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Semivectorial bilevel programming versus

scalar bilevel programming
With applications to existence theory for semivectorial bilevel optimal

control problems

Stephan Dempe∗ Patrick Mehlitz†

October 9, 2018

We consider an optimistic semivectorial bilevel programming problem in
Banach spaces. The associated lower level multicriterial optimization problem
is assumed to be convex w.r.t. its decision variable. This property implies that
all its weakly e�cient points can be computed applying the weighted-sum-
scalarization technique. Consequently, it is possible to replace the overall
semivectorial bilevel programming problem by means of a standard bilevel
programming problem whose upper level variables comprise the set of suitable
scalarization parameters for the lower level problem. In this note, we consider
the relationship between this surrogate bilevel programming problem and the
original semivectorial bilevel programming problem. As it will be shown, this
is a delicate issue as long as locally optimal solutions are investigated. The
obtained theory is applied in order to derive existence results for semivectorial
bilevel programming problems with not necessarily �nite-dimensional lower
level decision variables. Some regarding examples from bilevel optimal control
are presented.

Keywords: Bilevel programming, Existence theory, Multiobjective optimization, Opti-
mal control
MSC: 49J20, 49J27, 90C29, 90C48

1 Introduction

Semivectorial bilevel optimization problems possess a similar structure as standard bilevel
programming problems, see [Bard, 1998, Dempe, 2002, Shimizu et al., 1997] for an intro-
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duction to hierarchical optimization, apart from the fact that the objective mapping of the
underlying lower level (or follower's) problem is a vector function. This problem class has
been introduced in [Bonnel, 2006, Bonnel and Morgan, 2006]. Noting that the common
notion of a minimizer does not apply to multiobjective programs, the lower level decision
maker has to compute e.g. the set of e�cient or weakly e�cient points for any �xed value
of the upper level (or leader's) variable in general, see [Ehrgott, 2005, Jahn, 2004] for
an introduction to multicriteria optimization. Apart from the general observation that
the lower level decision maker may have multiple goals to optimize, semivectorial bilevel
programming applies to real-world problems connected to electricity markets, see [Alves
and Antunes, 2018] and the references therein, as well as to the modeling of inverse mul-
ticriterial optimization problems. Necessary optimality conditions for �nite-dimensional
semivectorial bilevel optimization problems were investigated in [Dempe et al., 2013, Liu
et al., 2014]. Existence results and necessary optimality conditions for a semivectorial
bilevel optimal control problem of ordinary di�erential equations have been derived in
[Bonnel and Morgan, 2012, 2013]. Algorithms for the numerical solution of semivectorial
bilevel programming problems with fully linear lower level problem can be found in [Ren
and Wang, 2016, Zheng and Wan, 2011].
Supposing that the lower level decision maker has to solve a convex multicriterial opti-

mization problem for any �xed value of the upper level variable, the overall weak Pareto
front can be computed by means of a simple scalarization approach where a weighted sum
of all lower level objective functionals is minimized, see [Ehrgott, 2005]. Interpreting the
scalarization parameters as new upper level variables, the original semivectorial bilevel
programming problem can be transformed into a standard bilevel programming problem.
This idea was investigated in the papers [Bonnel and Morgan, 2012, 2013, Dempe et al.,
2013] where the authors commented on the relation of this surrogate problem to the
original semivectorial bilevel programming problem.
In this note, we will show by means of examples that the results obtained in [Bonnel and

Morgan, 2012, Dempe et al., 2013] are not fully correct. Afterwards, we will amend these
achievements. In order to guarantee applicability to the setting of semivectorial bilevel
optimal control, all investigations will be carried out in the setting of Banach spaces.
Finally, we apply our �ndings in order to study the existence of solutions to certain
semivectorial bilevel programming problems where the lower level decision variable does
not need to be chosen from a �nite-dimensional space. This allows us to infer existence
results for special classes of semivectorial bilevel optimal control problems.
This manuscript is organized as follows: In the remaining part of Section 1, we com-

ment on the notation we exploit in this paper. We introduce the semivectorial bilevel
programming problem of interest as well as its associated surrogate standard bilevel
program in Section 2. Section 3 is dedicated to the study of the relationship between
both hierarchical optimization problems. A theoretical existence result for semivectorial
bilevel programming problems is derived in Section 4. Afterwards, the latter is applied
to derive the existence of optimal solutions for two important classes of semivectorial
bilevel optimal control problems. Finally, we brie�y summarize the obtained results in
Section 5.
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Notation Let us brie�y clarify some notation used in this note.
For some Banach space X , ‖·‖X denotes its norm. Furthermore, UεX (x) represents

the open ε-ball around x ∈ X w.r.t. the norm ‖·‖X . Strong and weak convergence
of a sequence {xl}l∈N ⊂ X to some x̄ ∈ X will be denoted by xl → x̄ and xl ⇀ x̄,
respectively. For a set A ⊂ X , coneA and convA denote the conic hull and the convex
hull of A, respectively.
Let Y be another Banach space and assume that A ⊂ X is closed. A mapping Γ which

assigns to any x ∈ A a subset Γ(x) ⊂ Y is called a set-valued mapping or multifunction
and will be denoted by Γ: A ⇒ Y. The sets de�ned by dom Γ := {x ∈ A |Γ(x) 6= ∅}
and gph Γ := {(x, y) ∈ A × Y | y ∈ Γ(x)} are referred to as domain and graph of Γ,
respectively. Fix some point x̄ ∈ A. The mapping Γ is said to be closed at x̄ if for any
sequences {xl}l∈N ⊂ A and {yl}l∈N ⊂ Y satisfying xl → x̄ and yl → ȳ for some ȳ ∈ Y as
well as yl ∈ Γ(xl) for all l ∈ N, we have ȳ ∈ Γ(x̄). On the other hand, Γ is called lower
semicontinuous at x̄ if for any open set V ⊂ Y satisfying Γ(x̄) ∩ V 6= ∅, there exists
ε > 0 such that Γ(x) ∩ V 6= ∅ is satis�ed for all x ∈ A ∩UεX (x̄). We call Γ closed (lower
semicontinuous) if it is closed (lower semicontinuous) at all points of its domain.
For any two vectors x, y ∈ Rk, x · y denotes their Euclidean inner product. If not

stated otherwise, we equip Rk with the Euclidean norm |·|2. Furthermore, we will exploit
∆k ⊂ Rk to denote the standard simplex in Rk, i.e. we have

∆k :=
{
z ∈ Rk

∣∣∣ z ≥ 0,
∑k

j=1zj = 1
}
.

