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CONSISTENT FINITE-DIMENSIONAL APPROXIMATION
OF PHASE-FIELD MODELS OF FRACTURE

STEFANO ALMI AND SANDRO BELZ

Abstract. In this paper we focus on the finite-dimensional approximation
of quasi-static evolutions of critical points of the phase-field model of brittle
fracture. In a space discretized setting, we first discuss an alternating mini-
mization scheme which, together with the usual time-discretization procedure,
allows us to construct such finite-dimensional evolutions. Then, passing to
the limit as the space discretization becomes finer and finer, we prove that
any limit of a sequence of finite-dimensional evolutions is itself a quasi-static
evolution of the phase-field model of fracture. Our proof shows for the first
time the consistency of a numerical scheme for evolutions of fractures along
critical points.

1. Introduction

In this paper we are interested in the study of convergence of numerical schemes
for quasi-static evolution of brittle fractures in elastic bodies. We focus on the
phase-field (or damage) approximation of fracture studied by Bourdin, Francfort,
and Marigo in [8, 11, 14], and first introduced by Ambrosio and Tortorelli in [2, 3]
in the framework of image processing.

In a planar setting, given an open bounded subset Ω of R2 with Lipschitz bound-
ary ∂Ω, we deal with an energy functional of the form

(1.1) Jε(u, v) :=
1

2

∫
Ω

(v2 + ηε)|∇u|2 dx+ κ

∫
Ω

ε|∇v|2 dx+ κ

∫
Ω

(1− v)2

4ε
dx ,

where ε and ηε are two small positive parameters, u ∈ H1(Ω) stands for the dis-
placement field, v ∈ H1(Ω; [0, 1]) denotes the damage variable, and the positive
constant κ may be interpreted as the toughness of the material, which we assume
to be equal to one for the following discussion. From a physical point of view, the
variable v in (1.1) takes into account how damaged the elastic body is, so that, for
x ∈ Ω, v(x) = 0 means that the damage is complete (fracture) at x, while v(x) = 1
means that the material is perfectly intact at x.

In [2, 3] it has been shown that choosing 0 < ηε � ε and letting ε → 0, the
functional Jε Γ-converges to

(1.2) G(u) :=
1

2

∫
Ω

|∇u|2 dx+H1(Su) ,

defined on GSBV (Ω), the space of generalized special function of bounded variation
(for the theory of such spaces see, for instance, [1]). In (1.2), H1 denotes the 1-
dimensional Hausdorff measure and Su stands for the approximate discontinuity
set of u. In the mathematical model of fracture (see, e.g., [14]), the functional (1.2)
represents the energy of an elastic body Ω subject to an antiplanar displacement u
and with a crack Su.
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In view of such a convergence result, the phase-field functional (1.1) has been
widely and successfully used in numerical simulations of crack growth processes
(see, for instance [6, 8, 11, 14, 18, 19]).

In the framework of numerical approaches to fracture mechanics, our interest is
in the proof of consistency (or analysis of convergence) of some numerical schemes
used in the study of the crack growth process. In particular, our goal is to prove
the existence of quasi-static evolutions for the phase-field model (1.1) as limits
of evolutions obtained in a space-discretized setting. It is indeed clear that any
numerical simulation based on (1.1) gives as an outcome only finite-dimensional
approximations of an evolution of the phase-field variable (see, e.g., [8, 11, 14]). This
is due to the fact that, in order to implement some kind of algorithm, a discretization
of the functional space H1(Ω) is needed. Having this in mind, our contribution is,
roughly speaking, the following: we show that we can construct a quasi-static
evolution of critical points of the phase-field model of fracture (1.1) as a limit of
finite-dimensional quasi-static evolutions obtained in a discretized H1-framework.
Clearly, the limit process is performed as the function space discretization becomes
finer and finer.

To our knowledge, this paper provides the first proof of consistency of a numerical
method for such evolutions, going beyond the empirical consistency checks even
recently done, for instance, in [7] and related literature. To obtain the result,
we needed to fuse classical methods of PDE discretization, such as FEM (Finite
Element Method) and their typical quasi-interpolating estimates, together with
variational techniques to handle nonlinearities, going far beyond the usual linear
setting where, e.g., FEM are employed.

Concerning the variational methodology, we innovate over [26], or even over
the more general framework of [35], where only variational limits of evolutions
along global minimizers were developed and analyzed, essentially, by means of
Γ-convergence techniques (see also [13, 20, 21, 27, 28]). Instead, here, perhaps
more closely to the work of Braides and coauthors in [16, 17], we develop results of
consistency for evolutions along critical points, which are more realistic.

We anticipate here that all the results we are going to discuss are still valid in
the vectorial case, i.e., when considering the functional

Iε(u, v) :=
1

2

∫
Ω

(v2 + ηε)CEu ·Eudx+

∫
Ω

ε|∇v|2 dx+

∫
Ω

(1− v)2

4ε
dx ,

where u ∈ H1(Ω;R2), v ∈ H1(Ω), and C is the usual elasticity tensor. For the sake
of simplicity, we decided to present here in details only the scalar setting (1.1).

In order to be more precise in the discussion of our result, let us briefly present
the quasi-static evolution problem we want to tackle in this work. For notational
convenience, let us fix the parameters ε = 1

2 and ηε = η > 0 and let us drop the
subscript ε in (1.1), so that we consider the functional

(1.3) J (u, v) :=
1

2

∫
Ω

(v2 + η)|∇u|2 dx+
1

2

∫
Ω

(
|∇v|2 + (1− v)2

)
dx

for u, v ∈ H1(Ω). Given T > 0, we assume that the evolution of the elastic
body Ω is driven by the energy functional (1.3) and by a time-dependent Dirichlet
boundary datum w ∈W 1,2([0, T ];H1(Ω)). In this context, a quasi-static evolution
is described by the pair of functions (u, v) : [0, T ] → H1(Ω) × H1(Ω) standing for
displacement and damage, respectively, and satisfying the following conditions (we
refer to Definition 2.3 for a precise statement):

(1) Irreversibility : 0 ≤ v(t) ≤ v(τ) ≤ 1 a.e. in Ω for every 0 ≤ τ ≤ t ≤ T ;
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(2) Stability : for every t ∈ [0, T ], the pair (u(t), v(t)) is a “critical point” of the
energy functional J in the class of pairs (u, v) ∈ H1(Ω)×H1(Ω) such that
u = w(t) on ∂Ω and v ≤ v(t) a.e. in Ω;

(3) Energy-dissipation inequality : for every t ∈ [0, T ]

J (u(t), v(t)) ≤ J (u(0), v(0)) +

∫ t

0

∫
Ω

(v2(τ) + η)∇u(τ) · ∇ẇ(τ) dx dτ ,

where ẇ denotes the time derivative of w.
We mention that this notion of evolution is often referred to as local energetic
evolution. See, e.g., [32, 34] for further discussions on the topic.

The irreversibility property (1) means that the damage process is unidirectional,
in the sense that once the elastic body Ω is damaged, i.e., v < 1 in a subset
of Ω, it can not be repaired, not even partially. We notice that this is the natural
counterpart of the irreversibility of brittle fracture, which states that once a crack
is created, it can not be closed anymore during the evolution process.

The stability condition (2), discussed in details in Section 2, can be mathemati-
cally rephrased, roughly speaking, as

(1.4) ∂(u,v)J (u(t), v(t)) ≤ 0 ,

where ∂(u,v) denotes the partial derivative w.r.t. the pair of variables (u, v), and the
inequality is due to the irreversibility constraint discussed above. As we will see in
Section 2, inequality (1.4) can be splitted in

(1.5) ∂uJ (u(t), v(t)) = 0 and ∂vJ (u(t), v(t)) ≤ 0 ,

or, which is equivalent because of the separate convexity of J w.r.t. u and v,

J (u(t), v(t)) ≤ J (u, v(t)) for every u ∈ H1(Ω) with u = w(t) on ∂Ω,(1.6)

J (u(t), v(t)) ≤ J (u(t), v) for every v ∈ H1(Ω) with v ≤ v(t) a.e. in Ω.(1.7)

We notice that conditions (1.6)–(1.7) are not equivalent to the global stability
property

J (u(t), v(t)) ≤ J (u, v)

for every pair (u, v) ∈ H1(Ω) × H1(Ω; [0, 1]) such that u = w(t) on ∂Ω and v ≤
v(t) a.e. in Ω. For this reason, (1.4)–(1.7) could be referred to as local stability
properties, since they involve the local behavior of the energy functional J close to
the pair (u(t), v(t)).

Finally, the energy-dissipation inequality (3) is due to the lack of 1-homogeneous
term in the original Francfort-Marigo model. In [31], the authors have been able to
recover an energy balance for the continuous phase-field model described by (1.3)
thanks to a time reparametrization technique (see also [33]). As remarked below,
we succeeded in adapting the strategy of [31] in the finite-dimensional setting (see
Sections 2-4), but it resulted to be difficult to obtain, in our finite-dimensional
to continuum limit, the convergences necessary to preserve an energy-dissipation
balance.

Following the main steps of numerical schemes, in order to construct a quasi-
static evolution satisfying (1)–(3) we first discretize the function space H1(Ω) and
define the discrete counterpart of the functional J . More precisely, for every value
of the mesh parameter h > 0 we consider a triangulation Th of Ω satisfying the
standard requirements arising from interpolation estimates (see (2.14) and [37] for
more details), we define the finite-dimensional space

(1.8) Fh := {u ∈ H1(Ω) : u is affine on K for every K ∈ Th} ,
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and we set, for every u, v ∈ Fh,

(1.9) Jh(u, v) :=
1

2

∫
Ω

(
Ph(v2)+η

)
|∇u|2 dx+

1

2

∫
Ω

|∇v|2 dx+
1

2

∫
Ω

Ph
(
(1−v)2

)
dx ,

where Ph : C(Ω)→ Fh is the Lagrangian interpolation operator.
In the finite-dimensional framework described above, we are able to construct a

finite-dimensional quasi-static evolution driven by the energy functional Jh in (1.9)
and satisfying better conditions than (1)–(3) (see Definition 2.8). More precisely,
the finite-dimensional quasi-static evolution is represented by a triple (th, uh, vh),
where th is a suitable Lipschitz reparametrization of time t. With this notation,
the triple (th, uh, vh) satisfies the discrete counterpart of (1)-(2) and an energy-
dissipation balance of the form

Jh(uh(s), vh(s)) =Jh(u0,h, v0,h)−
∫ s

0

|∂uJh|(uh(σ), vh(σ))‖u′h(σ)‖h,vh(σ) dσ

−
∫ s

0

|∂vJh|(uh(σ), vh(σ))‖v′h(σ)‖h,uh(σ) dσ(1.10)

+

∫ s

0

∫
Ω

(Ph(v2
h(σ)) + η)∇uh(σ) · ∇ẇh(th(σ))t′h(σ) dxdσ ,

where |∂uJh| and |∂vJh| are the slope of the functional Jh w.r.t. the displacement u
and the phase-field v, respectively, ‖ · ‖h,v and ‖ · ‖h,u denotes suitable weighted
norms on Fh, and ′ stands for the derivative w.r.t. s.

The algorithm used to detect such a triple (th, uh, vh) is a fusion of the one
developed in [4] together with the alternating minimization of [8, 31]. In particular,
besides the usual time-discretization procedure, typical in the study of many rate-
independent processes (see, for instance, [32, 34]), at each time step tki := iT

k ,
k ∈ N \ {0}, i ∈ {1, . . . , k}, we construct a critical point of the energy Jh at time tki
by solving the incremental minimum problems

min {Jh(u, vj−1) : u ∈ Fh, u = w(tki ) on ∂Ω} ,(1.11)
min {Jh(uj , v) : v ∈ Fh, v ≤ vj−1 in Ω} ,(1.12)

where we have set, as initial conditions, u0 := uhk(tki−1) +w(tki )−w(tki−1) and v0 :=

vhk (tki−1). Denoting by uj and vj the solutions to (1.11) and (1.12), respectively,
we show in Proposition 3.4 that the pair (uj , vj) converges in Fh ×Fh to a critical
point of Jh, which we denote by (uhk(tki ), vhk (tki )). The second step is to define an
arc-length parametrization of time based on the distance between two subsequent
steps of the minimization scheme (1.11)-(1.12). This leads us to a discrete in time
energy balance that we are then able to keep in the time-continuous limit. We refer
to Theorem 2.9 and to its proof in Section 4 for more details about this scheme.

