dominated by the Euclidean
norm and thus not differentiable.

A very similar situation arises in compressive sensing [10] where the dis-
tance ‖x−y4‖ of the variable vector x to a base point (often y4 = 0) is added
to a smooth residual, here ϕ3(x). Then the base point is the sparse global
minimizer as long as the smooth part is comparatively stationary. Only when
the smooth part is as steep as the flanks of the norm term the minimizer can
be pulled away from the reference points. Now the question arises how this
type of problem can be minimized algorithmically. The simplest possible test
problem in two variables would be

ϕ(x1, x2) =
√
x2

1 + x2
2 + (λ, 0)Tx with |λ| ≤ 1 .

We have expressed the Euclidean norm implicitly and assume at first that
it will not be recognizable to the optimization algorithm. Lewis and Over-
ton [30] have called this problem the tilted norm function, which happens
to be the only situation for which they can prove and not only observe the
convergence of their BFGS method with a special line search. From a starting
point with x2 = 0, steepest descent with any kind of line search will behave
exactly as on the univariate problem |x| + λx. In our experience steepest
descent with a Armijo type line-search stalls completely in the vicinity of
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the optimizer. Lewis and Overton have shown theoretically that in combina-
tion with their specially for nonsmooth problems adapted Armijo line-search,
steepest descent exhibits a sublinear convergence rate in terms of the number
of function evaluations.

In the one dimensional case with abs(x) = | · | identified as such, our
SALMIN approach would of course yield convergence from any initial point
in one step. On the two dimensional problem without any hint of nonsmooth
elementals it would behave like steepest descent with the coefficient q be-
ing incremented several times in each line search. Theoretically the fact of
convergence can be deduced by contradiction as follows. If there was a ball
about y4 which was not reached by anyone of the iterates one could modify
the convex function ϕ4(.) inside such that the cone singularity is smoothened
out. Then our standard convergence theory would ensure convergence into
the ball yielding a contradiction. Note that the other three points of non-
differentiability have a much higher function value and can therefore not be
approached if the iteration is started below. Also, notice that we have as-
sumed throughout like in [30] that the single point of nondifferentiability,
i.e., the global minimizer itself is never reached exactly by any iterate. Of
course a small fixed stepsize as is popular in machine learning will ultimately
lead to oscillations back and forth across the base point. One might argue
that the solution error may then be quite small during this chattering, but
the whole purpose of these terms is to drive them exactly to zero and thus
to achieve data sparsity.

So, en passant, we reach the tentative conclusion that on machine learning
problems similar to Lasso [37] steepest descent converges sublinearly with
line-search and does not converge at all for a fixed stepsize. Obviously, some
thing needs to be done to overcome this impasse.

Clipped Root Linearization

We have seen in the previous section that approximating the Euclidean norm
by its tangent plane (and equivalently the square root by its tangent line)
does not yield good results on the kind of optimization problems in Cdeuc(D).
As it turns out the two approximation tasks are intimately related and by
simply making a small modification to the root linearization we obtain a
desired effect for the Euclidean root. Therefor we will go backward and start
with the root, whose normal incremental linearization is given by

v =
√
u =⇒ v +∆v = v + 0.5∆u/v ⇐⇒ ∆v = 0.5∆u/v (25)

with the tacit assumption that u and thus v are not exactly equal to zero.
This propagation happens automatically under the rug when piecewise lin-
earization is applied to a function evaluation procedure y = ϕ(x). The value
u and the increment ∆u of the right hand side are computed from x and ∆x
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via the preceding intermediate operations and ∆v is the resulting increment
of the left hand side. In other words the root is treated like any other differ-
entiable univariate function, namely replaced by its tangent line. In contrast
to the root itself, which is undefined for negative values, the linearization
reaches arbitrarily large negative values. Therefore, one might argue that the
user should be alerted in some way to the qualitative change for negative in-
crements ∆u much bigger than u > 0. The simple idea of taking the absolute
value of the linear prediction leads to:

Definition 5 (Clipped Linearization). The Clipped Linearization of the
root is given by

v = abs(
√
u) =⇒ v +∆v = |v + 0.5∆u/v|

⇐⇒ ∆v = |v + 0.5∆u/v| − v . (26)

Furthermore, we will call this technique of maintaining non-negativity or
other bounds of the original elemental by its piecewise linearization as clip-
ping.