For a vector function h : X → Rk whose components are denoted by h1, . . . , hk : X → R
and a nonempty set M ⊂ X , let us investigate the multicriterial optimization problem

h1(x)
...

hk(x)

 → “ min ”

x ∈ M.

(MOP)

Due to the presence of multiple objectives in case k ≥ 2, the standard notions of local and
global minimizers are not applicable to (MOP) which is why we used quotation marks
around the min-operator. Instead, weaker notions of e�ciency like optimality in Pareto's
sense have been introduced which characterize whether some point in M is a reasonable
solution of (MOP), see [Ehrgott, 2005, Jahn, 2004]. In this note, we will focus on weak
e�ciency. Recall that a point x̄ ∈M is weakly e�cient for (MOP) if there does not exist
x̂ ∈M which satis�es

hj(x̂) < hj(x̄)

for all j = 1, . . . , k. In order to �nd weakly e�cient points of (MOP), a common approach
is to consider the scalarized optimization problem

z · h(x) → min

x ∈ M
(SOP(z))
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where z ∈ ∆k is a scalarization vector. This approach is known as the weighted-sum-
scalarization or linear scalarization technique. It is well known that any solution of
(SOP(z)) is weakly e�cient for (MOP). Supposing that h1, . . . , hk are convex while M
is convex, for any x̄ ∈ Rn which is weakly e�cient for (MOP), there is some z ∈ ∆k such
that x̄ solves (SOP(z)), see [Ehrgott, 2005, Section 3.1].

2 The problem and its surrogate

For any parameter x ∈ Xad where Xad ⊂ X denotes the set of admissible parameters,
we consider the parametric multicriterial optimization problem

f1(x, y)
...

fk(x, y)

 → “ min
y

”

g(x, y) ∈ K.

(P(x))

Here, the quotation marks emphasize that the minimization has to be interpreted in the
sense of weak e�ciency. The precise standing assumptions on (P(x)) are summarized
below.

Assumption 2.1. For Banach spaces X , Y, and Z, let the mappings f : X × Y → Rk
and g : X × Y → Z be continuous. Here, k ∈ N satis�es k ≥ 2. The components of f
are denoted by f1, . . . , fk : X × Y → R. Furthermore, let K ⊂ Z be a nonempty, closed,
convex cone. For each x ∈ Xad, f1(x, ·), . . . , fk(x, ·) : Y → R are assumed to be convex.
Furthermore, for each x ∈ Xad, g(x, ·) : Y → Z needs to satisfy

g(x, αy + (1− α)y′)− αg(x, y)− (1− α)g(x, y′) ∈ K

for all y, y′ ∈ Y and α ∈ [0, 1], i.e. the mapping g(x, ·) : Y → Z is −K-convex in the
sense of [Jahn, 2004, De�nition 2.4].

By Ψwe : Xad ⇒ Y, we denote the set-valued mapping which assigns to any parameter
x ∈ Xad the set Ψwe(x) ⊂ Y of weakly e�cient points of (P(x)). The superordinate
upper level problem associated with (P(x)) is given by

F (x, y) → min
x,y

x ∈ Xad

y ∈ Ψwe(x).

(SVBPP)

Note that in contrast to a classical bilevel optimization problem where the upper level
objective is only minimized w.r.t. x, we minimize w.r.t. all variables in (SVBPP). This
formulation is related to the so-called optimistic approach of bilevel programming, see
[Dempe, 2002, Zemkoho, 2012]. Below, we postulate the standing assumptions on our
model problem (SVBPP).
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Assumption 2.2. The function F : X × Y → R is continuous and Xad ⊂ X is a
nonempty, closed set.

Next, let us introduce a set-valued mapping Φ: Xad ×∆k ⇒ Y by means of

Φ(x, z) := argmin
y
{z · f(x, y) | g(x, y) ∈ K}

for all x ∈ Xad and z ∈ ∆k. Recall that the set ∆k ⊂ Rk represents the standard simplex
in Rk. Exploiting the postulated convexity properties of (P(x)), we obtain

Ψwe(x) =
⋃

z∈∆k
Φ(x, z)

for any x ∈ Xad. This shows that (SVBPP) is equivalent to

F (x, y) → min
x,y

x ∈ Xad

y ∈
⋃

z∈∆k
Φ(x, z).

Unfortunately, z does not play the role of a variable in the above hierarchical model which
makes its theoretical handling very di�cult. In order to overcome this shortcoming, one
may take a look at the following bilevel programming model:

F (x, y) → min
x,y,z

(x, z) ∈ Xad ×∆k

y ∈ Φ(x, z).

(BPP)

Note that (BPP) is a standard bilevel programming problem since Φ is the solution set
mapping of a scalar parametric optimization problem. Particularly, (BPP) can be dealt
with (w.r.t. optimality conditions, solution algorithms, etc.) using standard techniques
from bilevel programming. This has been done in the �nite- and in�nite-dimensional
setting e.g. in [Bonnel and Morgan, 2012, 2013, Dempe et al., 2013]. For later use, let
us de�ne the feasible set mapping Γ: Xad ⇒ Y of the parametric optimization problem
(P(x)) by means of

Γ(x) := {y ∈ Y | g(x, y) ∈ K} (1)

for any x ∈ Xad. Noting that g(x, ·) : Y → Z is −K-convex and continuous, it is easily
seen that Γ possesses closed and convex images. Furthermore, we will exploit the function
ϕ : Xad ×∆k → R given by

ϕ(x, z) := inf
y
{z · f(x, y) | y ∈ Γ(x)} (2)

for any choice of x ∈ Xad and z ∈ ∆k. Obviously, ϕ is the so-called optimal value
function of the parametric optimization problem

z · f(x, y) → min
y

g(x, y) ∈ K.
(3)
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In [Dempe et al., 2013, Proposition 3.1], the authors postulate that the optimization
problems (SVBPP) and (BPP) are (in a certain sense) equivalent w.r.t. globally and
locally optimal solutions, respectively, provided that the set-valued mapping Φ is closed.
In [Bonnel and Morgan, 2012, Proposition 2], it is claimed that this equivalence holds
without any additional assumption. By means of a simple example, we show now that
these results are not correct in general.