As we have already mentioned, we are not able to pass to the limit as the mesh
parameter h tends to 0 showing that the parametric finite-dimensional quasi-static
evolutions (th, uh, vh) converge to a continuous in space quasi-static evolution sat-
isfying, besides (1) and (2), also the continuous form of the energy equality (1.10).
To be precise, the main reason is that we could not prove the right h-independent
estimates on the triple (th, uh, vh) that would allow us to keep the equality in (1.10)
as h → 0. For this reason, we have based our “finite-dimensional to continuum”
limit on the weaker notion of evolution (1)-(3). In particular, it can be easily
proven (see Corollary 2.10) that from the time-parametrized triple (th, uh, vh) it
is possible to go back to the real time t obtaining, with abuse of notation, a pair
(uh, vh) : [0, T ]→ Fh×Fh satisfying only an energy inequality of the form (3) holds.

The last step of our construction is then the passage to the limit as the tri-
angulation Th becomes finer and finer. This is indeed the subject of the proof of
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Theorem 2.4, where we show that any limit of a sequence of finite-dimensional
quasi-static evolutions (uh, vh) (in non-parametrized time) is a quasi-static evo-
lution in the sense of (1)–(3) above (see also Definition 2.3). From a numerical
viewpoint, this shows that the numerical results, obtained through a sort of finite-
dimensional implementation of the damage model (1.1) and (1.3), are actually close
to the “theoretical” quasi-static evolutions (u(t), v(t)) given by (1)–(3). Moreover,
we notice that the method we exploit to prove Theorems 2.4 and 2.9 is also suitable
for applications and numerical simulations, which, in particular, will be performed
in Section 6.

In conclusion, we stress once again that the problem of existence of a quasi-
static evolution for the phase-field model (1.1) has been already tackled in various
papers (see, for instance, [26, 31, 36]). In particular, in [31] an existence result
of quasi-static evolution for the damage model via critical points of the energy
functional (1.1) has been achieved using, in a space-continuous setting, an alter-
nate minimization scheme similar to the one described above. In [36], instead, the
convergence scheme is based on a local minimization procedure w.r.t. the dam-
age variable v. In [26] the evolution problem has been addressed in the setting
of global minimizers, giving particular emphasis to the connection between the
notions of quasi-static evolution in the phase-field model and in the variational
“sharp interface” model of fracture (see, e.g., [25]). In view of these previous works,
what we claim is new in our paper is not the existence result itself, but rather the
technique used to construct an evolution, which is based on the algorithm given
by (1.11) and (1.12) and which has been frequently used in numerical implementa-
tions (see [6, 8, 11, 12]).

Plan of the paper. The paper is organized as follows: in Section 2 we present
the evolution problem in full details, giving the definition of quasi-static evolution
for the phase-field model (see Definition 2.3) and stating the main result (Theo-
rem 2.4). Then, we start discussing our discretization algorithm and, eventually,
in Section 3 we discuss the alternate minimization scheme which is at the core of
our approximation. In Sections 4 and 5 we prove Theorems 2.9 and 2.4, respec-
tively. Finally, in Section 6 we present some numerical simulations which exploit
the alternate minimization algorithm discussed in this paper.

2. Setting of the problem

In this section, we describe the problem setting and introduce the main notation
of the paper. We first start with the space-continuous notion, and in the second
part of the section we discuss the space-discrete setting.

Space-continuous setting. As already mentioned in the Introduction, we are
studying quasi-static evolutions in the framework of phase-field approximation of
brittle fractures in elastic bodies (for more details see, e.g., [2, 3, 24, 25]). Since the
aim of this paper is to show a new constructive approach to the evolution problem
based on a space discretization procedure, in order to keep the notations as simple
as possible we focus here on a two dimensional model. In particular, we consider
as a reference configuration the unit square Ω := (0, 1)2 in R2. We believe that this
is not a serious restriction and also evolutions in three dimensions can be similarly
approached.

Once some η > 0 is fixed, we define the phase-field stored elastic energy as

(2.1) E(u, v) :=
1

2

∫
Ω

(v2 + η)|∇u|2 dx ,

where u ∈ H1(Ω) denotes the antiplanar displacement and v ∈ H1(Ω) stands for
the phase-field (or damage) variable. In particular, from (2.1) we deduce that the
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elastic behavior of Ω depends pointwise on how damaged the body is, and, due to
the presence of the positive parameter η, the damage is never complete, in the sense
that the elastic body Ω is always able to store a positive amount of elastic energy
depending on the displacement u. We also recall that the phase-field v is usually
constrained to take values in the interval [0, 1], where, for x ∈ Ω, v(x) = 0 means
that the elastic body Ω is experiencing a maximal damage in x, while v(x) = 1
means that the material is perfectly sound at x. In order to avoid some technical
issues related to the discrete setting described in the second part of this section, we
simply assume v to belong to H1(Ω). We will see how the above constraint can be
naturally enforced in the space-discrete approximation of the evolution problem.
We refer to Proposition 3.1 for more details.

As usual in the phase-field approximation, we add to the stored elastic en-
ergy (2.1) a dissipative term D(v) which depends only on the damage v ∈ H1(Ω),
namely,

(2.2) D(v) :=
1

2

∫
Ω

(
|∇v|2 + (1− v)2

)
dx .

In the sense of Γ-convergence, the dissipation functional D approximates, in the
language of fracture mechanics, the energy dissipated by the crack production, as
it has been shown in [2, 3].

We are now in a position to introduce the total phase-field energy of the system
as the sum of (2.1) and (2.2): for every u, v ∈ H1(Ω), we simply set

(2.3) J (u, v) := E(u, v) +D(v) .

As usual, the evolution problem will be driven by a time-dependent forcing term.
In this case, given a time horizon T > 0, we assume that the elastic body Ω is
subject to a Dirichlet boundary datum w ∈ W 1,2([0, T ];H1(Ω)), so that, for every
t ∈ [0, T ], the set of admissible displacement A(w(t)) is defined by

(2.4) A(w(t)) := {u ∈ H1(Ω) : u = w(t) on ∂Ω} ,

where the equality has to be intended in the trace sense. The notation (2.4) will
be adopted also for functions w ∈ H1(Ω) not depending on time.

In this context, a quasi-static evolution for the damage model is expressed by
a pair displacement-damage (u, v) : [0, T ] → H1(Ω) × H1(Ω; [0, 1]). The first nat-
ural condition we want to impose is the so-called irreversibility of the phase-field
variable. Namely, the function t 7→ v(t) has to be non-increasing. This means that
once the elastic body Ω is damaged, it can not be repaired, not even partially.

The second property a quasi-static evolution has to satisfy is a stability condition.
In our case, to be stable at time tmeans that the pair (u(t), v(t)) is a critical point of
the energy (2.3) in the class of pairs (u, v) ∈ H1(Ω)×H1(Ω; [0, 1]) with u ∈ A(w(t))
and v ≤ v(t) a.e. in Ω. Since J is Fréchet differentiable onH1(Ω)×(H1(Ω)∩L∞(Ω))
(see [18, Proposition 1.1]) with

∂(u,v)J (u, v)[ϕ,ψ] =

∫
Ω

(v2 + η)∇u · ∇ϕdx+

∫
Ω

vψ|∇u|2 dx

+

∫
Ω

∇v · ∇ψ dx−
∫

Ω

(1− v)ψ dx ,(2.5)

for every u ∈ H1(Ω), v ∈ H1(Ω) ∩ L∞(Ω), ϕ ∈ C∞c (Ω), ψ ∈ C∞(Ω), the stability
condition can be written as

(2.6) ∂(u,v)J
(
u(t), v(t)

)
[ϕ,ψ] ≥ 0

for every ϕ ∈ C∞c (Ω) and every ψ ∈ C∞(Ω) with ψ ≤ 0.
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Remark 2.1. We notice that the inequality in (2.6) and the restriction to test
functions ψ ≤ 0 arise from the irreversibility condition of the damage variable v(t)
discussed above.

By the structure of the derivative of J (2.5), inequality (2.6) can be simply
rephrased in terms of the following inequalities:

0 = ∂uJ
(
u(t), v(t)

)
[ϕ] =

∫
Ω

(
v2(t) + η

)
∇u(t) · ∇ϕdx(2.7)

0 ≤ ∂vJ
(
u(t), v(t)

)
[ψ]

=

∫
Ω

v(t)ψ
∣∣∇u(t)

∣∣2 dx+

∫
Ω

∇v(t) · ∇ψ dx−
∫

Ω

(
1− v(t)

)
ψ dx ,(2.8)

for every ϕ ∈ C∞c (Ω) and ψ ∈ C∞(Ω) with ψ ≤ 0.

Remark 2.2. The right-hand sides of (2.7) and (2.8) represent the Gateaux deriva-
tives in the direction of u and v, respectively.

We also notice that once we know that inequalities (2.7) and (2.8) are satisfied
for every test functions ϕ ∈ C∞c (Ω) and ψ ∈ C∞(Ω) with ψ ≤ 0 in Ω, by density
and truncation argument it is easy to see that they hold also for ϕ ∈ H1

0 (Ω) and
ψ ∈ H1(Ω), ψ ≤ 0 a.e. in Ω.

Finally, by the separate convexity of J w.r.t. the variables u and v, from formu-
las (2.7) and (2.8) we derive the actual stability condition, given in terms of mini-
mum problems: for every t ∈ [0, T ], u(t) minimizes J (·, v(t)) in the class A(w(t)),
while v(t) minimizes J (u(t), ·) in the class of functions v ∈ H1(Ω) such that v ≤ v(t)
a.e. in Ω.

This leads us to the following definition of quasi-static evolution for the phase-
field model via critical points of the energy J in (2.1)–(2.3).

Definition 2.3. Let T > 0 and w ∈ W 1,2([0, T ];H1(Ω)). We say that a pair
(u, v) : [0, T ]→ H1(Ω)×H1(Ω) is a quasi-static evolution (of critical points) if the
following conditions are satisfied:

(1) Irreversibility : 0 ≤ v(t) ≤ v(τ) ≤ 1 a.e. in Ω for every 0 ≤ τ ≤ t ≤ T ;
(2) Stability : for every t ∈ [0, T ]

J
(
u(t), v(t)

)
≤ J

(
u, v(t)

)
for all u ∈ A

(
w(t)

)
,(2.9)

J
(
u(t), v(t)

)
≤ J

(
u(t), v

)
for all v ∈ H1(Ω), v ≤ v(t) a.e. in Ω .(2.10)

(3) Energy-dissipation inequality : for every t ∈ [0, T ]

(2.11) J
(
u(t), v(t)

)
≤ J (u(0), v(0)) +

∫ t

0

∫
Ω

(v2(τ) + η)∇u(τ) · ∇ẇ(τ) dx dτ .

From now on, the dot represents the derivative w.r.t. time t.
We can now state the main existence result of the paper, which will be proved

in Section 5.

Theorem 2.4. Let T > 0, w ∈ W 1,2([0, T ];H1(Ω)), and u0, v0 ∈ H1(Ω) be such
that u0 ∈ A(w(0)) and 0 ≤ v0 ≤ 1 a.e. in Ω. Assume that the pair (u0, v0) satisfies
the stability conditions at time t = 0:

J (u0, v0) ≤ J (u, v0) for all u ∈ A(w(0)),(2.12)

J (u0, v0) ≤ J (u0, v) for all v ∈ H1(Ω), such that v ≤ v0 a.e. in Ω.(2.13)

Then, there exists a quasi-static evolution (u, v) : [0, T ] → H1(Ω) × H1(Ω) with
u(0) = u0 and v(0) = v0.
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Remark 2.5. We again stress that the study of existence of quasi-static evolution
for the phase-field model based on the Ambrosio-Tortorelli functional (1.1) is not a
novelty. For instance, such a problem has been tackled in [26, 31, 36] using different
convergence schemes, always in a continuous-space setting.

What we claim is the main contribution of our paper is the technique used to
construct such an evolution, which is based on the algorithm introduced in [6]. In
particular, the method we exploit here is suitable for applications and numerical
simulations, since, as we explain in the second part of this section, we first show
the existence of a finite-dimensional quasi-static evolution in a discretized H1-space
(see (2.15)), and then pass to the limit as the discretization becomes finer and
finer. We show that in the limit we recover a quasi-static evolution in the sense
of Definition 2.3. By this argument we deduce that the numerical scheme used to
construct approximate solutions for the evolution problem guarantees convergence
to a suitable quasi-static evolution.

2.1. Space-discrete setting. Let us now describe the space-discrete counterpart
of the above setting. We first want to discretize the domain Ω following the basic
ideas of the finite element method (for more details on the theory see, e.g., [37]). Let
us fix λ ∈ (0,+∞). Given the mesh parameter h > 0, we consider a triangulation Th
such that diam(K) ≤ h for every K ∈ Th and such that

(2.14)
Rh
ρh
≤ λ uniformly for h > 0 ,

where ρh is the minimum of the radii of the incircles of the triangulation Th, and Rh
is the maximum of the radii of the excircles. The above condition guarantees the
usual piecewise affine interpolation estimates. We refer to [37] for more details.

