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STRONG STATIONARITY FOR OPTIMAL CONTROL OF A
NON-SMOOTH COUPLED SYSTEM: APPLICATION TO A VISCOUS

EVOLUTIONARY VI COUPLED WITH AN ELLIPTIC PDE

LIVIA BETZ∗

Abstract. This paper is mainly concerned with an optimal control problem governed by a
non-smooth coupled system of equations. The non-smooth nonlinearity is Lipschitz-continuous and
directionally differentiable, but not Gâteaux-differentiable. We derive a strong stationary optimality
system, i.e., an optimality system which is equivalent to the purely primal optimality condition
saying that the directional derivative of the reduced objective in feasible directions is nonnegative.
On another note, evolutionary VIs (EVIs) with viscosity can be formulated as non-smooth ODEs
in Hilbert space. The non-smooth non-linearity appearing in the ODE turns out to be the solution
operator of an elliptic VI, for which we can give an explicit formula. As a byproduct, it allows us
to characterize the directional differentiability of elliptic VIs of the second kind. All these general
results are in the end applied to prove strong stationarity for optimal control of a viscous elastoplastic
problem.

Key words. optimal control of coupled systems, nonsmooth optimization, strong stationarity,
evolutionary VIs with viscosity, optimal control of PDEs, quasistatic visco-elasto-plasticity

AMS subject classifications. 34K35, 49J21, 49J27

1. Introduction. In this paper, we establish strong stationary optimality con-
ditions for the following optimal control problem:

min
`∈L2(0,T ;V )

J(y, u, `)

s.t.

{
ẏ(t) = f(Φ(y(t), u(t))) a.e. in (0, T ), y(0) = 0,

Ψ(y(t), u(t)) = `(t) a.e. in (0, T ),
(∗)

where J is a smooth objective, f is a non-smooth mapping, while Φ and Ψ are smooth
non-linearities. The precise assumptions on the data are stated in Assumption 2.1
below. The essential feature of the problem under consideration is that the non-
linearity f is not necessarily Gâteaux-differentiable, so that the standard methods for
the derivation of qualified optimality conditions are not applicable here. In view of our
goal to establish strong stationarity, the main novelty in this paper is the coupled non-
smooth structure in (∗). This gives rise to additional challenges. We deal with two
states which depend nonlinearly on each other. Moreover, the non-smooth mapping
does not act directly on either one of the states, but on a non-linear coupling involving
them. In this context, an interesting application is the optimal control of viscous EVIs
coupled with elliptic PDEs, since non-smooth ODEs (in infinite-dimensional spaces)
as the one in (∗) describe the evolution of viscous processes. In the end, we obtain a
strong stationary optimality system for this type of problem.

Deriving necessary optimality conditions is a challenging issue even in finite dimen-
sions, where a special attention is given to MPCCs (mathematical programs with
complementarity constraints). In [31] a detailed overview of various optimality con-
ditions of different strength was introduced, see also [21] for the infinite dimensional
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case. The most rigorous stationarity concept is strong stationarity. Roughly speaking,
the strong stationarity conditions involve an optimality system, which is equivalent
to the purely primal conditions saying that the directional derivative of the reduced
objective in feasible directions is nonnegative (which is referred to as B stationarity).

While there are plenty of contributions in the field of optimal control of smooth prob-
lems, see e.g. [37] and the references therein, less papers are dealing with non-smooth
problems. Most of these papers recur to regularization or relaxation techniques to
smooth the problem, see e.g. [1, 2, 11, 12, 16, 18, 22, 24] and the references therein.
The optimality systems derived in this way are of intermediate strength and are not
expected to be of strong stationary type, since one always loses information when
passing to the limit in the regularization scheme. Thus, proving strong stationarity
for optimal control of non-smooth problems requires direct approaches, which employ
the limited differentiability properties of the control-to-state map. In this context,
there are even less contributions. Based on the pioneering work [28] (strong station-
arity for optimal control of elliptic VIs of obstacle type), most of them focus on elliptic
VIs [9, 19, 38]. Recently, strong stationarity for optimal control of parabolic VIs of
the first kind was proven in [5]. Regarding strong stationarity for optimal control
of non-smooth PDEs, the literature is very scarce and the only papers known to the
author addressing this issue so far are [26] (parabolic PDE) and [6] (elliptic PDE).
We point out that, in contrast to our problem, all the above mentioned contributions
which investigate strong stationarity deal with only one state, excepting [19] (how-
ever, therein, one of the two states can be computed independently on the other); in
particular, there is no coupling between the non-smooth evolution and an additional
equation.

Let us give an overview of the main results in this paper. In Section 2, we show strong
stationarity for the optimal control of a coupled system of equations involving a non-
smooth non-linearity. This is one of the main novelties of this paper. The result can
be extended to more complex systems that involve more equations and/or more time
derivatives. It is based on the idea from [26], which is to employ a ’surjectivity’ trick.
As it turns out, it all comes down to the following aspect: the directions at which the
non-smooth mapping f is derived - in the ’linearized’ state equation associated to the
local optimum - must ’cover’ an entire space (see Lemma 2.8 and Remark 2.10).

In Section 3, we show that viscous EVIs are non-smooth ODEs in Hilbert space. It
is indeed known (in particular, in the context of Lebesgue spaces [20,35]) that such a
formulation exists, but an explicit description which applies to general Hilbert spaces
was not found in the literature. As a byproduct, a formula for the solution operator
of a general elliptic VI is given (see Lemma 3.3 below). This is nothing else than
the non-smooth non-linearity in the ODE. It allows us to establish the following:
the solution operator of the classical elliptic VI of the second kind is directionally
differentiable if and only if the projection operator onto the convex subdifferential at
0 of the non-smooth functional in the VI is directionally differentiable. Appendix A
gives more details and some concrete examples.

Section 4 focuses on strong stationarity for optimal control of quasistatic visco-elasto-
plasticity. Here we are concerned with the application of the above mentioned results.
We first employ the findings in Section 3 to show that this concrete application is a
non-smooth coupled PDE system of the type (∗), see (4.5)-(4.6) below. It consists
of a non-smooth ODE in Hilbert space (viscoplastic flow rule) and an elliptic PDE
(linear elasticity). Then, we make use of the main result in Section 2 to derive
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strong stationary optimality conditions for an optimal control problem governed by
the viscous elastoplastic system. A challenge in this section will be the complexity of
the problem arising from the matrix-valued function spaces.

Notation. Throughout the paper, T > 0 is a fixed final time. If X and Y are
linear normed spaces, then the space of linear and bounded operators from X to Y
is denoted by L(X,Y ), and X

d
↪→ Y means that X is dense in Y . The dual space of

X will be denoted by X∗. For the dual pairing between X and X∗ we write 〈., .〉X .
The open ball in X around x ∈ X with radius α > 0 is denoted by BX(x, α). The
following abbreviations will be used throughout the paper:

H1
0 (0, T ;X) := {z ∈ H1(0, T ;X) : z(0) = 0},

H1
T (0, T ;X) := {z ∈ H1(0, T ;X) : z(T ) = 0},

where X is a Banach space. For the polar cone of a set M ⊂ X we use the notation
M◦ := {x∗ ∈ X∗ : 〈x∗, x〉X ≤ 0 ∀x ∈ M}. By χ

M we denote the characteristic
function associated to the set M . Derivatives w.r.t. time (weak derivatives of vector-
valued functions) are frequently denoted by a dot. The symbol ∂ stands for the convex
subdifferential, see e.g. [30]. With a little abuse of notation, the Nemystkii-operators
associated with the mappings considered in this paper will be denoted by the same
symbol, even when considered with different domains and ranges. From the context,
it will be always clear which one is meant.

2. Strong stationarity for optimal control of non-smooth coupled sys-
tems. This section is devoted to one of the main results of the paper, i.e., the deriva-
tion of a strong stationary optimality system for the optimal control of (∗). After
introducing the functional analytical setting, we start our analysis with a purely pri-
mal optimality condition (B-stationarity). Then, we exploit and extend the trick
from [26] to derive our strong stationary optimality conditions. As it turns out, gen-
erally speaking, the key role is played by the density (in certain spaces) of the set
of directions at which the non-smooth mapping f is derived in the ’linearized’ state
equation, see (2.5) and Lemma 2.8 below. To ensure that this is satisfied, we formu-
late an assumption on the optimizer (’constraint qualification’) which is based on the
particular structure of the state equation under consideration. Let us point out that
this assumption is always satisfied by the optimal control of quasistatic visco-elasto-
plasticity, see Section 4 below.
Our optimal control problem reads as follows:

min
`∈L2(0,T ;V )

J(y, u, `)

s.t. ẏ(t) = f(Φ(y(t), u(t))) a.e. in (0, T ), y(0) = 0,

Ψ(y(t), u(t)) = `(t) a.e. in (0, T ),

y ∈ H1(0, T ;Y ), u ∈ L2(0, T ;U).


(P)

Assumption 2.1. For the quantities in (P) we require the following:

1. V , Y , and U are real reflexive Banach spaces, such that V
d
↪→ U∗.

2. The non-smooth function f : Y ∗ → Y is assumed to be Lipschitz-continuous
and directionally differentiable, i.e.,∥∥∥f(x+ τ h)− f(x)

τ
− f ′(x;h)

∥∥∥
Y

τ↘0−→ 0 ∀x, h ∈ Y ∗. (2.1)
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3. The mappings Φ : Y ×U → Y ∗ and Ψ : Y ×U → U∗ are Gâteaux-differentiable
operators. Moreover, they are Lipschitz-continuous, i.e., there exists L > 0
such that

‖Φ′(y, u)‖L(Y×U ;Y ∗) ≤ L, ‖Ψ′(y, u)‖L(Y×U ;U∗) ≤ L ∀ (y, u) ∈ Y × U.
(2.2)

4. The objective J : L2(0, T ;Y ) × L2(0, T ;U) × L2(0, T ;V ) → R is Fréchet-
differentiable.

Let us observe that the Nemytskii operator associated to the function f is directionally
differentiable from L2(0, T ;Y ∗) to L2(0, T ;Y ) with

f ′(x;h) = f ′(x(·);h(·)) ∈ L2(0, T ;Y ) (2.3)

for any x, h ∈ L2(0, T ;Y ∗). This is a result of Assumption 2.1.2 combined with
Lebesgue’s dominated convergence theorem. In view of the latter and Assumption
2.1.3, we also deduce that the Nemytskii operators