Example 2.3. Let us consider the semivectorial bilevel programming problem

y − x → min
x,y

x ∈ [0, 1]

y ∈ Ψwe(x)

(4)

where Ψwe : R ⇒ R denotes the set-valued mapping which assigns to any x ∈ R the set of
weakly e�cient points associated with

xy

1− y

}
→ “ min

y
”

y ∈ [0, 1].

One can easily check that Ψwe(x) = [0, 1] is valid for all x ∈ [0, 1]. Thus, (x̄, ȳ) := (1, 0)
is the unique globally optimal solution of (4) and there do not exist any other locally
optimal solutions than (x̄, ȳ).
Now, we consider the associated bilevel programming problem (BPP). By de�nition,

∆2 = conv{(1, 0), (0, 1)} is valid. Thus, for any z ∈ ∆2, there is a unique s ∈ [0, 1]
satisfying z = (s, 1 − s). As a consequence, we may consider the scalarized lower level
problem

sxy + (1− s)(1− y) → min
y

y ∈ [0, 1]

for s ∈ [0, 1]. A simple calculation reveals

Φ(x, s, 1− s) =


{0} if s > 1

x+1 ,

[0, 1] if s = 1
x+1 ,

{1} if s < 1
x+1

for all x ∈ [0, 1] and s ∈ [0, 1]. This implies that Φ is closed at all points (x, s, 1 − s)
satisfying x ∈ [0, 1] and s ∈ [0, 1].
Next, we show that (x̂, ŷ, ẑ1, ẑ2) := (1, 1, 0, 1) is a locally optimal solution of

y − x → min
x,y,z

(x, z1, z2) ∈ [0, 1]×∆2

y ∈ Φ(x, z1, z2).

(5)
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Therefore, choose ε := 1
4 and �x an arbitrary feasible point (x, y, z1, z2) of (5) from

an ε-neighborhood (here, w.l.o.g. we choose the supremum norm |·|∞) of (x̂, ŷ, ẑ1, ẑ2).
Supposing that y − x < ŷ − x̂ = 0 is valid, y ∈ (3

4 , 1) must hold true. This leads to
z1 = 1

1+x and z2 = 1− 1
1+x for x ∈ (3

4 , 1]. Thus, we have

|(ẑ1, ẑ2)− (z1, z2)|∞ =
∣∣∣ 1

1+x

∣∣∣ ≥ 1
2 > ε

which contradicts the choice of (x, y, z1, z2).
Hence, (x̂, ŷ, ẑ1, ẑ2) is a locally optimal solution of (5) but (x̂, ŷ) is not a locally optimal

solution of (4).

3 On the relationship between semivectorial bilevel

programming and scalar bilevel programming

In this section, we clarify the precise relationship between (SVBPP) and the associated
bilevel programming problem (BPP). Thereby, we correct the results from [Bonnel and
Morgan, 2012, Dempe et al., 2013]. For that purpose, we �rst introduce a set-valued
mapping Θ: Xad × Y ⇒ Rk given by

Θ(x, y) :=
{
z ∈ ∆k

∣∣∣ y ∈ Φ(x, z)
}

for any choice of x ∈ Xad and y ∈ Y. Observe that dom Θ = gph Ψwe is valid. Further-
more, by linearity of the scalarization and continuity of the Euclidean inner product, the
image sets of Θ are convex and compact, respectively.
First, we take a look at the relationship between globally optimal solutions of (SVBPP)

and (BPP).

Theorem 3.1. 1. Let (x̄, ȳ) ∈ X × Y be a globally optimal solution of (SVBPP).
Then, for each z̄ ∈ Θ(x̄, ȳ), (x̄, ȳ, z̄) is a globally optimal solution of (BPP).

2. Let (x̄, ȳ, z̄) ∈ X × Y ×Rk be a globally optimal solution of (BPP). Then, (x̄, ȳ) is
a globally optimal solution of (SVBPP).

Proof. 1. Since (x̄, ȳ) is globally optimal solution of (SVBPP), we have ȳ ∈ Ψwe(x̄) by
feasibility. Particularly, Θ(x̄, ȳ) is nonempty. Suppose on the contrary that there
exists a scalarization vector z ∈ Θ(x̄, ȳ) such that (x̄, ȳ, z) is not globally optimal
for (BPP). Then, there is a feasible point (x̂, ŷ, ẑ) ∈ X × Y × Rk of (BPP) which
satis�es F (x̂, ŷ) < F (x̄, ȳ). From ẑ ∈ Θ(x̂, ŷ), we deduce ŷ ∈ Ψwe(x̂), i.e. (x̂, ŷ) is
feasible to (SVBPP). This, however, is a contradiction since (x̄, ȳ) solves (SVBPP)
globally.

2. Suppose that (x̄, ȳ) is not a globally optimal solution of (SVBPP). Then, there
exists a feasible point (x̂, ŷ) ∈ X ×Y of (SVBPP) which satis�es F (x̂, ŷ) < F (x̄, ȳ).
From ŷ ∈ Ψwe(x̂), we �nd some ẑ ∈ Θ(x̂, ŷ), i.e. (x̂, ŷ, ẑ) is feasible to (BPP). This,
however, contradicts the assumption that (x̄, ȳ, z̄) solves (BPP) globally.
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Noting that the problems (SVBPP) and (BPP) are inherently nonconvex, the com-
putation of their respective globally optimal solutions is often not possible in numerical
practice. Instead, keeping available numerical methods in mind, locally optimal solutions
are of essential interest. In the following theorem, we compare (SVBPP) and (BPP) w.r.t.
local minimizers. Here, the situation is much more delicate than in Theorem 3.1 where
globally optimal solutions were under consideration.

Theorem 3.2. 1. Let (x̄, ȳ) ∈ X ×Y be a locally optimal solution of (SVBPP). Then,
for each z̄ ∈ Θ(x̄, ȳ), (x̄, ȳ, z̄) is a locally optimal solution of (BPP).