Once we are given the triangulation Th, we need to discretize the function
space H1(Ω). Thus, we define the finite-dimensional function space Fh as the
set of continuous functions on Ω that are affine on each triangle K ∈ Th. More
precisely, we set

(2.15) Fh := {u ∈ C(Ω) ∩H1(Ω) : ∇u is constant a.e. on K for every K ∈ Th} .
Denoting with ∆h the set of all the vertices of Th and setting Nh := #∆h, a

basis {ξl}Nh

l=1 of Fh can be defined in the following natural way: for every l =
1, . . . , Nh, the element ξl ∈ Fh is such that

(2.16) ξl(xm) = δlm for every xm ∈ ∆h,

where δlm is the Kronecker delta. We further assume that the basis {ξl}Nh

l=1 satisfies
the stiffness condition

(2.17)
∫

Ω

∇ξl · ∇ξm dx ≤ 0 for every l,m ∈ {1, . . . , Nh}, l 6= m,

which is fulfilled, e.g., if the angles of the triangles are smaller or equal to π
2

(see [22]).
Clearly, the space Fh can be endowed with the usual H1-norm. In the sequel,

we will also use the following:

(2.18) ‖ϕ‖Fh
:=

(∫
Ω

Ph(ϕ2) dx

)1/2

for every ϕ ∈ Fh ,

where Ph : C(Ω) → Fh is the Lagrangian interpolant onto the space Fh, i.e., the
unique operator defined on C(Ω) with values in Fh such that

(2.19) Ph(ϕ)(xl) = ϕ(xl) for every ϕ ∈ C(Ω) and every xl ∈ ∆h.

It can be easily checked that formula (2.18) defines a norm in Fh.
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In this framework, we introduce the discrete counterpart of the stored elastic
energy (2.1) and of the dissipated energy (2.2): for every u, v ∈ Fh, we set

Eh(u, v) :=
1

2

∫
Ω

(
Ph(v2) + η

)
|∇u|2 dx ,(2.20)

Dh(v) :=
1

2

∫
Ω

|∇v|2 dx+
1

2

∫
Ω

Ph
(
(1− v)2

)
dx .(2.21)

As in (2.3), the discrete total energy is the sum of Eh and Dh. Hence,

(2.22) Jh(u, v) := Eh(u, v) +Dh(v) .

We note that, thanks to [37], we can also approximate the Dirichlet boundary
datum in Fh. More precisely, there exists a sequence wh ∈ W 1,2([0, T ];Fh) such
that wh → w in W 1,2([0, T ];H1(Ω)) as h → 0. In particular, this implies that
wh(t) → w(t) in H1(Ω) for every t ∈ [0, T ] and ẇh(t) → ẇ(t) in H1(Ω) for a.e.
t ∈ [0, T ]. Hence, the quasi-static evolution in the space-discrete setting (see Defi-
nition 2.6) will be driven by the approximate boundary datum wh, and, as in (2.4),
for every h and every t ∈ [0, T ] we restrict the set of admissible displacements to

(2.23) Ah(wh(t)) := {u ∈ Fh : u = wh(t) on ∂Ω} .

Analogously to Definition 2.3, the notion of finite-dimensional quasi-static evo-
lution reads as follows:

Definition 2.6. Let T > 0 and h > 0 be fixed. Let wh ∈ W 1,2([0, T ];Fh). We
say that a pair of functions (uh, vh) : [0, T ]→ Fh×Fh is a finite-dimensional quasi-
static evolution if it satisfies the following conditions:

(1) Irreversibility : 0 ≤ vh(t) ≤ vh(τ) ≤ 1 in Ω for every 0 ≤ τ ≤ t ≤ T ;
(2) Stability : for every t ∈ (0, T ] we have

Jh
(
uh(t), vh(t)

)
≤ Jh

(
u, vh(t)

)
for every u ∈ Ah(wh(t)) ,(2.24)

Jh
(
uh(t), vh(t)

)
≤ Jh

(
uh(t), v

)
for every v ∈ Fh, v ≤ vh(t) in Ω ;(2.25)

(3) Energy-dissipation inequality : for every t ∈ [0, T ]

Jh
(
uh(t), vh(t)

)
≤ Jh

(
uh(0), vh(0)

)
+

∫ t

0

∫
Ω

(
Ph(v2

h(τ)) + η
)
∇uh(τ) · ∇ẇh(τ) dx dτ .(2.26)

Remark 2.7. Let us briefly comment on the stability condition (2) of Definition 2.6.
As in the space-continuous setting, being the functional Jh separately convex
w.r.t. the variables u and v, inequalities (2.24) and (2.25) are equivalent to

0 = ∂uJh(uh(t), vh(t))[ϕ] =

∫
Ω

(Ph(v2
h(t)) + η)∇uh(t) · ∇ϕdx ,

0 ≤ ∂vJh(uh(t), vh(t))[ψ]

=

∫
Ω

Ph(vh(t)ψ)|∇uh(t)|2 dx+

∫
Ω

∇vh(t) · ∇ψ dx−
∫

Ω

Ph

((
1− vh(t)

)
ψ
)

dx ,

for every ϕ ∈ Ah(0) and ψ ∈ Fh with ψ ≤ 0 in Ω.
Moreover, we want property (2) to be satisfied only in the interval (0, T ]. The

motivation of this choice is the following: in Theorem 2.4 (see also Section 5) we
aim to construct a quasi-static evolution in the space-continuous setting as limit
of finite-dimensional quasi-static evolutions. For this reason, as it will be shown
in the proof of Theorem 2.4, we need to find ad hoc approximations of the initial
conditions u0, v0 in the space Fh. In doing this, we can not guarantee to keep
track of the stability properties (2.12)–(2.13) of the pair (u0, v0) (see Theorem 2.4).
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Therefore, at this stage it is enough for us to have stability for strictly positive
time, while in the space-continuous limit we will recover it also for t = 0.

In the finite-dimensional case, the existence of a finite-dimensional quasi-static
evolution in the sense of Definition 2.6 will actually be a consequence of a stronger
result (see Theorem 2.9) which allows us to show, in a suitable time parametrized
setting, the validity of an energy-dissipation equality, instead of the simpler in-
equality stated in (2.26). In order to state precisely the existence result, we need
to introduce some further notation.

Following the lines of [31], we introduce two new weighted norms on Fh, which
could be referred to as energy norms, in the sense that they resemble the energy
functional Jh in (2.22): for every u, v ∈ Fh and every ϕ ∈ Ah(0) we set

‖ϕ‖2h,v :=

∫
Ω

(Ph(v2) + η)|∇ϕ|2 dx ,(2.27)

‖v‖2h,u :=

∫
Ω

Ph(v2)|∇u|2 dx+

∫
Ω

|∇v|2 dx+

∫
Ω

Ph(v2) dx .(2.28)

We notice that ‖ · ‖h,v in (2.27), which is a norm on Ah(0), actually fails to be
a norm on the whole Fh. Furthermore, we denote by 〈·, ·〉h,v and by 〈·, ·〉h,u the
scalar products inducing the norms (2.27) and (2.28), respectively. We refer to
Appendix A for more properties of ‖ · ‖h,v and ‖ · ‖h,u.

Finally, we introduce the slope functions: for every u, v ∈ Fh we define

|∂uJh|(u, v) := max {−∂uJh(u, v)[ϕ] : ϕ ∈ Ah(0), ‖ϕ‖h,v ≤ 1} ,(2.29)

|∂vJh|(u, v) := max {−∂vJh(u, v)[ψ] : ψ ∈ Fh, ψ ≤ 0, ‖ψ‖h,u ≤ 1} .(2.30)

We notice that the sign restriction in (2.30) is again due to the irreversibility con-
dition on the phase-field variable. We refer to Appendix A for some properties of
the slopes (2.29)-(2.30).

With this notation, we can give the definition of parametrized finite-dimensional
quasi-static evolution.

Definition 2.8. Let T > 0 and h > 0 be fixed. Let wh ∈W 1,2([0, T ];Fh). We say
that a triple (th, uh, vh) : [0, S] → [0, T ]× Fh×Fh, S ∈ (0,+∞), is a parametrized
finite-dimensional quasi-static evolution if it satisfies the following conditions:

(1) Time regularity : th ∈ W 1,∞([0, S]; [0, T ]), uh ∈ W 1,2([0, S];Fh), and vh ∈
W 1,∞([0, S];Fh);

(2) Time parametrization: 0 ≤ th(s) ≤ th(σ) ≤ T for every 0 ≤ s ≤ σ ≤ S and
th(0) = 0, th(S) = T ;

(3) Irreversibility : 0 ≤ vh(σ) ≤ vh(s) ≤ 1 in Ω for every 0 ≤ s ≤ σ ≤ S;
(4) Stability : for every s ∈ (0, S] such that t′h(s) > 0 we have

Jh
(
uh(s), vh(s)

)
≤ Jh

(
u, vh(s)

)
for every u ∈ Ah(wh(th(s))) ,(2.31)

Jh
(
uh(s), vh(s)

)
≤ Jh

(
uh(s), v

)
for every v ∈ Fh, v ≤ vh(s) in Ω ;(2.32)

(5) Energy-dissipation equality : for every s ∈ [0, S]

Jh
(
uh(s), vh(s)

)
= Jh

(
uh(0), vh(0)

)
−
∫ s

0

|∂uJh|(uh(σ), vh(σ))‖u′h(σ)‖h,vh(σ) dσ

−
∫ s

0

|∂vJh|(uh(σ), vh(σ))‖v′h(σ)‖h,uh(σ) dσ(2.33)

+

∫ s

0

∫
Ω

(
Ph(v2

h(σ)) + η
)
∇uh(σ) · ∇ẇh(th(σ))t′h(σ) dxdσ .

From now on, the symbol ′ denotes the derivative w.r.t. s.
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We state here the main existence result for the finite-dimensional setting. Before
showing the proof, we need some auxiliary results. Here, we only mention that the
construction of a parametrized finite-dimensional quasi-static evolution is based
on the incremental procedure described in Section 3 and presented in a different
context in [4, 31].

Theorem 2.9. Let h > 0, wh ∈ W 1,2([0, T ];Fh), and u0,h, v0,h ∈ Fh be such
that u0,h ∈ Ah(wh(0)) and 0 ≤ v0,h ≤ 1 in Ω. Then, there exists a parametrized
finite-dimensional quasi-static evolution (th, uh, vh) : [0, S]→ [0, T ]×Fh×Fh, S ∈
(0,+∞), with (uh(0), vh(0)) = (u0,h, v0,h).

As a direct consequence of Theorem 2.9, we get the existence of a finite-dimensional
quasi-static evolution in the sense of Definition 2.6.

Corollary 2.10. Let h > 0, wh ∈ W 1,2([0, T ];Fh), and u0,h, v0,h ∈ Fh be such
that u0,h ∈ Ah(wh(0)) and 0 ≤ v0,h ≤ 1 in Ω. Then, there exists a finite dimen-
sional quasi-static evolution (uh, vh) : [0, T ] → Fh×Fh such that (uh(0), vh(0)) =
(u0,h, v0,h).

Proof. Let wh, u0,h, and v0,h be as in the statement of the corollary, and let
(th, ũh, ṽh) : [0, S] → [0, T ] × Fh × Fh, S ∈ (0,+∞), be a parametrized finite-
dimensional quasi-static evolution with initial conditions (ũh(0), ṽh(0)) = (u0,h, v0,h).
For every t ∈ [0, T ], we set

s(t) := min{s ∈ [0, S] : th(s) = t} and (uh(t), vh(t)) := (ũh(s(t)), ṽh(s(t))) .

Clearly, vh satisfies condition (1) of Definition 2.6. The energy-dissipation in-
equality (2.26) follows by the simple inequality

Jh(ũh(s(t)), ṽh(s(t))) ≤ Jh(u0,h, v0,h)

+

∫ s(t)

0

∫
Ω

(Ph(ṽ2
h(σ)) + η)∇ũh(σ) · ∇ẇh(σ)t′h(σ) dxdσ

and by the change of variable τ = th(σ) in the last integral.
Finally, in order to deduce (2.24)-(2.25) from (2.31)-(2.32), we distinguish two

cases: t′h(s(t)) > 0 and t′h(s(t)) = 0. In the former case, (2.24)-(2.25) and (2.31)-
(2.32) coincide. In the latter case, we know that, by definition of s(t), there exists a
sequence σk ∈ [0, S] such that σk ↗ s(t) with t′h(σk) > 0. Noticing that ũh(σk)→
uh(t) in Fh, that ṽh(σk) → vh(t) in Fh, and that ṽh(σk) ≥ vh(t) for every k,
applying Lemma 3.3 below we deduce (2.24)-(2.25). �

Remark 2.11. We stress here that we are not able to prove, passing to the limit as
the mesh parameter h tends to 0, that a sequence of parametrized finite-dimensional
quasi-static evolutions converges to some parametric quasi-static evolution in the
space-continuous setting. In particular, we are not able to guarantee the right
h-independent estimates on uh and vh that would allow us to show an energy-
dissipation equality similar to (2.33) for a space-continuous limit (u, v). For this
reason, in Section 5 we will only be able to show that any limit as h → 0 of a
sequence of finite-dimensional quasi-static evolution is itself a quasi-static evolution
in the sense of Definition 2.3.