Φ : L2(0, T ;Y )× L2(0, T ;U)→ L2(0, T ;Y ∗),

Ψ : L2(0, T ;Y )× L2(0, T ;U)→ L2(0, T ;U∗)

are Gâteaux-differentiable, with

∂yΦ(y, u)(δy) = ∂yΦ(y(·), u(·))(δy(·)), ∂uΦ(y, u)(δu) = ∂uΦ(y(·), u(·))(δu(·)),
∂yΨ(y, u)(δy) = ∂yΨ(y(·), u(·))(δy(·)), ∂uΨ(y, u)(δu) = ∂uΨ(y(·), u(·))(δu(·))

for all (y, u), (δy, δu) ∈ L2(0, T ;Y ×U). In the proof of Theorem 2.9 below, it will be
useful to keep the following in mind:

Lemma 2.2. The adjoint operators of the partial derivatives of Φ and Ψ satisfy

∂yΦ(y, u)∗ : L2(0, T ;Y )→ L2(0, T ;Y ∗), ∂yΦ(y, u)∗(η)(t) = ∂yΦ(y(t), u(t))∗(η(t)),

∂uΦ(y, u)∗ : L2(0, T ;Y )→ L2(0, T ;U∗), ∂uΦ(y, u)∗(η)(t) = ∂uΦ(y(t), u(t))∗(η(t)),

∂yΨ(y, u)∗ : L2(0, T ;U)→ L2(0, T ;Y ∗), ∂yΨ(y, u)∗(v)(t) = ∂yΨ(y(t), u(t))∗(v(t)),

∂uΨ(y, u)∗ : L2(0, T ;U)→ L2(0, T ;U∗), ∂uΨ(y, u)∗(v)(t) = ∂uΨ(y(t), u(t))∗(v(t))

f.a.a. t ∈ (0, T ) and for all (y, u) ∈ L2(0, T ;Y × U).

Our focus in this section is to derive strong stationary optimality conditions for the
optimal control problem (P). To keep the depiction concise, we do not discuss the
unique solvability of the state equation or the differentiability properties of the re-
sulting solution operator. These issues will be addressed in detail for the application
considered later on, see Section 4 below.

Here, the properties we need from the control-to-state map in order to prove the main
result (Theorem 2.9) are just assumed to be true. We collect them in the following

Assumption 2.3 (Control-to-state map and directional differentiability).

1. Throughout this section, we assume that for every ` ∈ L2(0, T ;V ), the state
equation

ẏ(t) = f(Φ(y(t), u(t))) a.e. in (0, T ), y(0) = 0,

Ψ(y(t), u(t)) = `(t) a.e. in (0, T )

}
(2.4)
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admits a unique solution (y, u) ∈ H1
0 (0, T ;Y ) × L2(0, T ;U) and denote the

associated solution operator by

S : L2(0, T ;V ) 3 ` 7→ (y, u) ∈ H1
0 (0, T ;Y )× L2(0, T ;U).

2. For any local optimum ¯̀ of (P), S : L2(0, T ;V )→ L2(0, T ;Y )× L2(0, T ;U)
has a directional derivative S′(¯̀; δ`) at ¯̀∈ L2(0, T ;V ) in any direction δ` ∈
L2(0, T ;V ), i.e.,∥∥∥S(¯̀+ τ δ`)− S(¯̀)

τ
−S′(¯̀; δ`)

∥∥∥
L2(0,T ;Y )×L2(0,T ;U)

τ↘0−→ 0 ∀ δ` ∈ L2(0, T ;V ).

Moreover, we suppose that for any δ` ∈ L2(0, T ;V ), the pair (δy, δu) :=
S′(¯̀; δ`) ∈ H1

0 (0, T ;Y )× L2(0, T ;U) is the unique solution of

δ̇y(t) = f ′
(
Φ(ȳ(t), ū(t)); Φ′(ȳ(t), ū(t))(δy(t), δu(t))

)
a.e. in (0, T ), δy(0) = 0,

(2.5a)

Ψ′(ȳ(t), ū(t))(δy(t), δu(t)) = δ`(t) a.e. in (0, T ), (2.5b)

where we abbreviate (ȳ, ū) := S(¯̀).
3. For any local optimum ¯̀ of (P), there exists a constant K > 0 so that

‖S′(¯̀; δ`)‖L2(0,T ;Y×U) ≤ K ‖δ`‖L2(0,T ;U∗) ∀ δ` ∈ L2(0, T ;V ). (2.6)

If the equation (2.5) admits a solution (δ̂y, δ̂u) ∈ H1
0 (0, T ;Y )×L2(0, T ;U) for

a right hand-side δ̂` ∈ L2(0, T ;U∗), then S′(¯̀; δ`n)→ (δ̂y, δ̂u) in L2(0, T ;Y ×
U), provided that {δ`n}n ⊂ L2(0, T ;V ) is a sequence with δ`n → δ̂` in
L2(0, T ;U∗).

Remark 2.4. Assumption 2.1.3 is for instance guaranteed if there exist constants
α > 0 and K > 0 so that for all `1, `2 ∈ BL2(0,T ;V )(¯̀, α) it holds

‖S(`1)− S(`2)‖L2(0,T ;Y×U) ≤ K ‖`1 − `2‖L2(0,T ;U∗) (2.7)

and if the solution (δ̂y, δ̂u) is unique. To see this, we observe that (2.7) implies

‖S′(¯̀; δ`1)−S′(¯̀; δ`2)‖L2(0,T ;Y×U) ≤ K ‖δ`1−δ`2‖L2(0,T ;U∗) ∀ δ`1, δ`2 ∈ L2(0, T ;V ),
(2.8)

by the definition of the directional derivative. Hence, (2.6) is true. Moreover, in
view of (2.8), {S′(¯̀; δ`n)}n ⊂ L2(0, T ;Y × U) is a Cauchy sequence, and thus, it
converges. Its limit, say z, solves (2.5) w.r.h.s. δ̂`, and due to its unique solvability,
we have z = (δ̂y, δ̂u).

Note that the estimate (2.6) can be dropped, if e.g. Ψ′(ȳ(·), ū(·)) ∈ L(Y ×U ;V ) a.e. in
(0, T ) or if J is partially Frechet-differentiable w.r.t. ` on L2(0, T ;U∗), see the first
part of the proof of Theorem 2.9 below.

Clearly, the entire Assumption 2.1.3 is omited when V = U∗.

In the sequel, Assumptions 2.1 and 2.3 are tacitly assumed, without mentioning them
every time.

Now, we turn our attention to proving our main result. We begin by stating the first
order necessary optimality conditions in primal form.
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Lemma 2.5 (B-stationarity). If ¯̀∈ L2(0, T ;V ) is locally optimal for (P), then there
holds

∂(y,u)J(S(¯̀), ¯̀)S′(¯̀; δ`) + ∂`J(S(¯̀), ¯̀)δ` ≥ 0 ∀ δ` ∈ L2(0, T ;V ). (2.9)

Proof. In view of Assumptions 2.1.4 and 2.3.2, we deduce from [19, Lemma 3.9] that
the composite mapping L2(0, T ;V ) 3 ` 7→ J(S(`), `) ∈ R is directionally differen-
tiable at ¯̀ in any direction δ` with directional derivative ∂(y,u)J(S(¯̀), ¯̀)S′(¯̀; δ`) +
∂`J(S(¯̀), ¯̀)δ`. The result then follows immediately from the local optimality of ¯̀.
Assumption 2.6. For any local optimum ¯̀ of (P), we assume that ∂uΦ(ȳ, ū) :
L2(0, T ;U)→ L2(0, T ;Y ∗) is invertible, where (ȳ, ū) := S(¯̀).
Remark 2.7. (i) We point out that Assumption 2.6 is due to the presence of the
additional variable u in the argument of the non-smooth mapping f . Roughly speaking,
it is the price to pay for having two states on which the non-smoothness acts.
(ii) The entire analysis in this section carries on if we consider some (non-linear)
operator acting on the control, say G : V → U∗, so that the associated Nemytskii
operator G : L2(0, T ;V ) → L2(0, T ;U∗) is Gâteaux-differentiable. Then, Assumption
2.3 has to be changed accordingly, and the ’constraint qualification’ in Assumption
2.6 also contains the condition Rg G′(¯̀)

d
↪→ L2(0, T ;U∗). We emphasize that such a

density assumption is to be expected, see [6, 26, 28]. In all these contributions, the
operator acting on the control is linear at best (mostly, G is just an embedding). For

simplicity reasons, we also stick to the case when G is the embedding operator V
d
↪→ U∗,

cf. Assumption 2.1.1.
(iii) Furthermore, let us point out that Assumption 2.6 is satisfied at any ` by the
viscous elasto-plastic problem, see Section 4.
The next result is crucial for proving the strong stationarity result in Theorem 2.9:
Lemma 2.8 (Density of the set of arguments of f ′(Φ(ȳ, ū); ·)). Let ¯̀∈ L2(0, T ;V ) be
a local optimum of (P) and (ȳ, ū) := S(¯̀). Under Assumption 2.6, it holds

{Φ′(ȳ, ū)(S′(¯̀; δ`)) : δ` ∈ L2(0, T ;V )} d
↪→ L2(0, T ;Y ∗).

Proof. Let ρ ∈ L2(0, T ;Y ∗) be arbitrary, but fixed. Then, the mapping

[0, T ] 3 t 7→ ŷ(t) ∈ Y, ŷ(t) :=

∫ t

0

f ′
(
Φ(ȳ(s), ū(s)); ρ(s)) ds (2.10)

satisfies ŷ(0) = 0 and ŷ ∈ H1(0, T ;Y ). Note that the regularity of ŷ is due to (2.3).
Moreover, Assumption 2.6 allows us to define

û := ∂uΦ(ȳ, ū)−1(ρ− ∂yΦ(ȳ, ū)ŷ) ∈ L2(0, T ;U). (2.11)

Now, we set

ˆ̀ := Ψ′(ȳ(·), ū(·))(ŷ(·), û(·)) ∈ L2(0, T ;U∗). (2.12)

The regularity of ˆ̀ is a result of Assumption 2.1.3. By construction, the pair (ŷ, û) ∈
H1

0 (0, T ;Y )×L2(0, T ;U) solves the system (2.5) with right-hand side ˆ̀∈ L2(0, T ;U∗).
To see this, we observe that from (2.11) we have

ρ = ∂uΦ(ȳ, ū)û+ ∂yΦ(ȳ, ū)ŷ, (2.13)
6



which inserted in (2.10) gives

ŷ(t) =

∫ t

0

f ′
(
Φ(ȳ(s), ū(s)); Φ′(ȳ(s), ū(s))(ŷ(s), û(s))

)
ds ∀ t ∈ [0, T ].