2. Let (x̄, ȳ, z) ∈ X ×Y ×Rk be a locally optimal solution of (BPP) for all z ∈ Θ(x̄, ȳ)
and let Φ be closed at all points from {x̄} × ∆k. Then, (x̄, ȳ) is a locally optimal
solution of (SVBPP).

Proof. 1. The proof of the theorem's �rst assertion parallels the proof of the �rst
statement of Theorem 3.1 and, thus, is omitted.

2. Suppose on the contrary that (x̄, ȳ) is no locally optimal solution of (SVBPP).
Then, we �nd a sequence {(xl, yl)}l∈N ⊂ gph Ψwe ⊂ Xad × Y which converges to
(x̄, ȳ) and satis�es

∀l ∈ N : F (xl, yl) < F (x̄, ȳ). (6)

Since yl ∈ Ψwe(xl) is valid, we �nd a vector zl ∈ Θ(xl, yl) for all l ∈ N. Noting that
∆k is compact, {zl}l∈N ⊂ ∆k converges w.l.o.g. to some ẑ ∈ ∆k (otherwise, choose
an appropriate subsequence). By de�nition of Θ and Φ, we obtain yl ∈ Φ(xl, zl) for
all l ∈ N. Exploiting the closedness of Φ at (x̄, z̄), ȳ ∈ Φ(x̄, ẑ) is obtained. Hence,
(x̄, ȳ, ẑ) is feasible to (BPP). However, recalling (6), (x̄, ȳ, ẑ) is no local minimizer
of (BPP). This contradicts the theorem's assumptions.

Putting aside the closedness of Φ which can be ensured by standard assumptions, see
Lemma 3.7, the second assertion of the above theorem means that, in order to check
whether a given feasible point of (SVBPP) is a locally optimal solution of the latter, one
has to verify that all the associated feasible points of (BPP) are local minimizers of the
surrogate standard bilevel programming problem. By de�nition of Θ, in�nitely many
such points may exist in most of the practically relevant situations.
Below, we comment on the assumptions which appear in the second assertion of The-

orem 3.2 and are, obviously, violated in the setting of Example 2.3. Our �rst example
visualizes that there may exist situations, where precisely one scalarization parameter
ẑ ∈ Θ(x̄, ȳ) exists such that (x̄, ȳ, ẑ) is no local minimizer of (BPP).

Example 3.3. We consider the same semivectorial bilevel programming problem as in
Example 2.3 at (x̄, ȳ) := (1, 1). One can easily check

Θ(x̄, ȳ) = conv
{

(0, 1), (1
2 ,

1
2)
}
.

Similar as in Example 2.3 it can be shown that for any s ∈ [0, 1
2), (x̄, ȳ, s, 1 − s) is

a locally optimal solution of the associated scalar bilevel programming problem (BPP)
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given in (5). However, the point (x̄, ȳ, 1
2 ,

1
2) is no locally optimal solution of (5) since

the sequence {(1, 1− 1
l ,

1
2 ,

1
2)}l∈N converges to (x̄, ȳ, 1

2 ,
1
2) but each point of it possesses a

better objective value than (x̄, ȳ, 1
2 ,

1
2).

Particularly, there is only one point in the in�nite set Θ(x̄, ȳ) where the assumptions
of Theorem 3.2 are violated. However, (x̄, ȳ) is no local minimizer of the semivectorial
bilevel programming problem (4).

Supposing that Θ is at most singleton-valued, the technical assumptions associated
with the second assertion of Theorem 3.2 reduce to the closedness of Φ which, as we
will see in Lemma 3.7, follows from standard constraint quali�cations. However, even in
the case where f1(x, ·), . . . , fk(x, ·) : Y → R are strictly convex functions for all x ∈ Xad,
which implies the set Φ(x, z) to be either empty or a singleton for any x ∈ Xad and
z ∈ ∆k, Θ does not need to possess this property.

Example 3.4. We investigate the semivectorial bilevel programming problem

−x− y → min
x,y

x ∈ [−1, 1]

y ∈ Ψwe(x)

(7)

where Ψwe : [−1, 1] ⇒ R is the multifunction which assigns to any x ∈ R the set of all
weakly e�cient points of the parametric bicriterial optimization problem

(y + 1)2

(y − 1)2

}
→ “ min

y
”

y ∈ [−1, 1]

xy ≥ 0.

One easily calculates

Ψwe(x) =


[−1, 0] if x ∈ [−1, 0),

[−1, 1] if x = 0,

[0, 1] if x ∈ (0, 1]

for all x ∈ [−1, 1]. Thus, (x̄, ȳ) := (1, 1) solves (7) while there do not exist any locally
optimal solutions di�erent from (x̄, ȳ).
On the other hand, we obtain

Φ(x, s, 1− s) =


{min{1− 2s; 0}} if x ∈ [−1, 0),

{1− 2s} if x = 0,

{max{1− 2s; 0}} if x ∈ (0, 1]

for any x ∈ [−1, 1] and s ∈ [0, 1]. Obviously, Φ is closed at all points from {1} × ∆2.
Note that Φ is singleton-valued, but the same does not hold true for Θ: one easily obtains
e.g.

Θ(1, 0) = conv
{

(1
2 ,

1
2), (1, 0)

}
.

9



Furthermore, (1, 0, s, 1 − s) is a locally optimal solution of the associated scalar bilevel
programming problem for any s ∈ (1

2 , 1] while (1, 0) is no local minimizer of (7). This
can be easily checked using similar arguments as in Examples 2.3 and 3.3.

Finally, we would like to comment on the postulated closedness assumption appearing
in Theorem 3.2. In this regard, the following lemma might be of interest.

Lemma 3.5. Fix x̄ ∈ Xad and assume that Φ is closed at all points from {x̄} × ∆k.
Then, Ψwe is closed at x̄.

Proof. Let {xl}l∈N ⊂ Xad and {yl}l∈N ⊂ Y be sequences such that xl → x̄ holds true
while we have yl ∈ Ψwe(xl) for all l ∈ N. Furthermore, assume that there is ȳ ∈ Y such
that yl → ȳ holds true. Clearly, there is a sequence {zl}l∈N ⊂ ∆k such that yl ∈ Φ(xl, zl)
is satis�ed for all l ∈ N. Observing that ∆k is compact, we may assume w.l.o.g. that
zl → z̄ holds true for some z̄ ∈ ∆k. Recalling that Φ is closed at (x̄, z̄), ȳ ∈ Φ(x̄, z̄)
follows. This yields ȳ ∈ Ψwe(x̄), i.e. Ψwe is closed at x̄.