We refer the interested reader to [31] for more technical details concerning
the proof of existence of a parametrized quasi-static evolution in the pure space-
continuous setting, regardless of the approximability of such an evolution through
space-discrete ones.

Notation. From now on, we will denote by ‖ · ‖H1 the H1-norm and by ‖ · ‖p the
usual Lp-norm for p ∈ [1,+∞].
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3. The alternate minimization scheme

In this section we describe the core of our convergence algorithm, which will
allow us to construct critical points of the energy functional Jh satisfying proper
boundary and irreversibility conditions. Such a scheme will be exploited in the
proof of Theorem 2.9. More precisely, for a given mesh parameter h > 0 we fix two
functions v0, w ∈ Fh, with v0 ≥ 0 in Ω and we show a constructive way to find a
critical point (ū, v̄) ∈ Fh × Fh of the functional Jh under the constraints ū = w
on ∂Ω and v̄ ≤ v0 in Ω.

The recursive scheme we adopt here is a modification of the strategy presented
in [6] in a finite-dimensional setting, and similar to the alternate minimization
procedure used in [31] for the continuous phase-field model. What we have to take
care of in our context is the presence of the operator Ph of (2.19) in the definition
of the functional Jh (see (2.20)–(2.22)).

For every j ∈ N\{0} we define the functions uj and vj in Fh as follows:

uj := arg min {Jh(u, vj−1) : u ∈ Ah(w)} ,(3.1)
vj := arg min {Jh(uj , v) : v ∈ Fh, v ≤ vj−1 in Ω} .(3.2)

The existence of minimizers of (3.1) is standard. The uniqueness follows by the
strict convexity of the functional Jh(·, v) for v ∈ Fh.

In the following proposition, we briefly discuss the existence and uniqueness
of vj . We also show the usual bound 0 ≤ vj ≤ 1, which does not follow by simple
truncation argument because of the nature of the function space Fh and of the
presence of the interpolation operator Ph : C(Ω) → Fh. The proof is contained in
the Appendix A.

Proposition 3.1. The minimum problem (3.2) admits a unique solution. More-
over, the solution vj ∈ Fh satisfies 0 ≤ vj ≤ 1 for every j ∈ N\{0}.

Proof. See Appendix A. �

In the following lemma we show a “one-step” energy balance involving the pairs
(uj , vj) and (uj+1, vj+1) constructed in (3.1)-(3.2).

Lemma 3.2. Let j ∈ N. For every r ∈ [0, 1] let

u(r) := (1− r)uj + ruj+1 and v(r) := (1− r)vj + rvj+1 .

Then, for every r ∈ [0, 1] the following equalities hold:

Jh(u(r), vj) = Jh(uj , vj)−
∫ r

0

|∂uJh|(u(r), vj)‖u′(r)‖h,vj dr ,(3.3)

Jh(uj+1, v(r)) = Jh(uj+1, vj)−
∫ r

0

|∂vJh|(uj+1, v(r))‖v′(r)‖h,uj+1
dr ,(3.4)

where ′ denotes the derivative w.r.t. r.

Proof. By the minimality of uj+1, for every ϕ ∈ Ah(0) we have

∂uJh(uj , vj)[ϕ] = ∂uJh(uj+1, vj)[ϕ] +

∫
Ω

(Ph(v2
j ) + η)∇(uj − uj+1) · ∇ϕdx

=

∫
Ω

(Ph(v2
j ) + η)∇(uj − uj+1) · ∇ϕdx = 〈uj − uj+1, ϕ〉h,vj .

Hence, by definition of the slope (2.29) we deduce that

(3.5) |∂uJh|(uj , vj) = −∂uJh(uj , vj)
[uj+1 − uj ]
‖uj+1 − uj‖h,vj

.
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Let us now fix r ∈ (0, 1]. By linearity, for every ϕ ∈ Ah(0) we have
∂uJh(u(r), vj)[ϕ] = r∂uJh(uj+1, vj)[ϕ] + (1− r)∂uJh(uj , vj)[ϕ]

= (1− r)∂uJh(uj , vj)[ϕ] .

In view of (3.5) we get that

(3.6) |∂uJh|(u(r), vj)‖u′(r)‖h,vj = −∂uJh(u(r), vj)[u
′(r)] .

Combining the chain-rule and (3.6) we obtain (3.3).
As for (3.4), for every ϕ ∈ Fh with ϕ ≤ 0 we have

∂vJh(uj+1, vj)[ϕ] = ∂vJh(uj+1, vj+1)[ϕ] +

∫
Ω

Ph((vj − vj+1)ϕ)|∇uj+1|2 dx

+

∫
Ω

∇(vj − vj+1) · ∇ϕdx+

∫
Ω

Ph((vj − vj+1)ϕ) dx

= ∂vJh(uj+1, vj+1)[ϕ] + 〈vj − vj+1, ϕ〉h,uj+1
.

(3.7)

Since, by definition of vj+1 in (3.2),

∂vJh(uj+1, vj+1)[ϕ] ≥ 0 for every ϕ ∈ Fh, ϕ ≤ 0 in Ω ,

∂vJh(uj+1, vj+1)[vj+1 − vj ] = 0 ,

inequality (3.7) implies that

(3.8) |∂vJh|(uj+1, vj) = −∂vJh(uj+1, vj)
[vj+1 − vj ]

‖vj+1 − vj‖h,uj+1

.

For r ∈ (0, 1], again by linearity we can write

∂vJh(uj+1, v(r))[ϕ] = (1− r)∂vJh(uj+1, vj)[ϕ] + r∂vJh(uj+1, vj+1)[ϕ] ,

which implies, together with (3.8), that

(3.9) |∂vJh|(uj+1, v(r))‖v′(r)‖h,uj+1
= −∂vJh(uj+1, v(r))[v′(r)] .

Again, combining the chain-rule and (3.9) we get (3.4), and the proof is thus con-
cluded. �

We now want to show that any limit (ū, v̄) of the sequence (uj , vj) defined
in (3.1)–(3.2) is a critical point of the functional Jh satisfying ū ∈ Ah(w) and
v̄ ≤ v0 in Ω. To do so, we first show a stability property of the minimum prob-
lems (3.1) and (3.2). This is the aim of the following lemma, which is stated in a
more general setting than the one needed in this section, since it will be useful also
in the proof of Theorem 2.9.

Lemma 3.3. Let uk, vk, wk, zk ∈ Fh be such that uk ∈ Ah(wk) and

Jh(uk, zk) ≤ Jh(u, zk) for every u ∈ Ah(wk),(3.10)
Jh(uk, vk) ≤ Jh(uk, v) for every v ∈ Fh such that v ≤ zk in Ω.(3.11)

Assume that there exist ū, v̄, w̄, z̄ ∈ Fh such that uk → ū, vk → v̄, wk → w̄, and
zk → z̄ in Fh as k → +∞. Then ū ∈ Ah(w̄) and

Jh(ū, z̄) ≤ Jh(u, z̄) for every u ∈ Ah(w̄),(3.12)
Jh(ū, v̄) ≤ Jh(ū, v) for every v ∈ Fh such that v ≤ z̄ in Ω .(3.13)

Proof. Let us prove (3.12). For every k ∈ N and every u ∈ Ah(w̄) we have

(3.14) Jh(uk, zk) ≤ Jh(u+ wk − w̄, zk) .

Since u+wk−w̄ → u in Fh as k → +∞, passing to the limit in (3.14) we get (3.12).
As for (3.13), for every v ∈ Fh such that v ≤ z̄ in Ω we have that zk+v− z̄ ≤ zk.

Hence, by (3.11),
Jh(uk, vk) ≤ Jh(uk, zk + v − z̄) .
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Passing to the limit in the previous inequality we get (3.13). �

We are now ready to show the convergence of the sequence (uj , vj), defined
by (3.1) and (3.2), to a critical point of Jh.

Proposition 3.4. Let v0, w ∈ Fh with v0 ≥ 0, and let uj , vj be defined by (3.1)
and (3.2), respectively. Then the following facts hold:

(1) there exist ū, v̄ ∈ Fh such that uj → ū and vj → v̄ in Fh as j → +∞;
(2) the limit function v̄ satisfies 0 ≤ v̄ ≤ 1;
(3) the limit functions ū, v̄ ∈ Fh satisfy

Jh(ū, v̄) ≤ Jh(u, v̄) for every u ∈ Ah(w) ,(3.15)
Jh(ū, v̄) ≤ Jh(ū, v) for every v ∈ Fh with v ≤ v̄ .(3.16)

Proof. By definition of uj and vj , for every j ≥ 2 we have

(3.17) Jh(uj , vj) ≤ Jh(uj , vj−1) ≤ Jh(uj−1, vj−1) .

Iterating inequality (3.17), we obtain

Jh(uj , vj) ≤ Jh(u1, v1) ≤ Jh(w, v0) < +∞ ,

from which we deduce that the sequences uj and vj are bounded in Fh. Be-
ing vj a decreasing sequence with values in the interval [0, 1] and being Fh finite-
dimensional, we deduce that there exists v̄ ∈ Fh such that vj → v̄ in Fh and
0 ≤ v̄ ≤ 1 in Ω, so that property (2) holds. Moreover, by compactness, there
exists ū ∈ Fh such that, up to a subsequence, uj → ū.

Property (3) results from Lemma 3.3 applied to the sequences uj , vj , with fixed
boundary datum w ∈ Fh. By uniqueness of solution to (3.15), we also deduce that
the whole sequence uj converges to ū in Fh, and the proof is thus concluded. �

We conclude this section proving a continuity property of the minimum prob-
lem (3.1) w.r.t. the phase-field v and the boundary data w. This result will be useful
in the construction of a suitable time parametrization for the discrete solutions (see
Section 4).

Proposition 3.5. Let M > 0 and u1, u2, v1, v2, w1, w2 ∈ Fh be such that, for
i = 1, 2, ‖vi‖∞ ≤M and

ui = arg min {Jh(u, vi) : u ∈ Ah(wi)} .
Then, there exists a positive constant C = C(M,wi, h) such that

(3.18) ‖u1 − u2‖H1 ≤ C(‖w1 − w2‖H1 + ‖v1 − v2‖Fh
) .

Proof. Let us consider u∗ = arg min {Jh(u, v1) : u ∈ Ah(w2)}. Then, it is easy to
see that there exists C > 0 such that

‖u1 − u∗‖H1 ≤ C‖w1 − w2‖H1 .

In order to estimate ‖u∗ − u2‖H1 , for every ϕ ∈ Ah(0) we write∫
Ω

(Ph(v2
1) + η)∇(u2 − u∗) · ∇ϕdx =

∫
Ω

Ph(v2
1 − v2

2)∇u2 · ∇ϕdx .(3.19)

Testing ϕ = u2 − u∗ in (3.19) and recalling the hypothesis ‖vi‖∞ ≤M , we deduce
that

η‖u2 − u∗‖2H1 ≤ 2M

∫
Ω

|Ph(v1 − v2)||∇u2||∇(u2 − u∗)|dx .

From the previous inequality we deduce (3.18) by Hölder inequality, using the fact
that Fh is finite dimensional, so that all the norms are equivalent, and ‖u2‖H1 ≤
c‖w2‖H1 for some positive c. The dependence of C in (3.18) from the mesh param-
eter h is due to the h-dependent equivalence of norms in Fh. �
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4. Construction of parametrized finite-dimensional quasi-static
evolutions

We are now ready to prove Theorem 2.9, that is, the existence of a parametrized
finite-dimensional quasi-static evolution in the sense of Definition 2.8. The strategy
of the proof is based on a time discretization procedure, typical of many rate-
independent processes (see, e.g., [32, 34]) and on an arc-length reparametrization
of time similar to the one used in [31].

Let h > 0. For every k ∈ N, we consider the uniform subdivision of the time
interval [0, T ] given by tki := iT

k , i = 0, . . . , k. In order to construct a discrete in
time evolution in the finite-dimensional setting we follow the algorithm proposed
in [6]: for i = 0 we set uk,h0 := u0,h and vk,h0 := v0,h. For i ≥ 1, at the instant tki
we construct a critical point (uk,hi , vk,hi ) ∈ Fh×Fh of Jh as limit of the alternating
minimization process described in Section 3. More precisely, let us set

uk,hi,0 := uk,hi−1 + wh(tki )− wh(tki−1) and vk,hi,0 := vk,hi−1 .