This together with ŷ(0) = 0 and (2.12) yields

d

dt
ŷ(t) = f ′

(
Φ(ȳ(t), ū(t)); Φ′(ȳ(t), ū(t))(ŷ(t), û(t))

)
a.e. in (0, T ), ŷ(0) = 0,

Ψ′(ȳ(t), ū(t))(ŷ(t), û(t)) = ˆ̀(t) a.e. in (0, T ).

Thanks to V
d
↪→ U∗, cf. Assumption 2.1.1, there exists a sequence {δ`n}n ⊂ L2(0, T ;V )

with δ`n → ˆ̀ in L2(0, T ;U∗), see also [26, Lem. A.1]. By Assumption 2.3.3, we de-
duce that S′(¯̀; δ`n)→ (ŷ, û) in L2(0, T ;Y ×U). Since ρ ∈ L2(0, T ;Y ∗) was arbitrary,
the desired assertion follows now from the continuity of Φ′(ȳ, ū) : L2(0, T ;Y × U)→
L2(0, T ;Y ∗) and (2.13).
We are now in the position to state our main result:
Theorem 2.9 (Strong stationarity). Suppose that Assumption 2.6 is satisfied. Let
¯̀∈ L2(0, T ;V ) be locally optimal for (P) with associated state (ȳ, ū) := S(¯̀). Then,
there exist unique adjoint states

ξ ∈ H1
T (0, T ;Y ∗) and w ∈ L2(0, T ;U)

and a unique multiplier λ ∈ L2(0, T ;Y ) such that the following system is satisfied

−ξ̇ − ∂yΦ(ȳ, ū)∗λ+ ∂yΨ(ȳ, ū)∗w = ∂yJ(ȳ, ū, ¯̀) in L2(0, T ;Y ∗), ξ(T ) = 0,
(2.15a)

−∂uΦ(ȳ, ū)∗λ+ ∂uΨ(ȳ, ū)∗w = ∂uJ(ȳ, ū, ¯̀) in L2(0, T ;U∗), (2.15b)

〈ξ(t), f ′(Φ(ȳ(t), ū(t)); v)〉Y ≥ 〈λ(t), v〉Y ∗ ∀ v ∈ Y ∗, a.e. in (0, T ), (2.15c)

w + ∂`J(ȳ, ū, ¯̀) = 0 in L2(0, T ;U). (2.15d)

Proof. (1) We first prove that there exists a unique tuple (ξ, w, λ) which satisfies
(2.15a), (2.15b) and (2.15d) and has the desired regularity. As a result of (2.9) and
(2.6), we get the estimate

−∂`J(ȳ, ū, ¯̀)δ` ≤ ‖∂(y,u)J(·)‖L2(0,T ;Y ∗)×L2(0,T ;U∗)︸ ︷︷ ︸
=:c

‖S′(¯̀; δ`)‖L2(0,T ;Y×U)

≤ cK ‖δ`‖L2(0,T ;U∗) ∀ δ` ∈ L2(0, T ;V ),

whence ∂`J(ȳ, ū, ¯̀) ∈ L2(0, T ;U) follows (by Hahn-Banach theorem or the density

assumption V
d
↪→ U∗). Then, we set w := −∂`J(ȳ, ū, ¯̀) ∈ L2(0, T ;U). Owing to

Assumption 2.6, the operator ∂uΦ(ȳ, ū)∗ : L2(0, T ;Y ) → L2(0, T ;U∗) is invertible,
which allows us to define

λ := (∂uΦ(ȳ, ū)∗)−1(∂uΨ(ȳ, ū)∗w − ∂uJ(ȳ, ū, ¯̀)) ∈ L2(0, T ;Y ), (2.16)

by Lemma 2.2 and Assumption 2.1.4. These also imply that the expression

ν := ∂yJ(ȳ, ū, ¯̀) + ∂yΦ(ȳ, ū)∗λ− ∂yΨ(ȳ, ū)∗w (2.17)
7



belongs to L2(0, T ;Y ∗). Now, let us define

[0, T ] 3 t 7→ ξ(t) ∈ Y ∗, ξ(t) :=

∫ T

t

ν(s) ds, (2.18)

such that ξ(T ) = 0, ξ ∈ H1(0, T ;Y ∗), by the regularity of ν, and −ξ̇(t) = ν(t) f.a.a.
t ∈ (0, T ). We now observe that the tuple (ξ, w, λ) satisfies (2.15a), (2.15b), and
(2.15d). Moreover, it has the desired regularity and is unique, by construction.

(2) It remains to show that the variational inequality (2.15c) is true. To this end, we
extend the basic idea from [26, Proof of Thm. 5.3]. Let ρ ∈ L2(0, T ;Y ∗) be arbitrary,
but fixed. According to Lemma 2.8, there exists {δ`n} ⊂ L2(0, T ;V ) such that

Φ′(ȳ, ū)(δyn, δun)︸ ︷︷ ︸
:=ρn

→ ρ in L2(0, T ;Y ∗) as n→∞, (2.19)

where we abbreviate (δyn, δun) := S′(¯̀; δ`n) and ρn := Φ′(ȳ(·), ū(·))(δyn(·), δun(·))
for all n ∈ N. By relying on the B-stationarity, cf. (2.9), and by testing (2.15a),
(2.15b), and (2.15d) with δyn, δun, and δ`n, respectively, we obtain

0 ≤ ∂yJ(ȳ, ū, ¯̀)δyn + ∂uJ(ȳ, ū, ¯̀)δun + ∂`J(ȳ, ū, ¯̀)δ`n

= −
∫ T

0

〈ξ̇(t), δyn(t)〉Y dt− 〈∂yΦ(ȳ, ū)∗λ− ∂yΨ(ȳ, ū)∗w, δyn〉L2(0,T ;Y )

+ 〈∂uΨ(ȳ, ū)∗w − ∂uΦ(ȳ, ū)∗λ, δun〉L2(0,T ;U) − 〈δ`n, w〉L2(0,T ;U)

=

∫ T

0

〈ξ(t), δ̇yn(t)〉Y dt+ 〈∂yΨ(ȳ, ū)δyn + ∂uΨ(ȳ, ū)δun − δ`n, w〉L2(0,T ;U)

− 〈∂yΦ(ȳ, ū)δyn + ∂uΦ(ȳ, ū)δun, λ〉L2(0,T ;Y )

=

∫ T

0

〈ξ(t), f ′(Φ(ȳ(t), ū(t)); ρn(t))〉Y dt−
∫ T

0

〈λ(t), ρn(t)〉Y ∗ dt ∀n ∈ N,

(2.20)
where the second identity follows from integration by parts, δyn(0) = 0, and ξ(T ) = 0,
while the last identity is a result of (2.5a) tested with ξ, (2.5b) tested with w, and
the above definition of ρn. Letting n→∞ in (2.20) leads to

0 ≤
∫ T

0

〈ξ(t), f ′(Φ(ȳ(t), ū(t)); ρ(t))〉Y dt−
∫ T

0

〈λ(t), ρ(t)〉Y ∗ dt ∀ ρ ∈ L2(0, T ;Y ∗),

(2.21)
in view of (2.19). Here we used the fact that f ′(Φ(ȳ, ū); ·) : L2(0, T ;Y ∗)→ L2(0, T ;Y )
is continuous, by the Lipschitz continuity of f , cf. Assumption 2.1.2, see also (2.3).

Now, consider v ∈ Y ∗ and ϕ ∈ C∞0 (0, T ) with ϕ ≥ 0 be arbitrary. By setting
ρ := ϕv ∈ L2(0, T ;Y ∗) in (2.21) and by employing the positive homogeneity of the
directional derivative, we get∫ T

0

〈ξ(t), f ′(Φ(ȳ(t), ū(t)); v)〉Y ϕ(t) dt ≥
∫ T

0

〈λ(t), v〉Y ∗ϕ(t) dt ∀ v ∈ Y ∗, ϕ ∈ C∞0 (0, T ).

The fundamental lemma of the calculus of variations then gives (2.15c). The proof is
now complete.

Remark 2.10 (Density of the set of arguments of f ′(Φ(ȳ, ū); ·)).
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(i) The proof of Theorem 2.9, see (2.20), shows that it is essential that the set of
directions at which the non-smooth mapping f is derived - in the ’linearized’ state
equation associated to ¯̀ - is dense in a (suitable) Bochner space (which is basically
the assertion in Lemma 2.8). Let us point out that this aspect is also crucial when
deriving strong stationarity for optimal control of more complex non-smooth coupled
systems (which may involve more than two equations and/or more time derivatives
acting on the states).
(ii) Note that Assumption 2.6 is due to the structure of the state equation under con-
sideration. In a different, perhaps more complex setting, this ’constraint qualification’
may sound completely different, but it should imply that the set of directions at which
f is derived - in the ’linearized’ state equation - ’covers’ an entire space.
(iii) Finally, let us remark that the observations made here are consistent with the
results in [26]. Therein, the direction at which one derives f - in the ’linearized’ state
equation - is the ’linearized’ solution operator at ¯̀, such that the counterpart of Lemma
2.8 is the density of the image of S′(¯̀; ·) in a suitable Bochner space, i.e., [26, Lem.
5.2]. In [26], there is no ’constraint qualification’ in the sense of Assumption 2.6,
since the authors deal with one state, see Remark 2.7.(i). However, the density as-
sumption [26, Assump. 2.1.6] can be regarded as such, in view of Remark 2.7.(ii).

To see that (2.15) is indeed of strong stationary type, cf. Section 1, we prove the
following:

Theorem 2.11 (Equivalence between B- and strong stationarity). Assume that ¯̀∈
L2(0, T ;V ) together with its states (ȳ, ū) ∈ H1

0 (0, T ;Y ) × L2(0, T ;U), some adjoint
states (ξ, w) ∈ H1

T (0, T ;Y ∗)×L2(0, T ;U), and a multiplier λ ∈ L2(0, T ;Y ) satisfy the
optimality system (2.15a)–(2.15d). Then, it also satisfies the variational inequality
(2.9). If Assumption 2.6 is satisfied, (2.9) is equivalent to (2.15a)–(2.15d).

Proof. To show the first assertion, let δ` ∈ L2(0, T ;V ) be arbitrary, but fixed and
define (δy, δu) := S′(¯̀; δ`). We proceed as in the proof of (2.20) to obtain

∂yJ(ȳ, ū, ¯̀)δy + ∂uJ(ȳ, ū, ¯̀)δu+ ∂`J(ȳ, ū, ¯̀)δ`

=

∫ T

0

〈ξ(t), f ′
(
Φ(ȳ(t), ū(t)); Φ′(ȳ(t), ū(t))(δy(t), δu(t))

)
〉Y dt

−
∫ T

0

〈λ(t),Φ′(ȳ(t), ū(t))(δy(t), δu(t))〉Y ∗ dt.