One can easily check that the converse statement of Lemma 3.5 is not generally true.

Example 3.6. For the set Xad := [0, 1], we consider the parametric bicriterial optimiza-
tion problem

y

−y

}
→ “ min

y
”

y ∈ [0, 1]

xy ≤ 0.

(8)

Clearly, we have

Ψwe(x) =

{
[0, 1] if x = 0,

{0} if x ∈ (0, 1]

for all x ∈ [0, 1] and, thus, Ψwe is closed everywhere on its domain. On the other hand,
a simple calculation shows

Φ(x, s, 1− s) =


{1} if x = 0, s ∈ [0, 1

2),

[0, 1] if x = 0, s = 1
2 ,

{0} if x = 0, s ∈ (1
2 , 1],

{0} if x ∈ (0, 1], s ∈ [0, 1]

and this mapping is not closed at the point (x̄, z̄1, z̄2) := (0, 0, 1). In order to see
this, consider the sequence {(1

l , 0, 1, 0)}l∈N ⊂ gph Φ and observe that it converges to
(x̄, z̄1, z̄2, 0) /∈ gph Φ.

Recall that gph Ψwe ⊂ Xad × Y holds by de�nition. Noting that the semivectorial
bilevel programming problem (SVBPP) is equivalent to

F (x, y) → min
x,y

(x, y) ∈ gph Ψwe,
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the closedness of gph Ψwe (amongst overs) needs to be guaranteed in order to derive
existence results for (SVBPP). Exploiting Lemma 3.5, the closedness of gph Ψwe follows
from the closedness of gph Φ. This justi�es the closedness assumption in Theorem 3.2.
Observing that Φ is the solution set mapping of a scalar parametric optimization problem,
one could use standard results, see e.g. [Bank et al., 1983], in order to infer its closedness.
In the lemma below, a su�cient condition for the closedness of Φ is presented. In this
regard, recall that Γ de�ned in (1) is the lower level feasible set mapping while the
function ϕ is given in (2).

Lemma 3.7. Let g be continuously Fréchet di�erentiable and �x x̄ ∈ Xad. If for each
y ∈ Γ(x̄), the constraint quali�cation

g′y(x̄, y)[Y]− cone(K − {g(x̄, y)}) = Z (9)

is valid, then the following assertions hold:

(i) Γ is lower semicontinuous at x̄,

(ii) ϕ is upper semicontinuous at all points from {x̄} ×∆k, and

(iii) Φ is closed at all points from {x̄} ×∆k.

Proof. (i) Suppose on the contrary that Γ is not lower semicontinuous at x̄. Then,
there exist δ > 0, a sequence {xl}l∈N ⊂ Xad converging to x̄, and some ȳ ∈ Γ(x̄)
such that Γ(xl) ∩ UδY(ȳ) is empty for all l ∈ N. This shows

inf
yl∈Γ(xl)

‖ȳ − yl‖Y ≥ δ (10)

for all l ∈ N. Due to the validity of the postulated constraint quali�cation, we can
exploit [Robinson, 1976, Theorem 1] in order to �nd constants ε > 0, γ > 0, and
c > 0 such that

inf
y′∈Γ(x)

∥∥y − y′∥∥Y ≤ c inf
z∈K
‖g(x, y)− z‖Z

holds for all x ∈ UεX (x̄) and y ∈ UγY(ȳ). Particularly, Γ(x) is nonempty for all
x ∈ Xad ∩ UεX (x̄). The above result implies that

inf
yl∈Γ(xl)

‖ȳ − yl‖Y ≤ c inf
z∈K
‖g(xl, ȳ)− z‖Z ≤ c ‖g(xl, ȳ)− g(x̄, ȳ)‖Z

is valid for su�ciently large l ∈ N, where the last inequality follows from ȳ ∈ Γ(x̄).
Observing that g is continuous, this, however, contradicts (10). Thus, Γ is lower
semicontinuous at x̄.

(ii) Noting that the mapping X × Y ×∆k 3 (x, y, z) 7→ z · f(x, y) ∈ R is continuous,
we can invoke [Bank et al., 1983, Theorem 4.2.2] in order to see that ϕ is upper
semicontinuous at all points from {x̄} × ∆k since Γ is lower semicontinuous at x̄
due to the lemma's �rst assertion.
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(iii) Since the continuity of g implies the closedness of Γ at x̄, it is possible to apply
[Bank et al., 1983, Theorem 4.2.1] in order to deduce the lemma's �nal assertion
from the �rst two.

Below, we comment on the constraint quali�cation (9) which has been exploited in the
above lemma.

Remark 3.8. In the context of programming in Banach spaces, condition (9) is referred
to as Robinson's constraint quali�cation. It has been utilized by Robinson in [Robinson,
1976] in order to characterize the stability properties of parameterized constraint systems.
Furthermore, it has been used by Kurcyusz and Zowe to guarantee the existence of La-
grange multipliers at locally optimal solutions of optimization problems in Banach spaces,
see [Zowe and Kurcyusz, 1979]. More information on Robinson's constraint quali�cation
including equivalent formulations and its applications can be found in the monograph
[Bonnans and Shapiro, 2000]. Particularly, (9) equals the Mangasarian-Fromovitz con-
straint quali�cation in the setting of standard nonlinear bilevel programming, i.e. when
X := Rn, Y := Rm, Z := Rp, and K := {z ∈ Rp | z ≤ 0} hold.