For j ∈ N, j ≥ 1, we define iteratively two sequences of functions uk,hi,j and vk,hi,j as

uk,hi,j := arg min {Jh(u, vk,hi,j−1) : u ∈ Ah(wh(tki ))} ,(4.1)

vk,hi,j := arg min {Jh(uk,hi,j , v) : v ∈ Fh, v ≤ vk,hi,j−1} .(4.2)

We notice that, since by assumption vk,h0 ≥ 0, combining Propositions 3.1 and 3.4
we deduce that (4.1) and (4.2) always admit unique solutions and, for every k ∈ N
and every i ∈ {1, . . . , k}, there exist uk,hi , vk,hi ∈ Fh such that uk,hi,j → uk,hi and
vk,hi,j → vk,hi in Fh as j → +∞. Moreover, 0 ≤ vk,hi ≤ vk,hi,j ≤ vk,hi−1 ≤ 1 in Ω and,
again thanks to Proposition 3.4,

Jh(uk,hi , vk,hi ) ≤ Jh(u, vk,hi ) for every u ∈ Ah(wh(tki )),(4.3)

Jh(uk,hi , vk,hi ) ≤ Jh(uk,hi , v) for every v ∈ Fh, v ≤ vki in Ω.(4.4)

In the following proposition we prove a finite-length property of the sequences {uk,hi,j }
and {vk,hi,j } for j ∈ N and i ∈ {1, . . . , k}.

Proposition 4.1. There exists Ch ∈ (0,+∞) such that for every k ∈ N

(4.5)
k∑
i=1

∞∑
j=1

‖uk,hi,j − u
k,h
i,j−1‖H1 + ‖vk,hi,j − v

k,h
i,j−1‖H1 ≤ Ch .

Proof. In this proof, C denotes a generic positive constant, which could change
from line to line.

In view of (4.1)-(4.2) and of Proposition 3.5, we have that, for every i ∈ {1, . . . , k}
and every j ≥ 2

(4.6) ‖uk,hi,j − u
k,h
i,j−1‖H1 ≤ C‖vk,hi,j−1 − v

k,h
i,j−2‖Fh

≤ C‖vk,hi,j−1 − v
k,h
i,j−2‖1 ,

where the second inequality is due to the equivalence of norms in finite dimension.
For j = 1, instead, by definition of uk,hj,0 and of vk,hi,0 we get

(4.7) ‖uk,hi,1 − u
k,h
i,0 ‖H1 ≤ C‖wh(tki )− wh(tki−1)‖H1 .

By definition (4.2) of vk,hi,j , we have that

(4.8)
∞∑
j=1

‖vk,hi,j − v
k,h
i,j−1‖1 =

∞∑
j=1

∫
Ω

(vk,hi,j−1 − v
k,h
i,j ) dx =

∫
Ω

(vk,hi−1 − v
k,h
i ) dx .
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Thus, collecting inequalities (4.6)-(4.8) we obtain
k∑
i=1

∞∑
j=1

‖uk,hi,j − u
k,h
i,j−1‖H1 ≤ C

k∑
i=1

∫
Ω

(vk,hi−1 − v
k,h
i ) dx+ C

k∑
i=1

‖wh(tki )− wh(tki−1)‖H1

≤ C
∫

Ω

(vk,h0 − vk,hk ) dx+ C

∫ T

0

‖ẇh(t)‖H1 dt ≤ C|Ω|+ C

∫ T

0

‖ẇh(t)‖H1 dt .

By equivalence of the norms in finite dimension, we obtain a similar inequality also
in terms of phase-field v. Hence, being wh ∈W 1,2([0, T ];Fh), (4.5) follows. �

Following the lines of [31], we now construct a suitable arc-length parametrization
of time and the functions uhk , v

h
k interpolating between the values uk,hi−1, u

k,h
i and

vk,hi−1, v
k,h
i , respectively.

Let sk0 := 0. For i ≥ 1 and j ∈ N, let

ski,−1 := ski−1 , ski,0 := ski−1 + τk ,

ski,j+1/2 := ski,j + ‖uk,hi,j+1 − u
k,h
i,j ‖h,vk,h

i,j
, ski,j+1 := ski,j+1/2 + ‖vk,hi,j+1 − v

k,h
i,j ‖h,uk,h

i,j+1
.

We define ski := limj s
k
i,j , which exists finite in view of Proposition 4.1 and Lemma A.1.

We now define the interpolating functions thk , u
h
k , and vhk , distinguishing be-

tween the three intervals [ski,−1, s
k
i,0], [ski,j , s

k
i,j+1/2], and [ski,j+1/2, s

k
i,j+1]. For s ∈

[ski,−1, s
k
i,0] we set

thk(s) := tki−1 + s− ski,−1 ,

uhk(s) := uk,hi−1 + wh(thk(s))− wh(tki−1) ,(4.9)

vhk (s) := vki−1 .

For s ∈ [ski,j , s
k
i,j+1/2] we define

thk(s) := tki ,

uhk(s) :=

 uk,hi,j + (s− ski,j)
uk,hi,j+1 − u

k,h
i,j

ski,j+1/2 − s
k
i,j

if ski,j+1/2 6= ski,j ,

uk,hi,j = uk,hi,j+1 if ski,j+1/2 = ski,j ,

(4.10)

vhk (s) := vk,hi,j .

Finally, for s ∈ [ski,j+1/2, s
k
i,j+1] we set

thk(s) := tki ,

uhk(s) := uk,hi,j+1 ,(4.11)

vhk (s) :=

 vk,hi,j + (s− ski,j+1/2)
vk,hi,j+1 − v

k,h
i,j

ski,j+1 − ski,j+1/2

if ski,j+1 6= ski,j+1/2 ,

vki,j = vki,j+1 if ski,j+1 = ski,j+1/2 .

In this way we have constructed a sequence of interpolating functions (thk , u
h
k , v

h
k ) : [0, Shk ]→

[0, T ]×Fh ×Fh, where Shk is the maximal value of the arc-length parameter s. By
Proposition 4.1 and Lemma A.1, Shk is uniformly bounded w.r.t. k. Moreover, we
notice that

(4.12) thk(ski ) = tki , uhk(ski ) = uk,hi , vhk (ski ) = vk,hi ,

and that there exists a positive constant C independent of k such that

(4.13) ‖thk‖W 1,∞([0,Sh
k ];[0,T ]) + ‖uhk‖W 1,2([0,Sh

k ];Fh) + ‖vhk‖W 1,∞([0,Sh
k ];Fh) ≤ C .
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In the next proposition we collect the stability properties and the energy balance
satisfied by the interpolation functions thk , u

h
k , and v

h
k .

Proposition 4.2. For every k ∈ N and every i ∈ {1, . . . , k} it holds

Jh(uhk(ski ), vhk (ski )) ≤ Jh(u, vhk (ski )) for every u ∈ Ah(wh(tkh(ski ))) ,(4.14)
Jh(uhk(ski ), vhk (ski )) ≤ Jh(uhk(ski ), v) for every v ∈ Fh, v ≤ vhk (ski ) .(4.15)

Moreover, for every s ∈ [0, Shk ] we have

Jh(uhk(s), vhk (s)) = Jh(u0,h, v0,h)−
∫ s

0

|∂uJh|(uhk(σ), vhk (σ))‖(uhk)′(σ)‖h,vhk (σ) dσ

−
∫ s

0

|∂uJh|(uhk(σ), vhk (σ))‖(vhk )′(σ)‖h,uh
k(σ) dσ(4.16)

+

∫ s

0

∫
Ω

(Ph(vhk (σ)2) + η)∇uhk(σ) · ∇ẇ(thk(σ))(thk)′(σ) dxdσ .

Proof. In view of (4.12), the equilibrium conditions (4.14)-(4.15) are equivalent
to (4.3) and (4.4).

As for (4.16), we need to show the energy balance in each interval of the form
[ski−1, s

k
i,0], [ski,j , s

k
i,j+1/2], and [ski,j+1/2, s

k
i,j+1]. For every s̄ ∈ [ski−1, s

k
i,0] we have, by

chain-rule,

Jh(uhk(s̄), vhk (s̄)) = Jh(uhk(ski−1), vhk (ski−1))

+

∫ ski,0

ski−1

∫
Ω

(Ph(vhk (σ)2) + η)∇uhk(σ) · ∇ẇh(thk(σ))(thk)′(σ) dx dσ .(4.17)

For s̄ ∈ [ski,j , s
k
i,j+1/2] we recall the discrete energy balance (3.3) proved in

Lemma 3.2, to which we apply the change of variable r =
σ−ski,j

sk
i,j+1/2

−ski,j
. Being thk

and vhk constant on the whole interval [ski,j , s
k
i,j+1/2], we get

Jh(uhk(s̄), vhk (s̄)) = Jh(uhk(ski,j), v
h
k (ski,j))

−
∫ ski,j+1/2

ski,j

|∂uJh|(uhk(σ), vhk (σ))‖(uhk)′(σ)‖h,vhk (σ) dσ .
(4.18)

In a similar way, we can show that for every s̄ ∈ [ski,j+1/2, s
k
i,j+1]

Jh(uhk(s̄), vhk (s̄)) = Jh(uhk(ski,j+1/2), vhk (ski,j+1/2))

−
∫ ski,j+1

sk
i,j+1/2

|∂vJh|(uhk(σ), vhk (σ))‖(vhk )′(σ)‖h,uh
k(σ) dσ .

(4.19)

Iterating equalities (4.17)-(4.19) we obtain (4.16). �

We are now in a position to conclude the proof of Theorem 2.9.

Proof of Theorem 2.9. In view of inequality (4.13), we have that there exist Sh ∈
(0,+∞), th ∈W 1,∞([0, Sh]; [0, T ]), uh ∈W 1,2([0, Sh];Fh), and vh ∈W 1,∞([0, Sh];Fh)
such that, up to a subsequence, Shk → Sh, thk ⇀ th weakly* in W 1,∞([0, Sh]; [0, T ]),
uhk ⇀ uh weakly in W 1,2([0, Sh];Fh), and vhk ⇀ vh weakly* in W 1,∞([0, Sh];Fh).
In particular, we have that for every s ∈ [0, Sh] and every sequence Shk → s it holds

(4.20) thk(Shk )→ th(s) , uhk(Shk )→ uh(s) in Fh , vhk (Shk )→ vh(s) in Fh .
Moreover, u′h(·) = ẇh(th(·))t′h(·) in L2([0, Sh];Fh).

Let us prove the stability conditions (2.31)-(2.32). Let s ∈ (0, Sh) be such that
t′h(s) > 0. This implies that there exists a sequence of indeces ik ∈ {1, . . . , k} such
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that skik → s. Since the pair (uhk(skik), vhk (skik)) satisfies (4.14)-(4.15) for every k,
Lemma 3.3 implies (2.31)-(2.32). For s = Sh the stability follows in the same way
from the stability in Shk .

Finally, we have to show the energy equality. In order to do this, we pass to
the limit in equality (4.16). Fix s ∈ [0, Sh]. In view of the convergences discussed
above, we have that

lim
k

∫ s

0

∫
Ω

(Ph(vhk (σ)2) + η)∇uhk(σ) · ∇ẇ(thk(σ))(thk)′(σ) dx dσ

=

∫ s

0

∫
Ω

(Ph(vh(σ)2) + η)∇uh(σ) · ∇ẇ(th(σ))t′h(σ) dxdσ .

As for the other two terms in the right-hand side of (4.16), we apply Lemma A.2
and [9, Theorem 3.1], which guarantees that∫ s

0

|∂uJh|(uh(σ), vh(σ))‖u′h(σ)‖h,vh(σ) dσ

≤ lim inf
k

∫ s

0

|∂uJh|(uhk(σ), vhk (σ))‖(uhk)′(σ)‖h,vhk (σ) dσ ,

∫ s

0

|∂vJh|(uh(σ), vh(σ))‖v′h(σ)‖h,uh(σ) dσ

≤ lim inf
k

∫ s

0

|∂vJh|(uhk(σ), vhk (σ))‖(vhk )′(σ)‖h,uh
k(σ) dσ .

Combining the previous inequalities and passing to the limsup in (4.16) as k → +∞
we deduce that

Jh(uh(s), vh(s)) ≤ Jh(u0,h, v0,h)−
∫ s

0

|∂uJh|(uh(σ), vh(σ))‖u′h(σ)‖h,vh(σ) dσ

−
∫ s

0

|∂vJh|(uh(σ), vh(σ))‖v′h(σ)‖h,uh(σ) dσ(4.21)

+

∫ s

0

∫
Ω

(Ph(vh(σ)2) + η)∇uh(σ) · ∇ẇ(th(σ))t′h(σ) dxdσ .

In order to show the opposite inequality, we first apply the chain-rule to the
energy function σ 7→ Jh(uh(σ), vh(σ)), obtaining

Jh(uh(s), vh(s)) = Jh(u0,h, v0,h) +

∫ s

0

∂uJh(uh(σ), vh(σ))[u′h(σ)] dσ

+

∫ s

0

∂vJh(uh(σ), vh(σ))[v′h(σ)] dσ .