(2.22)

Note that one does not need local optimality for ¯̀ or Assumption 2.6 to prove (2.22).
The variational inequality (2.9) follows by testing (2.15c) with v := Φ′(ȳ, ū)(δy, δu)(t) ∈
Y ∗ f.a.a. t ∈ (0, T ) and by using the resulting inequalities on the right-hand side of
(2.22). Moreover, if Assumption 2.6 is satisfied, then (2.9) implies (2.15a)–(2.15d),
see the proof of Theorem 2.9. This shows the second assertion.

Remark 2.12. If f is Gâteaux-differentiable at Φ(ȳ(t), ū(t)) a.e. in (0, T ), then
(2.15c) is equivalent to

λ(t) =
(
f ′(Φ(ȳ(t), ū(t)))

)∗
ξ(t) a.e. in (0, T ),

by the linearity of f ′(Φ(ȳ(t), ū(t))). Thus, the optimality system in Theorem 2.9 re-
duces to the very same optimality conditions which one obtains when directly applying
the KKT-theory on (P), cf. [37], i.e., (2.15) is the classical KKT-system, provided
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that f is Gâteaux-differentiable at Φ(ȳ(t), ū(t)) a.e. in (0, T ). Note that this yields
the Gâteaux-differentiability of S at ¯̀, in view of (2.5).
Remark 2.13. If Y = Lq(Ω) with q ∈ (1,∞) and if f : Y ∗ → Y is the Nemytskii
operator associated to some mapping f : R→ R, then (2.15c) is equivalent to a similar
sign condition which holds a.e. in (0, T )×Ω (see (4.27) below). This will be the case
in Section 4, where we apply the result in Theorem 2.9 on a concrete setting.
Remark 2.14 (Distributed controls). An inspection of the proof of Theorem 2.9
shows that the arguments cannot be applied if the controls are restricted by additional
constraints. The same observation was made in [28], where strong stationarity for
optimal control of the obstacle problem is shown to be necessary for local optimality.
Let us however mention [38] in this context, where pointwise constraints on the con-
trol are considered and strong stationarity is proven by requiring that the (unknown)
optimizer satisfies certain assumptions.

3. Formulation of viscous evolutionary VIs as non-smooth ODEs. This
section focuses on proving that the following viscous evolution

R(η)−R(ẏ(t))+〈V ẏ(t), η− ẏ(t)〉Y ≥ 〈ϕ(y(t), `(t)), η− ẏ(t)〉Y ∀ η ∈ Y, a.e. in (0, T )
(EVI)

is equivalent to a non-smooth ODE in the Hilbert space Y (see Theorem 3.6 below).
Note that (EVI) is a generalization of the classical evolutionary VI with viscosity, see
e.g. [34, Chp. 4]. In addition, we are concerned with the differentiability properties of
the solution map associated to (EVI). For the non-smooth non-linearity appearing in
the ODE we give an explicit formula. We state a condition on the functional R and on
the operator V, which is necessary and sufficient for its directional differentiability. As
a byproduct, this allows us to give a characterization of the directional differentiability
of the classical elliptic VI of the second kind (cf. Theorem 3.4 below). The results
established in this section will be later on combined with the findings from Section 2,
in order to establish strong stationarity for the optimal control of a concrete viscous
EVI (see Section 4).
In all what follows, ` ∈ L2(0, T ;H) is fixed. Here, H is a real reflexive Banach space,
while Y is a real Hilbert space.
Assumption 3.1. For the operators in the viscous EVI we require:

1. The non-smooth functional R : Y → (−∞,∞] is proper, convex, lower semi-
continuous and positive homogeneous, i.e., R(αη) = αR(η) for all α > 0 and
all η ∈ Y .

2. The viscosity operator V ∈ L(Y, Y ∗) is coercive, i.e., there exists ϑ > 0
so that 〈Vη, η〉Y ≥ ϑ‖η‖2Y for all η ∈ Y . Moreover, V is symmetric, i.e.,
〈Vη, y〉Y = 〈Vy, η〉Y for all η, y ∈ Y .

3. The mapping ϕ : Y × H → Y ∗ is continuously Fréchet-differentiable and
Lipschitz-continuous.

In the sequel, Assumption 3.1 is tacitly assumed, without mentioning it every time.
Note that, in view of Assumption 3.1.2, the operator V induces a norm on Y , which
will be denoted by ‖ · ‖V :=

√
〈V·, ·〉Y . Similarly, the operator V−1 induces a norm on

Y ∗, which we abbreviate ‖ · ‖V−1 :=
√
〈V−1·, ·〉Y ∗ in the following. We remark that

‖ · ‖V and ‖ · ‖V−1 are equivalent to ‖ · ‖Y and ‖ · ‖Y ∗ , respectively.
Definition 3.2 (The non-smooth non-linearity). Let us define the function F :
Y ∗ → Y as

F(ω) := V−1(ω − P∂R(0)ω), (3.1)
10



where P∂R(0) : Y ∗ → Y ∗ is the projection operator onto the set ∂R(0) w.r.t. the norm
‖ · ‖V−1 , i.e., P∂R(0)ω is the unique solution of

min
µ∈∂R(0)

1

2
‖ω − µ‖2V−1 (3.2)

for any ω ∈ Y ∗.
Lemma 3.3. The mapping F : Y ∗ 3 ω 7→ z ∈ Y is the solution operator of the
following elliptic VI

R(η)−R(z) + 〈Vz, η − z〉Y ≥ 〈ω, η − z〉Y ∀ η ∈ Y. (3.3)

Thus, (3.3) is equivalent to z = V−1(ω − P∂R(0)ω) for any ω ∈ Y ∗.
Proof. We present two different proofs. The first one is based on convex analysis
tools, while the second one is due to [8].

(i) Let ω ∈ Y ∗ be arbitrary, but fixed. We define RV : Y → (−∞,∞] as

RV(η) := R(η) +
1

2
‖η‖2V . (3.4)

Straight-forward computation shows that the conjugate of 1
2‖ · ‖

2
V is given by

g : Y ∗ → R, g(µ) = sup
η∈Y
〈µ, η〉Y −

1

2
‖η‖2V =

1

2
‖µ‖2V−1 .

By (3.4) and sum rule for conjugate functionals, see [23, Thm. 3.3.4.1], it holds

R∗V(ω) = inf
µ∈Y ∗

R∗(µ) + g(ω − µ) = inf
µ∈∂R(0)

1

2
‖ω − µ‖2V−1

=
1

2
‖ω − P∂R(0)ω‖2V−1 ,

(3.5)

where for the second identity we used R∗ = I∂R(0), which is due to the positive
homogeneity of R. Further, in view of [17, Lem. 4.1] and (3.5), in combination with
(3.1), we have

∂(R∗V)(ω) = V−1(ω − P∂R(0)ω) = F(ω) in Y.

Since RV is convex, lower semicontinuous, and proper, we now deduce by a well-known
convex analysis result that

ω ∈ ∂RV(F(ω)) = ∂R(F(ω)) + VF(ω) in Y ∗,

in view of (3.4) and sum rule for subdifferentials. Thus, F(ω) ∈ Y solves (3.3). As
(3.3) is uniquely solvable, see e.g. [14], the proof is now complete.

(ii) The assertion is a direct result of [8, Prop. 2.1] combined with the fact that, for
any ω ∈ Y ∗, the projection P∂R(0)ω ∈ ∂R(0) is characterized as the unique solution
of

〈V−1(ω − P∂R(0)ω), µ− P∂R(0)ω〉Y ∗ ≤ 0 ∀µ ∈ ∂R(0). (3.6)

Note that here we used the information that V−1 is symmetric, which is a consequence
of Assumption 3.1.2. This concludes the proof.
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As an immediate consequence of Lemma 3.3 and Assumption 3.1.2, we have the
following

Theorem 3.4. The solution operator F : Y ∗ 3 ω 7→ z ∈ Y of (3.3) is directionally
differentiable at ω̄ ∈ Y ∗ if and only if the projection operator P∂R(0) : Y ∗ → Y ∗ is
directionally differentiable at ω̄ ∈ Y ∗. If this is the case, then

F ′(ω̄; δω) = V−1(δω − P ′∂R(0)(ω̄; δω)) ∀ δω ∈ Y ∗. (3.7)

Remark 3.5. A criteria for the directional differentiability of F (or equivalently, of
P∂R(0)) is given in Lemma A.1. This is formulated in terms of the polyhedricity of
the set ∂R(0). In Appendix A we give some concrete examples of functionals R, for
which the associated mapping F is directionally diffferentiable.

Theorem 3.6 (Viscous EVIs are non-smooth ODEs in Hilbert space).

1. The viscous problem (EVI) is equivalent to the following ODE

ẏ(t) = F(ϕ(y(t), `(t))) in Y a.e. in (0, T ), (3.8)

where F is given by (3.1) and ` ∈ L2(0, T ;H). If y(0) = 0, then (EVI) admits
a unique solution y ∈ H1

0 (0, T ;Y ) for every right-hand side ` ∈ L2(0, T ;H).
2. The associated solution map S : L2(0, T ;H) 3 ` 7→ y ∈ H1

0 (0, T ;Y ) is direc-
tionally differentiable at ¯̀∈ L2(0, T ;H), if F : Y ∗ → Y or P∂R(0) : Y ∗ → Y ∗

is directionally differentiable at ϕ(ȳ(t), ¯̀(t)) f.a.a. t ∈ (0, T ), where we ab-
breviate ȳ := S(¯̀). Its directional derivative δy := S ′(¯̀; δ`) at ¯̀ in direction
δ` ∈ L2(0, T ;H) is the unique solution of

δ̇y(t) = F ′
(
ϕ(ȳ(t), ¯̀(t));ϕ′(ȳ(t), ¯̀(t))(δy(t), δ`(t))

)
a.e. in (0, T ), δy(0) = 0.

(3.9)

Proof. 1. The first assertion is due to Lemma 3.3. As a result thereof, (EVI) reduces
to

ẏ(t) = g(y(t), t) in Y a.e. in (0, T ),

where g : Y × (0, T ) 3 (η, t) 7→ F(ϕ(η, `(t)) ∈ Y . By the global Lipschitz-continuity
of F and ϕ, we have that g maps L2(0, T ;Y ) to L2(0, T ;Y ). Moreover, g(·, t) is
Lipschitz-continuous f.a.a. t ∈ (0, T ), with Lipschitz-constant independent of t. The
unique solvability of (EVI) with initial condition y(0) = 0, as well as the H1

0 (0, T ;Y )-
regularity, now follows by a contraction argument, see e.g. [10, Thm. 7.2.3].