Of course, while maintaining characteristic properties of the original elemen-
tal we have introduced an extra kink and thus made the piecewise linear
model a bit more complicated. However, we will assume that there are lots
of kinks anyhow so that a few more do not make a significant difference. The
linear and clipped approximation of the square root are depicted in Figure 6.
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Fig. 6 Two different linearizations for the square root at x̊ = 0.75

The straight tangent line has been replace by a V-shaped line touching the
horizontal axis at ∆u = −2v. The nice thing here is that one does not have
to change anything in the evaluation procedure except extending all

√
u to

abs(
√
u), which is of course equivalent as far as the values themselves (but not

the increments) are concerned. The piecewise linearization process by ADOL-
C or some other abs-extended AD tool can then proceed as usual. Now the
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question is what that mechanism does to the Euclidean norm. The usual
differentiation of the Euclidean norm of u ∈ Rk in the composite form (24)
gives the linear approximation

v = ||u|| =⇒ v +∆v = (u +∆u)Tu/‖u‖ ⇐⇒ ∆v = ∆uTu/‖u‖

again tacitly assuming that u 6= 0 and equivalently v 6= 0. Now if again we
extend ‖u‖ to abs(‖u‖) we get after some manipulations

v = abs(‖u‖) =⇒ v +∆v = |(u +∆u)Tu|/‖u‖
⇐⇒ ∆v = |(u +∆u)Tu|/‖u‖ − v . (27)

This approximation of the Euclidean norm is a V-shaped valley whose bottom
line is orthogonal to the reference point u as illustrated in Figure 7 Again
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Fig. 7 The Euclidean norm ‖u‖ and its clipped linearization at ů = (−1, 1)

there is no need for any substantial recoding but simply one has to extend all
v = ||u|| to v = abs(‖u‖) or even simpler use the expression (24) and extend√
u to |

√
u| as suggested above.

We glossed a little bit about possible overflows when the scalar u or the
vector u are small. Moreover, there is one important aspect that we have not
mentioned. Namely the valley linearization of the Euclidean norm is not of
second order and hence the generalized Taylor property (10) does no longer
hold for the over-all abs-linearization. Of course, one might hope that that
does not stop whatever algorithm one is using from converging, albeit at a
possibly reduced rate. Specifically applying the current version of SALMIN
without any modifications to the location problem also called Weber prob-
lem [40] as described above we get the linear convergence behavior displayed
in Figure (8). The minimizer of ϕ3(.) with y1 = (1, 1), y2 = (−1,−1) and
y3 = (−1, ) is w = (−0.577, 0.577, 0). Notice that the iteration appears to
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Fig. 8 Results of SALMIN with clipped square root for the Weber Problem

alternate between a step that barely reduces the distance to the solution, pre-
sumably moving along the bottom of the valley approximation and one that
reduced the distance by a about a quarter. These numerical results appear
quite satisfactory in view of the observation that normal descent methods
are almost certain to have a sublinear rate, which in the presence of round-
ing errors means stalling not all that close to a solution. To the best of our
knowledge the clipped versions (26) and (27) of the piecewise linearization of
root and Euclidean norm have not yet appeared in the literature.

9 Summary and Conclusion

As indicated by the title we tried to sow some doubts regarding the plau-
sibility of the popular ”oracle” scenario, i.e., the availability of the function
value and one generalized gradient. The key claim is that, if there is a way
to compute a vector that is guaranteed to be a generalized gradient then
one can apply piecewise differentiation and obtains lots of other goodies,
like directionally active gradients, critical multipliers, approximating sepa-
rating planes, conically active generalized gradients, active ε−gradients and
the whole local abs-linear approximation in the form of two matrices and
three vectors. That full local model naturally leads to the SALMIN method
for which there is now an extensive theory [9] and [18]. The ε−active gradi-
ents defined by (16) were firstly introduced in this paper and their relation
to the classical ε−differential of Goldstein deserves further exploration. They
certainly have the advantage of practical computability with polynomial ef-
fort. Also the clipped linearisation as defined in Definition 5 for the root is
proposed here for the first time.

It remains to be seen, which class of problems are efficiently treatable by
piecewise differentiation or not. In the penultimate section we looked at the
extension of Cdabs(D) to Cdeuc(D) by generalization of the absolute value to the
Euclidean norm in two and thus arbitrary many variables. It is found that the
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piecewise linearization of the norm by a V-shaped valley rather than just its
tangent plane appears very useful for avoiding the sublinear convergence of
classical descent methods. The concept of abs-linearization is also extendable
to reflexive Banach spaces and thus the optimization under PDE constraints.
Finally let us remark that the abs-linear approximation can also be exploited
for other fundamental numerical tasks like the solution of nonlinear systems
and the integration of Lipschitz continuous dynamical systems.
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