(4.22)

Being σ 7→ vh(σ) non-increasing, we have that v̇h(σ) ≤ 0 in Ω. Hence, by definition
of the slope (2.30) w.r.t. the phase-field v, we estimate the last term in the right-
hand side of (4.22) with

(4.23)
∫ s

0

∂vJh(uh(σ), vh(σ))[v′h(σ)]dσ≥−
∫ s

0

|∂vJh|(uh(σ), vh(σ))‖v′h(σ)‖h,uh(σ)dσ .
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As for the first integral term in (4.22), we rewrite it as∫ s

0

∂uJh(uh(σ), vh(σ))[u′h(σ)] dσ

=

∫ s

0

∂uJh(uh(σ), vh(σ))[u′h(σ)− ẇh(th(σ))t′h(σ) + ẇh(th(σ))t′h(σ)] dσ

=

∫ s

0

∂uJh(uh(σ), vh(σ))[u′h(σ)− ẇh(th(σ))t′h(σ)] dσ

+

∫ s

0

∫
Ω

(Ph(vh(σ)2) + η)∇uh(σ) · ∇ẇ(th(σ))t′h(σ) dx dσ ,

(4.24)

and we notice that u′h(σ)− ẇh(th(σ))t′h(σ) = 0 on ∂Ω for σ ∈ [0, Sh]. In particular,
whenever t′h(σ) > 0, (4.14) holds, so that

∂uJh(uh(σ), vh(σ))[u′h(σ)− ẇh(th(σ))t′h(σ)]

= |∂uJh|(uh(σ), vh(σ))‖u′h(σ)‖h,vh(σ) = 0 ,

where the second equality is due to the definition (2.29) of the slope w.r.t. the
displacement u. On the other hand, when t′h(σ) = 0, by (2.29) we have

∂uJh(uh(σ), vh(σ))[u′h(σ)− ẇh(th(σ))t′h(σ)]

≥ −|∂uJh|(uh(σ), vh(σ))‖u′h(σ)− ẇh(th(σ))t′h(σ)‖h,vh(σ)

= −|∂uJh|(uh(σ), vh(σ))‖u′h(σ)‖h,vh(σ) .

Combining these two inequalities with (4.24) we deduce that∫ s

0

∂uJh(uh(σ), vh(σ))[u′h(σ)] dσ

≥ −
∫ s

0

|∂uJh|(uh(σ), vh(σ))‖u′h(σ)‖h,vh(σ) dσ

+

∫ s

0

∫
Ω

(Ph(vh(σ)2) + η)∇uh(σ) · ∇ẇ(th(σ))t′h(σ) dxdσ .

(4.25)

Finally, inserting (4.23) and (4.25) in (4.22) we get (2.33), and the proof is thus
concluded. �

M-step algorithm. We conclude this section discussing a variant of the above
construction. Namely, we modify the infinite minimization algorithm (4.1)-(4.2) by
stopping it after M steps, with M ∈ N fixed a priori. Then, we define

uk,hi := uk,hi,M and vk,hi := vk,hi,M .

As in Proposition 4.1, we can show that there exists Ch ∈ (0,+∞) such that

(4.26)
k∑
i=1

M∑
j=1

‖uk,hi,j − u
k,h
i,j−1‖H1 + ‖vk,hi,j − v

k,h
i,j−1‖H1 ≤ Ch

uniformly w.r.t. k. This allows us to construct a time reparametrization as in (4.9)-
(4.11) with sk0 := 0 and, for i ∈ {1, . . . , k} and j ∈ {0, . . . ,M − 1},

ski,−1 := ski−1 , ski,0 := ski−1 + τk ,

ski,j+1/2 := ski,j + ‖uk,hi,j+1 − u
k,h
i,j ‖h,vk,h

i,j
, sk,hi,j+1 := sk,hi,j+1/2 + ‖vk,hi,j+1 − v

k,h
i,j ‖h,uk,h

i,j+1
.

We set ski := ski,M . In this way, we still obtain, for h fixed, a sequence of triples
(thk , u

h
k , v

h
k ) : [0, Shk ] → [0, T ] × Fh × Fh satisfying the uniform bound (4.13) and

the discrete energy balance (4.16). Moreover, thanks to (4.26), we have that Shk is
uniformly bounded.
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Up to a subsequence, we have that Shk → Sh, thk ⇀ th weakly* inW 1,∞([0, Sh]; [0, T ]),
uhk ⇀ uh weakly in W 1,2([0, Sh];Fh), and vhk ⇀ vh weakly* in W 1,∞([0, Sh];Fh).
As in the proof of Theorem 2.9, we can show that (th, uh, vh) satisfies the energy
balance (2.33).

In order to prove that (th, uh, vh) is a parametrized finite-dimensional quasi-static
evolution, we have to take care of the stability conditions (2.31)-(2.32), taking into
account that this time the interpolation functions thk , u

h
k , v

h
k do not satisfy (4.14)-

(4.15) at time ski = ski,M . However, given s ∈ [0, Sh] such that t′h(s) > 0, for every k
there exists an index ik ∈ {1, . . . , k} such that s ∈ [skik−1, s

k
ik

]. Up to subsequence,
we have that skik−1 → s and skik → s for some 0 ≤ s ≤ s ≤ Sh. Moreover,
skik,0 = skik−1 + τk → s. We claim that s = s. Indeed, if by contradiction s < s,
being thk constant in the interval [skik,0, s

k
ik

], we get that th is constant on [s, s],
which implies t′h(s) = 0. Therefore s = s = s, skik,j → s for every j ∈ {−1, . . . ,M},
and the stability conditions (2.31)-(2.32) follows by Lemma 3.3.

Remark 4.3. We finally notice that the same construction can be applied to a
slightly more general scheme, in which the number of steps in the alternate min-
imization algorithm is not fixed a priori for every i ∈ {1, . . . , k}, but depends on
the time node tki . This fact is very important from a numerical point of view (see
Section 6), since in general the algorithm (4.1)-(4.2) has to be artificially stopped
according to some criterion, which, at time tki , is satisfied after a certain numberMk

i

of iterations. Thanks to the analysis described above, we are able to include all the
possible stopping criteria.

5. From space-discrete to space-continuous evolution

This section is devoted to the proof of Theorem 2.4. In particular, we show that
any limit of a sequence (uh, vh) : [0, T ]→ Fh×Fh of finite-dimensional quasi-static
evolutions is a quasi-static evolution in the sense of Definition 2.3.

Before proving Theorem 2.4, we show two useful properties. Firstly, we state a
uniform estimate on the operator Ph. Secondly, we prove a stability property of
the functionals Jh and J analogous to Lemma 3.3, and which takes into account
the “convergence” of the finite dimensional spaces Fh to H1(Ω) as h→ 0.

Although the following result is standard, we provide its proof in Appendix A
for the sake of completeness.

Lemma 5.1. Let h > 0, let Ph : C(Ω)→ H1(Ω) be the operator defined by (2.19),
and let g ∈ C2(R). Then, for every M > 0 there exists a positive constant C =
C(g,M) depending only on g and M such that for every v ∈ Fh with ‖v‖∞ ≤M
(5.1)

∥∥(g ◦ v)− Ph(g ◦ v)
∥∥

1
≤ Ch2‖∇v‖22 .

Proof. See Appendix A. �

Lemma 5.2. For every h > 0, let wh, uh, vh ∈ Fh be such that uh ∈ Ah(wh),
0 ≤ vh ≤ 1 in Ω, and

Jh(uh, vh) ≤ Jh(u, vh) for every u ∈ Ah(wh),(5.2)
Jh(uh, vh) ≤ Jh(uh, v) for every v ∈ Fh such that v ≤ vh.(5.3)

Assume that wh → w̄ in H1(Ω), uh ⇀ ū and vh ⇀ v̄ weakly in H1(Ω) as h → 0.
Then ū ∈ A(w̄) and

J (ū, v̄) ≤ J (u, v̄) for every u ∈ A(w̄),(5.4)

J (ū, v̄) ≤ J (ū, v) for every v ∈ H1(Ω) with v ≤ v̄.(5.5)

Moreover, uh → ū strongly in H1(Ω).
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Proof. Let us prove (5.4). Let u ∈ H1(Ω) be such that u = w̄ on ∂Ω. Thanks
to (2.14) and to the interpolation error estimates in, e.g., [37, Theorem 3.4.2], for
every ϕ ∈ C∞c (Ω) there exists a sequence ϕh ∈ Fh such that ϕh = 0 on ∂Ω and
ϕh → ϕ in H1(Ω) as h → 0. Let us consider as a competitor in (5.2) the function
ψh := ϕh + wh. For such a ψh we have

(5.6)
∫

Ω

(
Ph(v2

h) + η
)
|∇uh|2 dx ≤

∫
Ω

(
Ph(v2

h) + η
)
|∇ψh|2 dx .

It is clear that ψh → ψ := ϕ + w̄ in H1(Ω) and, by Lemma 5.1, Ph(v2
h) → v̄2

strongly in Lp(Ω) for every p ∈ [1,+∞). Therefore, applying [24, Theorem 7.5] and
passing to the limit as h→ 0 in (5.6), we get∫

Ω

(v̄2 + η)|∇ū|2 dx ≤ lim inf
h→0

∫
Ω

(
Ph(v2

h) + η
)
|∇uh|2 dx

≤ lim sup
h→0

∫
Ω

(
Ph(v2

h) + η
)
|∇ψh|2 dx

≤
∫

Ω

(
v̄2 + η

)∣∣∇ψ∣∣2 dx .(5.7)

By density, we have that the chain of inequalities (5.7) holds for every ψ ∈ A(w̄).
Moreover, it is easy to see that (5.7) is equivalent to (5.4).

Specifying (5.7) for ψ = ū, we get that

lim
h→0

∫
Ω

(
Ph(v2

h) + η
)
|∇uh|2 dx =

∫
Ω

(v̄2 + η)|∇ū|2 dx ,

which implies the strong convergence of uh to ū in H1(Ω).
We now prove (5.5). Let us first consider a competitor v ∈ H1(Ω) ∩ L∞(Ω),

v ≤ v̄ in Ω. Let ϕk ∈ C∞(Ω) be such that ϕk ≤ 0 in Ω and ϕk → v− v̄ in H1(Ω) as
k → +∞. Let us set vkh := Ph(ϕk) + vh. Then, vkh ≤ vh for every h > 0 and every
k ∈ N, vkh ∈ Fh, and vkh ⇀ v̄ + ϕk weakly in H1(Ω) as h → 0. By the quadratic
structure of Jh, by (5.3), and by the definition of vkh,

1

2

∫
Ω

(
Ph(v2

h) + η
)
|∇uh|2 dx+

1

2

∫
Ω

Ph
(
(1− vh)2

)
dx

≤ 1

2

∫
Ω

(
Ph((vkh)2) + η

)
|∇uh|2 dx+

1

2

∫
Ω

Ph
(
(1− vkh)2

)
dx(5.8)

+
1

2

∫
Ω

∣∣∇Ph(ϕk)
∣∣2 dx+

∫
Ω

∇Ph(ϕk) · ∇vh dx .

Since uh → ū and Ph(ϕk)→ ϕk strongly in H1(Ω), Ph(v2
h)→ v̄2 and Ph((vkh)2)→

(ϕk + v̄)2 strongly in Lp(Ω) for every p ∈ [1,+∞) (see Lemma 5.1), and vh ⇀ v̄
weakly in H1(Ω), passing to the limit as h→ 0 in (5.8) we deduce that

1

2

∫
Ω

(v̄2 + η)|∇ū|2 dx+
1

2

∫
Ω

(1− v̄)2 dx

≤ 1

2

∫
Ω

(
(ϕk + v̄)2 + η

)
|∇ū|2 dx+

1

2

∫
Ω

(
1− (ϕk + v̄)

)2
dx(5.9)

+
1

2

∫
Ω

|∇ϕk|2 dx+

∫
Ω

∇ϕk · ∇v̄ dx .
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If we let k → +∞ in (5.9), recalling that ϕk → v − v̄ in H1(Ω), we obtain
1

2

∫
Ω

(v̄2 + η)|∇ū|2 dx+
1

2

∫
Ω

(1− v̄)2 dx

≤ 1

2

∫
Ω

(v2 + η)|∇ū|2 dx+
1

2

∫
Ω

(1− v)2 dx(5.10)

+
1

2

∫
Ω

∣∣∇(v − v̄)
∣∣2 dx+

∫
Ω

∇(v − v̄) · ∇v̄ dx .

Rearranging the last two terms in the right-hand side of (5.10), we get the stability
condition (5.5) for v ∈ H1(Ω) ∩ L∞(Ω) with v ≤ v̄. By a truncation argument, we
get the same conclusion for v ∈ H1(Ω) with v ≤ v̄. �

We are now ready to prove Theorem 2.4.