2. By arguing as in the first part of the proof, we get that for any δ` ∈ L2(0, T ;H),
(3.9) admits a unique solution δy ∈ H1

0 (0, T ;Y ). The Lipschitz continuity and the di-
rectional differentiability of F in combination with the differentiability and Lipschitz-
continuity of ϕ (see Assumption 3.1.3), Gronwall’s inequality and Lebesgue dominated
convergence theorem yield

S(¯̀+ τ δ`)− S(¯̀)

τ
− δy τ↘0−→ 0 in H1(0, T ;Y ) ∀ δ` ∈ L2(0, T ;H).

The proof is now complete.
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4. Application to viscous elasto-plasticity. In this section, we derive strong
stationary optimality conditions for an optimal control problem governed by the fol-
lowing:
For ` : [0, T ] → H−1

D (Ω;Rn), find u : [0, T ] → H1
D(Ω;Rn) and p : [0, T ] → L2(Ω;Q0)

with p(0) = 0 such that

R(η)−R(ṗ(t)) + ε (ṗ(t),η − ṗ(t))L2(Ω;Q) ≥ (C
(
ε(u(t))− p(t)

)
− κp(t),η − ṗ(t))L2(Ω;Q)

∀η ∈ L2(Ω;Q0),

−div
(
C
(
ε(u(t))− p(t)

))
= `(t) in H−1

D (Ω;Rn)
(4.1)

a.e. in (0, T ). The problem (4.1) models quasistatic visco-elasto-plasticity at small
strains with linear kinematic hardening and von Mises yield condition (see for instance
[33, Sec. 2.7] and [29, Chp. 22]; note that we do not consider viscous effects in the
balance of momentum equation). It consists of a viscous evolutionary VI (viscoplastic
flow rule) and an elliptic PDE (balance of momentum). Thus, we can apply our
findings from Section 3 to reduce (4.1) to a system of the type (2.4). Then, by
employing the main result from Section 2, we derive a strong stationary optimality
system for a class of minimization problems governed by (4.1). The section ends with
some remarks and a short comparison with other optimality systems [6, 26].
The quantities in (4.1) are as follows:

• Ω ⊂ Rn, n ∈ {2, 3}, is a bounded domain with Lipschitz boundary Γ. This
consists of two disjoint measurable parts ΓN and ΓD, where ΓD is a relatively
closed set in Γ of positive measure.
• Q := Rn×nsym and Q0 := {η ∈ Q | trace(η) = 0}. By ηD we denote the

deviatoric part of η ∈ Q, i.e., ηD := η − trace(η)
n I, where I is the n × n

identity matrix. The spherical part of η is abbreviated ηS := trace(η)
n I, i.e.,

Q0 = {η ∈ Q |ηS = 0}. Straight-forward computation yields the equality

ηD1 : η2 = ηD1 : ηD2 ∀η1,η2 ∈ Q, (4.2)

which will be frequently used in the sequel. The symbol : denotes the scalar
product which induces the Frobenius norm on Rn×n.

• The functional R : L2(Ω;Q)→ R is given by

R(η) =

{
σ0

∫
Ω
|η| dx if η ∈ L2(Ω;Q0),

∞ otherwise,
(4.3)

where σ0 > 0. Here, | · | denotes the Frobenius norm on Rn×n.
• ε > 0 is the viscosity parameter, while κ > 0 is the hardening constant.
• The fourth-order elasticity tensor C ∈ L∞(Ω;L(Q)) is symmetric, i.e., C(x)η :
ω = η : C(x)ω for all η,ω ∈ Q, a.e. in Ω. Moreover, C is uniformly coercive,
i.e., there is a constant γC > 0 such that

C(x)η : η ≥ γC|η|2 ∀η ∈ Q and f.a.a. x ∈ Ω. (4.4)

• ε(v) = 1
2 (∇v + ∇v>) is the linearized strain tensor and div : L2(Ω;Q) →

H−1
D (Ω;Rn) is the distributional vector-valued divergence, i.e.,

〈div η,v〉 := −
∫

Ω

η : ε(v) dx ∀v ∈ H1
D(Ω;Rn),
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where H1
D(Ω;Rn) := {v ∈ H1(Ω;Rn)|v = 0 on ΓD} and H−1

D (Ω;Rn) :=
H1
D(Ω;Rn)∗.

Throughout this section, we denote vector valued variables by bold-face case letters.
For simplicity, we often make the convention 0

0 = 0.
Lemma 4.1 (Control-to-state map and directional differentiability).

1. The viscoplastic problem (4.1) is equivalent to the following PDE system

ṗ(t) = f(σ(t)− κp(t)) in L2(Ω;Q0), p(0) = 0, (4.5)

−divσ(t) = `(t) in H−1
D (Ω;Rn) a.e. in (0, T ), (4.6)

where we abbreviate σ := C
(
ε(u) − p

)
. Here, f : L2(Ω;Q) → L2(Ω;Q0) is

given by

f(ω) =
1

ε
χ
{|ωD|>σ0}

(
1− σ0

|ωD|

)
ωD, (4.7)

where χ{|ωD|>σ0} : Ω→ {0, 1} stands for the characteristic function of the set
{x ∈ Ω : |ωD(x)| > σ0}. For every ` ∈ L2(0, T ;H−1

D (Ω;Rn)), (4.1) admits a
unique solution (p,u) ∈ H1

0 (0, T ;L2(Ω;Q0))× L2(0, T ;H1
D(Ω;Rn)).

2. The solution map associated to (4.1)

S : L2(0, T ;H−1
D (Ω;Rn)) 3 ` 7→ (p,u) ∈ H1

0 (0, T ;L2(Ω;Q0))×L2(0, T ;H1
D(Ω;Rn))

is directionally differentiable. Its directional derivative (δp, δu) := S′(`; δ`)
at ` ∈ L2(0, T ;H−1

D (Ω;Rn)) in direction δ` ∈ L2(0, T ;H−1
D (Ω;Rn)) is the

unique solution of

δ̇p(t) = f ′(σ(t)− κp(t); δσ(t)− κδp(t)) in L2(Ω;Q0), δp(0) = 0,

−div δσ(t) = δ`(t) in H−1
D (Ω;Rn) a.e. in (0, T ),

(4.8)
where we abbreviate (p,u) := S(`), σ := C(ε(u) − p) and δσ := C

(
ε(δu) −

δp
)
. Here,

f ′(ω; δω) =
1

ε
χ
{|ωD|>σ0}

{( σ0

|ωD|3
ωD : δωD

)
ωD +

(
1− σ0

|ωD|

)
δωD

}
+

1

ε
χ
{|ωD|=σ0,ωD:δωD>0}

( 1

σ2
0

ωD : δωD
)
ωD ∀ω, δω ∈ L2(Ω;Q),

(4.9)
where χ{|ωD|=σ0,ωD:δωD>0} : Ω → {0, 1} is the characteristic function of the
set {x ∈ Ω : |ωD(x)| = σ0,ω

D(x) : δωD(x) > 0}.
Proof. 1. Let us first prove that, for any ω ∈ L2(Ω;Q), it holds P∂R(0)ω = g(ω),
where

g(ω) :=

{
ωS + σ0

|ωD|ω
D a.e. where |ωD| > σ0,

ω a.e. where |ωD| ≤ σ0.
(4.10)

Here, P∂R(0) is the projection operator onto the set ∂R(0) w.r.t. the L2(Ω;Q)− norm.
We observe that

∂R(0) = {µ ∈ L2(Ω;Q)|
∫

Ω

µ : η dx ≤ σ0

∫
Ω

|η| dx ∀η ∈ L2(Ω;Q0)}

= {µ ∈ L2(Ω;Q)| |µD(x)| ≤ σ0 f.a.a. x ∈ Ω},
(4.11)
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as a result of (4.3), the identity µ : η = µD : η (for µ ∈ Q and η ∈ Q0, cf. (4.2)) and
the fundamental lemma of calculus of variations. It is straight forward to verify that
g(ω) ∈ ∂R(0). Moreover, it holds∫
|ωD|>σ0

(
ω − ωS − σ0

|ωD|
ωD
)

:
(
µ− ωS − σ0

|ωD|
ωD
)
dx+

∫
|ωD|≤σ0

(ω − ω) : (µ− ω) dx

=

∫
|ωD|>σ0

(
ωD − σ0

|ωD|
ωD
)

:
(
µD − σ0

|ωD|
ωD
)
dx ≤ 0 ∀µ ∈ ∂R(0),

(4.12)
where we used (4.2) for the equality. The inequality in (4.12) follows by straight
forward computation. Since the projection on ∂R(0) is characterized as the unique
solution of (3.6), we deduce from g(ω) ∈ ∂R(0), (4.10) and (4.12) that

P∂R(0)ω = g(ω) (4.13)

is indeed true.

We now show that the problem (4.1) fits in the setting of (EVI). In view of Korn’s
inequality, the operator div ∈ L(L2(Ω;Q), H−1

D (Ω;Rn)) is invertible, see e.g. [17, Lem.
2.11]. Thus, we can write (4.1) as

R(η)−R(ṗ(t)) + ε (ṗ(t),η − ṗ(t))L2(Ω;Q) ≥ (−div−1 `(t)− κp(t),η − ṗ(t))L2(Ω;Q) ∀η ∈ L2(Ω;Q0),
(4.14)

− div
(
C
(
ε(u(t))− p(t))

)
= `(t) a.e. in (0, T ). (4.15)

Now, with the notations from Section 3, we see that if we set

Y := L2(Ω;Q), H := H−1
D (Ω;Rn), (4.16a)

R := R, V := ε I, ϕ(p, `) := −div−1 `− κp, (4.16b)

then (EVI) coincides with (4.14). Note that ϕ ∈ L(Y ×H;Y ∗) with

ϕ′(p, `)(δp, δ`) = −div−1 δ`− κδp ∀ (p, `), (δp, δ`) ∈ Y ×H. (4.17)

Let now ` ∈ L2(0, T ;H−1
D (Ω;Rn)) be arbitrary, but fixed. Since the quantities in

(4.16) satisfy Assumption 3.1, we can apply Theorem 3.6.1, which yields that (4.14)
is equivalent to

ṗ(t) = F
(
ϕ(p(t), `(t))

)
a.e. in (0, T ),

where F = 1
ε (I − P∂R(0)) = f , by (4.13), (4.10), and (4.7). Moreover, Theorem

3.6.1 tells us that (4.14) admits a unique solution p ∈ H1
0 (0, T ;L2(Ω;Q)) for every