4 Existence of solutions in semivectorial bilevel programming

In this section, we investigate the existence of optimal solutions to (SVBPP). Keeping
Lemma 3.5, the associated remarks, and Weierstraÿ' classical theorem in mind, this task
is not challenging whenever the spaces X and Y are �nite-dimensional. The in�nite-
dimensional situation, unfortunately, is far more di�cult to handle due to two observa-
tions: First, in order to guarantee the existence of solutions to optimization problems in
Banach spaces, one needs to ensure that their feasible sets are weakly sequentially closed
which is often guaranteed via convexity assumptions. Recalling e.g. Examples 2.3, 3.4
and 3.6, it is, however, not realistic to assume the convexity of gph Ψwe. In bilevel opti-
mal control, it is a standard trick to exploit the uniqueness of the lower level solution for
�xed parameter and certain continuity properties of the associated solution operator in
order to infer the existence of solutions, see [Dempe et al., 2018, Harder and Wachsmuth,
2018]. The mapping Ψwe, however, assigns to any x ∈ Xad the set of all weakly e�cient
points of the multicriterial optimization problem (P(x)) which is not a singleton in all
practically relevant situations. This is the second di�culty we have to face.
Recall that due to Theorem 3.1, one could infer the existence of optimal solutions to

(SVBPP) from the existence of optimal solutions to the standard bilevel program (BPP).
Thus, noting that the solution mapping Φ of the scalarized lower level problem might be
single-valued under appropriate assumptions although Ψwe is not, Theorem 3.1 opens a
way to the investigation of the existence of optimal solutions to (SVBPP). This observa-
tion has been used in [Bonnel and Morgan, 2012] in order to study special semivectorial
bilevel optimal control problems of ordinary di�erential equations. However, in order
to carry out a similar analysis to address (SVBPP), one needs to assume that all the
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lower level objective functionals f1(x, ·), . . . , fk(x, ·) : Y → R are strictly convex for each
x ∈ Xad. Such an assumption might by too restrictive in many real-world applications.
Here, we are going to provide conditions which guarantee that gph Φ ⊂ Xad ×∆k ×Y

is weakly sequentially compact. Such an approach has been used in [Holler et al., 2018]
to derive an existence result for a parameter learning model which is a bilevel optimal
control problems with not necessarily unique lower level solution. The weak sequential
compactness of gph Φ allows us to infer the existence of an optimal solution to (BPP)
and, keeping Theorem 3.1 in mind, to (SVBPP).
In this section, we �rst derive a theoretical existence result for (SVBPP) where the

lower level decision space Y is not necessarily �nite-dimensional. Afterwards, we apply
our �ndings to two prominent classes of semivectorial bilevel optimal control problems,
namely so-called simple semivectorial bilevel optimal control problems and inverse mul-
ticriterial optimal control problems.

4.1 Theoretical investigations

Besides Assumptions 2.1 and 2.2, let us postulate the following:

Assumption 4.1. Let X be �nite-dimensional and Y be re�exive. We assume that F
as well as f1, . . . , fk are weakly sequentially lower semicontinuous. Let Xad be compact.
For any x ∈ Xad, the set Γ(x) is supposed to be nonempty. Finally, let Γ be lower
semicontinuous on Xad and let gph Γ ⊂ Xad × Y be weakly sequentially compact.

Clearly, the demanded weak sequential lower semicontinuity of F as well as f1, . . . , fk
is inherent whenever these functionals are fully convex (since they are postulated to be
continuous). The lower semicontinuity of Γ on Xad can be guaranteed if Robinson's con-
straint quali�cation is satis�ed at all points from gph Γ, see Lemma 3.7 and Remark 3.8,
or if Γ is constant. If the mapping g is fully −K-convex, then it can be shown that gph Γ
is convex and, due to the continuity of g, closed as well. This would ensure the weak
sequential closedness of gph Γ.
In the lemmas below, we list some consequences of the postulated assumptions. For

brevity, we introduce ` : X × Y ×∆k → R by means of

`(x, y, z) := z · f(x, y)

for any x ∈ X , y ∈ Y, and z ∈ ∆k.

Lemma 4.2. The functional ` is weakly sequentially lower semicontinuous.

Proof. Let us choose sequences {xl}l∈N ⊂ X , {yl}l∈N ⊂ Y, and {zl}l∈N ⊂ ∆k such that
xl → x̄, yl ⇀ ȳ, as well as zl → z̄ hold true for points x̄ ∈ X , ȳ ∈ Y, and z̄ ∈ ∆k (note

that X and Rk are �nite-dimensional). We de�ne a vector α ∈ Rk by means of

αj := lim inf
l→∞

fj(xl, yl)
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for all j = 1, . . . , k. Noting that f possesses only �nitely many components, there exists
a subsequence {yls}s∈N of {yl}l∈N which satis�es

α = lim
s→∞

f(xls , yls).

Recalling that the mappings f1, . . . , fk are weakly sequentially lower semicontinuous while
the components of z̄ are nonnegative, we obtain

lim inf
l→∞

`(xl, yl, zl) = lim
s→∞

`(xls , yls , zls)

= lim
s→∞

zls · f(xls , yls)

= z̄ · α ≥ z̄ · f(x̄, ȳ) = `(x̄, ȳ, z̄)

which shows the claim.

Lemma 4.3. The mapping Φ possesses nonempty images on its domain Xad ×∆k.

Proof. First, we note that for �xed parameters x ∈ Xad and z ∈ ∆k, the functional
Y 3 y 7→ `(x, y, z) ∈ R is weakly sequentially lower semicontinuous by means of
Lemma 4.2. Furthermore, for �xed x ∈ Xad, the lower level feasible set Γ(x) is nonempty,
convex, as well as bounded. The latter follows since gph Γ is assumed to be weakly se-
quentially compact and, thus, bounded. Now, the re�exivity of Y guarantees that Γ(x) is
weakly sequentially compact. As a consequence, standard arguments show that Φ(x, z)
is nonempty.

Lemma 4.4. The mapping Φ possesses the following property: Let {xl}l∈N ⊂ Xad,
{yl}l∈N ⊂ Y, as well as {zl}l∈N ⊂ ∆k be sequences which satisfy xl → x̄ as well as zl → z̄
for points x̄ ∈ Xad as well as z̄ ∈ ∆k, and yl ∈ Φ(xl, zl) for all l ∈ N. Then, there exists
ȳ ∈ Φ(x̄, z̄) such that yl ⇀ ȳ holds at least along a subsequence.
Particularly, the set gph Φ ⊂ Xad ×∆k × Y is weakly sequentially compact.