Proof of Theorem 2.4. As already mentioned in Remark 2.5, in order to prove the
existence of a quasi-static evolution in the sense of Definition 2.3 we show that any
sequence of finite-dimensional quasi-static evolutions (uh, vh) : [0, T ] → Fh con-
verges, up to a subsequence, to a quasi-static evolution as the mesh parameter h
tends to 0.

For every h > 0, we need first to find the right sequence of finite-dimensional
quasi-static evolutions (uh, vh) starting from a suitable initial datum u0,h, v0,h ∈ Fh
and with a suitable boundary Dirichlet condition wh : [0, T ]→ Fh.

As mentioned in Section 2, there exists a sequence wh ∈W 1,2([0, T ];H1(Ω)) such
that wh ∈W 1,2([0, T ];Fh) and wh → w in W 1,2([0, T ];H1(Ω)) as h→ 0 (see [37]).
In particular, the last convergence implies that wh(t) → w(t) in H1(Ω) for every
t ∈ [0, T ] and ẇh(t)→ ẇ(t) in H1(Ω) for a.e. t ∈ [0, T ]. Again by [37], we can also
find two sequences u0,h, v0,h ∈ Fh such that u0,h ∈ Ah(wh(0)), 0 ≤ v0,h ≤ 1 in Ω,
and, as h→ 0, u0,h → u0 and v0,h → v0 in H1(Ω).

By Corollary 2.10, for every h > 0 there exists a finite-dimensional quasi-static
evolution (uh, vh) : [0, T ] → Fh×Fh with uh(0) = u0,h, vh(0) = v0,h, and uh(t) ∈
A(wh(t)) for every t ∈ [0, T ].

In view of (2.24)–(2.26) and of the construction of u0,h, v0,h, and wh, we have
that

(5.11) sup
h>0
t∈[0,T ]

‖uh(t)‖H1 < +∞ and sup
h>0
t∈[0,T ]

‖vh(t)‖H1 < +∞ .

Since the sequence vh : [0, T ] → H1(Ω) is such that (5.11) holds, t 7→ vh(t) is
non-increasing, and, for every t ∈ [0, T ], vh(t) takes values in [0, 1], applying a
generalized version of Helly’s Selection Theorem (see [23, Theorem 2.3], we find a
non-increasing function v : [0, T ]→ H1(Ω) such that, along a suitable subsequence
hk → 0, for every t ∈ [0, T ] vhk

(t) converges to v(t) weakly in H1(Ω) and strongly
in Lp(Ω) for every p ∈ [1,+∞). In particular, v(0) = v0 and 0 ≤ v(t) ≤ 1 in Ω for
every t ∈ [0, T ], hence condition (1) of Definition 2.3 is satisfied.

In view of (5.11), for every t ∈ [0, T ] we have that, up to a subsequence (possibly
dependent on t), uhk

(t) ⇀ u(t) weakly in H1(Ω) for some u(t) ∈ A(w(t)). By
Lemma 5.2, we deduce that the pair (u(t), v(t)) satisfies the stability conditions (2.9)
and (2.10), and uhk

(t)→ u(t) strongly in H1(Ω). Moreover, by Lemma 5.2 and by
uniqueness of solution of the minimum problem

min {J (u, v(t)) : u ∈ H1(Ω), u ∈ A(w(t))} ,
we have that the whole sequence uhk

(t) converges to u(t) strongly in H1(Ω) for
every t ∈ [0, T ].

Finally, in order to prove the energy inequality (2.11), we need to pass to the
limit in the finite-dimensional energy inequality (2.26) as hk → 0. Since u0,h → u0
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and v0,h → v0 and Lemma 5.1 holds, we have that Jhk
(u0,hk

, v0,hk
) → J (u0, v0).

Again by Lemma 5.1, Phk
(v2
hk

(t))→ v(t) in Lp(Ω) for every p ∈ [1,+∞) and every
t ∈ [0, T ]. Finally, by construction, wh → w in W 1,2([0, T ];H1(Ω)). Hence, passing
to the limit in (2.26) as hk → 0 and applying the dominated convergence theorem,
we get (2.11), and this concludes the proof of the theorem. �

6. Numerical Experiments

In this section we illustrate numerically the previous findings simulating brittle
fracture propagation. We remark that the purpose of this section is not to challenge
the efficiency of the numerical methods, but rather to show the consistency of the
previously discussed theory. We keep an extensive numerical analysis for future
work.

For the following numerical experiments we make use of the experiences gained
from previous calculations in [5, 6, 8, 11, 19], where we also find some of the used
examples used herein. Below we use the original Ambrosio-Tortorelli functional Jε
defined in (1.1), whose discretized version we still denote by Jh. We recall it here
for the reader’s convenience: for all u, v ∈ Fh

(6.1) Jh(u, v) :=
1

2

∫
Ω

(
Ph(v2)+ηε

)
|∇u|2 dx+

∫
Ω

(
κε|∇v|2 +

κ

4ε
Ph
(
(1−v)2

))
dx .

The following implementations are made with Freefem++ and are performed on a
MacBook Pro, 2.6 GHz Intel Core i7, 8 GB 1600 MHz DDR3.

For all the examples in this section we fix the basic domain Ω := (0, 1)× (0, 1)
and we choose the time step τ := 0.01. Hence, with an initial time t0 := 0 we set
ti := iτ . By vi and ui we denote the phase and the displacement fields at time ti,
respectively. We present three simulations for different boundary data w and initial
cracks Γ, imposed by an initial phase-field of the form

(6.2) v0(x) := 1− exp

(
−dist(x,Γ)

2ε

)
.

The specific choice made in (6.2) comes from the fact that v0 is a recovery sequence
for the Γ-limit of Jε (see, e.g. [3, 15]). We stress once again the physical interpreta-
tion of the phase-field: Where it is close to zero the crack appears. On the contrary,
where it takes the value one the elastic body is perfectly sound. As it follows from
the proof of Γ-convergence of the functional Jε, the fracture theoretically gains
a thickness of order ε. However, in our simulations we plot only the phase-field
variable without giving a precise description of the crack set.

We notice that initializing the pre-crack by an initial phase-field is a crucial
difference compared to the implementations in the existing literature, where the
initial crack is imposed by a notch in the domain. Moreover, in the functional Jh
we keep the projection operator Ph, which is dropped in the cited works. However,
with these techniques we stay closer to the theoretic framework, which is more
suitable for our purpose.

We repeat the basic algorithm that we want to implement from (4.1)–(4.2) drop-
ping the indices k and h and adding a stopping criterion as described at the end of
Section 4. Given i ≥ 1 and the phase-field vi−1 at time ti−1, we set vi,0 := vi−1,
and we define inductively on j ≥ 1

ui,j := arg min {Jh(u, vi,j−1) : u ∈ Ah(wh(ti))} ,(6.3)
vi,j := arg min {Jh(ui,j , v) : v ∈ Fh, v ≤ vi,j−1} .(6.4)

Due to the convergence of both sequences as j → +∞, we stop the loop when the
phase-field does not show any significant changes. More precisely, we fix a threshold
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0 < Tolv � 1, and we perform the alternate minimization (6.3)-(6.4) until we find
̄ ∈ N such that ‖vi,̄ − vi,̄−1‖∞ ≤ Tolv and set (ui, vi) := (ui,̄, vi,̄).

The minimum in (6.3) is simply obtained by solving the linear Euler-Lagrange
equation. However, the numerical treatment of the irresistibility condition v ≤
vi,j−1 in (6.4) is an issue to be discussed. In many papers (see, for instance, [6,
8, 12, 18]) this constraint has been replaced by a Dirichlet boundary condition,
forcing v to be zero where vi,j−1 is below a certain threshold. The method turned
out to be numerically very efficient. However, up to our knowledge there is a lack
of a rigorous theoretical proof of convergence of the scheme in the framework of
quasi-static evolution problems.

In order to be as close as possible to the theoretical results discussed in this paper,
in our numerical simulations we do not exploit the algorithm proposed in [8, 12],
but we rather perform the constrained minimization by a projected Newton method
as in [19]. We precisely use the algorithm presented in [30, Section 5.5.2] (see also
[10]). Due to the quadratic structure of the functional Jh(u, ·) this procedure is not
too expensive.

On most parts of the domain the phase-field will be nearly constant. Only close
to the crack it is expected to be very steep. To get an appropriate interpolation
error the mesh has to be very fine in the neighborhood of the crack, while it can be
coarse elsewhere. Thus, we use an adaptive triangulation refining the mesh where
it is necessary. For our purposes, we regularly adapt the mesh in the iteration
procedure exploiting the standard routine implemented in Freefem++, which uses
the standard anisotropic interpolation error estimator.

We notice that in the theoretical part of this paper the mesh Th is not allowed to
vary. Working with a constant mesh throughout the whole algorithm would require
it to be extremely fine on the entire domain in order not to influence the propagation
of the crack path. With an adaptive procedure we can omit this difficulty and we
can save a lot of computational effort. Moreover, we mention that such an approach
has been already investigated and validated in [6, 18].

Concerning the choice of the mesh, we have theoretically considered two other
restrictions that we do not take into account in the numerical simulations. Firstly,
we require (2.17). This condition is only needed to ensure that the phase-field is non-
negative (see Proposition 3.1). Nevertheless, even not making any restriction on
the mesh triangles, the non-negativity of the phase-field turns out to be a posteriori
fulfilled. Secondly, in (2.14) a certain isotropy of the triangles is required in order
to guarantee the usual a priori interpolation estimate. However, looking at the final
mesh, we observe that the assertion is fulfilled simply because the mesh consists of
finitely many triangles.

The basic numerical scheme we use is described in Algorithm 1 and all the
appearing numerical parameters are summarized in Table 1. As an output, at
each time step we visualize the number of alternating minimizations as well as
the total number of steps of the projected Newton method necessary to compute
the minimizers in line 9 of Algorithm 1. Moreover, we plot the crack length as a
function of time, approximating it by 1

4ε

∫
Ω

(1− vi)2 dx+ ε
∫

Ω
|∇vi|2 dx.

In Algorithm 1 we also ensure a mesh adaption after at most 10 minimizations.
This reduces the number of minimizations compared to a procedure where the
mesh is adapted only when the change of the phase-fields is small enough. The
“relative change of nodes” relmesh refers to the quotient of the number of added
nodes and the number of nodes of the old mesh. In this way the difference between
two consecutive meshes is quantified and the alternating procedure continues until
relmesh goes below a certain threshold Tolmesh.
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Algorithm 1
for i = 1 to k do

vi ← vi−1

do
cnt ← 0
do

cnt ← cnt + 1
vold ← vi
ui ← arg min

{
Jh(u, vi) | u ∈ Ah(w(ti))

}
vi ← arg min

{
Jh(ui, v) | v ∈ Fh, v ≤ vold

}
while ‖vi − vold‖∞ > Tolv AND cnt < 10
Perform the mesh adaption
relmesh ← “relative change of nodes”

while relmesh > Tolmesh
end for

Table 1. Numerical Parameters

ε ηε κ Tolv Tolmesh
2 · 10−3 10−5 0.5 2 · 10−3 2 · 10−3

First Example. Our first example starts from a fully symmetrical setting, where
we impose an initial crack orthogonal to and in the middle of the left boundary of
the domain Ω described by the set

Γ1 :=
[
0, 1

4

]
×
{

1
2

}
.

The crack is initialized by choosing the phase-field v0 in (6.2) for Γ = Γ1. We also
use the symmetric boundary condition

w1(t) =

{
t on {0} ×

[
0, 1

2

)
,

−t on {0} ×
(

1
2 , 1
]
.

The measured values are visualized in Figure 1. The crack propagates until the
domain is fully broken at time 0.97. In Figure 2 and Figure 3 one can observe the
corresponding phase-field at different time steps and the generated mesh, respec-
tively.

For this simulation there were in total 9 874 alternations and 96 104 Newton
steps computed, which means that 105 978 linear systems have been solved. The
final mesh has 71 629 nodes.

The presented setting is quite standard and our result seems consistent compared
to the ones in the literature. Note that a quasi-static evolution does not need to
be continuous. Indeed, at the last time step before the crack completes it jumps
instantaneously. Due to the large change in the phase-field the algorithm needs
many iterations to complete, as it can be noticed from the peaks at time t = 0.97
in Figure 1.

One might realize that the phase-field spreads where it exits the domain. The
reason for this phenomenon is that the irreversibility condition is imposed by using
the intermediate step vi,j−1 as an upper bound, which does not refer to a real
physical state. However, the use of another upper bound, such as vi−1, would
break the consistency with the theory and, in particular, the energy-dissipation
equality (2.33) would not be guaranteed anymore. This effect can be observed in
all the examples.
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Figure 1. Numerical output data of the first example with initial
crack Γ1 and boundary condition w1.

(a) t = 0 (b) t = 0.6 (c) t = 0.96 (d) t = 0.97

Figure 2. Phase-field of first example at various times.