` ∈ L2(0, T ;H−1
D (Ω;Rn)). Note that ṗ(t) ∈ domR = L2(Ω;Q0) a.e. in (0, T ), in

view of (4.3). The linear character of the deviatoric part then yields the Bochner
measurabiliy of ṗ : [0, T ]→ L2(Ω;Q0), and we can conclude p ∈ H1

0 (0, T ;L2(Ω;Q0)).
Further, due to (4.4), we deduce by Lax-Milgram lemma that

− divC
(
ε(u)) = `− divCp in L2(0, T ;H−1

D (Ω;Rn)) (4.18)

admits a unique solution u ∈ L2(0, T ;H1
D(Ω;Rn)). As a consequence, (u,p) satisfies

(4.14)-(4.15). The proof of this step is now complete.
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2. Since f(ω) = 1
ε max

(
1 − σ0

|ωD| , 0
)
ωD for all ω ∈ L2(Ω;Q) (with the convention

f(0) = 0), we can infer from [20, Lem. 2.11] and Lebesgue dominated convergence
theorem that f : L2(Ω;Q) → L2(Ω;Q) is directionally differentiable with derivative
given by (4.9). Note that here we use the Lipschitz continuity of f : Q→ Q, which is
a result of the inequality |f ′(ω; δω)| ≤ L|δω| ∀ω, δω ∈ Q and [4, Cor. 3.2.2., p. 40].
We denote by S1 the first component of the operator S, i.e., S1 : L2(0, T ;H−1

D (Ω;Rn)) 3
` 7→ p ∈ H1

0 (0, T ;L2(Ω;Q0)) is the solution map associated to (4.14). From Theo-
rem 3.6.2 we deduce that S1 is directionally differentiable. Its directional derivative
δp := S′1(`; δ`) at ` in direction δ` is the unique solution of

δ̇p(t) = f ′
(
ϕ(p(t), `(t));ϕ′(p(t), `(t))(δp(t), δ`(t))

)
a.e. in (0, T ), δp(0) = 0,

(4.19)
where p := S1(`). In view of the definition of ϕ (see (4.16)) and (4.17), (4.19) reads

δ̇p(t) = f ′
(
−div−1 `(t)︸ ︷︷ ︸

=σ(t)

−κp(t);−div−1 δ`(t)︸ ︷︷ ︸
=δσ(t)

−κδp(t)
)

a.e. in (0, T ), δp(0) = 0.

(4.20)
Further, from (4.18) we have

S2(`)(t) =
[
− divC

(
ε(·)
)]−1(

`(t)− divCS1(`)(t)
)

a.e. in (0, T ), (4.21)

where S2 is the second component of the operator S, i.e., S2 : L2(0, T ;H−1
D (Ω;Rn)) 3

` 7→ u ∈ L2(0, T ;H1
D(Ω;Rn)). Thus, S2 is directionally differentiable as well, since[

−divC
(
ε(·)
)]−1 ∈ L(H−1

D (Ω;Rn), H1
D(Ω;Rn)) and S1 is directionally differentiable.

Its directional derivative δu := S′2(`; δ`) at ` in direction δ` is given by

δu(t) =
(
− divC

(
ε(·))

)−1(
δ`(t)− divCS′1(`; δ`)(t)

)
a.e. in (0, T ),

as a result of (4.21). This completes the proof.
Next, we want to apply the strong stationarity result from Section 2 on the following
optimal control problem:

min
`∈L2(0,T ;L2(Ω;Rn))

J (p,u, `)

s.t. (p,u) solves (4.1) w.r.h.s. `.

 (Q)

In the sequel, the objective J is supposed to fulfill
Assumption 4.2. The objective J : L2(0, T ;L2(Ω;Q)) × L2(0, T ;H1

D(Ω;Rn)) ×
L2(0, T ;L2(Ω;Rn))→ R is Fréchet-differentiable.
The main result of this section reads as follows.
Theorem 4.3 (Strong stationarity for optimal control of viscous quasistatic elasto-
plasticity). Let ¯̀ ∈ L2(0, T ;L2(Ω;Rn)) be locally optimal for (Q) with associated
states

p̄ ∈ H1
0 (0, T ;L2(Ω;Q0)) and ū ∈ L2(0, T ;H1

D(Ω;Rn)).

Then, there exist unique adjoint states

ξ ∈ H1
T (0, T ;L2(Ω;Q)) and w ∈ L2(0, T ;H1

D(Ω;Rn)),
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and a unique multiplier λ ∈ L2(0, T ;L2(Ω;Q0)) such that the following system is
satisfied

−ξ̇ + C(λ− εw) + κλ = ∂pJ (p̄, ū, ¯̀) in L2(0, T ;L2(Ω;Q)), ξ(T ) = 0,

div
(
C(λ− εw)

)
= ∂uJ (p̄, ū, ¯̀) in L2(0, T ;H−1

D (Ω;Rn)),

}
(4.22a)

λ =
1

ε
χ
{|z̄D|>σ0}

{( σ0

|z̄D|3
z̄D : ξD

)
z̄D +

(
1− σ0

|z̄D|

)
ξD
}

a.e. where |z̄(t, x)D| 6= σ0,

λ(t, x) = θ(t, x)z̄(t, x)D, with

θ(t, x) ∈
[
0,
z̄(t, x)D : ξ(t, x)D

εσ2
0

]
 a.e. where |z̄(t, x)D| = σ0,


(4.22b)

w + ∂`J (p̄, ū, ¯̀) = 0 in L2(0, T ;H1
D(Ω;Rn)), (4.22c)

where we abbreviate z̄ := C
(
ε(ū)− p̄

)
− κp̄.

Proof. We aim to apply the strong stationarity result given by Theorem 2.9 for the
optimal control problem (Q). To this end, we have to check if (Q) fits in the general
setting from Section 2. After that, we verify Assumptions 2.3 and 2.6. Indeed, with
the notations from Section 2, we see that if we set

V := L2(Ω;Rn), Y := L2(Ω;Q), U := H1
D(Ω;Rn), J := J , (4.23a)

f : Y ∗ 3 ω 7→ 1

ε
χ
{|ωD|>σ0}

(
1− σ0

|ωD|

)
ωD ∈ Y, (4.23b)

Φ : Y × U 3 (p,u) 7→ C
(
ε(u)− p

)
− κp ∈ Y ∗, (4.23c)

Ψ : Y × U 3 (p,u) 7→ −div
(
C
(
ε(u)− p

))
∈ U∗, (4.23d)

then (P) coincides with (Q), thanks to Lemma 4.1.1. Notice that V
d
↪→ U∗. The

Lipschitz-continuity and the directional differentiability of f was established in the
proof of Lemma 4.1.2, so that Assumption 2.1.2 is satisfied. Since Φ ∈ L(Y × U ;Y ∗)
and Ψ ∈ L(Y × U ;U∗), Assumption 2.1.3 is fulfilled as well. Thus, the entire As-
sumption 2.1 is satisfied by the quantities in (4.23).
Moreover, by employing again Lemma 4.1.1, we see that Assumption 2.3.1 holds. The
resulting solution operator of (2.4), i.e., S : L2(0, T ;H−1

D (Ω;Rn)) 3 ` 7→ (p,u) ∈
H1

0 (0, T ;L2(Ω;Q0)) × L2(0, T ;H1
D(Ω;Rn)) is directionally differentiable, cf. Lemma

4.1.2. According to the latter, its directional derivative S′(`; δ`) at ` in direction δ`
is the unique solution of (4.8), and thus, of (2.5), whence Assumption 2.3.2 follows.
From (4.8), the Lipschitz-continuity of f , and Gronwall’s lemma, we further deduce
that S : L2(0, T ;U∗) → L2(0, T ;Y × U) is Lipschitz-continuous, which implies that
Assumption 2.3.3 is verified as well, see Remark 2.4. Hence, the entire Assumption
2.3 is true for the setting (4.23).
It remains to check that Assumption 2.6 is guaranteed, i.e., we have to see if the
mapping

∂uΦ(p̄, ū) : L2(0, T ;H1
D(Ω;Rn)) 3 δu 7→ Cε(δu) ∈ L2(0, T ;L2(Ω;Q)) (4.24)

is invertible. To this end, we observe that, by the coercivity of C, cf. (4.4), and
Korn’s inequality, Cε(·) ∈ L(H1

D(Ω;Rn), L2(Ω;Q)) satisfies the condition of Babuška-
Brezzi, and is thus, invertible. Hence, given ζ ∈ L2(0, T ;L2(Ω;Q)), the mapping
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t 7→ δu(t) := (Cε(·))−1(ζ(t)) ∈ H1
D(Ω) is the unique solution of ∂uΦ(p̄, ū)(δu)(t) =

ζ(t) f.a.a. t ∈ (0, T ). Note that δu ∈ L2(0, T ;H1
D(Ω;Rn)). Therefore, Assumption

2.6 is indeed satisfied.
Before applying Theorem 2.9, we compute the adjoints of the partial derivatives of Φ
and Ψ. In the light of Lemma 2.2, the definition of the adjoint, the symmetry of C,
and (4.23c)-(4.23d), these are given by

∂pΦ(p̄, ū)∗ : L2(0, T ;L2(Ω;Q)) 3 η 7→ −Cη − κη ∈ L2(0, T ;L2(Ω;Q)),

∂uΦ(p̄, ū)∗ : L2(0, T ;L2(Ω;Q)) 3 η 7→ −divC(η) ∈ L2(0, T ;H−1
D (Ω;Rn)),

∂pΨ(p̄, ū)∗ : L2(0, T ;H1
D(Ω;Rn)) 3 η 7→ −C(εη) ∈ L2(0, T ;L2(Ω;Q)),

∂uΨ(p̄, ū)∗ : L2(0, T ;H1
D(Ω;Rn)) 3 η 7→ −divC(εη) ∈ L2(0, T ;H−1

D (Ω;Rn)).
(4.25)

Now, Theorem 2.9 in combination with (4.25) tells us that there exist unique adjoint
states ξ ∈ H1(0, T ;L2(Ω;Q)) and w ∈ L2(0, T ;H1

D(Ω;Rn)) and a unique multiplier
λ ∈ L2(0, T ;L2(Ω;Q)) such that

−ξ̇ + C(λ− εw) + κλ = ∂pJ (p̄, ū, ¯̀) in L2(0, T ;L2(Ω;Q)), ξ(T ) = 0, (4.26a)

div
(
C(λ− εw)

)
= ∂uJ (p̄, ū, ¯̀) in L2(0, T ;H−1

D (Ω;Rn)), (4.26b)

(ξ(t), f ′
(
Φ(p̄(t), ū(t));v

)
)L2(Ω;Q) ≥ (λ(t),v)L2(Ω;Q) ∀v ∈ L2(Ω;Q), a.e. in (0, T ),

(4.26c)

w + ∂`J (p̄, ū, ¯̀) = 0 in L2(0, T ;H1
D(Ω;Rn)). (4.26d)

It remains to prove that (4.26c) implies (4.22b). An argument based on the funda-
mental lemma of calculus of variations and the positive homogeneity of the directional
derivative w.r.t. direction implies

ξ(t, x) : f ′(z̄(t, x);v) ≥ λ(t, x) : v ∀v ∈ Q, a.e. in (0, T )× Ω. (4.27)

Here, we recall the abbreviation z̄ := C
(
ε(ū)− p̄

)
−κp̄ and (4.23c), i.e., z̄ = Φ(p̄, ū).