Proof. Noting that Γ is lower semicontinuous on Xad while ` is continuous, the function
ϕ, which is the optimal value function of the parametric optimization problem (3), is
upper semicontinuous by means of [Bank et al., 1983, Theorem 4.2.2], see Lemma 3.7 as
well.
Choose sequences {xl}l∈N ⊂ Xad, {yl}l∈N ⊂ Y, and {zl}l∈N ⊂ ∆k satisfying xl → x̄

and zl → z̄ for some x̄ ∈ Xad and z̄ ∈ ∆k as well as yl ∈ Φ(xl, zl) for all l ∈ N.
Recalling that gph Γ is assumed to be bounded,

⋃
l∈N Γ(xl) is bounded as well. Thus,

{yl}l∈N is bounded and, since Y is re�exive, possesses a weakly convergent subsequence
(without relabeling) whose weak limit point will be denoted by ȳ ∈ Y. It remains to
show ȳ ∈ Φ(x̄, z̄).
From (xl, yl) ∈ gph Γ for all l ∈ N and the postulated weak sequential compactness of

the latter set, we particularly infer (x̄, ȳ) ∈ gph Γ, i.e. ȳ ∈ Γ(x̄) holds. By de�nition of
ϕ, the weak lower semicontinuity of ` (see Lemma 4.2), and upper semicontinuity of ϕ,
we obtain

ϕ(x̄, z̄) ≤ `(x̄, ȳ, z̄) ≤ lim inf
l→∞

`(xl, yl, zl) = lim inf
l→∞

ϕ(xl, zl) ≤ lim sup
l→∞

ϕ(xl, zl) ≤ ϕ(x̄, z̄).
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This yields ϕ(x̄, z̄) = `(x̄, ȳ, z̄), i.e. ȳ ∈ Φ(x̄, z̄). Particularly, this shows that gph Φ is
weakly sequentially closed since Xad and ∆k are closed, respectively.
Clearly, we have

gph Φ ⊂ Xad ×∆k ×

 ⋃
x∈Xad

Γ(x)

 ,

and the latter is bounded since gph Γ is bounded. Thus, gph Φ is a weakly sequentially
closed and bounded set. Consequently, it is weakly sequentially compact. This completes
the proof.

Combining the above lemmas, the following theorem is obtained.

Theorem 4.5. Under the postulated assumptions, (SVBPP) possesses an optimal solu-
tion.

Proof. We note that (BPP) is equivalent to

F (x, y) → min
x,y,z

(x, z, y) ∈ gph Φ.

The objective functional of this program is assumed to weakly sequentially lower semi-
continuous. Furthermore, its feasible set is nonempty by Lemma 4.3 and weakly se-
quentially compact by Lemma 4.4. Particularly, (BPP) possesses an optimal solution.
Applying Theorem 3.1, (SVBPP) possesses an optimal solution as well. This completes
the proof.

4.2 Examples from bilevel optimal control

Let Ω ⊂ Rd be a bounded domain and consider the associated space L2(Ω) of all (equiva-
lence classes) of (Lebesgue) measurable functions whose square is (Lebesgue) integrable.
Furthermore, let S : L2(Ω) → D be a so-called control-to-observation-operator which as-
signs to any control in L2(Ω) the (uniquely determined) solution of a given ordinary or
partial di�erential equations and transfers it to the observation space D which is assumed
to be a Hilbert space. In optimal control, one often aims to �nd a control function within
a set of feasible controls such that e.g.

(i) the resulting state approximates a given target yd ∈ D as good as possible,

(ii) the overall control e�ort is minimal, or

(iii) the chosen control is sparse, i.e. it vanishes in most parts of Ω,

see [Hinze et al., 2009, Tröltzsch, 2009] for an introduction to optimal control of partial
di�erential equations and Stadler [2007] where (iii) is promoted via an L1-cost term w.r.t.
the control. It is not di�cult to imagine that the above goals are con�icting. However,
in standard optimal control, these candidates for possible objectives are ranked by some
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(�xed) weights and their sum is minimized. In order to �nd a good compromise, it
seems to be a nearby idea to consider a multicriterial optimal control problem instead.
A satisfying overview of existing literature regarding multiobjective optimal control is
given in Peitz and Dellnitz [2018].
In order to stay close to standard notation, the control function (which will be the

lower level variable in our context) will be denoted by u. Furthermore, it is assumed that
S is linear and continuous.

Simple semivectorial bilevel optimal control Let Uad ⊂ L2(Ω) denote the set of feasible
controls and assume that Uad is nonempty, bounded, and convex. A typical choice is given
by

Uad :=
{
u ∈ L2(Ω)

∣∣ua ≤ u ≤ ub a.e. on Ω
}

(11)

where ua, ub ∈ L2(Ω) satisfying ua < ub almost everywhere on Ω are �xed. Now, consider
the multicriterial optimal control problem

1
2 ‖Su− yd‖

2
D

1
2 ‖u‖

2
L2(Ω)

‖u‖L1(Ω)

 → “ min ”

u ∈ Uad.

(12)

Note that the objective functionals in (12) correspond to the goals (i), (ii), and (iii) listed
above. The functional L2(Ω) 3 u 7→ ‖u‖L1(Ω) ∈ R is continuous due to the postulated

boundedness of Ω. Let Ψwe ⊂ L2(Ω) denote the set of weakly e�cient points associated
with (12). Clearly, Ψwe is not a singleton. Thus, in order to identify reasonable weakly
e�cient points of (12), one might consider the superordinate optimization problem

J (u) → min

u ∈ Ψwe

(SSVBOC)

where J : L2(Ω)→ R is convex and continuous. A related problem is studied in [Bonnel
and Kaya, 2010].
Noting that the data in (12) is convex while (SSVBOC) possesses a convex objective

functional, (SSVBOC) seems to be related to the so-called simple convex bilevel program-
ming problem (SCBPP for short), see e.g. [Dempe et al., 2010, Franke et al., 2018]. That
is why we call (SSVBOC) the simple semivectorial bilevel optimal control problem. How-
ever, it has to be noted that in contrast to SCBPP, were a convex functional is minimized
over the solution set of a scalar convex optimization program, (SSVBOC) is not a convex
program since Ψwe is not convex in general. Thus, one cannot apply standard results in
order to infer the existence of an optimal solution.
It is possible to interpret (SSVBOC) as a particular instance of (SVBPP) where the

upper level variable x simply vanishes (the set of feasible parameters Xad may, therefore,
be imagined as a singleton). The resulting scalarized bilevel optimal control problem is
related to the model problems studied in [Harder and Wachsmuth, 2018, Holler et al.,
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2018]. One can easily check that the Assumptions 2.1, 2.2 and 4.1 hold for (SSVBOC).
Thus, we can exploit Theorem 4.5 in order to obtain the following result.