(a) Complete mesh (b) Mesh at the crack tip

Figure 3. Mesh at time t = 0.6 used for the first example.

Second Example. In our second example we break the symmetry by turning the
initial crack into a set not orthogonal to the left boundary and shifted out of the
middle point. Namely, we use the initial phase-field v0 from (6.2) with Γ replaced
by

Γ2 :=
{

(x, y) ∈ R2 | x ∈
[
0, 1

4

]
, y = 1

2x+ 1
4

}
.
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The boundary condition stays the same in the sense that it is t below the crack
and −t above it. Thus, we have

w2(t) =

{
t on {0} ×

[
0, 1

4

)
,

−t on {0} ×
(

1
4 , 1
]
.

With this settings, the specimen completely breaks at time t = 1.05, where the
crack crosses the bottom border as it can be seen in Figure 5. Figure 4 shows the
corresponding numerical measurements. In this case we can observe a number of
peaks appearing before the final jump of the fracture. The phenomena might be
explained, as in the previous example, by the fact that the phase-field is actually
experiencing jumps of different size at each time step, as it can be noticed by the
oscillations in the graph of the crack length.
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Figure 4. Numerical output data of the second example with
initial crack Γ2 and boundary condition w2.

(a) t = 0 (b) t = 0.7 (c) t = 1.04 (d) t = 1.05

Figure 5. Phase-field of second example at various times.

For this example we do not know any comparable test case in the literature we
could refer to. Since the crack tip is not in the middle of the domain and the
boundary condition is not balanced, the shown crack path seems reasonable.

The total number of alternating minimizations until the crack completes is
10 222, and 96 528 Newton steps were performed. Thus, the simulation solved
106 750 linear systems. The mesh at the time of crack completion is composed of
108 020 nodes.
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(a) Complete mesh (b) Mesh at the crack tip

Figure 6. Mesh at time t = 1.04 used for the first example.

Third Example. For the last example we again use Γ1 as a pre-crack in (6.2)
and w1 as the driving boundary condition. Unlike the first example, we cut out a
hole of the domain with center (0.8, 0.25) and radius 0.1. This setting makes the
crack deviate from the middle line into the hole, as it can be seen in Figure 8. The
last part of the crack from the border of the hole to the right border of the domain
appears instantaneously at time 1.11.
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Figure 7. Numerical output data of the third example with initial
crack Γ1 and boundary condition w1 and the hole B0.1(0.8, 0.25)
cut out of the domain.

(a) t = 0 (b) t = 0.88 (c) t = 0.89 (d) t = 1.68

Figure 8. Phase-field of third example at various times.
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One can find a similar example in [6, 18]. There the hole is equidistant from
the bottom and the right boundary, and the crack completes downwards. However,
from an energetically point of view there is no clearly preferred direction due to the
same resulting crack length. In order to have a predictable situation we moved the
hole such that it is closer to the right border than to the lower one. For this reason
the obtained crack path is the expected one.

(a) Complete mesh (b) Mesh entering the hole

Figure 9. Mesh at time t = 0.89 used for the first example.

As in the two previous examples, in Figure 7 we notice the presence of two peaks
in the number of iterations, coupled with a two stage behavior of the corresponding
crack length. This phenomenon is related to the fact that the phase-field experiences
this time two jumps: one when the fracture enters the hole and one when it exits
the domain. In between, the phase-field is not significantly changing.

Having a look at the meshes in Figure 9, the diffusion of the phase-field, where
it leaves the hole, goes along with an irregular mesh. This observation indicates
large changes in the curvature of the phase-field where these diffusions appear.

The computation required in total 8 803 alternations with 87 602 Newton steps
until the crack path was completed. It took therefore 96 405 linear systems to be
solved. The final mesh consists of 55 050 nodes.

Appendix A
Lemma A.1. Let h > 0. For every M > 0, there exists a positive constant
C = C(M) such that for every u, v ∈ Fh with ‖∇u‖∞, ‖v‖∞ ≤ M , for every
ϕ ∈ Ah, and every ψ ∈ Fh we have

1

C
‖ϕ‖H1 ≤ ‖ϕ‖h,v ≤ C‖ϕ‖H1

1

C
‖ψ‖H1 ≤ ‖ψ‖h,u ≤ C‖ψ‖H1 .

Proof. The proof follows directly from the definition (2.27)-(2.28) of the two norms.
�

Lemma A.2. Let h > 0. Let wj , vj ∈ Fh and let uj ∈ Ah(wj). Assume that there
exist w, v ∈ Fh and u ∈ Ah(w) such that wj → w, vj → v, and uj → u in Fh as
j → +∞. Then

(A.1) |∂uJh|(u, v) = lim
j
|∂uJh|(uj , vj) |∂vJh|(u, v) = lim

j
|∂vJh|(uj , vj) .

Proof. Fix ϕ ∈ Ah(0) with ‖ϕ‖h,v ≤ 1. Since ‖ϕ‖h,vj → ‖ϕ‖h,v as j → +∞, we
consider the following function:

ϕj :=


ϕ if ‖ϕ‖h,v < 1 ,

ϕ

‖ϕ‖h,vj
if ‖ϕ‖h,v = 1 .
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Clearly ϕj → ϕ in Fh as j → +∞. Moreover, by definition (2.29) of the slope
w.r.t. the displacement u, we have that

lim inf
j
|∂uJh|(uj , vj) ≥ − lim

j
∂uJh(uj , vj)[ϕj ] = −∂uJh(u, v)[ϕ] .

Hence, we deduce that |∂uJh|(u, v) ≤ lim infj |∂uJh|(uj , vj).
For the opposite inequality, let ϕj ∈ Ah(0) be such that

|∂uJh|(uj , vj) = −∂uJh(uj , vj)[ϕj ] .

Up to a subsequence, we may assume that ϕj → ϕ ∈ Ah(0). Hence, ‖ϕj‖h,vj →
‖ϕ‖h,v ≤ 1 and

lim sup
j
|∂uJh|(uj , vj) = − lim

j
∂uJh(uj , vj)[ϕj ] = −∂uJh(u, v)[ϕ] ≤ |∂uJh|(u, v) ,

which conclude the proof of the first equality in (A.1). In a similar way we can
prove the second. �

Proof of Proposition 3.1. It is enough to prove the statement for j = 1. In order to
show the existence of a minimizer for (3.2) we want to apply the direct method of the
calculus of variations. Since Jh(u1, ·) is continuous with respect to the convergence
in Fh, we only need to show that a minimizing sequence zk ∈ Fh for (3.2) admits
a limit, at least up to a subsequence. Since

sup
k∈N
‖∇zk‖22 ≤ sup

k∈N
2Jh(u1, zk) < +∞ ,

by construction of the function space Fh (2.15) and of the triangulation Th, we
easily deduce that

(A.2) sup
k
‖∇zk‖∞ < +∞ ,

so that the functions zk are uniformly Lipschitz in Ω. Moreover, since by hypoth-
esis v0 ≥ 0, it is not restrictive to assume that there exists at least one vertex xl,
l ∈ {1, . . . , Nh}, such that zk(xl) ≥ 0. Indeed, if zk < 0 in Ω, it is readily seen that
Jh(u1, 0) ≤ Jh(u1, zk). Therefore, thanks to (A.2) and to the inequality zk ≤ v0

in Ω, we also deduce that the sequence zk is uniformly bounded in W 1,∞(Ω).
Thus, zk converges, up to a subsequence, to some v1 in Fh, and this concludes
the proof of existence. The uniqueness of solution follows by the strict convexity of
the functional Jh(u1, ·).

We now prove the second part of the statement, i.e., that 0 ≤ v1 ≤ 1. For the
sake of contradiction, let us first assume that v1 � 0. Using the notation described
in Section 2, let xl ∈ ∆h be such that v1(xl) ≤ v1(xm) for every m = 1, . . . , Nh.
In particular, we have v1(xl) < 0. Let ξl ≥ 0 be the l-th element of the basis
of Fh defined by (2.16). Being v0 ≥ 0 in Ω and v1(xl) < 0, for every ε ∈ R
with |ε| small enough we have that v1 + εξl ≤ v0 in Ω, and, by the minimality
of v1, Jh(u1, v1) ≤ Jh(u1, v1 + εξl). By the quadratic structure of Jh(u1, ·), from
the previous inequality and the arbitrariness of ε we deduce that

(A.3)
∫

Ω

Ph(v1ξl)|∇u1|2 dx+

∫
Ω

∇v1 · ∇ξldx−
∫

Ω

Ph
(
(1− v1)ξl

)
dx = 0 .

Since v1(xl) < 0 and (2.16) holds, we have that

(A.4) Ph(v1ξl) ≤ 0 and Ph
(
(1− v1)ξl

)
≥ 0 in Ω.

Hence, from (A.3) and (A.4) we get

(A.5)
∫

Ω

∇v1 · ∇ξl dx = −
∫

Ω

Ph(v1ξl)|∇u1|2 dx+

∫
Ω

Ph
(
(1− v1)ξl

)
dx ≥ 0 .
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On the other hand, we can write v1 as a linear combination of the elements of the
basis {ξm}Nh

m=1 of Fh, namely, v1 =
∑Nh

m=1 v1(xm)ξm. Then, by direct computation,∫
Ω

∇v1 · ∇ξl dx =

Nh∑
m=1

v1(xm)

∫
Ω

∇ξm · ∇ξl dx

= v1(xl)

Nh∑
m=1

∫
Ω

∇ξm · ∇ξl dx+

Nh∑
m=1

(
v1(xm)− v1(xl)

) ∫
Ω

∇ξm · ∇ξl dx(A.6)

=

Nh∑
m=1

(
v1(xm)− v1(xl)

) ∫
Ω

∇ξm · ∇ξl dx ≤ 0 ,

where, in the last equality, we have used (2.17), the particular choice of the vertex xl,
and the fact that

Nh∑
m=1

∫
Ω

∇ξm · ∇ξl dx = 0 .

Therefore, combining (A.5) and (A.6) we get a contradiction, and thus v1 ≥ 0.
In order to show that v1 ≤ 1, we can argue again by contradiction, assuming

that there exists a vertex xl, l ∈ {1, . . . , Nh} such that v1(xl) ≥ v1(xm) for every
m = 1, . . . , Nh and v1(xl) > 1. As before, being ξl the l-th element of the basis
of Fh, for ε ∈ R with |ε| small enough there holds v1 + εξl ≥ v0, such that we can
repeat (A.3)–(A.6) with opposite inequality signs, concluding that 0 ≤ v1 ≤ 1 in Ω.
This concludes the proof of the proposition. �

Proof of Lemma 5.1. Let M > 0, g ∈ C2(R), the mesh parameter h > 0, and the
triangulation Th be fixed, and let us consider a function v ∈ Fh such that ‖v‖∞ ≤
M .

Given an element K of the triangulation Th, we first prove (5.1) on K. Without
loss of generality, we may assume that the origin is a vertex of K and

K =
{
x = (x1, x2) ∈ Ω : x1 ∈ [0, h], x2 ∈ [0, x1]

}
.

The general case follows by an affine transformation.
Recalling that if a function v ∈ Fh, then it is affine on every element of Th, for

every x ∈ K we have
v(x) = v(0) +∇v|K · x .

Hence, by Taylor expansion, there exists some ξ ∈ K such that

(A.7) g(v(x)) = g(v(0)) + g′(v(0))
(
v(x)− v(0)

)
+

1

2
g′′(v(ξ))

(
v(x)− v(0)

)2
.

In particular, the last term in (A.7) can be simply estimated by

(A.8) |g′′(v(ξ))|
(
v(x)− v(0)

)2 ≤ |g′′(v(ξ))|
∣∣∇v|K∣∣2|x|2 .

Recalling the definition of Ph (2.19) and using the expansion (A.7) we can write

Ph(g ◦ v)(x) = g(v(0)) +
1

h

(
g(v(h, 0))− g(v(0))

)
x1

+
1

h

(
g(v(0, h))− g(v(0))

)
x2

= g(v(0)) +
1

h
g′(v(0))

(
(v(h, 0)− v(0))x1 + (v(0, h)− v(0))x2

)
(A.9)

+
1

2h
g′′(v(ξ1))

∣∣v(h, 0)− v(0)
∣∣2x1

+
1

2h
g′′(v(ξ2))

∣∣v(0, h)− v(0)
∣∣2x2



32 S. ALMI AND S. BELZ

for some ξ1, ξ2 ∈ K. Hence, in view of (A.7)-(A.9), for x ∈ K there holds∣∣g(v(x)
)
− Ph(g ◦ v)(x)

∣∣ ≤ Ch2
∣∣∇v|K∣∣2

for some positive constant C = C(g,M) depending only on g ∈ C2(R) and on M .
Integrating the previous inequality, we end up with (5.1), and the proof is concluded.
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