From (4.9) we deduce that f : Q → Q is Gâteaux differentiable on the set {ω ∈ Q :
|ωD| 6= σ0} with derivative

f ′(ω)(δω) =
1

ε
χ
{|ωD|>σ0}

{( σ0

|ωD|3
ωD : δωD

)
ωD +

(
1− σ0

|ωD|

)
δωD

}
∀ δω ∈ Q.

(4.28)
Employing the linearity and the symmetry of the fourth-order tensor f ′(ω) ∈ L(Q,Q)
(for all ω ∈ Q with |ωD| 6= σ0) in (4.27), gives in turn

λ = f ′(z̄)(ξ)

=
1

ε
χ
{|z̄D|>σ0}

{( σ0

|z̄D|3
z̄D : ξD

)
z̄D +

(
1− σ0

|z̄D|

)
ξD
}

a.e. where |z̄(t, x)D| 6= σ0,

(4.29)
where the last equality follows from (4.28).
Now, let us define M := {(t, x) ∈ (0, T )×Ω : |z̄(t, x)D| = σ0} (up to sets of measure
zero). From (4.9) and (4.27) we infer

1

ε
χ
{z̄D:v>0}(t, x)

( 1

σ2
0

z̄(t, x)D : v
)
z̄(t, x)D : ξ(t, x)D ≥ λ(t, x) : v ∀v ∈ Q, a.e. in M,

(4.30)
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where we used (4.2). Here, χ{z̄D:v>0} : (0, T )×Ω→ {0, 1} stands for the characteristic
function of the set {(t, x) ∈ (0, T )× Ω : z̄D(t, x) : v > 0} for any v ∈ Q.

From (4.30) we deduce( 1

εσ2
0

z̄(t, x)D : v
)
z̄(t, x)D : ξ(t, x)D ≥ λ(t, x) : v ∀v ∈ {−z̄(t, x)D}◦, a.e. in M,

i.e.,

λ(t, x)−
( z̄(t, x)D : ξ(t, x)D

εσ2
0

z̄(t, x)D
)
∈ {−z̄(t, x)D}◦◦ a.e. in M.

Therefore, by the bipolar theorem, there exists some α(t, x) ≥ 0 such that

λ(t, x) =
( z̄(t, x)D : ξ(t, x)D

εσ2
0

− α(t, x)
)
z̄(t, x)D a.e. in M. (4.31)

In an analogous way, we also obtain from (4.30) the inclusion

λ(t, x) ∈ {z̄(t, x)D}◦◦ a.e. in M.

By employing again the bipolar theorem, we find some θ(t, x) ≥ 0 such that

λ(t, x) = θ(t, x)z̄(t, x)D a.e. in M. (4.32)

Now, relying on (4.31) and (4.32), |z̄(t, x)D| 6= 0, and the fact that α, θ ≥ 0 a.e. in
M , one has

θ(t, x) ∈
[
0,
z̄(t, x)D : ξ(t, x)D

εσ2
0

]
a.e. in M. (4.33)

Since (4.29), (4.32), and (4.33) are just the relations given in (4.22b), the proof is now
complete. Note that λ(t, x) ∈ Q0 a.e. in (0, T )× Ω, as a direct result of (4.22b).

Remark 4.4. If |z̄(t, x)D| 6= σ0 a.e. in (0, T ) × Ω, then the optimality system in
Theorem 4.3 reduces to the standard KKT-conditions, see (4.29) and Remark 2.12.

The optimality system in Theorem 4.3 is indeed of strong stationary type, as the next
result shows:

Theorem 4.5 (Equivalence between B- and strong stationarity). Assume that ¯̀ ∈
L2(0, T ;L2(Ω;Rn)) together with its states (p̄, ū) ∈ H1

0 (0, T ;L2(Ω;Q0))×L2(0, T ;H1
D(Ω;Rn)),

some adjoint states (ξ,w) ∈ H1
T (0, T ;L2(Ω;Q))× L2(0, T ;H1

D(Ω;Rn)), and a multi-
plier λ ∈ L2(0, T ;L2(Ω;Q0)) satisfy the optimality system (4.22a)–(4.22c). Then, it
also satisfies the variational inequality

∂(p,u)J (p̄, ū, ¯̀)S′(¯̀; δ`) + ∂`J (p̄, ū, ¯̀)δ` ≥ 0 ∀ δ` ∈ L2(0, T ;L2(Ω;Rn)), (4.34)

where S : L2(0, T ;H−1
D (Ω;Rn)) → H1

0 (0, T ;L2(Ω;Q0)) × L2(0, T ;H1
D(Ω;Rn)) is the

solution mapping associated to (4.1), see Lemma 4.1.

Proof. We show the result by means of Theorem 2.11. In the proof of Theorem 4.3, we
have seen that the problem (Q) fits in the setting from Section 2, i.e., Assumptions 2.1
and 2.3 are satisfied for the quantities in (4.23). According to the proof of Theorem
4.3, the system (2.15) coincides with (4.26) in this particular setting, see (4.25). We
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also note that (2.9) is just (4.34). Thus, in view of Theorem 2.11, we only need to
show that (4.22b) implies (4.26c), i.e.,

(ξ(t), f ′
(
z̄(t);v

)
)L2(Ω;Q) ≥ (λ(t),v)L2(Ω;Q) ∀v ∈ L2(Ω;Q), a.e. in (0, T ), (4.35)

where f is given by (4.23b) and z̄ := C
(
ε(ū)− p̄

)
− κp̄.

To this end, let v ∈ L2(Ω;Q) be arbitrary, but fixed. From the first identity in (4.22b),
we know that λ = f ′(z̄)(ξ) a.e. where |z̄(t, x)D| 6= σ0, in view of (4.29). Thus,

λ(t, x) : v(x) = f ′(z̄(t, x))(v(x)) : ξ(t, x) a.e. where |z̄(t, x)D| 6= σ0, (4.36)

where we used again the symmetry of the Gâteaux-derivative of f .
Further, we defineM+ := {(t, x) ∈ (0, T )×Ω : |z̄(t, x)D| = σ0 and z̄(t, x)D : v(x)D >
0} and M− := {(t, x) ∈ (0, T )× Ω : |z̄(t, x)D| = σ0 and z̄(t, x)D : v(x)D ≤ 0} (up to
sets of measure zero). Then, the second identity in (4.22b) yields

λ(t, x) : v(x) = θ(t, x)z̄(t, x)D : v(x)D a.e. where |z̄(t, x)D| = σ0

≤


z̄(t, x)D : ξ(t, x)D

εσ2
0

z̄(t, x)D : v(x)D a.e. in M+

0 a.e. in M−

= f ′(z̄(t, x);v(x)) : ξ(t, x) a.e. where |z̄(t, x)D| = σ0,

(4.37)

in view of (4.9) and (4.2). Now, (4.35) follows from (4.36) and (4.37). Note that,
since Assumption 2.6 is fulfilled, cf. the proof of Theorem 4.3, we have the equivalence
(4.34)⇐⇒ (4.22).
Remark 4.6. An essential information resulting from the strong stationary system
(4.22) is the sign condition

z̄(t, x)D : ξ(t, x)D ≥ 0 a.e. where |z̄(t, x)D| = σ0, (4.38)

which is due to
[
0, z̄(t,x)D:ξ(t,x)D

εσ2
0

]
6= ∅ a.e. where |z̄(t, x)D| = σ0, see (4.22b). This

is crucial for showing the implication (4.22) ⇒ (4.34), which ultimately yields that
(4.22) is indeed of strong stationary type (see (4.37) in the proof of Theorem 4.5).
Let us point out that the condition (4.38) is equivalent to the regularity of a mapping
involving the adjoint state and the non-smooth nonlinearity, see (4.41) below. We
refer here to a similar situation [26, Rem. 6.9].
Remark 4.7. Optimality systems derived by classical regularization techniques often
lack a sign condition for the adjoint state, see e.g. [6, Thm. 4.4] and [36, Thm. 2.4]
(non-smooth PDEs) (eventually along with other information which gets lost in the
limit analysis associated with the regularization, cf. [26, Sec. 4]). This is also the
case when it comes to the optimal control of VIs, see [28]. Generally speaking, a
sign condition for the adjoint state in points (t,x) where the argument of the non-
smoothness f in the state equation, say s̄, is such that f is not differentiable at s̄(t, x)
is what ultimately distiguishes a strong stationary optimality system from very ’good’
optimality systems obtained via regularization, cf. [6, Thm. 4.4, Thm. 4.12] and [26,
Sec. 7.2]. Note that, in our case, the argument of the non-linearity f appearing in the
state equation is z̄, cf. (4.5).
In the remaining of the section, we rewrite (4.22b) in terms of a Clarke subdifferen-
tial and we explain how the sign condition (4.38) is related to the notion of regular
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functions, cf. [32, Def. 7.4.1]. Furthermore, in order to get a better understanding of
(4.22b), we take a look at the one-dimensional case. This will highlight the similarities
between (4.22) and other strong stationary optimality systems, which were derived
for optimal control of a single non-smooth PDE [6,26].

In the sequel, g : R→ R is a mapping defined as

g(z) :=
1

ε
χ
{|z|>σ0}

(
1− σ0

|z|

)
z

and ∂◦g denotes its Clarke subdifferential in the sense of [32, Def. 7.3.4]. Note that,
g : R→ R is the one-dimensional version of f : Q→ Q, cf. (4.7).

Since g is piecewise continuously differentiable, it holds

∂◦g(z) =
[

min{g′−(z), g′+(z)},max{g′−(z), g′+(z)}
]
∀z ∈ R,

by [32, Thm. 7.3.12], see also [26, Eq. (C.3)], where g′+(z) := g′(z; 1) and g′−(z) :=
−g′(z;−1) denote the right- and left-sided derivative of g at z ∈ R, respectively.