Theorem 4.6. Under the postulated assumptions, (SSVBOC) possesses an optimal so-
lution.

Inverse multiobjective optimal control Let us assume that uo ∈ L2(Ω) is a given
weakly e�cient point of the multiobjective optimal control problem (12) where the precise
problem data, in particular the desired state yd and the set of feasible controls Uad, is
unknown and shall be reconstructed. Thus, we have to consider (12) where yd and Uad
depend from a parameter p ∈ P where P ⊂ Rn is a nonempty and compact set. More
precisely, for any �xed value of the parameter p ∈ P , the multicriterial optimal control
problem

1
2 ‖Su− Tp‖2D

1
2 ‖u‖

2
L2(Ω)

‖u‖L1(Ω)

 → “ min
u

”

u ∈ Uad(p)

(MOC(p))

is considered where T : Rn → D is an a�ne and continuous operator while the set-valued
mapping Uad : P ⇒ L2(Ω) possesses nonempty, bounded, and convex images. A typical
choice for the operator T would be given by

Tp :=
n∑
i=1

piv
i

for all p ∈ Rn where v1, . . . , vn ∈ D are given form functions. Let Ψwe : P ⇒ L2(Ω)
be the set-valued mapping which assigns to any p ∈ P the set of weakly e�cient points
associated with (MOC(p)). We consider the superordinate inverse multiobjective optimal
control problem

1
2 ‖u− uo‖

2
L2(Ω) → min

p,u

p ∈ P

u ∈ Ψwe(p).

(IMOC)

Thus, we want to identify those parameters p ∈ P for which uo is (close to) a weakly
e�cient point of (MOC(p)). Once more, we apply Theorem 4.5 in order to infer the
following existence result.

Theorem 4.7. In addition to the above assumptions, assume that Uad is lower semicon-
tinuous. Furthermore, let gphUad ⊂ P × L2(Ω) be weakly sequentially compact. Then,
(IMOC) possesses an optimal solution.
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Clearly, all these assumptions on the set-valued mapping Uad hold whenever it is
constant. Below, a nontrivial example is presented where all the assumptions from The-
orem 4.7 hold. It represents the situation where the upper bound in the de�nition of the
set of feasible controls (11) is unknown. The example can be extended to the related cases
where only the lower bound or both bounds are unknown doing some obvious changes.

Example 4.8. Let {Ωi}ni=1 be a disjoint partition of Ω, let ua, ub ∈ L2(Ω) be functions
satisfying ua < ub almost everywhere on Ω, let P be convex, and assume that we have
P ⊂ {p ∈ Rn | p ≥ 0}. For each p ∈ P , assume that Uad(p) is given by

Uad(p) :=

{
u ∈ L2(Ω)

∣∣∣∣∣ua ≤ u ≤ ub +
n∑
i=1

piχΩi a.e. on Ω

}
.

Here, for a measurable set A ⊂ Ω, χA : Ω → R denotes the characteristic function of A
which equals 1 on A and vanishes otherwise.
Due to the convexity of P , one can easily check that the graph of Uad : P ⇒ L2(Ω)

is convex. Moreover the compactness of P ensures that gphUad is bounded and closed.
Particularly, gphUad is weakly sequentially compact.
It remains to show that the set-valued mapping Uad is lower semicontinuous. Therefore,

choose a pair (p̄, ū) ∈ gphUad as well as ε > 0 arbitrarily and �x p̂ ∈ P ∩UδRn(p̄) for some
δ > 0 which will be speci�ed below. Now, we de�ne a function û ∈ Uad(p̂) as follows:
Fix i ∈ {1, . . . , n}. If p̂i ≥ p̄i holds, set û(ω) := ū(ω) for all ω ∈ Ωi. Supposing that
p̂i < p̄i holds true and considering ω ∈ Ωi, we distinguish two cases. If ū(ω) ≤ ub(ω) + p̂i
is valid, we set û(ω) := ū(ω). Otherwise, û(ω) := ub(ω) + p̂i is �xed. By de�nition, we
obtain

‖û− ū‖2L2(Ω) =

n∑
i=1

∫
Ωi

(û(ω)− ū(ω))2dω

≤
∑

i : p̂i<p̄i

∫
Ωi

(ub(ω) + p̂i − ū(ω))2dω

≤
∑

i : p̂i<p̄i

|Ωi|(p̂i − p̄i)2

≤ C |p̂− p̄|22 < Cδ2

for the constant C := max{|Ω1|, . . . , |Ωn|}. Here, |A| denotes the (Lebesgue) measure of
a (Lebesgue) measurable set A ⊂ Ω. Thus, choosing δ := ε/

√
C, û ∈ Uad(p̂) ∩ UεL2(Ω)(ū)

follows. This shows the lower semicontinuity of Uad.

5 Concluding remarks

In this note, we investigated the relationship between a semivectorial bilevel program-
ming (SVBPP) and an associated scalar bilevel programming problem (BPP) which is
constructed by applying the weighted-sum-scalarization technique to the multiobjective
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lower level problem of (SVBPP). It has been shown that this relation is nonhazardous
when globally optimal solutions are under consideration, while the investigation of locally
optimal solutions is somehow delicate. By means of examples, we illustrated the necessity
of the assumptions which are needed in order to guarantee that locally optimal solutions
of (BPP) correspond to locally optimal solutions of (SVBPP). Thereby, we pointed
out and clari�ed some inconsistencies in the literature. As in [Dempe and Dutta, 2010],
where the Karush-Kuhn-Tucker reformulation of standard bilevel programming problems
is considered, our results depict that surrogates of bilevel programming problems which
are constructed via additional variables have to be investigated with extreme care when
local minimizers are under consideration.
We exploited the global equivalence of (SVBPP) and (BPP) in order to derive an

existence result for (SVBPP) which is applicable even in the setting where the lower
level decision maker's variable comes from an in�nite-dimensional Banach space. The
associated theory has been used in order to obtain existence results for two classes of
semivectorial bilevel optimal control problems, namely simple semivectorial bilevel opti-
mal control problems and inverse multicriterial optimal control problems.
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