It is then straight-forward to see that

∂◦g(z) =


{

1
ε

}
if |z| > σ0

[0, 1
ε ] if |z| = σ0

{0} if |z| < σ0

∀ z ∈ R. (4.39)

Thus, (4.22b) can be equivalently written by means of the Clarke subdifferential of g
as follows:

λ =
( σ0γ

|z̄D|3
z̄D : ξD

)
z̄D +

1

ε
χ
{|z̄D|>σ0}

(
1− σ0

|z̄D|

)
ξD, with

γ(t, x) ∈ ∂◦g(|z̄(t, x)D|) a.e. in (0, T )× Ω,

z̄(t, x)D : ξ(t, x)D ≥ 0 a.e. where |z̄(t, x)D| = σ0,

 (4.40)

where we make the convention 0
0 = 0.

The additional information which one obtains via the direct method introduced in [26],
and which gets lost when passing to the limit in the classical regularization schemes
is the sign condition

z̄(t, x)D : ξ(t, x)D ≥ 0 a.e. where |z̄(t, x)D| = σ0,

or equivalently, the information that the mapping

R 3 z 7→ z̄(t, x)D : ξ(t, x)Dg(z) ∈ R (4.41)

is regular at |z̄(t, x)D| f.a.a. (t, x) ∈ (0, T ) × Ω. This equivalence is due to [26, Lem.
C.1] combined with g′+(σ0) > g′−(σ0) and g′+(z) = g′−(z) for all z ∈ R+ \ {σ0}.
The latter follows from the definition of g by straight-forward computation. Thus,
similarly to [26], our strong stationary optimality conditions imply the regularity of
a mapping involving the adjoint state and the non-smoothness.
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To get a better understanding of (4.40), we take a look at its one-dimensional version.
Recall that g = f , if n = 1, cf. (4.7). Then, the system (4.40) (and thus, (4.22b))
reads

λ(t, x) = γ(t, x)ξ(t, x) a.e. in (0, T )× Ω,

γ(t, x) ∈ ∂◦f(z̄(t, x)) a.e. in (0, T )× Ω,

ξ(t, x) ≥ 0 a.e. where z̄(t, x) = σ0,

ξ(t, x) ≤ 0 a.e. where z̄(t, x) = −σ0,

}
 (4.42)

where we used (4.39) and ∂◦g(z) = ∂◦g(|z|) for all z ∈ R.
Note that the sign condition in (4.42) is equivalent to the fact that the map

R 3 z 7→ ξ(t, x)g(z) ∈ R

is regular at z̄(t, x) f.a.a. (t, x) ∈ (0, T )×Ω, which is again a consequence of [26, Lem.
C.1] combined with g′+(σ0) > g′−(σ0), g′+(−σ0) < g′−(−σ0) and g′+(z) = g′−(z) for all
z ∈ R \ {σ0,−σ0}.
Let us shortly compare the one-dimensional version (4.22a)-(4.42)-(4.22c) with the
strong stationary optimality system [6, (32)]. First, let us point out that in [6], the
state equation is a non-smooth elliptic PDE with non-linearity f = max{0, ·}. If we
insert the relation λ = γξ in our adjoint equation (4.22a), then our strong stationarity
conditions can be written in terms of the adjoint states and γ, instead of λ. To be
more precise, it consists of the same adjoint equation (involving w, ξ and γ), the
gradient equation (4.22c), and

γ(t, x) ∈ ∂◦f(z̄(t, x)) a.e. in (0, T )× Ω,

ξ(t, x) ≥ 0 a.e. where z̄(t, x) = σ0,

ξ(t, x) ≤ 0 a.e. where z̄(t, x) = −σ0.

 (4.43)

We remark that (4.43) resembles [6, (32b)-(32c)]. Similarly to [6, (32)], our optimality
system contains - besides an adjoint equation and a gradient equation - a differential
inclusion in terms of the Clarke subdifferential of the non-smooth mapping and a sign
condition on the adjoint state in points where the argument of the non-smoothness
f , i.e., z̄ (see (4.5)), is such that f is not differentiable there (notice that, in [6], the
argument of f is the state associated to the local optimum and f is not differentiable
at 0). The optimality system (4.22a)-(4.42)-(4.22c) is also consistent with [26, (6.8)].
In view of [26, Rem. 6.9], the relation [26, (6.8b)] can be expressed in a similar way
as (4.42).

Appendix A. Directional differentiability of F (Section 3). In this section,
Assumption 3.1.1-2 is supposed to hold, while F and the projection operator are given
by Definition 3.2.
Lemma A.1. Let ω̄ ∈ Y ∗ be fixed. Assume that the set ∂R(0) ⊂ Y ∗ is polyhedric at
P∂R(0)ω̄ w.r.t. F(ω̄), i.e.,

C(ω̄) ∩ [F(ω̄)]⊥ = C(ω̄) ∩ [F(ω̄)]⊥, (A.1)

where C(ω̄) := R+(∂R(0) − P∂R(0)ω̄) and [F(ω̄)]⊥ := {µ ∈ Y ∗ : 〈µ,F(ω̄)〉Y = 0}.
Then, F : Y ∗ → Y is directionally differentiable at ω̄ with

F ′(ω̄; δω) = V−1(δω − PT (ω̄)δω) ∀ δω ∈ Y ∗, (A.2)
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where T (ω̄) := C(ω̄)∩ [F(ω̄)]⊥ and PT (ω̄)δω is the unique solution of minµ∈T (ω̄) ‖δω−
µ‖V−1 . Moreover, P∂R(0) : Y ∗ → Y ∗ is directionally differentiable at ω̄ as well, with

P ′∂R(0)(ω̄; δω) = PT (ω̄)δω ∀ δω ∈ Y ∗.

Proof. According to Lemma 3.3, the mapping F is the solution operator of (3.3), and
by applying [8, Thm. 2.3], we get that F : Y ∗ → Y is directionally differentiable at
ω̄. Moreover, F ′(ω̄; ·) : Y ∗ 3 δω 7→ δz ∈ Y is the solution operator of the following
elliptic VI

IT (ω̄)◦(η)− IT (ω̄)◦(δz) + 〈Vδz, η − δz〉Y ≥ 〈δω, η − δz〉Y ∀ η ∈ Y.

However, this is again a VI of the type (3.3), since IT (ω̄)◦ satisfies Assumption 3.1.1
(as T (ω̄)◦ ⊂ Y is a non-empty, closed, convex cone). Thus, by Lemma 3.3 combined
with ∂IT (ω̄)◦(0) = T (ω̄)◦◦ = T (ω̄), we have F ′(ω̄; δω) = δz = V−1(δω − PT (ω̄)δω) for
all δω ∈ Y ∗. Notice that here we also used the fact that T (ω̄) ⊂ Y ∗ is a non-empty,
closed, convex cone. Thanks to Theorem 3.4, the proof is now complete. Alternatively,
the assertion of this lemma can be deduced from [15, Thm. 2] and Theorem 3.4.

Some canonical examples. For details regarding polyhedric sets and their
properties, we refer to the contributions [3, 39]. Let us give some examples of func-
tionals R which are often encountered in applications and for which the polyhedricity
of

∂R(0) = {µ ∈ Y ∗| 〈µ, v〉Y ≤ R(v) ∀ v ∈ Y }

is guaranteed. We say that ∂R(0) ⊂ Y ∗ is polyhedric at µ ∈ ∂R(0), if it is polyhedric
at µ ∈ ∂R(0) w.r.t. any η ∈ R+(∂R(0)− µ)

◦
, see [39, Def. 3.1.1]. We also say that

∂R(0) ⊂ Y ∗ is polyhedric, if it is polyhedric at any µ ∈ ∂R(0).

In the sequel, r ≥ 0 is fixed and Ω ⊂ Rn, n ∈ {2, 3}, is a bounded Lipschitz domain.

Example A.1. [Dissipation functional for damage processes, cf. [25, Sec. 4] and [35]]
If Y = L2(Ω) or Y = H1

0 (Ω) and

R(η) =

{
r
∫

Ω
η dx, if η ≥ 0 a.e. in Ω

∞, otherwise
(A.3)

for all η ∈ Y , then F : Y ∗ → Y is directionally differentiable, as we will next see.

If Y = L2(Ω), then

∂R(0) = {µ ∈ L2(Ω)|µ ≤ r a.e. in Ω}

and [3, Prop. 6.33] gives the polyhedricity of ∂R(0) ⊂ Y ∗. The directional differen-
tiability of F follows by Lemma A.1.

Let now Y = H1
0 (Ω). Then,

∂R(0) = {µ ∈ H1
0 (Ω)∗| 〈µ−r, v〉H1

0 (Ω) ≤ 0 ∀ v ∈ H1
0 (Ω) with v ≥ 0 a.e. in Ω} = M◦+{r},

where M := {v ∈ H1
0 (Ω)| v ≥ 0 a.e. in Ω}. It is well-known that M ⊂ Y is polyhedric

(see e.g. [15, 27]), and by [39, Lem. 3.2], we have that ∂R(0) is polyhedric at any
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µ ∈ M◦ ∩ [η]⊥ + {r} w.r.t. any η ∈ M . Here we used the fact that M◦ + {r} is
polyhedric at ζ ∈ M◦ + {r} if and only if M◦ is polyhedric at ζ − r ∈ M◦. Let now
ω̄ ∈ Y ∗ be fixed. From Lemma 3.3 we deduce that F(ω̄) ∈ dom(R) = M . By testing
(3.3) with 0 and F(ω̄), respectively, we get

〈P∂R(0)ω̄ − r,F(ω̄)〉Y = 0. (A.4)

This yields P∂R(0)ω̄ ∈M◦∩ [F(ω̄)]⊥+{r}, where we used ∂R(0) = M◦+{r}. Now we
can apply Lemma A.1, which tells us that F : Y ∗ → Y is directionally differentiable.

Example A.2 (Dissipation functional for sweeping processes [13] and plasticity [20]).
If Y = L2(Ω) and

R(η) = r

∫
Ω

|η| dx ∀ η ∈ Y, (A.5)

then ∂R(0) ⊂ Y ∗ is polyhedric and therefore, F : Y ∗ → Y is directionally differen-
tiable, by Lemma A.1. This is due to

∂R(0) = {µ ∈ L2(Ω)| − r ≤ µ ≤ r a.e. in Ω}

and [3, Prop. 6.33]. The case Y = H1
0 (Ω) is more delicate, since ∂R(0) ⊂ Y ∗ is not

polyhedric, cf. [8, Cor. 3.3]. However, the paper [7] provides conditions that guarantee
the directional differentiability of the solution operator of the classical elliptic VI of the
second kind (i.e., with Y = H1

0 (Ω), R as in (A.5), and V := −4). Such conditions
ensure the directional differentiability of F : Y ∗ → Y , in view of Lemma 3.3.
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